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Abstract. Existing data placement algorithms for wireless data broad-
cast generally make assumptions that the clients’ queries are already
known and the distribution of access frequencies of their queries can be
obtained a priori. Unfortunately, these assumptions are not realistic in
most real life applications because new mobile clients may join in any-
time and clients may be reluctant to disclose their queries (due to privacy
concerns). In this work, we study the data placement problem of peri-
odic XML data broadcast in which similar assumptions can be avoided.
This is an important issue, particularly when XML becomes prevalent in
today’s mobile computing devices. Taking advantage of the structured
characteristics of XML data, we are able to generate effective broad-
cast programs based purely on XML data on the server without any
knowledge of the clients’ access patterns. This not only makes our work
distinguished from previous studies, but also enables it to have broader
applicability. We present a theoretical analysis of the problem and discuss
structural sharing in XML data which forms the basis of our novel greedy
data placement algorithm. Finally, we evaluate the proposed placement
algorithm through a set of experiments and the results show that our al-
gorithm can effectively place XML data on air and significantly improve
the overall access efficiency.

Key words: periodic data broadcast, XML, multi-item Query, data
placement algorithm

1 Introduction

Broadcast is one of the basic ways of information access via wireless technologies.
In a wireless data broadcast system, the server broadcasts public information to
all mobile devices within its transmission range via a downlink broadcast chan-
nel. Mobile clients “listen” to the downlink channel and access information of
their interest directly when related information arrives. Broadcast is bandwidth
efficient because all mobile clients can share the same downlink channel and re-
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trieve data from it simultaneously. Broadcast is also energy efficient at the client
ends because downloading data costs much less energy than sending data [29].

There are two typical data broadcast modes: (i) Periodic Broadcast Mode
and (ii) On-Demand Broadcast Mode [29]. In the periodic broadcast mode, data
are periodically broadcasted on a downlink channel via which the server sends
data to clients. Clients only “listen” to that channel and download data they
are interested in. In the on-demand broadcast mode, clients send their queries
to the server via an uplink channel and then the server considers all submitted
requests and decide the contents of next broadcast cycle. In this work, we focus
on the periodic broadcast mode since it has many benefits such as saving uplink
bandwidth and power at the client ends by avoiding uplink transmissions and
effectively delivering information to an unlimited number of clients simultane-
ously.

The research of XML data broadcast is of great importance and has been
attracting more and more research interests [7, 19, 26, 28, 24]. Information ex-
pressed in semi-structured formats is widespread over the past years. XML has
rapidly gained popularity as a de facto standard to represent semi-structured in-
formation in today’s Web. For example, delivering information in XML format
is popular in Web services and in different kinds of Publish/Subscribe systems.
Similarly, broadcasting information in XML format in a wireless environment
is also a preferable way due to the prosperity of XML. We will demonstrate a
potential application of using XML data in a broadcast environment by detailing
a real life scenario in Section 3.

Data placement algorithms determine what data items to be broadcasted by
the server and the order of data items on wireless channels, aiming to reduce
average waiting time for mobile clients. To a large extent, the data placement
problem of XML data is similar to that in multi-item contexts [27, 4] where mo-
bile clients may request multiple items each time. However, there are drawbacks
of existing data placement approaches in traditional data broadcast.

Firstly, previous work on multi-item placement problems generally makes
assumptions that the clients’ queries are already known and the distribution
of access frequencies of these queries can be obtained in advance [1, 2, 6, 15,
27, 4]. For example, it is proposed to allow the clients to provide a profile of
their interests to the servers [1, 2], but this can lead to privacy concerns. These
assumptions significantly limit the practicability of those proposed placement
algorithms in real situations as it is difficult to obtain such kind of information
before the organization of data on air starts. Some possible reasons include: (i)
new mobile clients may join in the network at anytime; and (ii) mobile users
may be reluctant to disclose their queries to the server via uplink channel due
to expensive communication cost and privacy concerns.

Secondly, in traditional data broadcast systems, appropriate placement can
hardly be generated based only on information of data items themselves on the
server. Hence, strong assumptions are inevitable for the design of data placement
algorithms. Alternatively, some work applies data mining techniques to discover
association rules from the history access patterns of a set of data [3]. This avoids
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to obtain access patterns of mobile clients on-the-fly. However, the availability
of such history access patterns of mobile clients is a necessity.

By contrast, in XML data broadcast, data items (or XML documents) usu-
ally share parts of their structure. Taking structural sharing between XML doc-
uments into consideration, we are able to analyze and estimate clients’ access
patterns via the analysis of this structural sharing. Then we can effectively place
XML data on wireless channels based purely on XML data on the server, which
is important for practical usage. To the best of our knowledge, little work has
addressed similar data placement strategies in the context of wireless data broad-
cast.

In this paper, we study the data placement problem of periodic XML data
broadcast. Firstly, we describe the overall system model and present a theoreti-
cal analysis on the data placement problem of the periodic XML data broadcast.
Secondly, based on the analysis, we design a novel greedy data placement algo-
rithm. In summary, the main contributions of this paper can be described as
follows:

– We found that the assumptions on the clients’ queries and their distributions
that have been made by previous work can be removed in the context of
periodic XML data broadcast. By taking advantage of the structural charac-
teristics of XML data, we are able to generate appropriate data placement
results based only on XML data on the server.

– We present a theoretical analysis on the data placement problem of periodic
XML data broadcast. Based on the analysis, a novel greedy data placement
algorithm which organizes XML data on air is presented.

– Extensive experiments are conducted to show the effectiveness of our proposed
data placement algorithm.

The remainder of this paper is organized as follows. Section 2 describes back-
ground knowledge of this work, including an application scenario, the system
model and XML similarity background. Then a theoretical analysis of data place-
ment problem is presented in Section 3. Section 4 discusses the structural sharing
property of XML data and proposes a novel greedy data placement algorithm.
Section 5 presents our experimental study for evaluating the performance of the
proposed data placement algorithm. Finally, Section 6 discusses related work
and Section 7 gives some concluding remarks.

2 Application Scenario, System Model and XML

Similarity

In this section, we first describe an application scenario. Then we show the sys-
tem model of this work and introduce background knowledge of XML similarity.
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2.1 Application Scenario

We use the following scenario to show potential applications of XML data broad-
cast in real life.

Consider a live basketball game. Information about the game and the players
on the court is usually the interest of a large number of audience. In this con-
text, data broadcast is a preferable way of delivering latest information to the
audience. Meanwhile, some audience could be outside of the stadium, such as
basketball fans who are watching live text information about the game via the
Internet at their homes. Therefore, the game information could also be delivered
via the Internet to online audience and other Web service providers who have
subscribed this basketball game. Using XML format to represent game informa-
tion can satisfy all these needs and realize simplicity, generality, and usability of
game information at the same time.

2.2 Periodic XML Data Broadcast System Model

Fig. 1 shows the model of our wireless XML data broadcast system. The sys-
tem includes an XML Data Center (the broadcast server), a broadcast program
scheduler, broadcast listeners (mobile clients) and a downlink channel (the server
sends information to mobile clients via it). The downlink channel can be shared
by all mobile clients. But mobile clients can not send their individual queries to
the server in this model as no uplink channel is available.

From the figure, we can see that the XML Data Center could be connected
to the Internet and deliver information to online users, Web service providers
and Publish/Subscribe systems, etc. With the use of XML format data, these
different applications can be integrated seamlessly with our wireless XML data
broadcast system for the purpose of sharing and delivering same information to
different kinds of users.

2.3 XML Similarity

Some existing work on measuring structural similarity between XML documents
can be found in [22, 11]. The main idea of their work is based on the con-
cept of path sets. Here, a path set of an XML document contains all full paths
(paths that are from root element to leaves) and their subpaths. A simple ex-
ample is presented in Fig. 2. The path set of this example is: {/player/name,
/player/position, /player/nationality, /player/college, /player, /name,

/position,

/nationality, /college}. We denote a path set of an XML document d as
PS(d).

Different types of measure can be adopted, such as Jaccard measure [17, 10],
Dice’s coefficient [9] and Lian’s measure [16], to measure the similarity between
two XML documents di and dj . The exact forms of these measures based on PS

are as follows (Jaccard measure denoted as J(di, dj), Dice’s coefficient denoted
as D(di, dj) and Lian’s measure denoted as L(di, dj)):
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Fig. 1. A wireless XML data broadcast system

Fig. 2. An XML structure tree

J(di, dj) =
|PS(di)

⋂

PS(dj)|

|PS(di)
⋃

PS(dj)|
(1)

D(di, dj) =
2 · |PS(di)

⋂

PS(dj)|

|PS(di)|+ |PS(dj)|
(2)

L(di, dj) =
|PS(di)

⋂

PS(dj)|

max{|PS(di)|, |PS(dj)|}
(3)

From the above definitions, we can see that both Jaccard measure and Dice’s
coefficient give more weights on the total structural information of two comparing
documents while Lian’s measure emphasizes more on the difference of these
documents. All three measures can vary in interval [0, 1]. If PS(di) = PS(dj),
we have J(di, dj) = D(di, dj) = L(di, dj) = 1. Clearly, the larger the values
of these measures are, the more structural sharing the two comparing XML
documents have.
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In the literature, two critical metrics, namely access time and tuning time, are
used to measure the system’s performance [12]. Data placement mainly affects
access time because tuning time depends on the total content downloaded by
mobile clients but not on the order of data. Hence, we use access time as our
metric in this analysis. In periodic broadcast, queries are used to describe the
interests of mobile clients and help mobile clients to skip irrelevant data on air,
but they are not actually submitted to the broadcast server.

3 Analysis of Data Placement Problem

In this section, we present a theoretical analysis on the data placement problem
in periodic XML data broadcast.

In the literature, two critical metrics, namely access time and tuning time, are
used to measure the system’s performance [12]. Data placement mainly affects
access time because tuning time depends on the total content downloaded by
mobile clients but not on the order of data. Hence, we use access time as our
metric in this analysis. In periodic broadcast, queries are used to describe the
interests of mobile clients and help mobile clients to skip irrelevant data on air,
but they are not actually submitted to the broadcast server.

Table 1 lists the symbols used in the rest of the paper and Fig. 3 shows a
broadcast program (or broadcast sequence) σ on the wireless channel which is
broadcasted periodically. The broadcast program σ can start from any XML
document di. However, we assume that σ starts from d1 (this will then comply
with the definition of σ in Table 1) to simplify our analysis.

With the basic assumption that queries can be issued at any time with an
equal probability (this means the issue time of queries follows uniform distribu-
tion), we can calculate the expected access time of q, denoted as AT q

exp, in the
following:

AT q
exp =

k
∑

i=1

(
Ldni

Lσ

· Lσ +
Lgapi

Lσ

· (Lσ −
1

2
· Lgapi

))

=

k
∑

i=1

Ldni
+

k
∑

i=1

Lgapi
−

1

Lσ

·

k
∑

i=1

1

2
· L2

gapi

= Lσ −
1

2 · Lσ

·

k
∑

i=1

L2
gapi

(4)

According to Equation (4)1 and a given broadcast program σ, we can cal-
culate AT q

exp simply according to the gaps between consecutive documents re-
quired by q. Further, from the above equation, we can see that in order to
improve expected access efficiency,

∑k

i=1 L
2
gapi

should be as large as possible.

1 This result is exactly the same as [6] although the deduction process is different.
The further analysis on this result in the following is new.
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Table 1. Symbols Overview

Symbol Description

D XML document set. {d1, d2, d3, . . . , dn}.

n number of XML documents in D.

q query issued by a mobile client.

Dq a set of XML documents required by q. {dn1
, dn2

, dn3
, . . . , dnk

}.

k number of documents required by q.

σ a complete broadcast program (or broadcast sequence). It is the
result of a data placement algorithm running on a given D. <

d1, d2, d3, . . . , dn >. (Note: It is different from D as D is a set but
not a sequence.)

σq a subsequence of σ which includes only k documents required by q.
< dn1

, dn2
, dn3

, . . . , dnk
>. (Note: It is different from Dq as Dq is a

set but not a sequence.)

gapi unmatched documents of q that are placed between dni
and dni+1

in σ. Note that dni
and dni+1

are consecutive documents in σq(1 ≤
i < k).

gapk unmatched documents of q that are placed between dnk
and dn1

in
two consecutive σ (Note: σ will be broadcasted periodically).

Lgapi the total length of all unmatched documents in gapi (1 ≤ i ≤ k).

Lgaps the total length of all gaps, which is
∑k

i=1
Lgapi .

Ldi the length of an XML document di.

Ldni
the length of an XML document dni

which is the ith document in
σq.

Lσ the length of σ, which is
∑n

i=1
Ldi .

Lσq the length of σq, which is
∑k

i=1
Ldni

.

AT q
exp the expected access time of q.

Moreover, according to definitions in Table 1, the sum of all gaps, denoted
Lgaps, can be computed as

Lgaps =

k
∑

i=1

Lgapi
= Lσ −

k
∑

i=1

Ldni
= Lσ − Lσq

(5)

Note that Lσq
is independent of any data placement results. In other words,

Lσq
is fixed for a given q, which in turn indicates that Lgaps is fixed.

In order to derive lower and upper bounds of
∑k

i=1 L
2
gapi

and to analyze our
data placement strategy, we first present the following propositions for below
function f(X).
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Fig. 3. A broadcast program showing positions of documents required by query q

In order to derive lower and upper bounds of
∑k

i=1 L
2
gapi

and to analyze our
data placement strategy, we first present the following propositions for below
function f(X).

Function f(X) = x1
2 + x2

2 + . . .+ xk
2 is with the following constraints:

1. x1 + x2 + . . .+ xk = M

2. x1, x2, . . . , xk ≥ 0

where M is a positive constant. We also denote the lower bound and the
upper bound of f(X) as f(X) and f(X) respectively.

Proposition 1 Given f(X) defined as above, we must have

f(X) ≤ M2

When x1 = x2 = . . . = xk−1 = 0 and xk = M (or any other kind of combinations
like this), f(X) reaches its upper bound, i.e., f(X) = M2.

Proposition 2 Given f(X) defined as above, we must have

f(X) ≥ k · (
M

k
)2

When x1 = x2 = . . . + xk = M
k
, f(X) reaches its lower bound, i.e., f(X) =

k · (M
k
)2.

Moreover, given f(X) defined as above and suppose that m variables, i.e.
x1, x2, . . . , xm, have been determined (m < k) while the rest k − m variables
are not. We also denote M ′ = M −

∑m

i=1 xi. Now we are going to determine
next variable. Without loss of generality, we use xm+1 as our next variable to
be determined and aim to maximize or minimize f(X). We denote f(X)xm+1

as
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the function with m+1 determined variables (xi, 1 ≤ i ≤ m+1) and k−m− 1
undetermined variables. Then given two values of this variable, i.e. xm+1 and
x′
m+1 and suppose xm+1 < x′

m+1. Then we have the following propositions.

Proposition 3 For f(X)xm+1
and f(X)x′

m+1

, we have











f(X)xm+1
> f(X)x′

m+1

xm+1 < x′
m+1 ≤ M ′

2

f(X)xm+1
< f(X)x′

m+1

M ′

2 ≤ xm+1 < x′
m+1

Indefinite Otherwise

Proposition 4 For f(X)
xm+1

and f(X)
x′

m+1

, we have















f(X)
xm+1

> f(X)
x′

m+1

xm+1 < x′
m+1 ≤ M ′

k−m

f(X)
xm+1

< f(X)
x′

m+1

M ′

k−m
≤ xm+1 < x′

m+1

Indefinite Otherwise

The proofs of these propositions can be found in the Appendix. Now accord-
ing to Proposition 1 and Proposition 2, we have

k · (
Lgaps

k
)2 ≤

k
∑

i=1

L2
gapi

≤ L2
gaps (6)

Then according to Equation (4), we have

Lσ −
L2
gaps

2 · Lσ

≤ AT q
exp ≤ Lσ −

L2
gaps

2 · k · Lσ

(7)

From the above two inequations, we can see that in order to improve ex-
pected access efficiency,

∑k

i=1 L
2
gapi

should be as large as possible. According
to Proposition 1, when we have one of the gaps equal to Lgaps and all other
gaps equal to 0, we can achieve best expected access efficiency. Thus, when all
XML documents required by q are placed together and broadcasted in sequence,
AT q

exp can be minimized. Also, according to Equation (5), we can rewrite the
above inequation to

Lσ −
(Lσ − Lσq

)2

2 · Lσ

≤ AT q
exp ≤ Lσ −

(Lσ − Lσq
)2

2 · k · Lσ

(8)
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Here Inequation (8) shows both the lower and upper bounds of AT q
exp for

q in another form. It is worth mentioning that both bounds are independent of
any data placement results. Moreover, we can infer when k increases, σq will
include more documents. Then Lσq

increases as well. However, the decrease of
difference Lσ − Lσq

leads to larger lower and upper bounds of AT q
exp, which

means the system’s overall performance will degrade.
The above analysis focuses on a single query. However, generalizing it to

multiple queries would be much more complicated. Actually, determining an
optimal broadcast sequence for multiple multi-item queries is an NP-Complete
problem [6].

When there are multiple queries to consider for a broadcast program, these
queries are not likely to require the same XML documents. In such cases, Propo-
sition 1 and Inequation (6), which minimizes expected access time for a sin-
gle query, cannot help to find an optimal solution for all queries. But accord-
ing to Proposition 3 and Proposition 4, we know that when xm+1 ≤ M ′

2 and

xm+1 ≤ M ′

k−m
, we should decrease xm+1 to have larger f(X)xm+1

and f(X)
xm+1

.

In other words, if we progressively reduce each gap as much as possible, we would
have larger lower and upper bounds of

∑k

i=1 L
2
gapi

. In this way, we can reduce
both the lower and upper bounds of overall expected access time.

For example, if we need to minimize
∑k

i=1 L
2
gapi

for each query in {q1, q2, q3},
for the first step, we should place XML documents that are required by all three
queries together to form an initial broadcast program. In the second step, we
should place XML documents required by two of the three queries together and
append them to the initial broadcast program. After that, we append XML
documents required by only one query to the broadcast program to form a final
broadcast program. In this way, we can construct a final broadcast program in
a greedy style.

Now the problem becomes how we can determine which documents should
be placed together first as we cannot obtain queries in advance. Our solution
will be discussed in next section.

4 Data Placement Algorithm

In this section, we introduce our data placement algorithm for periodic XML
data broadcast. This algorithm is based on the theoretical analysis in previous
section. We first discuss the structural sharing property of XML data which we
use to estimate the potential access patterns of mobile clients, i.e., the probability
of accessing a small set of similar XML documents simultaneously. Then we put
forward a novel greedy data placement algorithm based on it.

4.1 Structural Sharing in XML data

Intuitively, for any two given XML documents, we can utilize one of the three
similarity measures described in Section 2.3 to calculate the similarity between
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them and the similarity results can be used to approximate the probability that
a specific query is matched with both documents at the same time. For example,
if two XML elements are under structurally similar paths, then it is more likely
that either both elements or none satisfy a given query [22]. In fact, query is-
suers hardly have thorough knowledge about the broadcasted content and XPath
queries usually contain * and // which would match similar structure. Therefore,
if two XML documents are with larger structural similarity, i.e. d1 and d2, then
they would have a higher probability to be required simultaneously. However,
there are still three other cases to be considered, such as required d1 but not d2,
required d2 but not d1 and required neither of d1 and d2. Therefore, the above
similarity measures consider only successful match probabilities of both XML
documents but do not consider unsuccessful match probabilities of them.

Nonetheless, unsuccessful match cases have effects on the expected access
time as well. According to Proposition 1 and Proposition 2, in order to have
better access efficiency, the gaps between any two required documents by a
single query should be as less uniform as possible. Based on this, we can infer
that in the above example, cases of required d1 but not d2 and required d2 but
not d1 are likely to generate more uniform gaps while other two cases (required
both documents or neither) are likely to have less uniform gaps. Observing this,
we define a new similarity measure called Cohesion to give a more accurate
estimation of access patterns of mobile clients in the following.

Note that, for any query q requiring at least one of the documents in D, q

must match some paths in PS(D) and it has a probability of |PS(d)|
|PS(D)| to match

d. If a query q fails to match any document in D, the issuer of q only needs to
locate and download air index to confirm that his/her query does not match any
document. Then he/she can stop waiting the result to be broadcasted. All such
kind of queries only need to access the index information on air and therefore,
their expected access time depends heavily on the index distribution, which is
not the focus of our work. To estimate their expected access time, interested
readers are referred to [12] for more details. Hence, we only consider successful
queries in this work.

Now suppose we have a set of n XML documents D = {d1, d2, . . . , dn} on
the server, we can approximate access probability of any document d for queries
which successfully match at least one document in set D as follows:

Pr(d) =
|PS(d)|

|PS(D)|
(9)

and for any i, j (1 ≤ i, j ≤ n)

Pr(di − dj) =
|PS(di)− PS(dj)|

|PS(D)|
(10)

Here, PS(D) =
⋃n

i=1 PS(di).
There would be many different matching cases for a given set D. Take two

XML documents d1 and d2 in D as an example. As mentioned previously, there
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Table 2. Matching Cases for Document d1 and d2 in a document set D

Case Probability Effect on ATexp

Matched both d1, d2 Pr(d1
⋂

d2) Positive

Matched none of d1, d2 1− Pr(d1
⋃

d2) Positive

Matched d1, but not d2 Pr(d1 − d2) Negative

Matched d2, but not d1 Pr(d2 − d1) Negative

would be four cases of matching of them and the probability of each case is
shown in Table 2. In this table, we also include positive and negative effects on
the expected access time (ATexp) for each case.

Based on Table 2, we define Cohesion C(di, dj) of XML documents di and
dj as follows:

C(di, dj) =
Pr(di

⋂

dj) · (1− Pr(di
⋃

dj))

max{Pr(di − dj), P r(dj − di)}
(11)

Here di and dj are both in set D. It is easy to see that C(di, dj) = C(dj , di).
According to Equation (9), Equation (10) and Equation (11), we can calculate
C(di, dj) after finding path sets of di, dj and D. Cohesion values can vary in
a wide range which exceeds interval [0, 1]. Strictly speaking, Cohesion values

only vary in interval [0, |PS(D)|
4 ] given that C(di, dj) =

|PS(D)|
4 when PS(di) =

PS(dj). The lower bound 0 is trivial. In order to obtain the upper bound, we
only consider cases that have PS(di) 6= PS(dj), from which we can infer that
max{|PS(di−dj)|, |PS(dj−di)|} ≥ 1. Without loss of generality, let |PS(di)| ≥
|PS(dj)|, according to Equation (9) and Equation (10), we can rewrite Equation
(11) as follows:

C(di, dj) ≤

|PS(di

⋂

dj)|

|PS(D)| · (1−
|PS(di

⋃

dj)|

|PS(D)| )

1
|PS(D)|

<
|PS(di)| · (|PS(D)| − |PS(di)|)

|PS(D)|

=
−(|PS(di)| −

|PS(D)|
2 )2 + |PS(D)|2

4

|PS(D)|

≤
|PS(D)|

4

Then the above result gives the upper bound of Cohesion C(di, dj). Now we
can normalize Cohesion values to interval [0, 1] in the following

C′(di, dj) =

{

4·C(di,dj)
|PS(D)| PS(di) 6= PS(dj)

1 PS(di) = PS(dj)
(12)
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Algorithm 1 Initialize structural sharing matrix S[n][n]

Input: A set of XML documents D : {d1, d2, ..., dn}
Output: Structural sharing matrix S[n][n]
1. create matrix S[n][n]
2. for each document d in D do

3. compute PS(d)
4. end for

5. for each pair of documents < di, dj > in D (i < j) do
6. S[i][j] ⇐ structural sharing between di and dj
7. S[j][i] ⇐ S[i][j]
8. end for

We can also infer that C′(di, dj) = 1 if and only if PS(di) = PS(dj). Similar
to other three similarity measures, the larger the value of Cohesion is, the more
structural sharing the two comparing XML documents have.

Algorithm 2 GDPA

Input: Structural sharing matrix S[n][n]
Output: A broadcast program σ for D
1. σ ⇐ empty sequence
2. select a pair of documents < di, dj > with maximum value S[i][j] in matrix S[n][n]
3. if Ld1 <= Ldj then

4. add < di, dj > into σ

5. else

6. add < dj , di > into σ

7. end if

8. D′ ⇐ D − di − dj
9. while D′ is not empty do

10. dhead ⇐ the first document in σ

11. select a pair of documents < dimax , dhead > with maximum value S[imax][head]
(dimax ∈ D′)

12. drear ⇐ the last document in σ

13. select a pair of documents < djmax , drear > with maximum value S[jmax][rear]
(djmax ∈ D′)

14. if S[imax][head] >= S[jmax][rear] then
15. append dimax into σ from head
16. D′ ⇐ D′ − dimax

17. else

18. append dimax into σ from rear
19. D′ ⇐ D′ − djmax

20. end if

21. end while
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4.2 The Greedy Data Placement Algorithm

Based on the discussion of structural sharing in XML data, we can generate a
broadcast program for periodic data broadcast in a greedy way. From previous
discussions, we can see that the more the structural sharing of two XML doc-
uments is, the larger probability of matching both XML documents simultane-
ously. As a result, our Greedy Data Placement Algorithm (GDPA) places XML
documents with most structural sharing together first as an initial broadcast
program. Then it progressively appends other XML documents to the broadcast
program in a descendant order of structural sharing. Detailed steps of GDPA
are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 initializes a structural sharing matrix S[n][n] for n XML docu-
ments on the broadcast server. Note that, all four similarity measures defined in
subsection 2.3 and 4.1 can be used in Algorithm 1 to compute structural shar-
ing between two documents (Line 6). All of them are symmetric which means
for any one of these measures, we must have S[j][i] = S[i][j]. Also we have
J(di, dj) = D(di, dj) = L(di, dj) = C′(di, dj) = 1 if i = j. Therefore, we only
need to calculate matrix S for entries S[i][j] where i < j.

Based on matrix S, Algorithm 2 finds the pair of XML documents with max-
imum structural sharing value and adds them into the initial empty broadcast
program σ (Line 2). As discussed in Section 3, the expected access time is de-
termined by the gaps between the required documents but not by the sequence
of them. Therefore, the sequence of the first pair of XML documents can be
simply placed according to the ascendant order of document lengths (Line 3 to
7). Then Algorithm 2 appends the XML document with maximum structural
sharing to the head document dhead or the rear document drear of σ. If the max-
imum structural sharing is derived between document d and document dhead, d
will be appended into σ from head; otherwise, d will be appended into σ from
rear. This process will be repeated until all XML documents are placed into σ

in order (Line 9 to 21).

5 Experiments

In this section, we study the performance of our data placement algorithm. We
show its efficiency in terms of access time, which is a common measure of perfor-
mance in data broadcasts. Since this is the first work that determines broadcast
schedules based only on XML data on the server without any knowledge of the
clients’ access patterns, we compare our algorithm with a common random data
placement algorithm (RDPA).

5.1 Experimental Setup

The experiments are run on three data sets each with 250 XML documents
defined by News Industry Text Format (NITF) DTD [13], which is published for
news copy production, press releases, and Web-based news organizations. The
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average depth of the three document sets is between 6 and 8 while the maximum
depth is 20.

The details of these data sets are shown in Table 3. Data in DS1 can be well
clustered into 6 clusters. Moreover, for any two documents di, dj in two different
clusters of DS1, the minimum similarity values, the maximum similarity values
and the average similarity values of all four measures (normalized Cohesion is
adopted here) are shown in Table 4. We can see that all clusters are quite different
from each other and share very little structural information. Data in DS2 are
miscellaneous. Documents in DS2 cannot be classified into fine clusters. Data
in DS3 are a mix of well-clustered data and miscellaneous data, which include
125 XML documents from DS1 and 125 XML documents from DS2.

Table 3. Data Sets in Our Experiments

Set Name
Length

Remark
Minimum Maximum Average

DS1 2.4KB 8.1KB 5.0KB 6 clusters

DS2 0.5KB 45.9KB 12.4KB miscellaneous

DS3 2.4KB 24.8KB 9.9KB hybrid

Table 4. Similarity between clusters in DS1

Measure
Similarity

Minimum Maximum Average

Jaccard 0.0097 0.1102 0.0435

Dice 0.0049 0.0583 0.0225

Lian 0.0057 0.1039 0.0345

Cohesion 0.0229 0.4620 0.1457

Table 5. Workload Parameters for the Experiments

Parameter Range Default Description

PROB 5% to 30% 10% probability(* and //)

QIR 0.1 to 5 1 query incoming rate

MQD 5 to 8 7 maximum query depth

In the experiments, XPath queries are generated using the generator de-
veloped by [8]. Queries are allowed to repeat. The generator provides several
parameters to generate different types of XPath queries, such as query depth,
probability of * and // and so on. The probability of * and // appearing in each
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Fig. 4. Evaluating AAT Performance on DS1: well-clustered data set

query’s step is between 5% and 30% (denoted PROB, and the default value is
10%). Query Incoming Rate (denoted QIR) means the number of newly issued
queries from mobile clients in a unit of time. We measure this unit of time by
the time that mobile wireless system takes to broadcast a block of 1024-byte
XML data. The maximum depth of generated XPath queries (denoted MQD) is
between 5 and 8. Table 5 shows the value range of parameters in the experiments.

The random data placement algorithm (denoted RDPA) is compared with
GDPA (implemented using all four similarity measures defined in Equations (1),
(2), (3) and (12)). In RDPA, the server broadcasts XML documents in a random
order. This random order is implemented by a Java class Random.

We implement both RDPA and GDPA on Java Platform Standard Edition 6
running on Windows 7 Enterprise, 64-bit Operating System. All our experiments
are obtained by running 30 consecutive broadcast cycles. When we vary PROB,
we set QIR and MQD to their default values. When we vary QIR, we set
PROB and MQD to their default values. Similarly, when we vary MQD, we
set PROB and QIR to their default values.

Regarding air indexing and index distribution strategy, in our experiments,
we adopt Compact Index (CI) [26] as our index structure and (1,m) index scheme
[12] as our index distribution strategy. This is because CI is the state-of-the-art
indexing technique for XML data broadcast and (1,m) index scheme is the most
popular index distribution strategy for traditional periodic data broadcast. More
details can be found in [26] and [12].

5.2 Performance of GDPA

Our experimental results are shown in Fig. 4, Fig. 5 and Fig. 6. Average ac-
cess time (AAT ) is our performance metric. Also we only consider AAT for
all successful matched queries and abandon unsuccessful matched queries. The
main reason for this is that, AAT of unsuccessful queries is determined by index
distribution but not by data placement results (more details about this can be
found in [12]). Note that, GDPA can be implemented with four different similar-
ity measures defined in Section 4, which are Jaccard measure, Dice’s coefficient,
Lian’s measure and our proposed Cohesion. Through our experiments, Jaccard
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Fig. 5. Evaluating AAT Performance on DS2: miscellaneous data set
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Fig. 6. Evaluating AAT Performance on DS3: a mixed set of well-clustered data and
miscellaneous data

measure and Dice’s coefficient always yield the same results. Therefore, we de-
note GDPA implemented with them as J/D method in all figures. Meanwhile,
we denote GDPA implemented with Lian’s measure as Lian method and denote
GDPA implemented with Cohesion as Cohesion method.

Fig. 4 shows the results on DS1. From the figure we can see that all GDPA
methods outperform RDPA significantly. Specifically, J/D method achieves the
best results while Lian method and Cohesion method provides similar results.
This indicates that J/D method better fits well-clustered data. In Fig. 4(a),
GDPA methods become slightly worse when PROB increases. Since DS1 is well-
clustered, most queries only require documents in the same clusters. Thus PROB

has less effect on AAT . In Fig. 4(b), when QIR increases, J/D method becomes
slightly better. This indicates that J/D method can achieve better scalability
than other methods when accessing well-clustered data. Fig. 4(c) shows that all
GDPA methods remain stable as MQD increases. It is interesting to note that
for RDPA, AAT always remains stable.

Fig. 5 shows the results on DS2. From the figure we can see that all GDPA
methods achieve better performance when compared with RDPA. Specifically,
Cohesion method achieves the best results while J/D method achieves the worst
results among GDPA methods. This indicates that Cohesion method better fits
miscellaneous data. In Fig. 5(a), both GDPA methods and RDPA become worse
when PROB increases. It is clear that PROB has more effect on AAT for miscel-
laneous data. In Fig. 5(b), when QIR increases from 0.1 to 0.5, GDPA methods
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J/D and Lian together with RDPA become worse while Cohesion method still
becomes better. After that, when QIR increases, all methods become slightly
better. This shows that Cohesion method can achieve best scalability when ac-
cessing miscellaneous data.

Fig. 6 shows the results on DS3. Similarly, all GDPA methods achieve better
performance when compared with RDPA. Specifically, Lian method achieves the
best results while J/D method provides the worst results among GDPA methods.
This shows that Lian method better fits hybrid data. However, Cohesion method
achieves very similar performance of Lian method. In Fig. 6(a), both GDPA
methods and RDPA become worse when PROB increases. PROB has more
effect on AAT for hybrid data. In Fig. 6(b), when QIR increases, all GDPA
methods become slightly better and still Lian method provides the best results.

To sum up, GDPA methods always achieve better AAT when compared
with RDPA. When accessing well-clustered data, J/D method achieves the best
performance. When accessing miscellaneous data, Cohesion method provides the
best performance and finally when accessing hybrid data, Lian method shows
the best performance.

6 Related Work

Many studies have been done to investigate data placement techniques to reduce
access time [25, 23, 14]. These studies generally assume that each user query
requires one data item only. Other studies handle data placement problems for
queries that may require multiple data items.

Multi-item data placement problem is related to the data placement problem
of XML data which is the focus of our work. It is proved to be a NP-Complete
problem [6]. A data placement method for multi-item queries called QEM is
introduced in [5], which opened up a new perspective in this field. In addition,
several improved methods are proposed [15, 3]. The above work is all within the
scope of periodic broadcast and generally makes assumptions that the clients’
queries are already known and the distribution of access frequencies of these
queries can be obtained in advance. However, these assumptions are not true for
most applications in real life because the demand is either not known or it may
be costly to collect the demand information.

Multi-item data placement problem in on-demand broadcast mode has also
attracted lots of interests [27, 21]. These approaches are in pure on-demand
broadcast mode and strictly require that mobile clients submit their queries
to the server for desired data. Otherwise, the server will not broadcast related
data on air. This is because the server filters and schedules data solely based
on submitted queries. However, frequent use of uplink channel leads to high
communication cost via uplink channel, which can shorten battery life of mobile
clients dramatically.

The above mentioned studies focus on flat data broadcasts, in which indices
of data items are generally key-based and data do not contain structural infor-
mation. Recently, besides the traditional flat data broadcast, a wealth of work
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dealing with XML data broadcast has appeared. Some work addresses the per-
formance optimization of query processing of XML streams in wireless broadcast
[7, 18], while other work designs indexing techniques for XML data broadcast
based on existing XML indexing techniques [19, 26]. However, their work mainly
focuses on air indexing techniques similar to content based indexing techniques
in XML stream processing or XPath query based indexing techniques. More-
over, this kind of work does not study the data placement problems in XML
data broadcast.

The most related work is proposed in [20]. In that work, the broadcast sched-
ules are generated based on clustering results of XML data on the server. How-
ever, the clustering process requires manually specifying the number of clusters
and has to compare different clustering results based on clients’ query distribu-
tion in order to find the optimal clustering result, which differs from our work
in this paper.

7 Conclusion

In this paper, we have studied the data placement problem of periodic XML data
broadcast. Taking advantage of the structured characteristics of XML data, we
are able to generate effective broadcast programs based only on XML data on the
server without any knowledge of the clients’ access patterns. This not only makes
our work distinguished from previous studies, but also enables it to have broader
applicability. We presented a theoretical analysis of the problem and discussed
structural sharing in XML data which forms the basis of our novel greedy data
placement algorithm (GDPA). Our experiments demonstrated that the proposed
algorithm could improve access efficiency and achieve better scalability.

In the future, we plan to further improve system’s performance by investi-
gating the insights of structural sharing among XML documents. For example,
we may consider details on how to measure structural sharing distribution in
an XML document set, how the distribution affects the expected access time
of queries and how to choose a similarity measure based on structural sharing
distribution in a set of XML documents.
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Appendix

A. Proof of Proposition 1

Proof. According to the two constraints of function f(X), we have

f(X) = (x1 + x2 + . . .+ xn)
2 − 2 ·

∑

i6=j

xi · xj

≤ M2

When x1 = x2 = . . . = xk−1 = 0 and xk = M (or any other kind of
combinations like this, which means we have only 1 positive variable2.), f(X)
reaches its upper bound f(X) = M2. In all other cases, if two or more variables
are positive, i.e. x1 > 0 and x2 > 0, we have 2 ·

∑

i6=j xi · xj ≥ 2 · (x1 · x2) > 0

which indicates f(X) < M2.

B. Proof of Proposition 2

Proof. We utilize mathematical induction to prove it (for all k ≥ 1).
For the base step, when k = 1, f(X) = x2

1, it is trivial to prove that f(X) =
M2 ≥ 1 · (M1 )2 and f(X) = M2 since x1 = M = M

1 .

For the inductive step, we assume that when k = n, f(X) ≥ n · (M
n
)2 and

when x1 = x2 = . . . = xn = M
n
, f(X) reaches its lower bound f(X) = n · (M

n
)2.

Then for k = n+ 1, we have

f(X) =

n
∑

i=1

x2
i + x2

n+1

≥ n · (
M − xn+1

n
)2 + x2

n+1

=
(n+ 1) · (xn+1 −

M
n+1 )

2 + n·M2

n+1

n

≥ (n+ 1) · (
M

n+ 1
)2

From the above induction, we can see that when xn+1 = M
n+1 and x1 = x2 =

. . . = xn = M−xn+1

n
= M

n+1 , f(X) reaches its lower bound f(X) = (n+1)·( M
n+1 )

2.
Because we have shown both the base step and the inductive step, by the

principle of mathematical induction the proposition is true.

2 Note that we cannot have all variables to be 0 since M is positive.
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C. Proof of Proposition 3

Proof. According to our definitions of f(X)xm+1
, we have

f(X)xm+1
=

m
∑

i=1

x2
i + x2

m+1 +
k

∑

i=m+2

x2
i

Since M ′ = M −
∑m

i=1 xi =
∑k

i=m+1 xi, according to Proposition 1, we have

f(X)
xm+1

=

m
∑

i=1

x2
i + x2

m+1 + (M ′ − xm+1)
2

=

m
∑

i=1

x2
i + 2 · (xm+1 −

M ′

2
)2 +

M ′2

2

According to the above result, for any xm+1 < x′
m+1 we can infer that

1. f(X)xm+1
> f(X)x′

m+1

, if xm+1 < x′
m+1 ≤ M ′

2

2. f(X)xm+1
< f(X)x′

m+1

, if M ′

2 ≤ xm+1 < x′
m+1

3. Indefinite for all other cases

D. Proof of Proposition 4

Proof. According to our definitions of f(X)xm+1
, we have

f(X)xm+1
=

m
∑

i=1

x2
i + x2

m+1 +

k
∑

i=m+2

x2
i

Since M ′ = M −
∑m

i=1 xi =
∑k

i=m+1 xi, according to Proposition 2, we have

f(X)
xm+1

=

m
∑

i=1

x2
i + x2

m+1 +

(k −m− 1) · (
M ′ − xm+1

k −m− 1
)2

=

m
∑

i=1

x2
i +

(k −m)(xm+1 −
M ′

k−m
)2 + (k−m−1)M ′2

k−m

k −m− 1

According to the above result, for any xm+1 < x′
m+1 we can infer that

1. f(X)
xm+1

> f(X)
x′

m+1

, if xm+1 < x′
m+1 ≤ M ′

k−m

2. f(X)
xm+1

< f(X)
x′

m+1

, if M ′

k−m
≤ xm+1 < x′

m+1

3. Indefinite for all other cases


