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Abstract 

Due to the impact of energy usage on the environment and the increase in the price 

of fossil fuel, people must be encouraged to use renewable energy sources such as 

solar energy, wind power, hydraulic energy, geothermal energy and biomass energy. 

The indirect heating integrated collector storage solar water heating system is one of 

the compact systems for domestic water heating. It incorporates a solar energy 

collection component and a hot water storage component into one unit. The indirect 

heating type is characterized by service water passing through a serpentine tube (a 

heat exchanger) that is immersed in the stored fluid. The objectives of this study 

were to investigate ways to reduce heat losses from the system and enhance heat 

gained by the service water with the aim of reducing both the initial and the running 

costs.  

 

The continuity, momentum and energy equations were solved in a steady state 

condition, using ANSYS 13.0-FLUENT software and using the pressure-based type 

solver. The results for particular system using the realizable k-є and standard k-ω 

turbulence models were compared to available experimental results to determine the 

appropriateness of the turbulence model choice. The percentage error for the 

numerical simulation of k-є model was higher than for the k-ω model. The error 

varied between zero (no errors) and 15 per cent for k-є, and zero to 8.5 per cent for 

k-ω model. The radiation heat transfer was also included by using a surface-to-

surface radiation model. 
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To minimise the heat loss from the system, a parametric study was conducted in a 

system of double glass covers. The air gap spacing between the absorber and the 

lower glass cover (L1) and the gap between the upper and lower glass covers (L2) for 

the system were varied within the range of 15-50 mm to investigate which 

combination of gap sizes (L1, L2) would result in minimum total heat losses, i.e. 

including radiation and convection losses. Three-dimensional CFD models for the 

absorber, the double glass covers and the air in between (i.e. the storage and service 

water were not included) were developed. The results showed that when the gap size 

was small, the heat loss through the gap was mainly due to conduction, while as the 

gap size increased, the velocity of the air in the gap increased and this increased the 

convection contribution to the heat loss. The optimum lower gap spacing was found 

in the range of 15 and 20 mm, while the optimum upper gap was found in the range 

of 30 and 35 mm.  

 

To enhance the heat gained by the service water, important parameters of the heat 

exchanger were investigated. These parameters are tube length, shape, positioning 

and the cross sectional area of the pipe. The tube length was 16.2 m for the double 

row heat exchanger and it was varied to 8.1 and 10.8 m for the single row heat 

exchanger. Circular and elliptical tubes were also examined.  The mass flow rate was 

chosen as 500 and 650 L/h. The outlet service water temperature was used as a 

measure of the performance, since it is a measure of the energy acquired from the 

solar radiation. Three-dimensional CFD models were developed and validated using 

the experimental results of Gertzos, Pnevmatikakis and Caouris (2008). A standard 

k-ω turbulence model was used in the optimization of the heat exchanger because it 

gave good agreement with the experimental results.  
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The results showed an increase in the outlet temperature of the system, and a 

significant reduction in the initial and operating costs of the system. The outlet 

temperature of the elliptical tube system was higher than the circular tube of similar 

length and cross-sectional area. The single row heat exchanger (HX) with 10.8 m 

length and elliptical cross sectional area gave a high service water outlet temperature 

of 57.9
o
 C with low pumping power. The outlet temperature of the system with tube 

length of 10.8 m (single row heat exchanger) was higher than those of 16.2 m 

(double row heat exchanger). These resulted in an increase in the thermal 

performance and a significant reduction in both the initial and operating costs of the 

system. 

The study was conducted in steady state condition assuming that the circulating 

water mass flow rate was 900 L/h, the storage water temperature was constant at 

60
o
C and for two service water inlet temperatures’; 15 and 20 

o
 C.  
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CHAPTER 1: Introduction 

 Background 

 Solar Resources 

 Solar Collectors 

 Flat Plate Collectors  

 Integrated Collector Storage Solar 

Water Heating System  

 Research Focus and Scop

 

1.1 Background 

Energy resources are classified into two types: renewable resources including solar 

energy, wind power, hydraulic energy, geothermal energy and biomass energy, and 

non-renewable resources that cannot be replenished, such as petrol, nuclear energy, 

coal and natural gas. Figure 1.1 presents the world’s energy consumption in 2006 by 

fuel type (286W 2009). The world’s energy usage from non-renewable resources 

adds up to 91.88% while 8.12% of the energy is generated from renewable resources. 
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Figure 1.1: World Energy Consumption 2006 by Fuel Type (286W 2009) 

 

Due to the massive increase in the non-renewable fuel prices and the increase in 

public awareness of its negative impact on the environment, the growth of renewable 

energy has accelerated over the past few years. According to British Petroleum (BP) 

(2011), power generated from renewable resources has increased to 14% of the total 

growth in global power generation. However, because of the enormous growth in the 

energy consumption, this growth is not enough to reduce the level of carbon 

emissions and to meet the Millennium Development Goals in 2030, that is the carbon 

emissions cap to be 30 GtCO2 (Chakravarty et al. 2009). 

   

As a consequence of the increase in the world’s population, human development, the 

increase in individual income, and the aspiration for more comfortable life styles, the 

power consumption has increased significantly over the last three decades resulting 

in an increase in carbon emissions. In 1985, one kilowatt per capita was more than 

http://edro.files.wordpress.com/2007/11/world-consumption-2006-abc.png
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enough for basic needs; while in 2005 the primary need of energy was estimated for 

the Swiss to be two kilowatt per capita (Steinberger & Roberts 2010). The world’s 

carbon emissions also increased from 21.2 GtCO2/year in 1990 to 25.5 GtCO2/year 

in 2003. The United States contributes by far the highest emissions of 5.8 

GtCO2/year which is equivalent to 16.8 tCO2 per year per capita. Furthermore, the 

world’s population is expected to increase to 8.1 billion by 2030 and hence, the 

average carbon emissions cap for each individual must be reduced to 3.7 tCO2/year 

to achieve the Millennium Development Goals by 2030 (Chakravarty et al. 2009). 

Therefore, carbon emissions must be reduced, and this can be achieved by reducing 

power consumption and/or increasing the percentage of the energy generated by 

using the clean resources like solar, wind, geothermal and hydraulic energy. 

 

 

 

Figure 1.2: Energy Consumption by Sector (2006) – World and Selected Regions (286W 2009) 

 

Increasing the investment of the clean resources involves four sectors: industrial, 

transportation, residential and commercial. Figure 1.2 presents the energy 
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consumption by sector and region (286W 2009). The highest energy consumption 

occurs in the industrial sector. Therefore, much research has been conducted to 

reduce the energy consumption in this sector (Ang & Zhang 2000). The lowest 

consumption occurs in the commercial sector. The contribution of the present study 

will be in the residential sector. This study will focus on using the solar energy for 

domestic applications to reduce burning fossil fuel and hence carbon emission.  

 

Research involving cheap and clean sources of energy such as solar energy, has 

increased significantly over the last four decades. US research in the solar energy 

was initially discouraged by the discovery of natural gas and oil in 1930’s. However,  

after the World Oil Crisis in 1973, its research increased (Smyth, Eames & Norton 

2006). Recently, the use of solar energy for electricity generation, air conditioning 

and water heating has grown. In the domestic applications, households consume 

energy by using air conditioning, heating, water heating, lighting and other 

applications (Figure 1.3). An environmentally and economically important and costly 

use, occurs in the production of domestic hot water, which accounts for 

approximately 14% of the domestic energy consumption in the United States 

(Department of Energy 2010). Domestic hot water is generally heated to around 60
o 

C, a temperature which can be easily produced by using solar energy rather than 

burning fossil fuel. Therefore, an economic and efficient system is required to 

encourage households to use solar water heating.   
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Figure 1.3: Annual energy bill for typical single family home (Department of Energy 2010) 

 

 

1.2 Solar Resources  

The sun’s diameter is approximately 1.4 million km and it is 150 million km away 

from the earth. It has an effective black body temperature of 5777 Kelvin (Duffie 

1991, p. 3) and hence the radiation is emitted from the sun at a rate of 3.8 × 10
23

 kW. 

Moreover, solar energy is readily available, friendly to the environment and 

renewable. During the day time, it is available anywhere in the globe. Solar energy is 

expected to continue for very long time due to endless nuclear reactions that are 

occurring at the core of the sun. These reactions are estimated to continue several 

billion years (Lovegrove & Luzzi 2001).  

  



Marwaan AL-Khaffajy  6 

 

To produce the average world electricity consumption using solar radiation, an area 

of 35,000 km
2
 (roughly the size of Taiwan) is required. To estimate this area, the 

following factors have been taken into consideration (Lovegrove & Luzzi 2001):  

1. Only a small part of the solar energy reaches the earth: 1.7 × 10
14

 kW reaches 

the earth’s atmosphere which is 4.5 × 10
-8 

per cent of total solar radiation. 

This energy is more than 1000 times the average world electricity expenditure 

of 1.6 × 10
11

 kW (Lovegrove & Luzzi 2001)  

2. Solar intensity is affected by several factors: the position of the sun in the 

sky, the season and location on the globe. The maximum intensity of solar 

radiation on a clear  sunny day at noon is around 1100 W/ m
2
 (Duffie & 

Beckman 2006, p. 238) 

3. The efficiency of converting solar radiation to electricity: the efficiency is 

assumed to be 20% for the 35,000 km
2
 area (Lovegrove & Luzzi 2001).  

1.3 Solar Collectors  

The solar collectors are devices which transfer solar energy into thermal energy that 

increases the internal energy in the fluids, and hence increases their temperature. 

They are used to capture the solar energy. According to Lovegrove and Luzzi (2001), 

the simplest solar collector is a plate painted black and placed in the sun. The plate 

heats up until reaches the stagnation temperature when the heat gained from solar 

radiation equals the heat loss to the surrounding by convection and radiation. If water 

is sent through the plate, the water will extract energy from the plate, reducing its 

stagnation temperature. The water temperature increases and this energy can be used 

in many applications. Nowadays, many types of solar collectors are used.      
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There are several types of solar collectors, including the flat plate collector, 

evacuated tube, parabolic trough, central receiver and dish concentrator (Figures 1.4, 

1.5 and 1.6). The temperature that the different types produce is a key indicator of 

their relevance to a particular use. For example, the evacuated tube type of collector 

can produce 90-200
o 

C and the parabolic trough can produce outlet fluid 

temperatures between 260-400
o 
C, while the central receiver can produce 500-800

o 
C. 

According to Lovegrove and Luzzi (2001), the highest outlet fluid temperature (500-

1200
o 
C) is produced by the dish concentrator type. The flat plate collector is used for 

applications that require a temperature lower than 100
o 

C. As mentioned earlier, 

households generally have lower temperature requirements. Consequently, in order 

to study an economic system for household use, this research will focus on the flat 

plate collector. 

 

 

A B 

  

 

Figure 1.4: Solar collector type (A) Flat plate; (B) Evacuated tube (Fotosearch 2010) 
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A B 

  

 

Figure 1.5: Solar collector types (A) Parabolic trough (B) Central receiver (Fotosearch 2010) 

 

 

 

 

Figure 1.6: Dish concentrator collector (Dreamstime 2012) 
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1.4 Flat Plate Collectors 

Flat plate collectors are the cheapest type of collectors. They are classified into two 

main types: conventional and integrated collectors. According to Duffie (2006, pp. 

238-9), the conventional flat plate collector consists of: 

1. A black surface that absorbs radiation and transfers the heat to the fluid  

2. A glass cover that allows the solar radiation to reach the absorber surface and 

reduce convection and radiation losses  

3. Tubes in which the fluid flows  

4. Back insulation to reduce the conduction losses (Figure 1.7).  

Since demand for hot water may not be continuous and solar energy is not available 

at night, a storage tank is needed to store the hot water (Figure 1.8).  

 

 

 

 

 

 

Figure 1. 7: Cross-section of a basic flat-plate collector (Duffie 2006, p. 239) 
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Figure 1. 8: Conventional type flat plate collector water heating system with storage tank 

 

The integrated collector storage solar water heating systems differ from the 

conventional type by incorporating a solar energy collection component and a hot 

water storage component into one unit. This reduces the cost of the system as there 

are no connection pipes and only a small area is required for installation (Gertzos, 

Caouris & Panidis 2010; Khalifa & Abdul Jabbar 2010) . Therefore, this study will 

focus on the integrated collector storage solar water heating system. 

1.5 Integrated Collector Storage Solar Water Heating System (ICSSWH) 

In the late 1800s, some practical individuals in the southwest of the USA produced 

warm water for showering by leaving a water tank exposed to the sun. This was 

considered to be the first Integrated Collector Storage Solar Water Heating 

(ICSSWH) system (Smyth, Eames & Norton 2006). However, there are two types of 

ICSSWH. One is the direct heating system in which the service water flows into the 

storage tank and is directly heated through the collector (Figure 1.9). The other is the 

indirect heating type in which the service water passes through a serpentine tube (a 

heat exchanger) that is immersed in the stored fluid (Figures 1.10 and 1.11). 

Cold fluid 

Hot Water 

Cold Water inlet  

Storage Tank Solar Radiation Hot Fluid 
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Figure 1.9: Integrated Collector Direct Heating System 

 

 

 

 

 

 

Figure 1.10: Integrated Collector Indirect Heating System 

 

 

 

Figure 1.11: Storage tank and service water tube in the Indirect Heating System 
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Construction of the storage tank in the direct heating type is relatively expensive. 

Since the storage tank is connected directly to municipal water pressure, the pressure 

inside the tank is relatively high. Therefore, the storage tank in this type needs to be 

manufactured from a high corrosion resistance material that is able to withstand high 

pressures. This leads to increased tank construction costs to more than 50 percent of 

the total system price (Gertzos & Caouris 2007). 

 

Since  the storage tank in the indirect heating system is not exposed to municipal 

pressure, its capital cost is lower than the direct heating system (Gertzos & Caouris 

2007). However, the storage fluid is static in the indirect heating system, which 

results in a low heat transfer rate between the storage fluid and the service water. 

Enhancing the heat gained by the service water will improve the system’s efficiency 

so that it provides an acceptable outlet service water temperature.  

 

The aim of the present study is to show that the thermal performance of the indirect 

heating integrated collector storage solar water heating system can be improved, 

while keeping the collector construction costs low. This can be achieved by 

enhancing the heat gained by the service water and reducing heat loss from the 

system. 

 

In order to identify a way to maximize the heat gained by the service water and to 

minimize the heat loss, it is important to understand heat balance in the indirect 

heating integrated collector storage solar water heating system. The absorber surface 

is heated from the solar radiation which has been transmitted through the glass 

covers. During the daytime, the heat flows from the absorber to the storage and 
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service water. When there is no solar radiation, the energy in the storage water flows 

to the absorber and service water. In both cases, the absorber loses some of the heat 

due to convection to the air in the gap spacing, radiation to the side walls (the side-

wall surrounding the air gap spacing, Figure 1.10) and radiation to the top glass 

cover. The top glass cover loses heat due to convection to the ambient air and due to 

radiation to the sky. 

1.6 Research Focus and Scope  

There are different ways to improve the performance of the indirect heating 

integrated collector storage solar water heating system. These are: 

1. Increasing the heat gained by the service water (Chen et al. 2010; Gertzos 

& Caouris 2008; Gertzos, Pnevmatikakis & Caouris 2008; Kumar & Rosen 

2010). 

2. Reducing heat losses to the environment (Kumar & Rosen 2011). 

3. Increasing the system’s ability to store energy (Smyth, Eames & Norton 

2006). 

4. Optimizing the angle of the collector for the reference point (Elminir et al. 

2006; Gunerhan & Hepbasli 2007). 

 

The present study will investigate ways to reduce heat losses from the system and 

enhance heat gained by the service water. 

A. Heat Loss Reduction 

Using a double glass cover instead of single one is an efficient strategy to reduce the 

heat loss (Kumar & Rosen 2011). The present study investigated the optimum air gap 

spacing between the upper and lower glass cover and between the lower glass and 
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the absorber surface (Figure 1.12). A parametric study has been conducted in a 

system with double glass cover. The lower air gap spacing (L1) and the upper air gap 

spacing (L2) for the system with 0.7 m x 1.35 m absorber area were varied within the 

range of 15-50 mm to investigate which combination of gap sizes (L1, L2) would 

result in minimum total heat losses, i.e. including radiation and convection losses.  

 

 

 

 

 

 

Figure 1.12: Indirect Heating System with double glass covers  

  

B. Heat Transfer Enhancement   

The heat gained by the service water can be enhanced by methods such as:  

1. Agitating the storage water using a circulating pump. This will not be investigated 

in the present study because using a circulating pump increases the capital and 

running costs of the system. The pump requires electricity and continuous 

maintenance     
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2. Using the phase change material technique. Chen et al (2010) studied an indirect 

collector that is operated with paraffin instead of storage water. Their objective 

was to increase the thermal conductivity of the paraffin by adding aluminum foam 

with high thermal conductivity, 202.4 W/mK. Adding aluminum foam enhanced 

the heat transfer between the storage fluid and the service water. This method is 

out of the scope of the present study. 

3. Changing the heat transfer surface design which includes adding fins, surface 

roughness, twisted-tape inserts and coiled tubes. The surface treatment technique 

enhances the heat transfer because it increases the turbulence, increases the 

surface area and improves the mixing or flow swirl (Kreith, Frank & Bohn 2001, 

pp. 514-7). This technique will not be used in this study because it increases the 

cost of the system. 

 

The present study focuses on changing the length and cross sectional area of the 

service water tube to enhance the heat gained by the service water. The outlet service 

water temperature is used as a measure of the performance as it is a measure of the 

energy acquired from solar radiation. Single and double raw heat exchangers with 

different lengths are investigated. Circular and elliptic tube cross section pipes are 

also examined. The service water mass flow rate is chosen as 500 and 650 L/h, as 

average flow rates used in the investigation of the indirect heating system (Gertzos & 

Caouris 2008; Gertzos, Caouris & Panidis 2010; Gertzos, Pnevmatikakis & Caouris 

2008). 
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CHAPTER 2: Literature Review and 

Research Gap 

 Introduction  

 Collector Angle and Inlet Position 

 Storage Tank Construction  

 Glass Cover  

 Heat Transfer Enhancement  

 The Heat Exchanger in other 

Applications 

 Research Gap 

 

2.1 Introduction  

This chapter provides a review of the previous work aimed at investigating the 

parameters that have an effect on the collector performance. These parameters are the 

collector angle, the service water inlet position, storage tank construction, glass 

cover, and methods of heat transfer enhancement. As the heat exchanger is a major 

component in the indirect heating system, the last section of this chapter is devoted to 

summarising the research conducted on general heat exchangers.  

2.2 Collector Angle and Service Water Inlet Position  

Gertzos, Pnevmatikakis & Caouris (2008) conducted an experimental and numerical 

study investigating the heat transfer between the service and storage water in the 

indirect heating system. Their main objectives were to study the effect of the inlet 
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position and the slope of the collector on the outlet service water temperature. They 

built the heat exchanger (storage tank and service water tube) for the system. The 

storage water was heated, using successive passages through the external heater. 

When the temperature of the storage water reached 80
o
 C, they stopped the heating 

process, allowed the service water to flow through the tube, and measured the outlet 

and the average storage water temperature for one hour period of the energy 

withdrawal (Figure 2.1).  

 

In the numerical simulation, they developed a 3D CFD model (using CFD package 

FLUENT 6.3) and solved the continuity momentum and energy equation in transient 

condition, using a standard k-omega turbulence model. They used the SIMPLE 

algorithm (Semi-Implicit Method for Pressure Linked equation) for the velocity-

pressure coupling and the second order upwind scheme for momentum, turbulent 

kinetic energy, specific turbulent dissipation ratio and energy. They examined the 

case with free convection heat transfer (i.e. when the storage water is static).  

 

Their findings: 

1. In an investigation of two cases of the inlet position; one the inlet is placed in the 

front of the collector and one in the back. The inlet position of the service water 

has no effect on the outlet service water temperature  

2. For the collector angle, in the first ten minutes when the average storage water 

temperature (Tta) was higher than 50
o 
C, the service water outlet temperature (Tout) 

increased, as the collector angle increased, due to the buoyancy effect. While, 

after ten minutes, the outlet temperature was not affected by changing the 

collector angle (Figure 2.1). 
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Their numerical model was validated against their experimental results. The 

experimental inputs of initial temperature of storage water, mass flow inlet and inlet 

temperature were used in the CFD model and there was a good agreement between 

the experimental and the numerical results. 

 

 

 

 

Figure 2.1: Experimental temperatures versus time for the indirect heating system at slopes 0
o
, 

45
o
, 90

o
, without recirculation and service water flow rate of 500L/h. T1n : tube water inlet 

(mains) temperature (Gertzos, Pnevmatikakis & Caouris 2008) 

 

 

2.3 Storage Tank Construction  

In the indirect heating system, thin steel metal sheets (0.8-1.2 mm thick) can be used 

to build the tank, without any corrosion protection (Gertzos, Caouris & Panidis 

2010). This is due to the fact that the storage tank is not subjected to the high 
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pressure similar to municipal pressure. The fluid in the tank is not connected to 

municipal water and it is not refreshed. The municipal water (service water) passes 

through a serpentine tube that is immersed in the storage tank. 

 

According to Smyth, Eames and Norton (2006), the tank depth has an effect on the 

performance of the system. For example, an increase in the water depth leads to an 

increase in the time taken to heat the water. A decrease in the tank depth leads to a 

decrease in the system’s capacity to store energy. Moreover, in a cold climate, a 

depth decrease could result in the storage water being frozen. Smyth, Eames and 

Norton (2006) conducted a review study in which they state that the best 

“volume/aperture area” ratio is 100 L/ m
2 

 or the best tank depth is 10 cm. Tiller and 

Wochatz (1982) concluded that in hot weather, the performance of 102 L/m
2
 is better 

than 51-69 L/m
2
 unless the water is withdrawn fairly continuously through the 

daylight hours. Gertzos, Caouris and Panidis (2010) studied the indirect heating 

system and took the tank depth as 10 cm or the “volume/aperture area” ratio as 100 

L/m
2
. 

2.4 Glass Cover 

The glass cover has several functions: 

1. It reduces convection heat losses to the surroundings  

2. It protects the absorber surface from the environment  

3. It reduces the radiation heat losses by reflecting the radiation emitted from 

the absorber surface. As the wave length of solar radiation is shorter (in the 

range 0.3-3 µm) than the radiation that emits from other surfaces at lower 

temperature, solar radiation is able to transmit through the glass cover while 
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the radiation emitting from the absorber surface is not able to transmit back 

through the glass cover.  

However, the glass material has to be highly transparent for the solar radiation, since 

any loss in the transmittance results in a direct decrease in the collection efficiency 

(Smyth, Eames & Norton 2006).  

 

Kumar and Rosen (2011) numerically investigated five strategies for reducing the top 

heat losses. They applied an energy balance equation for each case and solved these 

equations numerically using a “forward time step marching finite difference 

technique”. Their study aimed to find the best strategy for enhancing the thermal 

performance of the system. The 100 L tank capacity model and 1 m
2
 absorber area 

was used to assess five cases: 

(1) Single glass cover without night insulation.  

(2) Single glass cover with a night insulation cover.  

(3) Double glass cover without a night insulation cover.  

(4) Transparent insulation with a single glass cover.  

(5) Insulating baffle plate with a single glass cover.  

 

Case 3 gave the highest thermal performance, while Case 5 gave the lowest. The 

water temperature in the storage tank for Case 3 was higher than the temperature for 

Case 4 and 5 by 5-7
o
 C and the thermal efficiency was higher by 12-14%. In Cases 1, 

2, 3 and 5, the high and low thermal efficiency resulted from low and high heat loss 

respectively. However, in Case 4 the relatively low efficiency resulted from the 

decreased incoming solar radiation on the absorber surface due to the presence of the 

transparent insulation material between the absorber plate and the glass cover. 
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According to Kumar and Rosen (2011), using a double glass cover in the integrated 

collector system is an efficient strategy for reducing the top heat losses. However, the 

air spacing between the upper and lower glass, and between the lower glass and the 

absorber surface, has an effect on the amount of heat losses. Manz (2003) 

investigated numerically the convective heat flow through an air layer in cavities of 

facade elements. The Rayleigh number was varied between 1000 and 10
6
 in this 

study. It was changed by altering the temperature difference between the walls 

surrounding the air or by altering the distance between the walls. The result of 

Manz’s study suggested that the increasing Rayleigh number resulted in an increase 

in the velocity of the air which in turn increased the convective heat transfer. 

Therefore, at a high Rayleigh number the gap is not as effective in reducing the heat 

loss. 

 

Mossad (2006) investigated the effect of the air gap spacing of double glassed doors 

in closed refrigerated vertical display cabinets. The results showed that when the size 

of the air gap was very small, the heat transfer was mainly due to conduction: as the 

gap spacing increased, air begins to move due to natural convection which leads to 

an increase in the convective heat loss. Therefore, the sizes of the top and lower air 

gap spacing have an effect on the amount of heat loss from the system. 

2.5  Heat Transfer Enhancement  

Previous studies in the indirect heating integrated collector system showed that the 

heat gained by the service water is enhanced by agitating the storage water and 

changing the heat exchanger design. While in the direct heating system, using a 
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corrugated absorber surface was found to increase the heat gained. A summary of the 

research aimed at investigating different techniques to enhance the heat transfer in 

the integrated collector storage solar water heating system is given below.  

2.5.1 Agitating the Storage Water 

Gertzos, Pnevmatikakis and Caouris (2008) used a pump circulating the storage 

water to enhance the heat transfer between the storage and service water (Figure 2.2).  

The experimental and numerical methods of this study were summarized in Section 

2.1. The inlet, outlet service water temperature and the average temperature of the 

storage water were measured at one second time intervals and were averaged and 

recorded every 30 seconds, for energy withdrawal periods of one hour.  

Gertzos, Pnevmatikakis and Caouris (2008) reported that the outlet service water 

temperature was higher in the case with circulating pump than without circulating 

pump. Figures 2.3 and 2.4 present the experimental and computational temperatures 

of the service water inlet and outlet (Tin, Tout), storage tank (Tta) and temperature in 

the middle of the service water tube (Tmed) during a one hour period, for the system 

with and without circulating pump, respectively. When the circulating pump was 

used with a 923 L/h flow rate (Figure 2.3), the outlet temperature was 55
o 

C at time 

equals zero, but when the circulating pump was not used (Figure 2.4), the outlet 

temperature was 50
o 
C at time equals zero. 
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Figure 2.2: the heat exchanger in the indirect heating system with circulating pump. Key: 1. 

storage tank; 2. HX; 3. circulating pump; 4. service water inlet; 5. service water  outlet; 6. inlet, 

circulating water; 7. outlet circulating water. 

 

 

 

Figure 2.3: Experimental and computed temperatures versus time for the system with 

recirculation flow rate of 923L/hr and service water flow rate of 500L/h (Gertzos, 

Pnevmatikakis & Caouris, 2008) 
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Figure 2.4: experimental and computed inlet, middle, outlet and average tank temperatures 

versus time, without recirculation and for service water flow rate of 500L/h (Gertzos, 

Pnevmatikakis & Caouris, 2008) 

 

 

Gertzos & Caouris (2008) conducted a study on the same system (Figure 2.2) with 

circulating pump. The objective of the study was to reduce the construction cost 

without reducing the thermal efficiency of the system. The storage tank was 

constructed from thin steel material to minimise cost. However, the water weight and 

pressure inside the storage tank tended to deform the plate. To prevent deformation, 

fins were used to connect the back and front plates of the storage tank (Figure 2.5). 

These fins should be placed in a position that has a minimal influence on the velocity 

of the storage water (Gertzos & Caouris 2008).  

 

Gertzos and Caouris (2008) investigated four parameters that have effect on the 

mean water velocity in the tank, and hence on the outlet service water temperature. 

These parameters are the inlet and outlet position of circulating pump (number 6 and 

7 in Figure 2.2), the diameter of the inlet and outlet of the circulating tube and the 

arrangement of the interconnecting fins. The study was conducted in steady state 
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condition assuming that the circulating water mass flow rate was 900 L/h, the storage 

water temperature was constant at 60
o
C and for two service water inlet 

temperatures’; 15 and 20 
o
 C.  

 

 

 

 

 

 

 

Figure 2.5: A storage tank with a fin joining the front and back surface 

 

Gertzos and Caouris (2008) found that the influence of the inlet diameter and 

position of the circulating water on the storage water velocity are more important 

than the influence of the outlet diameter and its position. The optimum inlet diameter 

was 8 mm, while the optimum position was 100 mm from the top right side. The 

optimum position of the outlet was 337.5 mm from the lower left side (Figure 2.2). 

For the interconnecting fins, they found that the case using five fins of 10 cm length 

(f.1-f.5 in Figure 2.6) was the best option. If extra strength is required, the case of 

nine fins with 5 cm length (f.1-f.5 and f.6-f.9) was found to the second best option.  

The optimal arrangement of the interconnecting fins and the circulating pump inlet 

and outlet led to increase in the main storage water velocity by 65 % which in turn 

increased the outlet service water temperature by 8
o 
C. 

 

 

 

 

 

 

Interconnecting fins 
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Figure 2.6: Optimal arrangement of the connecting fins position (Gertzos & Caouris 2008)  

 

 

2.5.2 Heat Exchanger Design  

The heat exchanger in the indirect heating system includes a storage tank which 

contains the storage water and the service water tube through which the service water 

flows. Gertzos, Caouris and Panidis (2010) investigated the effect of three 

parameters in the model given earlier (Gertzos & Caouris 2008), with the presence of 

a circulating pump (Figure 2.2). These parameters were the service water tube 

positions relative to the tank wall, the tube length and the tube diameter. They 

developed various steady CFD models to identify the optimum magnitude of these 

parameters.  
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In regard to the tube placement, they investigated five different positions for the 

service water tube (Figure 2.7). In Case 1, the tube was placed inside the tank 

touching the upper and lower walls of the tank, while in Case 2, half of the tube was 

placed outside the tank and half inside the tank. The advantage of Case 2 was to 

increase the storage water velocity inside the tank because the tube resistance to the 

storage water decreased in this case. As a result an increase in the heat transfer 

coefficient can be obtained. The tube in Case 3 was soldered to the walls with the 

aim of introducing better thermal conductivity. In Case 4, the tube was placed in the 

middle of the tank depth and in Case 5, the tube at the top plate was placed across at 

the middle between the tubes the lower plate of the tank.  

 

For each case, a CFD model was developed to evaluate the outlet service water 

temperature which was used as a measure for the thermal efficiency. They solved the 

continuity, momentum and energy equation in steady state using the k-omega 

turbulence model and used the following assumptions:  

 

1. The storage water temperature was fixed at 60
o
 C  

2. The service water mass flow rate was chosen to be 300, 500 and 700 L/h  

3. The inlet temperature was at 20
o
 C 

4. The circulating water mass flow rate was varied to 100, 450 and 810 L/h,  

5. The service water tube diameter and length was 13 mm, 16.26 m respectively. 

 

 Cases 1, 3 and 5 provided the same outlet service water temperature, which was 

higher than Cases 2 and 4. As the fabrication of Case 3 was more expensive than 
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Case 1 and they had the same outlet service water temperature, Gertzos, Caouris and 

Panidis (2010) rejected Case 3. Case 1 was found to be the optimum case because it 

gave a slightly better result than Case 5 and its fabrication is simpler. Moreover, the 

service water outlet temperature increased by 4-6
o
 C as the circulating water flow 

rate was increased by 350 L/h and decreased by 4-8
o
 C as the service water flow rate 

was decreased by 200 L/h. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Cases for HX placement 

 

For the service water tube diameter, Gertzos, Caouris and Panidis (2010) examined 

four inside diameters: 10, 13, 16 and 20 mm. They solved the continuity, momentum 

and energy equation in a steady state condition. They used the same assumptions for 

investigating the tube placement. The optimum tube diameter was found to be 16 

mm, as it gave the highest outlet temperature.  
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Case 2 

Case 5  

Case 3 
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HX Placement 
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In regard to the service water tube length, they examined the heat exchanger with 

tube lengths of 16.26 m and 21.68 m. They investigated the system in a steady state 

condition and found that in the case where the tube length was 21.68 m, the 

difference between the average temperature of storage water and the outlet service 

water varied between 1
o
 C to 6

o
 C for the service water mass flow rate 300 and 700 

L/h, respectively. In this case, the tube diameter was 16 mm and the circulating water 

mass flow rate was 810 L/h. They considered this temperature difference to be 

acceptable for heat exchanger systems. Therefore, they concluded that there is no 

need for a further increase in the tube length.  

 

Gertzos, Caouris and Panidis (2010) developed a transient CFD simulation to 

examine the behaviour of the system during a one hour period of the energy 

withdrawal. They used the following assumptions:  

1. The initial temperature of the storage water was 60
o
 C  

2. The service water mass flow rate was 500 L/h  

3. The inlet temperature was 20
o
 C 

4. The circulating water mass flow rate was 810 L/h  

5. The tube length was 21.68 m  

6. The tube inside diameter was 16 mm  

7. The tube position was as for Case 1.  

 

Figure 2.8 presents the outlet temperature of the service water (Tout), the average 

temperature of the storage water (Tta) and the temperature of the service water in the 

middle of the tube length (Tmed) for a one hour period of energy withdrawal. During 

this period, the difference between the average temperature of the storage water and 
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the outlet temperature of the service water was less than 4
o 

C. The outlet temperature 

decreases to 30
o
 C after 20 min, whereas Tta and Tout are equal after 50 min.   

 

 

 

Figure 2.8: Mean tank water, mean tubes water and service water outlet temperature (Gertzos, 

Caouris & Panidis 2010) 

 

 

2.5.3  Corrugated Absorber 

In the direct heating type, the service water flows through the collector and there is 

no service water tube. Therfore, using a corrugated absorber instead of plain one can 

increase the heat transfer between the absorber and the service water. Kumar and 

Rosen (2010) studied the effect of introducing a corrugated absorber surface for the 

direct heating integrated collector storage solar water heating system. Introducing a 

corrugated absorber surface increased the area in contact with the service water side 

(Figure 2.9), and hence increased the system operating temperature and increased the 

useful energy converted from solar energy. When the depth of the corrugation was 
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changed from 0.4 to 1 mm, the maximum service water temperature increased from 

53 to 64
o 

C. In contrast, increasing the operating temperature resulted in an increase 

in heat loss, which in its turn reduced efficiency. According to this study, the 

efficiency reduction was marginal and could be overcome by continuous water 

withdrawal from the system. Kumar and Rosen (2010) concluded that the 

performance of the integrated solar collector is better when using a corrugated 

absorber than when using a plain absorber. 

 

 

 

 

Figure 2.9: Cross-section of direct heating system with corrugated absorber 

 

 

2.6  The Heat Exchanger in other Applications  

As the heat exchanger is a major component in the indirect heating system, this 

section is devoted to summarising research conducted on general heat exchangers. 

The heat exchanger is defined  as an apparatus in which heat transfers between a 

warmer and colder substance, usually fluids (Kreith, Frank & Bohn 2001, p. 485). 

There are two important factors when designing a heat exchanger: the economic 

Glass Cover Water Corrugated Absorber 

Insulation 



Marwaan AL-Khaffajy  32 

 

factor which is important in every engineering design, and the thermal performance 

of the heat exchanger. Gebreslassie et al. (2010) proposed a general equation 

(equation 2.1) for a thermal system to estimate the optimal area of a heat exchanger 

considering both economic and thermal factors. This equation depends on parameters 

directly related to the heat exchanger. These parameters are cost, the overall heat 

transfer coefficient, the logarithmic mean temperature difference and the heat 

transfer rate. Thus, it indicates how the area should be changed if these parameters 

are modified.  

 

The geometry of the heat exchanger, the temperature of the cold and hot fluid, and 

the velocity of the fluid affects the thermal performance of the heat exchanger. 

Prabhanjan, Raghavan and Rennie (2002) compared the heat transfer rates of a 

straight tube heat exchanger and a helical tube heat exchanger. They concluded that 

the heat transfer coefficient is also affected by the geometry of the heat exchanger. 

 

Mellouli et al. (2007) examined experimentally the effect of using a spiral heat 

exchanger in a metal-hydrogen reactor (Figure 2.10). The reactor consists of a 

cylindrical stainless steel tank containing 1 kg of LaNi5 (hydride bed). The benefit of 

using the spiral tube is that a centrifugal force is generated as the fluid flows through 

a carved tube. This force can cause a significant increase in the heat transfer rate 

(Mellouli et al. 2007). 
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Figure 2.10: Geometrical configuration of a reactor. (a) Burst sight of the reactor;  (b) Cross-

section of the reactor (Mellouli et al. 2007) 

 

2.7  Research Gap 

More research is needed to improve the performance of the integrated collector 

storage solar water heating system, reduce its operating cost and introduce a system 

with a more aesthetic configuration (Smyth, Eames & Norton 2006). Studies of the 

indirect heating system are limited, and of these only a small number refer to the heat 

transfer in the indirect heating system. For example, Gertzos, Pnevmatikakis and 

Caouris (2008) examined experimentally and numerically the outlet service water 

temperature in a heat exchanger (storage and service water) of an indirect heating 

system with and without agitating the storage water. They found that when the 

storage water was static, the difference between the average temperature of the 

storage water and the outlet service water temperature was between 15
o
 and 20

o 
C. 

When the storage water was moved using a circulating pump, the temperature 

difference reduced to the range of 10-12
o 

C (Gertzos, Pnevmatikakis & Caouris 
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2008). The low temperature difference between the storage water and the outlet 

service water means that the heat transfer between the two fluids is high.  

 

Gertzos and Caouris (2008) and Gertzos, Caouris and Panidis (2010) achieved the 

optimum value of the interconnecting fin placement, service water tube position 

relative to the tank wall, and the diameter and length of the service water tube for the 

system with circulating pump. Consequently, the temperature difference decreased to 

4
o 

C, which is acceptable in heat exchanger design (Gertzos, Caouris & Panidis 

2010).  

 

Kumar and Rosen (2011) found that using a double glass cover is an effective 

strategy for reducing the heat losses, and that the heat gained from the solar radiation 

was the same whether using a single or double glass cover. To the author’s best 

knowledge, the optimum air gap spacing in the integrated collector storage solar 

water heating system with double glass cover has not been investigated.  

 

This study will investigate numerically the optimum size of the upper and lower air 

gap (Figure 1.12). In this investigation, the following assumptions were used: 

1. The continuity, momentum and energy equations were numerically solved in a 

steady state condition 

2. The absorber temperature was assumed to be 82
o
 C. This temperature is the 

maximum temperature that the absorber surface can reach when solar incident 

radiation is 850 W/m
2
 in the flat plate collectors (Gertzos & Caouris 2007). 

This value was chosen mainly to identify the best air gap spacing that gives the 

lowest heat loss at the possible maximum absorber temperature. This was to 
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determine the design parameters of the exchanger at the worst case scenario 

(i.e. when the losses are at maximum). 

3. The collector angle was chosen to be 45
o
 from the horizontal 

4. Radiation between surfaces was calculated by using the surface-to-surface 

(S2S) radiation model.   

 

The previous studies in the indirect heating system by Gertzos and Caouris (2007); 

Gertzos, Pnevmatikakis and Caouris (2008); Gertzos and Caouris (2008); Gertzos, 

Caouris and Panidis (2010) investigated heat transfer in the heat exchanger. Namely, 

the heat transfer between the storage and service water. They used the assumptions 

that the temperature of the storage water was fixed at 60
o
 C for the steady state 

investigation. While for the transient investigation, the initial temperature of the 

storage water of 60
o
 C or 80

o
 C was used. The present study will investigate the heat 

exchanger in the indirect heating system using different assumptions:   

1. The whole collector (double glass covers and heat exchanger) were included in 

the calculations  

2. A circulating pump of the storage water was not used 

3. The absorber surface temperature was assumed to be 60
o
 C, as an average 

absorber temperature.  

 

In the heat exchanger investigations, these assumptions were considered to be more 

realistic than the previous studies’ assumptions because:  

1. The absorber, rather than the storage water, is the heat source in the system  
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2. Based on energy balance, the absorber temperature can reach 60
o
 C when solar 

incident radiation is 650 W/m
2
, but there is no evidence that the whole system 

can reach this temperature 

3. The average absorber temperature was chosen to identify the best heat 

exchanger configurations at average incident radiation.   

Therefore, to investigate the best heat exchanger design assuming that, the absorber 

temperature is constant at 60
o
 C and including the effect of the double glass covers 

with no circulating pump is a more realistic model and is expected to use less energy. 
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CHAPTER 3: Mathematical Model 

 Introduction  

 The Governing Equations  

 Computational Fluid Dynamics (CFD) 
 The Advantages of Using CFD 

Approaches  

 Types of Flow 

 Turbulence Modelling  

 The Use of CFD Software  

 Chapter Conclusion  

 

3.1 Introduction  

The objective of the present study is to numerically investigate ways to improve the 

thermal performance of the indirect heating system with an aim of reducing both the 

initial and running costs of the system. There are many numerical methods that can 

be used to solve fluid flow and heat transfer problems. These include finite element, 

finite difference, control volume, boundary element and meshless method (neural 

network). The main goal of all these numerical methods is to transfer the 

complicated differential equations that govern the flow and heat transfer, and which 

are not possible to solve analytically, into simple algebraic equations. These 

equations can then be solved using the power of computers.  These methods are 

called computational fluid dynamics, CFD.  This chapter presents the mathematical 
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equations that must be solved and the particular method used in this research to solve 

them. 

3.2 The Governing Equations 

To evaluate the thermal performance of the indirect heating integrated collector 

storage solar water heating system, the velocity, temperature and pressure of the 

fluids involved in the system need to be evaluated. These fluids are water (in the 

storage tank and the service water in the pipe) and air (in the gap spacing between 

the glass covers). The equations that govern the fluid flow and heat transfer are the 

continuity, momentum and energy equations. The equations for unsteady, turbulent 

and incompressible flow are presented below. 

1. According to Versteeg and Malalasekera (2007, pp. 62-4), the continuity 

equation is:  

                                                                 

 

where; 

 :fluid velocity vector (i.e.             ) 

The continuity equation is written in rectangular coordinates as below. 

 

    
  

  
    
  

  
    
  

                                     

 

2. According to Versteeg and Malalasekera (2007, pp. 62-4), momentum or 

Reynolds-Averaged Navier-Stokes equations are: 

a. x-momentum equation  
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b. y-momentum equation  

      
  

        
 
     

   
  

   
                

   
          

   
  
        

  
 
          

  
 

                                                                                                        

 

c. z-momentum equation  

 
       
  

        
 
      

   
  

  
                 

   
          

   
  
          

  
 
       

 
 

  
 

                                                                                       

 



Marwaan AL-Khaffajy  40 

 

3. According to Nakayama (1995, pp. 73-5), the energy equation governing 

this type of flow is written in abbreviated form as:  

   

  
 
        

   
 

 

   
 
 

  

   

   
   

                                   

 

 

Where:  

      : Body force in the direction of x, y and z 

p: Fluid pressure 

 

   :  Tensor notation of mean velocity vector of the fluid and it has three components 

for Cartesian coordinate, one in x direction (       ), one in y direction (       ) and 

one in z direction (       ) 

 

  : Cartesian coordinates (x, y, z) 

  
    : Turbulent heat flux 

  : Turbulent Prandtl number 

 : Fluid kinematic viscosity 

 
 

The tool that is used to solve the above equations is described in the following 

sections. 

3.3 Computational Fluid Dynamics (CFD) 

Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and 

mass transfer and related phenomena such as chemical reaction, mixing flow and 

phase change by solving numerically the mathematical equations. These equations 

represent the physical laws that govern the processes. CFD approach has been used 

widely in industrial applications such as the design of aircraft, jet engines, internal 

combustion engines, combustion chambers of gas turbines and furnaces. The 

methods are also used in non-industrial applications like weather prediction, and 

simulating the blood flow through arteries and veins.  
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Several CFD-codes are available: CFX, FLUENT, PHOENICS and STAR-CD. The 

present study used FLUENT software, because of its availability to the author and 

because it has been used and validated in many studies including the indirect heating 

integrated collector storage solar water heating system (Gertzos & Caouris 2007, 

2008; Gertzos, Caouris & Panidis 2010; Gertzos, Pnevmatikakis & Caouris 2008). 

To use FLUENT or any CFD-code successfully, the users must have a good 

understanding of the internal working of these codes i.e. the physics applied to the 

fluid flow and the fundamentals of the numerical algorithms (Versteeg & 

Malalasekera 2007, p. 6). The advantages of using CFD and the theory of the CFD 

approach are presented in the following section. 

3.4 The Advantages of Using CFD Approaches 

Although the experimental results are more acceptable than results obtained by using 

CFD methods, CFD approaches have many advantages (Versteeg & Malalasekera 

2007, p. 6):  

1. CFD methods are cheaper than the experimental approaches. They can be used 

to perform parametric studies to optimise equipment performance for lower 

costs and less time  

2. Details of results obtained by using CFD are more than details of experiments 

3. CFD approach has the ability to study systems that are very difficult to control 

practically, particularly very large systems 

4. CFD approach has the ability to investigate systems that are too dangerous to 

be investigated experimentally. 
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3.5 Types of Flow   

The fluid flow is classified into three types, laminar, transitional and turbulent flow. 

The ratio of the inertia forces to the viscous forces in the fluid which is known as the 

“Reynolds number” indicates whether the flow is laminar, transitional or turbulent. 

When the Reynolds number is lower than a critical value, which depends on the 

problem type, the flow is smooth and moves in layers past each other in an orderly 

fashion. This kind of flow is the laminar flow. However, when the Reynolds number 

exceeds the critical value, which tends to be the case in many practical problems, the 

flow is turbulent (Versteeg & Malalasekera 2007, pp. 40-1). The turbulent flow is 

characterized by a rapid mixing of fluid particles due to random three dimensional 

velocity fluctuations (Figure 3.1). The fluid molecules in turbulent flow fluctuate at a 

variable length and time scale.  

 

The heat transfer and the friction in the turbulent flow are higher than that in the 

laminar flow, as the momentum and energy exchange between the molecules and the 

solid walls increase (Blazek 2005, p. 227). For the laminar flow, the velocity 

components in x, y, z direction, pressure, density and temperature of the fluid 

particles are simply u, v, w, p, ρ, and T respectively while the turbulent velocity 

components, pressure, density and temperature are represented as:  

                                          

                                      
 
 

                                          

where; 

                    are the fluctuation terms,                  are the mean value of 

the flow properties. 
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Figure 3.1: Typical point velocity measurement in turbulent flow (Versteeg & Malalasekera 

2007, p. 41)  

 

 

The flow in the indirect heating integrated collector system is turbulent as it is in 

most engineering applications. 

3.6 Turbulence Modelling and Direct Numerical Simulation  

Due to random three dimensional velocity fluctuations, the turbulence causes a rapid 

mixing of the fluid particles. The fluid molecules fluctuate at variable lengths and 

time scales, and they interact in a dynamically complex way (Versteeg & 

Malalasekera 2007, p. 65). Much research has been developed to capture the 

important effect of turbulence (the effect of eddies), and to solve the turbulent 

governing equations. The turbulent modelling approaches are classified into two 

groups (Versteeg & Malalasekera 2007, pp. 65-6): 

1. Turbulence model for Reynolds-averaged Navier-Stokes (RANS) 

equations:  

This type of modelling focuses on the mean flow properties and on the 

effect of turbulence on these properties. The Reynolds stresses (   
   

 ) 
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and the turbulent heat flux terms (  
    ) are modelled to solve Reynolds-

Averaged Navier-Stokes and energy equations. This type of turbulence 

modelling requires less computational time than other approaches such as 

large eddy simulation and direct numerical simulation because it only 

produces a solution of the mean values of  flow pressure, temperature and 

velocity. However the fluctuation of these values that arise due to 

turbulent i.e. u׳, v׳, w׳, T׳ and p׳ are estimated using different 

formulation. These include Mixing length, Spalart-Allmaras, k-є, k-ω, 

Algebraic stress and Reynolds stress models  

2. Large eddy simulation: 

 Large eddy simulation (LES) model tries to capture all flow scales. In the 

turbulent flow, the fluid molecules fluctuate with wide range of lengths and 

time scales. The Reynolds number of the large eddies (   ), calculated based 

on length scale, is similar to the mean flow Reynolds number (  ), while it 

equals to one for the small eddies (Versteeg & Malalasekera 2007, pp. 40-3). It 

is very computationally expensive to solve the entire turbulent length scales 

and it is not feasible for the high Reynolds number. In this model, the large 

eddies are directly resolved, but the small eddies are modelled using one of the 

RANS model. The large eddies are anisotropic and directly affected by 

geometry, boundary condition and body force. They are responsible for 

transporting most of the momentum, mass and energy in the turbulent flow. 

However, the small eddies are isotropic, especially for high    and less 

dependent on geometry. They are easily modelled by other turbulent models 

such as RANS models. This model requires a significantly finer mesh than 

RANS and it has to solve time dependent equations. As a result, more powerful 
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hardware and more computational time are required to solve the flow with LES  

(ANSYS 2009) 

 

There is another method of solving the turbulent flow equation that is direct 

numerical simulation (DNS). The mean flow and all turbulence velocity fluctuation 

are solved in this model. The unsteady turbulent equations are solved with small time 

step to resolve the period of the fastest fluctuations. Up to date, this method is not  

commonly used, as high computing resources are required and it requires much finer 

special grid than the other turbulence models. In turbulent flow, the ratio of the 

smallest to largest length scales was estimated as a proportion of    
 
  . As the 

smallest and largest turbulent length scales are solved in DNS and the turbulent flows 

are inherently three-dimensions, computing meshes increase by    
 
  . If a typical 

turbulent flow with 10
4
 Reynolds number needs to be solved with DNS, computing 

meshes with 10
9
 grid points are required (Versteeg & Malalasekera 2007, pp. 65-

111).    

 

In this study, the k-є model was chosen to be used to identify the optimum air gap 

spacing. In the heat exchanger investigation, the results for the particular system 

using the realizable k-є and standard k-ω turbulence models were compared to 

available experimental results to determine the appropriateness of the turbulence 

model choice. Both models gave good agreement with the experimental results, but 

the percentage error for the numerical simulation of k-є model was higher than for 

the k-ω model (these results will be presented in chapter 4).  
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The reasons for choosing the k-є and k-ω turbulence models in the present study are 

given bellow.  

1. As k-є and k-ω models are Reynolds-averaged Navier-Stokes (RANS) 

equations models, they require reasonable  computational time, 

2. Their accuracy is appropriate in many industrial applications, and They were 

used previously in the investigations of the indirect heating system and they 

were found to have a good agreement with experimental results such as the 

work by (Gertzos & Caouris 2007, 2008; Gertzos, Caouris & Panidis 2010; 

Gertzos, Pnevmatikakis & Caouris 2008).  

Therefore, k-є and k-ω models were assumed to be appropriate for this work and 

they are described in more details below.  

 

The governing equations (3.1, 3.3 and 3.4) are derived by applying the Reynolds-

time averaging approach (Nakayama 1995, pp. 73-5). The Reynolds-time averaging 

equation is given below. 

 

       
   

 

 
       

   

 

                                                                     

 

T  ∞ means that the time interval “T” should be large as compared to the typical 

time scale of the turbulent fluctuations (Blazek 2005, pp. 231-2). 

 

Due to the presence of the turbulence, there are extra components that appear in the 

momentum and energy equations. These components are the Reynolds stresses tensor 

(   
   

 ) and the turbulent heat flux tensor (  
    ). Additional equations other than 
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equations (3.1, 3.3 and 3.4) are required to solve these parameters that appear due to 

the turbulence. The methods used in this study are presented in the next section. 

3.6.1 K-є Model 

The k-є model is a two-equation model commonly used in industrial applications, as 

it provides reasonable accuracy for the majority of turbulent flow computations and 

it is economic in terms of computational expense. The model is based on two 

assumptions that (a) the flow is fully turbulent and (b) the effect of molecular 

viscosity can be neglected. Therefore, this model is not valid, when these conditions 

are not met (ANSYS 2009, pp. 4-12). The method applied to derive k and є 

equations is presented below: 

 

According to Launder & Spalding (1972, p. 74) the kinetic energy equation (k-

equation) is derived by applying the following steps:  

a. Multiply  x, y, and z -component of the momentum equation (3.3a, b and c) 

by            respectively 

b.  Apply the Reynolds-time averaging approach on the resulting equations  

c. Summing the three equations and with mathematical rearrangement result 

which results in the following turbulent kinetic energy, k, equation  
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where; 

T.T.: Turbulent transport  

P.D.: Pressure diffusion  

The turbulent dissipation rate equation ( ) is derived by applying the following 

moment of the Navier-Stokes equation (Wilcox 2006, p. 129): 

 

  
    
   

 

   
                                                                              

where; 

     : Navier-Stokes operator which is given below: 

 

       
   
  

    
   
   

 
  

   
  

    
      

                              

 

The exact equation of the turbulent dissipation, (3.9), is obtained by solving 

equations (3.7) and (3.8). 

 

  

  
   

  

   
                           

   
   

           
    
      

                                  

 
 

   
  

  

   
                 

 

 
  

 
                    

 

Three types of the k-є model are available in the FLUENT software, including 

Standard, RNG and Realizable k-є. The Realizable k-є model was chosen to be used 

in the optimization of the air gap spacing because it outperforms the standard and 
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RNG k-є models of predicting the flows involving rotation, separation and 

recirculation (ANSYS 2009, pp. 4-18). Therefore, this model is presented in the next 

section and the author refers to the ANSYS-FLUENT help for more information 

about the other models. 

Realizable k-є Model 

A realizable k-є model is developed by Shih et al. (1995). The term “realizable” 

means  the model satisfies certain mathematical constraints on the Reynolds stresses 

and is consistent with the physics of turbulent flows (ANSYS 2009, pp. 4-18). The 

model is characterised by a new formula for the turbulent viscosity that is derived 

based on the realizability constrains. The modelled kinetic energy, k, equation, 

(3.10), is derived from the exact kinetic energy equation, equation (3.6). The 

dissipation rate, ε, equation (3.13), is also derived from the exact dissipation rate 

equation, (3.9), by developing a model equation for the dynamic equation of the 

mean-square vorticity fluctuation. These two equations are given below:  

 

 

The k-equation: 
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where;     is turbulent Prandtl number for energy,    is the component of the 

gravitational vector in i direction,    is turbulent Prandtl number for k and its default 

value is 1.0,     is the kinetic energy source term, and β, which is the coefficient of 

thermal expansion, is defined as: 

   
 

 
  
  

  
                   

 

Mt is defined as turbulent Mach number  

 

     
 

  
                    

where;        speed of sound. 

 

The term [I] in equation (3.10) presents the generation of turbulent kinetic energy 

due to the mean velocity gradients, [II] the generation of turbulence energy due to 

buoyancy and [III] the effects of compressibility on turbulence which is neglected in 

the present study because the flow was assumed to be incompressible.  

 

The є-equation: 
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where; 

            
 

   
      

 

 
                 

 

 
 
   

   
 
   
   

  

                              

 

The turbulent viscosity,   , is modelled as below:  

 

      
  

 
                                                  

 

Equation (3.14) is also used to calculate the turbulent viscosity in the standard k-є 

model. The difference between the two models is that    is constant in the standard 

k-є model, while in the Realizable k-є model it is modelled as below.  

 

   
 

     
   

 

                              

where; 

                                         

                                

  : Energy dissipation source term 

   : mean rate of rotation tensor 

  : the angular velocity  

       ,          ,   
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It should be noted that the effect of mean rotation is included in the definition of the 

turbulent viscosity, equation (3.15) and (3.16). This can result in non-physical 

turbulent viscosities when the domain contains both rotational and stationary zones 

(ANSYS 2009). 

3.6.2 K-ω Model 

Like k-є model, k-ω model is known as a two-equation model. One equation is the 

turbulent kinetic energy and the other is ω-equation which is defined as a rate of 

dissipation of energy in unit volume and unit time. The ω-equation, which is 

presented below, was derived by Kolmogorov in 1942 using dimensional analysis 

technique (Wilcox 2006, pp. 124-5).  

 

  

  
   

  

   
      

 

   
     

  

   
                                  

 

In FLUENT software, two types of the models are available; standard and shear-

stress transport (SST) k-ω model. The standard model was chosen to be used in the 

optimization of the heat exchanger design because it is good at predicting the flow 

near the walls. Therefore, it is described in more details below. 

Standard k-ω Model      

This model was developed by Wilcox (in 1998) who improved equation (3.17) for a 

low Reynolds number, compressibility and shear flow spreading.  According to 

Wilcox (2006, p. 125), equation (3.17) has the following deficiencies:  

1. There is no production of kinetic energy term 
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2. This equation can only be applied for the domain with a high Reynolds 

number because there is no molecular diffusion term.  

The accuracy of the model was improved for predicting free shear flows, as the 

production term has been added to the k and ω equations. The equations of the 

standard k-ω model are given below (ANSYS 2009). 

The k-equation: 

     

  
 
       

   
 

 

   
   

  

   
   

    
   

  
   

   
   

   
        

    
                    

 

where; 

The term [I] presents the turbulent production and the term [II] presents the turbulent 

dissipation of k.  

The ω-equation: 

     

  
 
       

   

 
 

   
   

  

   
   

 
 

 
     

   
  
   

   
 

   

   
     

 

    
                   

 

where; 

The term     presents the generation of ω and the term      is the dissipation of ω.     

and    present the effective diffusivity of k and ω, respectively, that are computed as 

below. 
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   and    are the turbulent Prandtl number for k and ω, respectively. The turbulent 

viscosity is modelled as below: 

      
  

 
                                            

 

  is defined as a low-Reynolds number correction and computed as below: 

 

     
 

 

 
 
  
  

   
  
 

  
   

  
 

 

 
 
                        

    
  

  
        

  
  
 
          

 

For a high Reynolds number      
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      is defined as the compressibility correction function and is given as below  

    

       
                        

  
     

          
                                 

 

where; 

  
  

  

  
                                         

 

Note:   
    

  for a high Reynolds number and      
  for incompressible flow. 

The model constants are given below: 

   
               

 

 
   

                                  

                              

 

After presenting the CFD equations and the methods used to solve them, the next 

section presents the process of any commercial CFD-code. 

3.7 Wall treatment for wall bounded turbulent flow  

The walls have important effect on the turbulent flow, as the wall no-slip condition 

affects the mean flow velocity. The fluid molecular fluctuation is also changed by the 
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presence of walls. In the near-wall region, the tangential velocity fluctuations are 

reduced by viscous damping, while the normal fluctuations are reduced by kinematic 

blocking. As the velocity is largely increased toward the turbulent core, the 

production of kinetic energy rapidly augments the turbulence. Therefore, accurate 

modelling is very necessary to resolve the flow in the near-wall region where the 

velocity has large gradients (ANSYS 2009).   

 The near-wall region is divided into three layers including viscous sublayer in which 

the flow is almost laminar, molecular layer in which the viscosity plays important 

role in momentum and heat or mass transfer, and the fully turbulent layer in which 

the turbulence plays a significant role. Two methods are applied to model the flow 

near walls, including “wall function” and “near-wall-modelling”. In the wall function 

approach, semi-empirical formulas are used to calculate the viscosity-affected region 

(viscous sublayer and molecular layer). This approach is less computationally 

expensive than the near-wall-modelling approach. In the near-wall-modelling 

approach, the turbulence models are modified to resolve the viscosity-affected region 

(ANSYS 2009). 

 

When k-є turbulence model is used, three types of wall functions are available in 

FLUENT, including standard wall function, non-equilibrium wall function and 

enhanced wall function (See FLUNT theory guide for more information about these 

functions). However, when k-ω turbulence model is used, FLUENT treats the 

boundary condition near the walls by using enhanced wall function  and for the fine 

meshes low-Reynolds number boundary condition is applied (ANSYS 2009).    
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3.8 The Use of CFD Software 

The fluid flow governing equations are solved, using ANSYS-FLUENT software 

which is a commercial CFD package. FLUENT and all commercial CFD packages 

contain three main elements for the input of the problem parameters to solve the 

problem and examine the results. These are (a) a pre-processor, (b) a solver and (c) a 

post-processor (Versteeg & Malalasekera 2007, pp. 2-4).  

 

a) Pre-processor  

In this step, a representative model of the flow problem is created before the 

numerical solution process. This step involves the following: 

1. Create the computational domain 

2. Grid generation: divide the domain into a number of elements 

3. Choose the physical and chemical phenomena that need to be solved 

4. Define the fluid properties 

5. Specify the boundary condition 

 

In the pre-processor step, the shape and size of the elements in a flow domain play an 

important role for the accuracy of the solution and for the computational time 

required to solve the problem. In the three dimensional simulation, the perfect shape 

is a hexahedron of aspect ratio equal to one, because the number of elements is the 

lower than if tetrahedron elements are used and the elements are laid perpendicular to 

the fluid flow. As a result, a significant reduction in the simulation time and more 

accurate results are achieved. Furthermore, as the size of the elements is reduced, the 

accuracy of the solution increases. However, the increased number of cells means 

more computational time and more powerful computer hardware are required. 
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Therefore, the shape and cell size must be optimized to obtain physically realistic 

results in less time.        

 

b)    Solver 

The governing equations for the fluid flow which are presented in Section 3.2 are 

non-linear partial differential equations and the analytical solution is impossible 

except for very few simple cases. CFD-codes solve these equations numerically. The 

numerical solution is an approximate way of solving the differential equations, 

leading to the evaluation of velocities, pressures, and temperatures at predetermined 

locations within the nodes (Anderson 1995, pp. 23-79). Different numerical methods 

are used to solve the fluid flow equations, including finite difference, finite element, 

finite volume, boundary element and the meshless method (neural network). 

FLUENT software uses the control volume approach and the numerical algorithm of 

this method consists of three main steps: 

1. The governing equations of the fluid flow are integrated over a number of 

control volumes about the cell centres or vertices to form set of discrete 

equations 

2. The non-linear equations are linearised and the resulting equations are 

converted into a system of algebraic equations  

3. Iterative process is performed to solve the set of algebraic equations.  

   

c) Post-processor 

Post-processor step is a way of presenting the predicted flow data and producing the 

CFD images and animations. There are many methods of presenting the results in the 
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CFD approaches and these include vector plot, contour plots, 2D and 3D surface 

plot.  

3.9 Chapter Conclusion   

In order to have a basic knowledge of the CFD-codes, this chapter presented the 

fundamental physics of the fluid flow and heat transfer. The continuity, momentum 

and energy equations that govern the fluid flow are non-linear partial differential 

equations, so that they must be solved numerically. Due to the appearance of eddies 

in the turbulent flow; the equations are more complex in turbulent flow than in 

laminar flow. Therefore, an approximating approach is applied to solve the 

governing equations for turbulent flow i.e. turbulence modelling. The Reynolds-

average Navier-Stokes (RANS) equations method is appropriate in many industrial 

applications and requires less computational expense than large eddy and direct 

numerical simulation approaches. The most famous RANS models are the k-є and k-

ω models, and these are used in this study. The realizable k-є model is simply the 

standard k-є model being improved to predict the flows involving rotation, 

separation and recirculation. Furthermore, the k-ω model is very good at predicting 

flow near the surfaces. 
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CHAPTER 4: System Modifications 

using the CFD Approach  

 Introduction 

 Optimisation of the Air Gap Spacing 

 Optimisation of the Heat Exchanger 

 Chapter Conclusion    

4.1 Introduction  

As indicated in Chapter 1, the indirect heating system is the most economical solar 

water heating system. In this project, CFD approach was used to enhance the 

efficiency of the indirect heating system. The objectives of this study are to increase 

the heat gain from the sun, minimise the heat loss from the system, and reduce both 

the initial and operating costs. The optimum air gap size was investigated to reduce 

the heat losses to the ambient atmosphere through radiation and convection heat 

transfer. The optimum heat exchanger design was also investigated to enhance the 

heat gained by the service water. The chosen system has the following parameters:  

1. Double glass covers with glass thickness of 3 mm 

2. Absorber area of 0.7 m × 1.35 m with 10 mm thickness of metallic nickel 

chrome (M-N-chrome)   
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3. Storage tank volume of 81 x 135 x 10 cm (containing about 109l of water) 

with 2 mm thickness of iron sheet  

4. Insulation walls of wood with 50 mm thickness 

5. Copper service water tubes of 1 mm thickness.   

The physical properties used in the simulation of these materials are given in Table 

4.1.  

 

Table 4.1: Physical properties of material 

Material name 
Density (ρ) 

kg/m
3 

Specific heat 

(Cp) J/ (kg. K) 

Thermal conductivity 

(k) W/(m. K) 
 Emittance (є) 

M-N-chrome 7865 460 19 0.94 

Glass 2800 800 0.81 0.93
 

Wood 700 2310 0.173 0.9 

Copper 8978 381 387.6 Not included
* 

Iron  7832 434 63.9 Not included 

 

* The participation of Copper and Iron was not enabled in the radiation calculations. 

 

The following two sections describe the parametric study of the system to achieve 

the objectives of this study.  

4.2 Optimisation of the Air Gap Spacing  

The function of the air gap spacing is to insulate the absorber surface. However, the 

effectiveness of this insulation depends on the size of the air gap spacing (Manz 

2003; Mossad 2006). Thus, the choice of the size of these gaps will have an impact 

on the performance of the solar collector. The system chosen in this work has a 
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double air gap spacing, because it was found to have an efficient thermal 

performance (Kumar & Rosen 2011). L1 is the lower air gap spacing between the 

absorber and the lower glass cover and L2 is the upper gap between the upper and 

lower glass covers. L1 and L2 were varied within the range of 15-50 mm to 

investigate which combination of gap sizes would result in minimum total heat 

losses; including radiation and convection (Figure 4.1).  

 

 

 

 

 

 

 

 

  

   

Figure 4.1: Cross section of the indirect heating integrated collector storage solar water heating 

system with double glass cover 

 

4.2.1 CFD Model   

3D CFD models for the absorber with the double glass cover (i.e. without the storage 

water and the heat exchanger) were developed to evaluate the radiation and 

convection losses (Figure 4.2). L1 was changed to 15, 25 and 40 mm. For each value 

of L1, L2 was changed to 15, 25, 35 and 50 mm (i.e. combinations of 12 cases were 

investigated). The geometry and the computational grid were generated, using 
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ANSYS 13.0-Workbench. To validate the grid independency, three computational 

grids were developed for the model of L1 equals 25 mm and L2 equals 50 mm for 

100,000, 162,000 and 227,500 elements. The elements shape were hexahedral for all 

models and finer mesh was chosen close to the walls (Figure 4.3). The 162,000 and 

227,500 elements provided the same results which had  1 to 1.5% differences from 

the results of the 100,000 model. Therefore; the element size for all other models was 

kept similar to those models of 162,000 and 227,500 elements. 

 

 

 

 

Figure 4.2: 3D model of the air spacing of the integrated collector system 
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Figure 4.3: The computational grid for the air gap spacing 

To predict the heat losses from the solar collector, the velocity and temperature of the 

air in the gap spacing and the temperature of the upper and lower glass covers require 

evaluation, since the heat loss depends on these values. The continuity, momentum 

and energy equations applied to the air in the gaps were solved in a steady state 

condition using FLUENT software. The pressure-based type solver and the 

Realizable k-є turbulence model were used. The flow near the walls was treated by 

using the Non-Equilibrium wall function. The velocity-pressure coupling was treated 

by using the SIMPLE algorithm and a first order upwind scheme for Momentum, 

Mesh near walls 

Upper air gap 

Lower air gap 
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Turbulent Kinetic Energy and Turbulence Dissipation. For the residual, 10
-4

 was 

used as a convergence criterion for: x-velocity, y-velocity, z-velocity, kinetic energy, 

epsilon and continuity. For the energy, 10
-8

 was used. 

 

The radiation heat transfer between surfaces and to the sky was included in the CFD 

model. The following two sections describe the radiation model.   

 

a- Radiation model 

The radiation heat loss to the sky was included in the boundary condition of the side 

wall and upper glass cover. The sky temperature was calculated by using the 

equation of Akhtar and Mullick (2007) as 0.0552 Ta
1.5

. The sky temperature of 272.6 

K was used, because ambient temperature, Ta, was taken as 290 K.  

 

A Surface-to-Surface (S2S) radiation model was used to calculate the radiation heat 

transfer between surfaces. The radiation process was started by estimating the view 

factors between the surfaces. At every tenth iteration (the FLUENT default), 

throughout the solution, the radiosity of the surfaces was updated based on the new 

surfaces’ temperature through another iterative process, in order to produce greater 

accuracy of the radiation heat transfer calculations. 

 

In the S2S model, only surface to surface radiation is significant. The following 

assumptions are used in this model:  

1. The absorption, emission or scattering of radiations are neglected  

2. The surfaces are assumed to be gray and diffuse  

3. The effect of air in the gap spacing is ignored  
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4. The surfaces are opaque (transmissivity is zero). The glass cover can be 

opaque in this case, because the wavelength of the surfaces radiation is ≥ 9.3 

µm (Kreith, Frank. 2010, pp. 564-5).  

 

b- The S2S model equations 

As transmissivity is neglected, (   ), the energy flux leaving a given surface 

(      ) includes two parts:  

1. Directly emitted energy  

2. Reflected energy  

 

            
                            

 

   where; 
k: A surface involved in the model  

 : Boltzmann’s constant 
  : Reflectivity, (it is calculated as      ) 

 : Emissivity (   ) 

 : Absorptivity 

      : Energy flux incident on surface k from the surrounding surfaces which is calculated as: 

 

 

         

 

   

                                

 

 

 

where; 
   : View factor between surface k and  

 : Number of surrounding faces   

      : Energy flux leaving surface j 
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Therefore, in the S2S the energy flux leaving a surface (k) is calculated as the below 

equation (ANSYS 2009; Chhanwal et al. 2010).  

            
         

 

   

                         

 

4.2.2 Boundary Condition and Operating Parameters 

The boundary condition on the side wall and upper glass cover was taken as 

convection with a heat transfer coefficient of 10 W/(m
2
 K) to an ambient 

temperature, Ta, of 17
o
 C and radiation to the sky at a temperature which was taken 

according to Akhtar and Mullick (2007) as  0.0552 Ta
1.5

. As previously mentioned, 

the service and storage water were not included in the model, so a constant 

temperature of 82
o
 C was assumed for the absorber surface in all cases. This was 

considered to be the maximum absorber temperature, assuming the solar incident 

radiation of 850 W/m
2
. Therefore, the best gap spacing, which gives the minimum 

heat loss at maximum absorber temperature, can be identified. The collector angle 

was chosen to be 45
o
 from the horizontal (Figure 4.2). The interfaces between the 

glass covers, side walls and the air were defined as walls with coupled condition to 

allow the heat to transfer through these walls. 

4.3 Optimisation of the Heat Exchanger  

To enhance the performance of the heat exchanger, different pipe diameters, 

locations and shapes were chosen and modelled to identify the optimum 

configuration that is economically efficient and produces a high outlet service water 

temperature. The CFD model was firstly validated against an existing experiment to 

be sure that the CFD results were reliable. 
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4.3.1 Validating the CFD Model 

In order to get confidence of the chosen model used in the CFD, the experimental 

work of Gertzos, Pnevmatikakis and Caouris (2008) was chosen to validate the CFD 

model.  

4.3.1.1 Experimental procedure  

Gertzos, Pnevmatikakis and Caouris (2008) examined heat transfer between the 

storage and service water with and without using circulating pump for the storage 

water. The system without circulating pump was used in this study to validate the 

CFD model. Their system consisted of a storage water tank and serpentine tube 

immersed in the storage water (Figure 4.4). The storage tank was made of iron (k= 

63.9 W/m K and 1.7mm thick) and its inner dimensions were 81 x 135 x 10 cm 

containing about 109 l of water. It was insulated using glass wool (k= 0.041W/m K 

and 5 cm thickness). The tube was made of iron with 2 mm thickness and 10mm 

inside diameter (k = 63.9 W/m K). The total length of the tube inside the tank was 

16.2 m. The part of the tube outside the storage tank was insulated by 1.9 cm 

thickness of conventional foam with 0.037 W/ m K thermal conductivity. 

 

Experimental data of temperature was provided during a one hour period. The 

temperatures were monitored using six thermocouples which have an accuracy of ±1
o
 

C. Four of these thermocouples were used to measure the storage water temperature 

(T1, T2, T3 and T4) and they were placed as shown in Figure 4.4. The other two were 

used to monitor the inlet and outlet service water temperature. A flow meter type 

buoyant was used to measure and regulate the inlet mass flow rate. The outlet flow 
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rate was measured using electromagnetic flow meter with an accuracy ±0.35% of the 

measured value.  

 

 

 

 

 

 

Figure 4.4: The system investigated in the experiment of Gertzos, Pnevmatikakis and Caouris 

(2008) 

 

The experimental procedure took place indoors. The angle of the tank was 45
o
 from 

the horizontal plane. The inlet service water temperature was in the range of 16.5-

17.8
o 

C and the mass flow rate was 500 L/h. The procedure was as follows. The 

storage water was heated, using successive passages through an external heater. 

When the temperature of the storage water reached 80
o
 C, the heating process 

stopped and the service water started to flow through the tube. The temperatures of 

the inlet and outlet service water were measured at one second time intervals. The 

storage water temperature was measured at four different positions (T1, T2, T3 and 

Service water Inlet  

Storage tank  

Service water tube  
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T4); also at one second time intervals. These temperatures were averaged and 

recorded every 30 seconds, for energy withdrawal periods of one hour. 

4.3.1.2 CFD Model for the Experimental Setup     

A computational grid was developed for the same setup as Gertzos, Pnevmatikakis 

and Caouris (2008) using ANSYS 13.0 software. The number of elements was 

1,130,000 and most of these were hexahedral (Figure 4.5). The continuity, 

momentum and energy equations were solved in transient conditions (for a one hour 

period). A pressure-based type solver was used and the effect of gravity was included 

with full buoyancy effect. The velocity-pressure coupling was treated, using the 

SIMPLE algorithm (Semi-Implicit Method for Pressure Linked equation). A first 

order upwind scheme was used for Momentum, Turbulent Kinetic Energy and 

Turbulence Dissipation. For the residual, 10
-4

 was used as a convergence criterion 

for: x-velocity, y-velocity, z-velocity, kinetic energy, epsilon and continuity. For the 

energy, 10
-8

 was used. The standard k-ω and the realizable k-є turbulence models 

were chosen to identify the model that best produces results comparable to the results 

obtained by Gertzos, Pnevmatikakis and Caouris (2008). 

 

The properties of water were varied as a function of temperature, according to the 

following equations recommended by Gertzos, Pnevmatikakis and Caouris (2008).    
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The variation of properties of air with temperature was included by using the 

incompressible ideal gas equation to estimate the density and by using the kinetic 

theory equation to estimate the specific heat, thermal conductivity and viscosity. 

Equation (4.5a) is the equation to calculate air viscosity using the kinetic theory. The 

reader is  referred to ANSYS (2009) for more details about the incompressible ideal 

gas equation, kinetic theory equations for specific heat and thermal conductivity.    

 

 

            
    

    
                                         

       
                                                                  

   
 

 
   
                                                                       

 

where; 

  : Air molecular weight 

 : Air temperature in Kelvin 

  and     : Lennard-Jones parameters 
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A B 

 

 

 

 

 

 

 Figure 4.5: (A) Computational grid for the system, (B) The shape and distribution of the 

elements near the tube wall 

 

 

4.3.1.3 Boundary Conditions and Operating Parameters  

The boundary condition at the inlet was taken as “velocity-inlet”. The velocity was 

1.768 m/s (500 L/h flow rate), hydraulic diameter 0.01 m, turbulence intensity, I, 

4.6% which is a function of the Reynolds number, Re, and was computed from 

           
  

   (Gertzos, Caouris & Panidis 2010) and temperature 16.9
o
 C which 

was the average of the experimental inlet temperatures during the whole period. The 

boundary condition at the outlet was taken as “pressure-outlet” with atmospheric 

pressure. The interface between the tube wall and the water was defined as wall with 
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coupled condition to allow the heat to transfer from the storage water to the tube wall 

and from the tube wall to the service water. The part of the service water tube outside 

the storage tank was assumed to be fully insulated. The boundary condition at the 

outer wall of the storage tank was taken as radiation to the laboratory wall with 

temperature of 20
o
 C and convection to the surrounding air with heat transfer 

coefficient, hc=5 W/m
2
K, and 20

o
 C temperature. The convective heat transfer 

coefficient for natural convection (hc) was estimated using Kreith’s equations (5.13) 

and (5.14) (2010, pp. 309-10), assuming that the tank wall temperature is 80
o
 C.  

4.3.1.4 Validation Results 

Two transient CFD simulations (for a one hour period) were studied; a Realizable k-є 

turbulence model was used first and a standard k-ω second. At every five seconds of 

the solution, the average temperature at the outlet, T_out, average temperature of the 

storage water, T_ta, and the temperature at points T1, T2, T3 and T4 were recorded. 

  

Figures 4.6 and 4.7 present the service water outlet temperature and the average 

storage water temperature for k-є and k-ω models respectively, against the 

experimental results. Figures 4.8, 4.9, 4.10 and 4.11 show the numerical and 

experimental temperatures of the points T1, T2, T3 and T4 for both models. There was 

good agreement between the experimental and the numerical results using both 

models. However, the percentage error, which was calculated from equation (4.6), 

for k-є model was higher than k-ω model. It varied between zero (no errors) and 15 

percent for k-є and zero to 8.5 percent for k-ω model. For both models, the maximum 

percentage of error appeared in the outlet temperature. This finding agrees with the 



Marwaan AL-Khaffajy  74 

 

finding of Gertzos and Caouris (2007) who also tested different turbulence models. 

Therefore, k-ω model was used in the optimization of the heat exchanger. 

 

                 
         

    
                    

where; 

    : Temperature from CFD simulation  

    : Temperature from experiment  

 

It is important to notice that there are other sources of error, resulting in a difference 

between the experimental and numerical results. These sources can be summarized 

as follows: 

1. Thermocouple accuracy was ±1
o
 C and flow meter accuracy was ± 0.35% 

2. In the experiment, the inlet service water temperature was in the range of 16.5-

17.8
o 

C. For simplicity, in the numerical simulation, the inlet service water 

temperature was assumed to be 16.9
o
 C which was calculated by taking the 

average of the experimental inlet temperatures during the whole period 

3. The heat transfer coefficient was assumed to be constant at 5 W/m
2
K for the 

outer wall of the tank during the whole simulation period, because it was 

calculated with the assumption that the temperature of the tank wall as 80
o
 C. 

Due to the decrease in the storage water temperature, the temperature of the 

wall decreased as the time progressed. 
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Figure 4.6: Comparison of the experimental outlet and storage temperatures with the numerical 

temperatures using the k-є turbulence model  

 

Figure 4.7: Comparison of the experimental outlet and storage temperatures with the numerical 

temperatures using the k-ω turbulence model 
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Figure 4.8: Comparison of the experimental temperatures at points T1 and T2 with the 

numerical temperatures using the k-є turbulence model  

 

 

Figure 4.9: Comparison of the experimental temperatures at points T1 and T2 with the 

numerical temperatures using the k-ω turbulence model 
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Figure 4.10: Comparison of the experimental temperatures at points T3 and T4 with the 

numerical temperatures using the k-є turbulence model 

      

 

Figure 4.11: Comparison of the experimental temperatures at points T3 and T4 with the 

numerical temperatures using the k-ω turbulence model      
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The good agreement between the experimental and the numerical results, using the k-

ω model confirms that the model can be used in this study with more confidence. 

The next step is to investigate different configurations of the heat exchanger to 

identify the optimum design.       

4.3.2 Optimising the Heat Exchanger 

The previous studies of the indirect heating system (Gertzos & Caouris 2007, 2008; 

Gertzos, Caouris & Panidis 2010; Gertzos, Pnevmatikakis & Caouris 2008) 

investigated the heat transfer between the storage and service water (without 

including the glass cover) and assumed that the temperature of the storage water was 

fixed at 60
o
 C for the steady state investigation. For the transient investigation, the 

initial temperature of the storage water was 60
o
 C or 80

o
 C. These studies also used a 

pump to circulate the storage water. The present study investigated the whole 

collector consisting of the double glass covers and the heat exchanger and without 

using circulating pump. This study used the assumption that the temperature of the 

absorber surface is constant at 60
o
 C which was considered to be more realistic than 

the previous assumptions (see Section 2.7). 

 

The objective of this investigation was to identify the best tube position, length, 

diameter and shape that enhance the performance of the heat exchanger, while 

reducing both the initial and operating costs of the system. Enhancing the 

performance of the heat exchanger leads to maximising the energy acquired from 

solar radiation and reducing the pumping power. The following service water tubes 

were modelled: 
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1. Tube of double row heat exchanger (Figure 4.12) with length of 16.2 m  

2. Tube of single row heat exchanger (Figure 4.13) with length of 8.1 and 10.8 

m.  

Three following tubes were chosen:  

1. A circular copper tube type A DN 15 (1/2”) with an inside diameter of 10.7 

mm and a wall thickness of 1 mm 

2. A circular copper tube type B DN 20 (3/4”) with an inside diameter of 17.1 

mm and wall thickness of 1 mm  

3. A copper elliptical cross-sectional tube. The cross section area of the 

elliptical tube was equivalent to the area of a circular tube of 17.1 mm inside 

diameter with an aspect ratio of 2:1; i.e. the major radius of 12.092 mm, the 

minor radius of 6.046 mm, and the hydraulic diameter of 15.295 mm.  

 

The service water volume flow rate was 500 and 650 L/h. Half of the tube was 

placed in the absorber surface and half in the storage water to enhance the heat 

transfer between the absorber and the service water (Figure 4.14). The hypothesis for 

using the elliptical tube was to increase the area of contact with the heat source, i.e. 

the absorber surface and with the service water. This can enhance the heat transfer 

between the absorber and the service water.  
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Figure 4.12: Indirect heating system with double row HX (16.2 m) 
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Figure 4.13: Indirect heating system with single row HX (8.1 m) 

 

 

 

 

 

Figure 4.14: Tube placement in the collector   
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4.3.2.1 CFD Model    

Steady 3D CFD models for two different configurations of the indirect heating 

integrated collector system have been developed to evaluate the heat gained by the 

service water. The geometry and computational grid were modelled using ANSYS-

FLUENT 13.0 software. To validate the grid dependency, three computational grids 

were developed for the model of type A tube with double row HX; 2.5 million, 2.74 

million and 3.125 million elements. The results of all three models were almost the 

same, but the model of 2.74 million elements converged faster than the others 

because the mesh quality was better. Therefore; the same methods used to generate 

the computational grid in the model of 2.74 million was applied for all other models.  

 

The steady state continuity, momentum and energy equations were solved for the 

fluids involved in the model, i.e. the air in the gaps and the water inside the storage 

tank as well as inside the service water tubes. As the standard k-ω model gave a good 

agreement with the experiment, it was used in all of these cases. Surface-to-surface 

radiation model was included. The service water tube and tank wall were not 

included in the S2S model calculations.  

4.3.2.2 Boundary condition and operating parameters  

The boundary conditions on the upper glass cover were taken as convection with a 

heat transfer coefficient of 10 W/(m
2
 K) to the ambient temperature, Ta=17

o
 C and 

radiation to the sky at a temperature which was calculated as  Ts= 0.0552 Ta
1.5

. A 

constant temperature of 60
o
 C was assumed for the absorber surface in all cases. The 

velocity of the service water at the inlet was varied to 0.604, 0.786, 1.544 and 2.00 

m/s, as the mass flow rate and tube diameter varied and the inlet temperature was 
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constant at 17
o
 C. The pressure at the outlet was taken as atmospheric pressure. The 

following interfaces were defined as wall with coupled condition to allow the heat to 

transfer through the walls:  

1. Between the absorber and the service water tube  

2. Between the absorber and the storage water  

3. Between the service water tube and the storage water  

4. Between the service water tube and the service water.  

 

The collector angle was chosen to be 45
o
. The upper and lower air gap spacing was 

taken as 35 and 15 mm, respectively, since it was found to be the most efficient 

combination (AL-Khaffajy & Mossad 2011). 

4.4 Chapter Conclusion  

The present study used ANSYS-13-FLUENT software to investigate the optimum air 

gap spacing and heat exchanger design in order to achieve an efficient system that 

possesses maximum heat gain by the service water, minimum heat loss, and low 

initial and running costs. The next chapter will present the results and a discussion of 

these investigations.  
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CHAPTER 5: Results and Discussion  

 Introduction 

 Optimisation of the Air Gap Spacing 

 Optimisation of the Heat Exchanger 

 Chapter Conclusion  

5.1 Introduction  

As previously mentioned, the objectives of this work are to enhance the thermal 

performance and to reduce both the initial and operating costs of the indirect heating 

integrated collector storage solar water heating system. ANSYS-13-FLUENT 

software was used to investigate the optimum air gaps sizes for the system of double 

glass cover, and the optimum heat exchanger configurations (i.e. service water tube 

position; length, diameter and the shape). The methods used for system modification 

were presented in Chapter 4. The results and discussion of these modifications are 

presented in two sections of this chapter: 

1. Optimisation of the air gap spacing  

2. Optimisation of the heat exchanger. 
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5.2 Optimisation of the Air Gap Spacing 

Combinations of twelve cases were modelled as the lower air gap, L1, and the upper 

air gap, L2, were changed.  L1 was chosen to be 15, 25 and 40 mm and for each value 

of L1, L2 was chosen as 15, 25, 35 and 50 mm. Detailed velocity and temperature 

distributions for the air within the gaps and temperatures of the glass surfaces were 

obtained. Figures 5.1 and 5.2 present the velocity vectors for a horizontal plane in the 

middle of the top gap spacing for the case with L1 equals to 15 mm and L2 equals to 

15 and 50 mm, respectively. These figures show that the air velocity increases as the 

gap spacing increases. However, to facilitate comparison, centre lines (in the z 

direction) were chosen at which these results are plotted in figures 5.4, 5.5 and 5.6.  

 

 

Figure 5. 1: Velocity vector (m/s) for a horizontal plane in the middle of top gap spacing for 

L1=L2= 15 mm  
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Figure 5. 2: Velocity vector (m/s) for a horizontal plane in the middle of top gap spacing for 

L1=15 mm and L2= 50 mm 

 

 

 

 

 

 

 

 
 

Figure 5.3: The points in which the velocity and temperature are plotted I prefer you bring this 

before the last two figures 
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For each case of changing L1 and L2, the velocity of the air in the middle of the upper 

and lower air gaps along the collector (in the z direction) was presented. The figures 

of these cases are as follows:  

1. Figures 5.4 presents the air velocity for the case of 15 mm L1 and 15, 25, 35 

and 50 mm L2 

2. Figure 5.5 presents the air velocity for the case of  25 mm L1 and 15, 25, 35 

and 50 mm L2  

3. Figure 5.6 presents the air velocity for the case of 40 mm L1 and 15, 25, 35 

and 50 mm L2.  

 

The results showed that as the upper gap spacing was changed, there was no change 

in the air velocity of the lower gap. The air velocity in the lower gap did not change 

as the top gap spacing was changed (Figure 5.4 A). This behaviour was the same for 

the air velocity in the upper gap which did not change, when the lower gap spacing 

was changed (Figures 5.4B, 5.5B and 5.6B).  

The upper and lower air velocity became higher as the upper and lower gap spacing 

increased, respectively. Comparing Figures 5.4a and 5.5a, one can observe that as the 

lower gap spacing changed from 15 to 40 mm, the velocity in the lower gap spacing 

increased from 0.009 m/s to 0.016 m/s. Similarly, as the upper gap spacing increased, 

the air velocity in the upper gap increased (Figure 5.4b, 5.5b and 5.6b).   
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A B 

 
 

 
 

Figure 5.4: (A) Velocity in the middle of lower gap L1=15 mm and different L2, (B) Velocity in 

the middle of upper gap as L2 changed and L1=15 mm 

 

A B 

 
 

 

 

Figure 5.5: (A) Velocity in the middle of lower gap L1=25 mm and different L2; (B) Velocity in 

the middle of upper gap as L2 changed and L1=25 mm 
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A B 

  
 

 

Figure 5.6: (A) Velocity in the middle of lower gap L1=40 mm and different L2; (B) Velocity in 

the middle of upper gap as L2 changed and L1=40 mm 

 

 

Figures 5.7 and 5.8 present the temperature contours for plane in the middle of the 

lower and top gap spacing, respectively, for the case of L1 =15 mm and L2= 50 mm. 

From these figures, it is observed that the air close to the side walls has much lower 

temperature than in the middle. This is due to the effect of the low ambient 

temperature and the heat losses due to convection to the ambient air and radiation to 

the sky as per the thermal boundary condition applied at the side walls.  
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Figure 5. 7: Temperature contours (K) for a plane in the middle of lower gap spacing for L1=15 

mm and L2= 50 mm 

 

 

 

Figure 5. 8: Temperature contours (K) for a plane in the middle of top gap spacing for L1=15 

mm and L2= 50 mm 
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 To facilitate comparison, the temperatures of a line in the centre (in the z direction) 

of the upper and lower glass cover for each case of changing L1 and L2 are presented. 

The figures of these cases are as follows: 

1. Figure 5.9 presents the temperatures of upper and lower glass covers for the 

case of 15 mm L1 and 15, 25, 35 and 50 mm of L2 

2. Figure 5.10 presents the temperatures of upper and lower glass covers for the 

case of 25 mm L1 and 15, 25, 35 and 50 mm L2  

3. Figure 5.11 presents the temperatures of upper and lower glass covers for the 

case of 40 mm L1 and 15, 25, 35 and 50 mm L2.  

The temperature of the lower glass for all of L1 values increased when L2 increased 

from 15 to 25 mm and remained constant as L2 increased further (Figures 5.9a, 5.10a 

and 5.11a). The increase in the temperature of the lower glass may be due to the heat 

transfer within the upper gap at the 15 and 25 mm which was dominated by 

conduction, as can be seen by the low air speeds (Figures 5.4b, 5.5b) and this 

enhanced the insulation effect as the gap increased in size. The further increase in the 

upper gap size, L2, caused some natural convection to take place. This added to the 

effect of the conduction and caused a reduction in the insulation effect. As a result, 

no more increase in the lower glass temperature was absorbed.  

 

From Figures 5.9b, 5.10b and 5.11b, the temperature of the upper glass decreased as 

L2 increased for all L1 values. As the distance between the surfaces i.e. absorber, 

lower and upper glass increased, the view factor between them decreased (Figure 

5.12) and hence the radiation heat transfer decreased. Moreover, as L1 and L2 
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increased the heat losses from the side walls increased as their area increased. These 

two factors led to the reduction of the temperature of the upper glass cover. 

 

The convection current in the air gap is affected by the temperature difference across 

the gap and the size of the gap. As the size of the upper gap, L2, increased, the upper 

glass temperature decreased. Consequently, the temperature difference between the 

upper and lower glass increased. This can explain the increase in the air velocity 

within the gap, as the gap spacing increased (Figures 5.4b, 5.5b and 5.6b).  

 

Figure 5.4 A is connected to figure 5.9A. As the lower glass temperature increases, 

the temperature difference between the absorber and lower glass decreases (the 

absorber temperature is fixed). This leads to decreased velocity in the lower air gap 

because the velocities are driven by the natural convection. This behaviour can be 

seen in these two figures. When L2 was 15 mm the lower glass temperature was the 

lowest (Figure 5.9A), while the velocity was the highest (Figure 5.4 A).  

 

To see whether the flow is laminar or turbulent, the Rayleigh number was estimated 

and found to be 1.4 x 10
7
 when the gap was 15 mm. The Rayleigh number increased 

to 7.8 x 10
7
 when the gap became 50 mm. This indicates a fully turbulent flow 

(Kreith, Frank. 2010, p. 318). The fully turbulent flow condition is one of the 

requirements to use k-є model, as mentioned in Chapter 3. These results also confirm 

Manz’s (2003) findings that increasing the Rayleigh number leads to increased 

velocity of the air in the gap. 
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A B 

  

 

 

Figure 5.9: (A) Temperature of lower glass (middle of the glass) for L1=15 mm as L2 changed; 

(B) Temperature of top glass for L1=15 mm and L2 changed 
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Figure 5.10:  (A) Temperature of lower glass (middle of the glass) for L1=25 mm as L2 changed; 

(B) Temperature of top glass for L1=25 mm and L2 changed 
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A B 

  

 

Figure 5.11:  (A) Temperature of lower glass (middle of the glass) for L1=40 mm as L2 changed; 

(B) Temperature of top glass for L1=40 mm and L2 changed 

 

 

Figure 5. 12: View factor between the lower and upper glasses as L2 changed 
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estimated for all modelled cases. The heat losses include convection to the ambient 

air and radiation to the sky. The total heat loss from the upper glass, as L1 and L2 

were changed, is given in Figure 5.13. The heat loss from the side wall is given in 

Figure 5.14. The heat loss from the upper glass dropped as the air gap spacing 

increased because of its reduction in temperature (Figure 5.9b, 5.10b and 5.11b). The 

heat loss from the side wall increased as the gap spacing increased due to the 

increasing wall area.   

 

The total heat losses from the upper glass and side walls are given in Figure 5.15. To 

identify the optimum air gap spacing, it is important to consider the total heat loss 

from the system which equals the heat loss from the upper glass due to convection 

and radiation plus the heat lost through the side walls (both the lower and upper 

parts). The total heat loss increased as L1 increased for all L2 cases, while it 

decreased when L2 increased from 15 to 35 mm for all L1 cases and increased when 

L2 becomes higher than 35 mm. 

 

The effect of the side wall on the amount of heat was small when L2 and L1 were 

lower than 35 mm because the curve follows the same behaviour of the top glass 

losses, i.e. heat loss decreased as the gap spacing increased (Figure 5.13). However, 

the effect of the side wall on the amount of heat started to be crucial when L1 and L2 

became higher than 35 mm. This can explain the big jump in the amount of heat 

losses when L1 increased from 25 to 40 mm (Figure 5.15).  

 

For L2, The minimum heat loss was achieved in the range of 30 and 35 mm (Figure 

5.15). However, the result showed that the heat loss decreased as L1 was decreased. 
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For this reason, L1 was reduced to 10 mm to investigate the heat loss behaviour. A 

case of 10 mm for L1 and 35 mm for L2 was developed. The results showed that the 

heat loss increased as L1 reduced to 10 mm (Figure 5.16). The increase in the heat 

loss was due to the increase in the view factor as the distance between the lower 

glass and the absorber decreased. This increased the radiation heat transfer from the 

absorber to the lower glass cover, as previously mentioned. The heat transfer due to 

convection had no effect on the total heat loss in the case of small gap spacing 

because the convection heat transfer was very small in comparison to the radiation.  

Therefore, the optimum lower gap spacing was found in the range of 15 and 20 mm 

and the optimum upper gap was found in the range of 30 and 35 mm. 

 

 

 

Figure 5.13: Heat loss from upper glass 
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Figure 5. 14: Heat loss from side wall 

 

 

 

Figure 5.15: Total heat loss from upper and side wall 
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Figure 5.16: Total heat loss from upper and side wall (L1 changed and L2 constant) 

 

5.3 Optimisation of the Heat Exchanger  
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Table 5.1 presents the service water outlet temperature; heat gained by the service 

water (q), power required to run the system and initial cost of the service water tube 

for all cases investigated. It was observed that heat gained increased as the mass flow 

rate increased, while the outlet temperatures for the higher flow rate was less than for 

the lower flow rate. This means that the increase in flow rate enhanced the heat 

exchange process, which is expected. The increase in the heat gained by the service 

water means increase in the energy acquired from solar radiation. Moreover, there 

was not much temperature difference (1-2
o
 C) between type A and B tubes, but there 

was up to 70 percent reduction in the power required when tube B was used. The 

elliptical tube gave higher outlet temperature than the circular one for the same 

length and same cross sectional area. 

 

 To choose the optimum HX configuration, many factors must be taken into 

consideration. These are: (1) the outlet service water temperature (2) power required 

to run the system as well as (3) the initial cost of the system. The tube cost and power 

required to run the system with single row HX and 8.1 m tube length for types A and 

B tube were almost half of the case for the system with double row HX, while the 

outlet temperature was the same (Table 5.1). Moreover, the temperature of the 

service water increased only in the front row of the double row HX and there was no 

increase in the temperature in the back row. This can be seen in the temperature 

contours of the service water for the double row HX type A and B tubes (Figure 

5.17, 5.18, 5.19 and 5.20). The temperature behaviour was the same for both mass 

flow rates when type A and B tubes were investigated. Thus, the double row HX is 

not considered to be an efficient design because of the high initial and running costs 

with little thermal gain.  
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Table 5.1: Outlet temperature, heat gained by the service water (q), power required and cost for 

different tubes for inlet water temperature of 17
o
 C and absorber temperature of 60

o
 C  

 

Outlet Temp. 

and q for 500 

L/h  

Outlet Temp. and 

q for 650 L/h 

Power required (W) Tube 

Cost 

(AUD) 
500 L/h 650 L/h 

Double row HX 

type A tube of 16.2 

m length 

56
o 
C 54

o 
C 

8.2 16.95 126 

q= 22.6 W q= 27.9 W
 

Single row HX 

type A tube of 8.1 

m length 

56
o 
C 54

o 
C 

4.1 8.4 61 

q= 23.7 W q= 27.9 W 

Single row HX 

type A tube of 10.8 

m length 

58
o
 C 56.9

o
 C 

5.4 11.3 81 

q=23.7 W q=30 W 

Double row HX 

type B tube of 16.2 

m length 

54
o
 C 52.3

o
 C 

1.3 2.4 188 

q=21.45 W q=26.6 W 

Single row HX 

type B tube of 8.1 

m Length 

54
o
 C 52

o
 C 

0.86 1.4 90 

q=21.45 W q=26.3 W 

Single row HX 

type B tube of 10.8 

m Length 

57
o
 C 55.75

o
 C 

1 1.82 121 

q=23.2 W q=29.2 W 

Elliptical tube of 

8.1 m length 

55.7
o
 C 54

o
 C 

0.9 1.5 N/A 

q=22.4 W q=27.9 W 

Elliptical tube of 

10.8 m length 

57.9
o
 C 56.8

o
 C 

1 1.8 N/A 

q=23.7 W q=30 W 
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Figure 5.17: Temperature contours (K) of service water for tube A and flow rate 500L/h 

 

 

Figure 5.18: Temperature contours (K) of service water for tube A and flow rate 650 L/h 
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Figure 5.19: Temperature contours (K) of service water for tube B and flow rate 500 L/h 

 

Figure 5.20: Temperature contours (K) of service water for tube B and flow rate 650 L/h 
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To increase the outlet temperature and hence reach an acceptable temperature for 

domestic use, 2.7 m was added to the tube in the front row (i.e. in the absorber side). 

As a result, the temperature increased by 2-3 degree for type A and B tubes (Table 

5.1). However, pumping power, initial costs and running costs also increased. The 

increase in the power required for type B tube (0.4 W) was lower than for type A 

tube (3 W), as type B tube has a bigger diameter. For both mass flow rates and for a 

tube length of 10.8 m, the outlet temperature for type B tube was one degree lower 

than type A tube. The running cost for the type A tube was five times higher than for 

the type B tube, but the initial cost of type B tube was slightly higher than A. The 

advantages of lower initial cost for the type A tube systems is expected to be quickly 

overtaken by the high cost of operating these systems. As a result, type B tube 

systems are more economical than type A tube systems. Furthermore, adding 2.7 m 

to the front row (i.e. single row HX) was more effective than adding 8.1 m to the 

back row, i.e. double row HX.  

 

For the elliptical tube, the outlet temperature was higher than the circular one for the 

same length and same cross section area (Table 5.1). This can be attributed to the 

area in contact with the absorber surface being bigger. The power required for the 

system of elliptic tube was similar to the system of type B tube, because the service 

water velocity was similar in both tubes. The elliptical tube with 10.8 m length gave 

the outlet temperature of 57.9
 
and 56.8

o
 C for Re=1.27 x 10

4
 and Re=1.658 x 10

4
 

respectively. This gave a very small temperature difference (2-3 degree) between the 

absorber and the service water outlet temperature, while still running with low 

operating power (1 and 1.8 W, Table 5.1). Therefore, using the elliptical tube 
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increased the outlet temperature by one degree without any increase in the running 

cost.    

   

Figures 5.21, 5.22, 5.23, 5.24, 5.25 and 5.26 present the temperature contours of the 

service water for the cases of the single row heat exchanger, for the three types of 

tube and for both investigation flow rates. In these cases, the tube length was proved 

to be efficient because the temperature continued to increase along the tube. 

 

 

  

 

 

Figure 5.21: Temperature contours (K) of service water for single row HX, tube A and length 

8.2 m and flow 500 L/h 
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Figure 5.22: Temperature contours (K) of service water for single row HX, tube A and length 

10.8 m and flow 500 L/h 

 

Figure 5.23: Temperature contours (K) of service water for single row HX, tube B and length 

8.2 m and flow 650 L/h 
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Figure 5.24: Temperature contours (K) of service water for single row HX, tube B and length 

10.8 m and flow 650 L/h 

 

Figure 5.25: Temperature contours (K) of service water for single row HX, elliptical tube and 

length 8.2 m and flow 650 L/h 
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Figure 5.26: Temperature contours (K) of service water for single row HX, elliptical tube, length 

10.8 m and flow 500 L/h 

Figures 27 and 28 present a vector plot for the velocity in the z-x plane and z-y 

plane, respectively for the case with type B tube, 10.8 m length and 650 L/h flow 

rate. These figures show the storage water circulation due to natural convection. Due 

to the high absorber temperature, the water near the absorber showed the highest 

velocity reaching 0.3 m/s (Figure 28).     
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Figure 5. 27: Z-X plane of velocity vector (m/s) for tube type B with 10.8 m and 650 L/h mass 

flow rate  
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Figure 5. 28: Z-Y plane of velocity vector (m/s) for tube type B with 10.8 m and 650 L/h mass 

flow rate 

 

The system of single row heat exchanger with tube length of 10.8 m and with type A, 

B and elliptical tubes produced high outlet temperature without a circulating pump. 

In heat exchanger systems, when the temperature difference between the cold and hot 

fluids is reduced to lower than 6 degrees, the heat exchanger configurations are 

acceptable (Gertzos, Caouris & Panidis 2010). In this study, the difference between 

the absorber temperature (the heat source) and the service water outlet temperature 

(cold fluid) was reduced to a range of 2.1
o
 and 6

o
, without using a circulating pump 

for the storage water. As the pump requires electricity and maintenance, eliminating 

the circulating pump reduced both the initial and the running costs.  

Absorber side 
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The initial and operating costs were also minimized by reducing the service water 

tube length. According to Gertzos, Caouris and Panidis (2010), the optimum tube 

length was 21.68 m for the system with circulating pump (Section 2.5.2). However, 

the present study shows that the service water tube length can be reduced to 10.8 m, 

and the heat exchanger remains efficient because it produced an acceptable 

temperature difference. The absorber area and the volume of the storage water tank 

was the same for both the present study and previous studies (Gertzos & Caouris 

2008; Gertzos, Caouris & Panidis 2010). Thus, the initial cost of the system was less, 

as the tube length was minimized and the running cost of the system was less, as the 

pumping power was reduced. 

5.4 Chapter Conclusion  

The efficiency of the indirect heating system was improved as: 

1. The heat loss from the system was minimized. For the lower gap spacing, the 

optimum distance was found in the range of 15 and 20 mm and for the upper 

gap, the optimum size was found in the range of 30 and 35 mm. 

2. The initial and running costs are reduced. The system of a single row heat 

exchanger with tube length of 10.8 m and with type A, B and elliptical tubes 

produced an acceptable temperature without the use of circulating pump 

3. The service water outlet temperature increased. Adding 2.7 m tube length to 

the front row was more effective than adding 8.1 m in the back row, as the 

outlet temperature of the system with tube length of 10.8 m (single row heat 

exchanger) was higher than of 16.2 m (double row heat exchanger).  
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CHAPTER 6: Conclusion  

 

Due to the increase in the world’s population, human development, the increase in 

individual income, and the aspiration for more comfortable lifestyles, power 

consumption has increased significantly over the last three decades resulting in an 

increase in carbon emissions which was 25.5 GtCO2 in 2003. Achieving the 

Millennium Development Goals for 2030 will require that the average carbon 

emissions for each individual be reduced to 3.7 tCO2/ year. Thus, the percentage of 

the energy generated by the renewable sources, including solar energy, must be 

increased and consumers must be encouraged to use renewable energy rather than 

other non-environmentally friendly resources. This can be achieved by introducing a 

more economical and efficient solar collector.  

 

ANSYS 13.0-FLUENT software was used to identify the optimum configuration of 

the indirect heating integrated collector storage solar water heating system which is 

one of the most economical solar water heating systems. The continuity momentum 

and energy equations were solved in a steady state condition. The realizable k-є and 

standard k-ω turbulence models, which are based on the Reynolds-average Navier 

Stokes equations, were used. The realizable k-є model was used in the optimisation 

of the air gap spacing. The results for the particular system using the realizable k-є 

and standard k-ω turbulence models were compared to available experimental results 



Marwaan AL-Khaffajy  112 

 

to determine the best model to use in the heat exchanger investigation. The 

percentage error for the numerical simulation of k-є model was higher than for the k-

ω model. The error varied between zero (no errors) and 15 per cent for k-є, and zero 

to 8.5 per cent for k-ω model. Therefore, the standard k-ω model was used in the heat 

exchanger investigation. 

 

Minimizing the heat loss and increasing the outlet service water temperature were the 

main objectives of this study, and were used as a measure of improving the thermal 

performance. The power required to operate the system was used as a measure of the 

running cost.  The performance of the indirect heating system was enhanced in the 

following ways: 

1. Reduced heat loss from the system: 

The heat loss from the system was reduced by identifying the optimum 

combination of the upper and lower air gap spacing. The lowest radiation 

and convection heat losses from the system were achieved in the range of 30 

and 35 mm for the upper gap, and 15 and 20 mm for the lower gap 

2. Increased outlet temperature:   

The heat gain by the service water was maximized by identifying the best 

cross-sectional shape of the tube and the placement of the tube. To meet the 

required temperature of the typical household, 2.7 m was added to the tube 

for both types A and B in the front row (i.e. in the absorber side). As a 

result, the temperature increased by 2-3 degrees. This gave an acceptable 

difference between the absorber surface temperature and the service water 

outlet temperature  
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The temperature was also increased when an elliptical tube was used. The 

elliptical tube gave a slightly higher outlet service water temperature (1
o
 C) 

than the circular tube for the same length and the same cross-sectional area. 

Thus, the service water tube area of contact with the absorber surface has 

important effect on the outlet temperature and hence on the thermal 

efficiency of the system. 

3. Reduced initial cost: 

The chosen system gives high outlet temperature (that suits domestic 

household use) without a circulating pump and with a shorter service water 

tube. According to Gertzos, Caouris and Panidis (2010), the optimum tube 

length was 21.68 m for the system with a circulating pump for the storage 

water. However, the present study showed that the service water tube length 

of the system can be reduced to 10.8 m and the circulating pump is not 

required. The required temperature difference for an efficient heat 

exchanger design (≤ 6
o
) was achieved in this study without using a 

circulating pump for the storage water. The absorber area and the volume of 

the storage water tank was the same for both the present study and previous 

studies (Gertzos & Caouris 2008; Gertzos, Caouris & Panidis 2010). Thus, 

the initial cost of the system is less because the circulating pump is not 

required and the service water tube length is shorter  

4. Reduced operating cost: 

Using shorter tubes require less pumping power. The running cost in the 

single row heat exchanger was half that of the double row, and the outlet 

temperature for both configurations was the same. Extra length was added 

to the tube in the single row heat exchanger to meet the required outlet 
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temperature. This slightly increased the pumping power. To overcome this 

problem, a bigger diameter tube was used (type B tube), reducing the 

pumping power by one fifth of type A tube. Thus, the high initial cost of the 

bigger diameter tube is quickly overtaken by a much lower operating cost. 

Moreover, as the system of this study runs without a circulating pump, it 

does not require electricity to operate the pump and pump maintenance. 

 

The result of this study showed that the users of the indirect heating integrated 

collector storage solar water heating system can use the system with high thermal 

efficiency and low initial and operating costs. Consequently, consumers will be 

encouraged to use solar water heating system instead of the electrical systems. 

6.1 Research limitations and recommendations 

This study has some limitation, thus the author recommends the following:  

1- This study was based on the assumption that the absorber temperature is 

constant, while in reality the temperature depends on the solar intensity and 

the rate of energy extraction. This study recommends investigating the system 

with more realistic assumption, including actual data for solar radiation in a 

particular location and flow rate of water for a medium family size 

2- As the time of the study is limited, the experimental investigation of the 

optimum (final) system was not conducted. It is worthwhile to investigate this 

system experimentally 

3- Another hypothesis need to be investigated that if the area of the absorber 

surface change, what will the optimum parameters be for the heat exchanger 

such as the tube length and diameter 
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4- Investigate an economical mechanism to change the angle of the solar heater 

to capture the solar energy in more efficient way. This will have to be able to 

sense the direction of the sun as it moves in the horizon at the particular 

location. 
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