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ABSTRACT

This thesis presents a novel framework for structural health
monitoring (SHM) of reinforced concrete (RC) beams based on fibre optic
sensor (FOS) technology, finite element analysis (FEA), and deep learning
(DL). The proposed research addresses the limitations of existing SHM
methods by constructing a tailored sensor network, a comprehensive strain
dataset, and an efficient DL model for accurate predictions. The study
began with a comprehensive analysis of current SHM practises, focusing on
applying and incorporating FOS, FEA, and DL in monitoring structural
health. Distributed optical fibre sensors were used to establish a sensor
network and acquire strain data from RC beams subjected to different
loading conditions. Concrete damaged plasticity-based FEA model was
established and validated with experimental strain data. The validated
model has been used to generate a strain dataset. This dataset was then
used to train a DL model for predicting the structural health of RC beams
based on artificial neural network architecture. The proposed SHM
framework was exhaustively validated via a two-tiered experimental
procedure involving short and long-span RC beams subjected to various
loading scenarios. The predictive capabilities of the DL model were
evaluated rigorously using the extensive strain data derived from these
experiments. The model prediction has been classified into eight classes,
and the prediction accuracy was impressive 81.25%. Sensitivity analysis
revealed a robust prediction accuracy of 74% with only 20% of input data.
This study is novel due to its integrated approach to SHM, which leverages
the assets of FOS, FEA, and DL to provide precise, data-driven insights into
the structural health of RC beams. This method not only improves the
efficacy and precision of SHM, but it also has the potential to be applied to
other types of structures, thereby creating new research opportunities and

field advancements.
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CHAPTER 1: INTRODUCTION
1.1. Background

The significance of structural health monitoring (SHM) in civil
engineering has increased in recent years, as it is essential for sustaining
the safety, resilience, and durability of infrastructure assets such as bridges
[1-3], buildings [4-6], and pipelines [7-9], which are the backbone of
modern societies. Demand for dependable and efficient civil structures has
increased as the global population and rate of urbanisation continue to rise.
These structures are subject to a multitude of stressors, such as natural
hazards such as earthquakes [10-12] and floods [13-15], material
degradation due to ageing [16-18] and corrosion [19-21], and mechanical
loads from traffic and wind forces [22, 23], which can lead to structural
deterioration or even destructive failure.

Engineers can identify and monitor the health of these structures by
using SHM techniques, allowing for the early detection of damage, defects,
or other distress symptoms. This data enables asset managers to make
informed decisions regarding maintenance, repair, and replacement,
ensuring the infrastructure’s structural integrity and functionality [24]. This
proactive approach reduces the risk of structural failure and its associated
consequences, including loss of life and property. It also optimises resource
allocation, thereby reducing financial and environmental costs associated
with infrastructure management.

SHM also contributes to the ecological development of our built
environment by extending the service life of structures and decreasing the
demand for new construction [25]. The environmental impact of civil
engineering projects can be diminished by perpetually monitoring and
addressing structural issues, as fewer raw materials and energy are
consumed, and waste generation is minimised. In addition, SHM
technologies can monitor infrastructure resilience to climate change and

other environmental challenges [26] by providing data-driven insights into



structural behaviour under varying conditions and facilitating the
development of adaptive strategies.

SHM systems can also provide valuable data for research and
development, enabling engineers to better understand the structures’
behaviour under various loading conditions [27]. This leads to more
efficient, durable, and resilient infrastructure design and construction. In
this way, SHM contributes to developing innovative materials, designs, and
construction techniques that will influence the future of our built
environment.

Reinforced concrete (RC) beams serve as a fundamental component
in the construction of a broad range of civil structures, including buildings
[28] and bridges [29]. They play a crucial role in the modern infrastructure.
The inherent properties of RC, a composite material formed by embedding
steel reinforcement bars within a concrete matrix, enable it to withstand
both compressive and tensile loads effectively. This unique combination of
strength and ductility enables RC beams to distribute structural loads
efficiently and provide robust support for the diverse load-carrying needs
of infrastructure assets.

Current methods of SHM for civil structures, including concrete
beams, play a crucial role in preserving the integrity and safety of these
vital infrastructure components. Several non-destructive techniques have
been developed and implemented to evaluate and monitor the condition of
civil structures, allowing engineers and asset managers to make informed
decisions regarding maintenance and repair strategies [30].

Non-destructive testing (NDT) techniques are extensively employed
in SHM because they permit structural health evaluation without damaging
the beams. Despite the subjectivity of human judgement and accessibility
restrictions, visual inspection [31, 32] continues to be a popular and cost-
effective technique. Advanced NDT techniques like ground-penetrating
radar (GPR) [33], which uses electromagnetic waves to detect internal
defects, acoustic emission (AE) monitoring [34], which tracks the release

of elastic energy due to micro-cracking within the concrete, and vibration-
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based monitoring [35], which tracks changes in a structure’s vibrational
characteristics (such as natural frequency, mode shapes, or damping ratio)
to track damage, have been developed to overcome these limitations.

Even though the mentioned SHM methodologies are effective and
indispensable, they have limitations. For example, visual inspection heavily
relies on the observer’s subjective judgement and experience [36]. This
technique may neglect internal irregularities or flaws that are not readily
apparent on the surface. Moreover, conducting a thorough visual
examination can be difficult when dealing with expansive or architecturally
complex structures.

Although GPR is an effective method for detecting internal defects,
The difficulty associated with interpreting and comprehending the resulting
data is one of the most significant drawbacks of the GPR technique, which
is the subject of substantial criticism regarding its potential application
[37]. AE testing is similarly circumscribed; it is susceptible to interference
from ambient noise, necessitating stringent control of the testing
environment. Associating each AE signal with a particular damage
mechanism is a significant concern when employing the AE technique [38].
In addition, AE can only detect active defects presently emitting sound,
leaving dormant defects undetected. Furthermore, in vibration-based SHM,
damage detection, localization, and quantification are complex tasks.
Although numerous damage indicators and damage indices based on
vibration parameters have been proposed, their sensitivities are insufficient
for early damage detection [35].

The potential of distributed fibre optic sensor (DFOS) networks, finite
element analysis (FEA), and deep learning (DL) in SHM are enormous, as
these cutting-edge technologies can revolutionise how infrastructure is
evaluated and maintained. Distributed optical fibre sensor (DOFS) allow for
the continuous, real-time monitoring of structures, capturing vital data
regarding their response to various loads and environmental conditions.
These sensor networks can be configured to monitor specific parameters,

such as strain [39], temperature [40], or vibration [41], providing valuable
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insights into the behaviour and performance of the structure. These sensor
networks can be deployed to monitor a parameter in a distributed fashion
[42], allowing comprehensive structural health evaluation.

When coupled with DL algorithms, FEA and DOFS-based large
datasets can be efficiently processed and analysed, enabling the detection
of subtle structural changes that may indicate damage or deterioration. DL
models can learn complex patterns and relationships from data, enhancing
the precision and dependability of health predictions. Moreover, integrating
distributed sensor networks and DL models in SHM systems can result in
the development of proactive maintenance strategies, optimising resource
allocation, and extending the service life of structures. Combining these
technologies can revolutionise the field of SHM by enhancing the safety and
resiliency of our civil infrastructure while simultaneously reducing
maintenance costs and environmental impact. Therefore, the researchers
are investigating the viability of DOFS networks, FEA, and the use of DL
technologies to surmount the limitations of current SHM methods for RC

beams.

1.2. Research problems

1. Lack of research work on proper integration of recent advancements in
sensing, large data analysis, and health predictions into a framework is
a major remaining problem in SHM of civil infrastructures.

2. Unavailability of a comprehensive and representative dataset of strains
for DL model training, i.e., analytical which can be correlated from
operational data of a RC structure/component.

3. Scarcity of procedures for designing and implementing sensor networks
for RC structures/components.

4. Inadequate research work on creating, training and evaluating an
Effective DL Model for a SHM framework



1.3. Research objectives and significance

This research intends to develop an SHM framework for RC beams,
concentrating on creating a detailed FEA model for training data generation,
developing a DL model for structural health prediction, and implementation
of distributed sensor networks for data acquisition. The research objectives
are:

1. Review current methods and applications of fibre optic sensor (FOS),
FEA, and DL-based SHM models for civil infrastructures; identify the
critical points within RC beams for developing a distributed sensor
network integral to the proposed SHM framework based on this
understanding.

2. Create a comprehensive strain dataset from a validated FEA model for
training a DL model. Within the SHM framework, this procedure will
serve as the foundation for developing a robust structural health
prediction algorithm.

3. Develop a distributed sensor network for RC beams. The sensor network
will function as the SHM framework’s primary mechanism for data
acquisition.

4. Train a DL model for structural health prediction using FEA model data
and test this model using sensor network data. This procedure will
evaluate the performance of the DL model in predicting the structural
health of RC beams under various conditions. This objective is the last

part of the proposed framework.

This study’s significance is broad, as it addresses critical aspects of
SHM for RC beams through a comprehensive approach that includes sensor
network installation, FEA modelling, and DL model development for
structural health prediction. This research contributes to the SHM field by
developing a systematic method for selecting critical items in RC beams for
sensor network installation, thereby improving the efficiency and precision
of monitoring structural health. In addition, the design and development of

distributed sensor attachments and installation procedures will enhance the
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quality of data collected for real-world applications. The detailed FEA model,
validated by experimental data from the sensor network, will improve the
accuracy and dependability of SHM techniques. The proposed SHM

framework for RC beams is illustrated in Figure 1.1.

SHM framework for RC beams

Data generation to Development of DO_F_%_data q
train DL model DL model acquisition an
prediction

RC beam model
geometry

Concrete
damaged
plasticity (CDP)
modelling

training data preparation

ANN parameter Installation of
selection DOFS

« No of Neurons + Rebar
in each layer + Concrete
« No of hidden surface

layers Strain
monitoring

Numerical strain
data

Validation of
. . Transfer -
numerical strain e Flexural loading
data
. RelU » Three point
+ Sigmoid EEE g
» Four point
B bending
propagation
algorithms

Validated FEA
model
FEA strain data
generation

Preprocessing of
strain data

Experimental
strain data

_________ Processed strain
1 data

SHM predictions
(DL model
testing)

Generated
strain data

Developed DL

model

Figure 1.1: SHM framework for RC beams



Effective SHM techniques will enable early detection of structural
damage. Hence it will enhance overall safety and minimise the risk of
catastrophic failure. This study also offers significant advantages for
infrastructure management and maintenance. The proposed framework for
structural health prediction will facilitate more informed decision-making,
resulting in cost reductions, improved resource allocation, and possibly an
extension of RC beams’ service life.

The framework devised in this study can applies to other types of
structures, such as bridges, buildings, and tunnels, thereby expanding the
research scope and applicability. SHM’s efficacy and precision can be
enhanced by incorporating additional data sources and advances in sensor
technology. In addition, the multidisciplinary nature of this study, which
combines civil engineering, computer science, and fibre optic sensing, can

inspire new research collaborations, and advance the field of SHM.

1.4. Structure of the thesis
The structure of the thesis is as follows:

1. Introduction: This chapter provides the background, research problems,
research objectives and significance, and a thesis outline.

2. Literature review: This chapter reviews the existing literature on SHM in
reinforced civil structures, DFOS networks, FEA modelling methods for
RC beams, and DL models for structural health prediction. The first
objective of the study is addressed here.

3. Training data generation and development of deep learning model: This
chapter discusses the FEA model, creating the strain dataset, and
developing DL models. This chapter covers the development of the
proposed framework's DL model as well as data generation for DL model
training. The second objective of the research is covered in this chapter.

4. Implementation of distributed sensor networks and data acquisition:
This chapter covers developing sensor attachments and installation
procedures, and the experimental setup and data acquisition from the

sensor network. In addition to describing the DOFS data acquisition
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component of the framework, this chapter in-depth addresses the third
objective of the study.

5. Performance evaluation of SHM framework: This chapter presents the
correlation of FEA models with experimental data, evaluation of the
performance of the DL model, and sensitivity analysis. The SHM
prediction, the last element of the suggested SHM framework, is covered
in this chapter along with the fourth objective.

6. Conclusions and future research: This final chapter summarises the
overview of the research work, key findings, contributions,
generalisation of the SHM framework, and recommendations for future

research and development in the field of SHM.

This structure provides a coherent and logical research organisation,

guiding the reader through various study stages.
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1.6. Summary

This introductory chapter lays the groundwork for thoroughly
examining the development of an SHM framework for RC beams. The
proposed research will evaluate and enhance current methods and
applications of FOS technology, FEA, and DL in SHM models.

Evaluation of extant methodologies and their incorporation into a
cohesive SHM framework constitutes the research problem. This
comprehensively analyses how FOS, FEA, and DL complement one another
and their compatibility with current practices. A secondary problem entails
implementation of optimal sensor network for RC beams that can react to
the changing conditions of the beam it monitors. Creating an exhaustive
and representative strain dataset from a validated FEA model for training
DL models is an additional challenge. The accuracy of the FEA model is
essential for producing a high-quality strain dataset, which directly impacts
the DL model’s ability to predict structural health. Developing, training, and
evaluating an effective DL model within the proposed SHM framework is
challenging. The model must be able to process vast volumes of data,
extract meaningful features, and make accurate predictions.

The significance of this study resides in its potential contributions to
SHM, infrastructure management, and maintenance for RC beams. The
proposed framework will enhance the quality of collected data, improve the
efficacy and precision of monitoring structural health, and facilitate making
informed decisions. This study also bears promise for future research
because its methodologies and tools could be applied to other structure
types, fostering new research collaborations and advancements in the SHM
field.
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CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

SHM plays a pivotal role in safeguarding the integrity of civil
infrastructures, especially RC beams, which are a fundamental element of
such structures. Early detection of possible problems allows for
preventative maintenance, thus saving time, resources, and, potentially,
lives. This literature review will delve into the existing body of knowledge
around three key areas:
(1) the use and application of FOS networks in SHM,
(2) the application of FEA in modelling RC beams, and
(3) the potential of DL models in predicting structural health.

Despite significant advances in these areas, there are noticeable gaps
in integrating and optimizing these technologies for the specific context of
RC beams. While FOS technologies have been employed successfully for
SHM in various contexts, their systematic application, particularly
concerning optimal distribution and data interpretation, needs further
exploration. Similarly, the correlation of FEA models with experimental data
from FOS sensor networks is another relatively less researched area.
Additionally, creating accurate and reliable strain datasets from FEA models
for training DL models requires further investigation.

The use of DL models has been ground-breaking in numerous fields;
however, its application for SHM in predicting the health of RC beams is not
exploited fully. Current models may need refinement or exploration of
different types of neural networks that could yield better results. Combining
SHM with FOS, FEA, and DL models opens up a promising new area of
research.

This literature review aims to provide a comprehensive understanding
of these themes, critically assess the current methodologies and
technologies, and identify potential gaps in the literature that could serve

as focal points for future research.
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2.2. Fibre optic sensor-based SHM

SHM systems rely heavily on the sensors’ precision, the quantity of
data collected, and the data analysis algorithms’ efficacy. Due to its
lightweight reliability, stability, small size, immunity to external
electromagnetic perturbations, low power, high sensitivity, multiplexing
capability, and wide bandwidth, fibre optic sensing is among the most
exciting and rapidly expanding research fields for enhancing inspection
accuracy and performance. In addition, substantial drawbacks include high
costs and end-user unfamiliarity [42-47]. Due to the numerous advantages
of fibre optic sensing, FOSs are preferred over conventional sensors [48-
53].

FOSs have replaced conventional sensors in various applications, i.e.,
strain, vibration, electric, acoustic, magnetic fields, acceleration, rotation,
pressure, temperature, linear and angular position, humidity, viscosity, and
chemical measurements. Due to their dielectric property, fibre-optic
sensors can be used in harsh environments such as relatively high
temperatures, high voltage, or corrosive materials; they can also conduct
remote sensing [54]. Different types of embedded or surface-mounted
sensors are available for SHM systems. However, only fibre-based systems
can perform integrated, quasi-distributed, and fully distributed
measurements on or even within the structure over long distances [55].
Due to their distinct capabilities, research on various optical fibre sensors
(OFSs) has risen to the top of engineers’ and scientists’ research agendas.
Consequently, more research has been performed on OFSs for SHM
systems, such as civil infrastructure [56-59], mechanical apparatus [60],
robotics [61], and aerospace applications [62-65].

Fibre optic monitoring systems have been devised and successfully
implemented recently. When properly engineered and manufactured, OFS
can be highly resilient and long-lasting in the most demanding
environment. Owing to the long-term dependability and low maintenance
requirements of OFS, optical sensing will be less expensive than its

electrical counterpart. The sensor in optical sensing is contained within an
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optical fibre. Changes to a monitored parameter, such as strain and
temperature, alter the directed light’s intensity, phase, spectral content,
polarization state, or a combination thereof. These modifications could be
interpreted as parameter modifications. The optical fibre connects the
sensor to the data acquisition system. A single optical fibre can be used for
transmission and sensing, and multiple sensors can operate
simultaneously. Consequently, installation in the environment can be made
more accessible.

OFSs are classified according to their sensors, which include discrete
or point sensors and distributed sensors. A point sensor provides a single
measurement parameter pertinent to the sensor’s location, whereas
distributed sensors measure multiple measurements continuously and not
at a specific location [66]. The cost of distributed sensing of multiple
measurement sites can be significantly lower than that of a conventional
single-point sensor due to the absence of expensive and difficult
deployment and complex data acquisition methods. Point or distributed
FOSs capture only the positional strains in the fibre. A crack alters the strain
field only close to the crack’s tip, leaving the global strain field unaffected;
therefore, it can be detected only when damages occur close to the optical
fibre path. This will be the most significant limitation of the technique. Many
inherent benefits are associated with modern OFS, such as it is inherently
safe and explosion-proof and is particularly suited for health monitoring
applications [67]. The smaller size of OFS allows it to operate in
environments with limited space [68]. However, the OFS is highly fragile
and susceptible to failure or damage in harsh field conditions [39, 69].

The FOSs can measure over long distances without electrically active
components and are crucial for monitoring large and distant structures such
as pipelines, bridges, and dams [68]. The only devices that require the
power supply are the laser light source and the analyser. Power supplies
for commercially available FBG interrogators range from 15 W to 25 W (2
to 16 channels); Optical Distributed Sensor Interrogators are 240W to
300W (Luna ODiSI 6100/ ODiSI-B 5.0), and optical backscatter
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reflectometers are 100W (Luna OBR 4600). FBG and DOFS sensors will be
further discussed since they are used extensively in SHM-based

applications in civil engineering structures.

2.2.1. FBG sensors

FBG sensors are the most widely used grating-based sensors,
extensively used for SHM in civil structures, aerospace, automotive,
biomechanics, and maritime areas [70, 71] due to their high sensitivity to
multiple physical, chemical, and biomedical environmental parameters
[57]. An FBG reflects a portion of incoming light with a specific wavelength,
known as the Bragg wavelength while allowing the preponderance of
incoming light to pass through unaffected. The index of fibre refraction and
the grating pitch determine the Bragg wavelength, which is affected by
external environment variations [72, 73]. The grating’s period and reflected
wavelength change correspondingly when a local deformation is present,
allowing the detection of the local strain [74]. Figures 2.1a, b illustrate the
FBG operating principle and a typical configuration for FBG interrogation.

Changes in the transmitted and reflected optical spectra can help
investigate physical and chemical parameters [75-77]. Numerous physical
parameter changes can be monitored when an FBG is embedded or bonded
to the necessary host material. Any strain in the fibre at the Bragg grating
can alter the Bragg wavelength reflected, which can be precisely detected.
FBG sensors can measure temperature, humidity, strain, vibration,
deformation, and displacement [78-84]. FBG sensors offer the same
advantages as optical fibre sensors (OFS). Because wavelength-division
multiplexing, spatial-division-multiplexing, and time-division-multiplexing
can be implemented directly in the fibre without altering the fibre diameter,
FBG sensors can be multiplexed using the same techniques as FOS. This
property makes FBG sensors ideal for a wide range of applications.
Designing and packaging these devices using sensitive packaging
techniques is necessary to guarantee the safety of FBG sensors. FBG

sensors have been used over the past five years to measure concrete-
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related parameters, fatigue responses of steel wires, the use of FBGs in

prestressed concrete, reinforcement strain corrosion, and leakage
monitoring. The subsequent section will elaborate on the use of FBG
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Applications of FBG sensors are dispersed across a vast region.
Yazdizadeh et al. (2017) employed electrical strain gauges (ESG) and
embedded FBG sensors to investigate shrinkage and creep in three distinct
concrete grades: Normal strength concrete, high-performance concrete
(HPC), and ultra-high-performance concrete (UHPC).

Figure 2.2(a) displays the shrinkage strain variation measured by
FBG sensors over 56 days for three different concrete types. The maximum
shrinkage is observed within the first week after casting, and the shrinkage
strains have remained stable after 35 days. The overall shrinkage strain of
concrete is nearly equivalent to the shrinkage strain measured after 35
days, so long-term shrinkage is not required to be measured. This graph
demonstrates that high-strength concrete diminishes less than ordinary
concrete, and shrinkage decreases with increased concrete strength.

Figure 2.2(b) illustrates the creep strain variation over 28 days (after
loading). As can be seen, the creep strain increased rapidly in all three
varieties of concrete during the first week after loading and stabilised after
three weeks. Alternatively, it becomes less eerie as concrete matures. The
graphs demonstrate that as the strength of the concrete increases, creep
decreases and that the creep characteristics of UHPC and HPC follow the
same pattern as those of standard concrete. The fibre-optic method is
preferable to using an ESG for analysing the time-dependent properties of
concrete [85].

Cable is the predominant load-bearing component on cable-
supported bridges. Zheng et al. (2018) conducted experiments using FBGs
to monitor the force of bridge cable tension. The FBGs were bonded with
steel wire using structural adhesive, and the relevant measurability and
dependability of the adhesive-bonded FBGs with steel wire were evaluated
using cyclic loading and unloading tests and fatigue tests. As depicted in
Figure 2.2(c), the load-wavelength lines for the fatigued sample fell slightly,
indicating that the 200 million fatigue cycles reduced the wavelength of
FBGs operating at the same load on steel wire. Load and wavelength had a

linear relationship for both the loading and unloading processes, and the
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data line from the loading process was parallel to the data line from the
unloading process [86].

The value and distribution law of prestress and the bond stress of the
steel strand determine the structural integrity of a prestressed concrete
structure. Zhu et al. (2021) studied the stress distribution in a prestressed
steel strand and the bond stress development between the steel strand and
concrete. It was proposed to embed a quasi-distributed FBG sensor in a
longitudinal groove of the centre wire of a steel strand. The test results
indicate that the quasi-distributed FBG sensor embedded in the centre wire
of the steel strand can effectively monitor the steel strand’s stress
distribution and beam damage, with a maximum tensile monitoring error
of 3.42%.

Figure 2.2(d) illustrates the stress distribution in T-beam FBG sensors
at different load levels. Notably, the stress in the steel strands increases
with the load’s progressive increase. The diagrams demonstrate that the
stress distribution in the steel strands of the beam changes from dense to
sparse. Under load, the reactive powder concrete beam’s steel fibres and
bottom tensile steel bars carry the tensile tension. As a result, the tension
in the steel strand is barely increased.

Nonetheless, once the tensile steel bars have yielded, the steel
strand’s stress increases swiftly. On the self-sensing steel strand, tensile
tests are conducted to ascertain the distribution of prestress and bond
stress along the anchorage length. During the tensile process, the quasi-
distributed FBG sensor can accurately measure fluctuations in steel strand
stress and bond stress along its anchorage length, according to the results
[87].
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Figure 2.2: FBGs in shrinkage, creep, fatigue, and prestressed concrete

(@) Shrinkage strain readings from FBG sensors [85]; (b) Creep strain
readings from FBG sensors [85]; (c) Load vs wavelength curves of

adhesive-bonded FBGs in cyclic loading and unloading tests with steel

wire sample [86]; (d) The distribution of stress in a steel strand under
load [87]; (e) Cylinder with embedded FBG sensor [85]; (f) Steel wire

attached FBGs sample fatigue test [86]
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Since RC is a highly nonlinear material, its distinguishing
characteristics are more complicated than other structural substances.
Kaklauskas et al. (2019) evaluated a variety of experimental configurations
to acquire more precise and reliable information on reinforcing strain
distribution. Accurate information regarding the relationship between the
concrete and embedded reinforcement is necessary to make less dispersed
and more reliable predictions for crackingin RC elements. This
experiment’s most significant outcomes were the reinforcement strain
measurements at various loading values for each strain gauge location
(FBGs and ESGs). The acquired data allowed for plotting spatial variations
in the strain distribution along the reinforcement length. Figure 2.3(a)
displays the results of both experimental experiments at four different
loading intervals. As loading increases, the strain profile gradient becomes
more precipitous. Greater loading, i.e. the strain rate, increases bond
stress—bond properties directly influence this result. While the
experimental methods yielded reasonably accurate and uniform strain
variations throughout the steel bar, the specimen strain results from the
FBG optical gauge test revealed anomalies, particularly near the specimen’s
end [88].

Corrosion of RC components has been identified as the primary
mechanism of structural deterioration for reinforced steel structures. By
combining AE and FBG strain measurement, Li et al. (2017) presented the
results of an experimental investigation into corrosion monitoring of a steel-
reinforced mortar block. The initiation and propagation of cracks, and the
onset of concrete cover cracking, were identified using continuous tensile
strain monitoring with FBG strain sensors.

The circumferential strain fluctuation of the reinforced mortar was
determined using an FBG strain sensor. The specimen was measured from
the moment the electrical current was introduced until the moment it
cracked. Figure 2.3(b) depicts the strain data over 36 days. As observed,
the strain increased as corrosion products accumulated and imposed

internal pressure on the mortar. Initially, the strain grew at a rate of
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approximately 1,000 ue per five days but later reduced to around 500 pe
per five days. Cracks caused the increase in strain rate, which made more
space for corrosion by-products. When cracks form, corrosion products fill
the crevices before applying stress to the mortar. The jagged variation in
the strain curve after twenty-four days results from redistributing corrosion
products into the expanding fractures as the crack front propagates deeper
into the cover. This phase is called the crack propagation phase. The AE
events characterise the corrosion development in terms of corrosion-
induced AE events. In contrast, the FBG strain measurement describes the
corrosion in terms of concrete expansion due to rebar corrosion. The results
suggest that combining these two non-destructive techniques has
tremendous potential to monitor and characterise RC degradation [89].

Failure due to fatigue occurs when cyclic (or variable) stress causes
cracks in materials and structural components. By analysing the
deformation mechanism of FBG reflection spectra, Zhao et al. (2020)
introduced a novel damage feature, spectral area, which was effectively
retrieved for detecting crack sites.

First, strain data were obtained using the extended finite element
method (XFEM) and fatigue crack propagation. Secondly, a fatigue
crack growth monitoring test was performed using FBG sensors, and the
strain values at the FBG sensor locations associated with crack propagation
were determined using the digital image correlation (DIC) technique. The
full-field strain measurement technique surmounted the standard strain
gauge limitation, which measured only the mean strain along the grating.
Figure 2.3(c) illustrates the strain distribution across the FBG1 grating for
varying crack lengths. While the spectral region was immune to
temperature change and experimental noise, it was extremely sensitive to
the complex, non-uniform strain field induced by crack damage. In addition,
the 10 mm FBG sensor demonstrated a wider detection range for fracture
damage than the 5 mm FBG sensor [90].

FBG sensors have been used to study shrinkage and creep, monitor

bridge cable force, investigate stress distribution in a prestressed steel
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strand, and determine the development of bond stress between a
prestressed steel strand and concrete. It also examines the reinforcing
strain distribution, monitors corrosion, and detects crack sites. Due to
installation difficulties, harsh conditions on construction sites, and cost
considerations resulting from the increased number of sensors, the
methodologies described in many published works are inapplicable to a
broader range of engineering applications. Table 2.1 illustrates the use of
FBG sensors for SHM on civil structures. Overall, the strain was the most
frequently measured parameter; most applications have utilised a
maximum of 64 FBGs.

FBG sensors have historically held a prestigious position in the field
of SHM, due to their pioneering innovations and inherent robustness. In
numerous SHM applications, these sensors have solidified their position
over time. One cannot ignore their unrivalled sensitivity and versatility,
which enables the precise measurement of a variety of environmental
parameters. Given their numerous applications, FBGs have become an
integral part of everything from aerospace structures to biomechanical
systems. As with all technological landscapes, the only constant is change.
Recent data and prevalent trends have shed light on a discernible
preference shift in certain industries, notably civil constructions. Here, the
previously uncontested domain of FBGs appears to be diminishing [30].
This preference shift merits investigation into its fundamental causes.

Investigating this transition reveals a wide range of variables. First
off, while FBGs are praised for their flawless sensitivity and precision, their
cost implications are significant from an economic perspective [91]. They
are frequently compared to newly developed distributed sensing
technologies, which promise comparable precision while offering extensive
coverage and possibly smaller environmental impacts. Moreover, in an era
characterised by accelerated technological advancements, the emergence
of DOFS technology is an important sign. DOFS, with its truly distributed
sensing capabilities and enticing cost structures [92], may be

overshadowing the benefits that were once exclusive to FBGs.
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For detecting AEs and ultrasonic waves, FBGs have long been
extensively used [93-95]. However, DOFS appear to offer a more practical
answer when one considers large-scale civil engineering projects
necessitating thorough coverage and complex strain profiling. This may be
tipping the scales in favour of DOFS, along with the perception that it is
simple to integrate and use DOFS in monitoring and data collecting
procedures, particularly in expansive structures.

However, it is necessary to urge caution against premature
generalisations. FBGs have etched out a niche in specific applications where
their capabilities remain unmatched. Their indispensable role in detecting
acoustic emissions, ultrasonic waves, and niche functions in civil
engineering is not only maintained, but is also expanding. This

demonstrates their dynamic significance within the overall SHM paradigm.

22



1.6 4 Strain £,x107

- 2000
-o=- - Tensor strain gauge test ‘ ; ; ;
- 4500F - - - do L1 L R P o, SIS
P=89.9kN _._FBG sensor test » 1 i ! l 1
\ o 4000 - - =A== - = F - -~ B bl e iR B
| \ | |
R e S i aeETI EEEE EEL
| | | | 1
e I 5 ol S R
L R Rl dh b
8 I 1
2000 - - - - T g
1500F - - - 4- A -F---1 |- = o
woof - T
] | |
soof A .
I T R TETS
o B m 15 20 25 30 3 40
Time (day)
1000
—2.00
(a) —400:::\‘
900 | 5.00mm| |
—5.20mm
= 5.60!
800 - s aar|
=—5.80mm
700 - —5.88mm| |
T4 -
P=39.9kN % a0l
=
,",5', 500 |
g
5
S 400
300 |
- 200 |
o 1
= 100 -
Element length, mm ;
0.0 r ¥ r T r \ 0 :
-15 -1 05 0 05 15 15
O 45 90 1 35 l 80 225 270 Longitudinal direction Y(mm)
a C
Transducer A

Rebar AE Transducer

N

Transducer B

Mortar

FBG Strain S

2

Figure 2.3: FBGs in rebars, corrosion and crack length measurements (a)
Experimental distributions of reinforcing strains along steel bars at
various loading stages [88]; (b) Strain history as determined by the FBG
strain measurement [89]; (c) Strain throughout the grating direction as
measured by the FBG1 sensor at various crack lengths [90]; (d)
Experimental setup of FBG sensor test [88]; (e) Reinforced mortar

specimen and sensor installation [89]

23



Table 2.1: FBG sensors used in SHM for civil structures

Reference Structure No. of | Sensitivity Measured Wavelengths Integration Remarks
FBG parameters (nm) technique
[96] Proposed for concrete | 2 - Strain with - Micron optics SM -
structures temperature 130
compensation
[97] Proposed for bridges 1 3.357 Strain - Homemade FBG Range: £600ue
pm/ue interrogator Reflectivity: 90%
[98] Steel bridge crossing 64 - Strain 1526 to 1561 | Si425 optical Reflectivity:
the Beijing-Hangzhou sensing interrogator | more than 85%
grand canal located in from micron optics
Hangzhou, China
[99] No. 14301 longwall 2 1.21 pm/ue | Strain 1530.859 and | SM125 FBG -
working face of the 1537.568 interrogator
Shaqu coal produced by micron
Mine, Lvliang city, optics
Shanxi province,
China
[100] Bridge No. 24 of 7 - Strain 1,526.96 Sm130 micron Reflectivity:
highway No. 86 in optics 93.87%
Taiwan
[101] The cantilever bridge 2 - Strain 1531.885 and | OSA Resolution: 0.1
of Shaba An’ning river 1534.184 pm
bridge on line 2 of the
Chengdu-Kunming
railway
[102] Dongsheng garden A5 | 8 0.5013 Strain and 1529, 1564, S1425 (Micron optics | -
building, located in pm/ue temperature 1557, 1525, incorporated)
Fushan Bay area 1519, 1548,
(Qingdao, China) 1534, 1562
[103] Proposed for buildings | 2 FBG1: Inclination 1548.877 and | OSA -
0.132 nm/- | angle 1551.84
FBG2:
0.128 nm/-
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2.2.2. Distributed optical fibre sensors

DOFS is one of the potential SHM solutions among the numerous new
sensing technologies [104]. As a function of the spatial distribution of the
monitoring probe, DOFS has the potential to become a key technology for
dynamic in situ data acquisition (strain and temperature) on a wide variety
of structures. Consequently, these sensing systems can be combined with
novel instrumentation technologies to evaluate the entire structure. This
can also establish a real-time connection between the local monitoring
probe and decision-makers via internet-based telecommunication
apparatus [105]. DOFS provides the same advantages as OFS.

Nevertheless, they can monitor the physical variations of the entire
fibre in a genuinely distributed manner. In distributed sensing, a single
connection cable is sufficient for communication, whereas traditional
sensors require multiple cables for the same purpose. This unique benefit
makes DOFS more cost-effective and appropriate for civil structures [106].

Typically, a specific and limited number of data points are extracted
to evaluate structural behaviour [107]. The number of strain sensors
required to generate the complete strain profile may increase swiftly for
large-scale structures. Sensors that are quasi-distributed may provide
valuable information about local behaviour. However, these sensors cannot
measure an object’s behaviour along a predefined path. DOFS typically
provides thousands of sensing sites and can measure two- or three-
dimensional strain distributions.

Raman, Brillouin, and Rayleigh scattering processes can occur in a
DOFS [108]. Figure 2.4 illustrates backscattered light from various fibre
locations, three scattering modes, and a typical OTDR and Brillouin optical
time domain analysis (BOTDA) configuration. Raman-based sensors
measure only temperature, whereas Brillouin- and Rayleigh-based sensors
measure strain, temperature, and vibration [109]. Brillouin optical time
domain reflectometer (BOTDR) relies on spontaneous Brillouin scattering,
whereas BOTDA relies on stimulated Brillouin scattering. The BOTDR-based

system has the advantage of being able to be monitored from one end of
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the sensing fibre [110]. Optical frequency domain reflectometry (OFDR) is
based on Rayleigh scattering with spatial resolution on a millimetre scale
[111]; Optical backscattered reflectometer (OBR) utilises the same
technology. In the past five years, DOFS have been employed to measure
concrete parameters, fatigue responses, corrosion, and leakage
monitoring.

Sensing devices are crucial components of SHM systems. Berrocal et
al. (2021) investigated the use of DOFS based on the OFDR of Rayleigh
backscattering for SHM in civil engineering structures. The DOFS system
acquired strain measurements of rebar with the same precision as standard
electrical foil gauges. Figure 2.5(a) depicts the evolution of DOFS-measured
strain profiles throughout the cyclic loading test of the beam via a series of
curves. Cracks can be linked to local maximums in the reinforcement’s
strain profile using the same reasoning as in the preceding section. Away
from the crack, as the load is partially transferred to the concrete through
bond action, the strain at the reinforcement decreases until the stresses
are compatible, or the concrete reaches its tensile strength—a new crack
will form at this point. In addition, examining DOFS strain profiles with high
spatial resolution enabled the early detection of crack initiation [112].

All civil engineering infrastructures are susceptible to the effects of
time and deterioration and external factors that imperil their structural
integrity, cause significant economic losses, pollute the environment, and
endanger the safety of their users. Barrias et al. (2019) reported laboratory
test results in which two RC beams were outfitted with DOFS to monitor
strain in four longitudinal segments affixed to their bottom surface. The
test aimed to validate the DOFS’s capability and efficacy in monitoring
bridge structures over time, and two specimens were subjected to a 2
million load cycle fatigue test for this purpose. The amplitude of the fatigue
test’s stress range was comparable to that of a typical highway bridge
subjected to automobile traffic. In addition, each of the four DOFS
components was bonded with a specific adhesive to evaluate the fatigue

resistance of common adhesive agents.

26



Launched Optical Fibre Transmitted
Light Light

— J I I I I )
§ : Backscattered
Light

1 Rayleigh

Raman Brillouin Brillouin

Raman

A

Intensity

Wavelength
a
Input Laser
Fibre
Coupler under test (FUT)
Pulsed e —_— e
Laser 4= - - 4= ==
// Backscattering
¥
Photo — Backscattered Signal
Detector
b
Input Laser
| | Continuous wave (CW)
Coupler
Pulsed —_— — FUT —
Laser
Laser R 4= - -
Backscattering
[
I
; Amplified CW
v
Optical Electrical

Detector Analysis
c
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Figure 2.5(b) depicts a pre-cracked beam subjected to two million
load cycles with the same load range during the test. As observed from the
various DOFS bonded segments, the location of the cracks is between SG2
and SG3. The strain values across the numerous DOFS segments and strain
gauges differ slightly after crack detection. This may result from strain
redistribution in the component following cracking around the discontinuity
that creates the crack, influenced by the stiffness of the bonding materials
used. Compared to findings derived with strain gauges, the strains
measured throughout the experiments were accurate and consistent, as
demonstrated by the results. Therefore, fatigue loading did not affect the
DOFS’s ability to acquire longitudinal strain profiles [113].

Monitoring systems for structural health could make structures
already under construction safer and more durable. In terms of vertical
deflection and crack width, Berrocal et al. (2021) assessed the suitability
of embedding robust DOFS within a protective sheath in order to accurately
measure the performance indicators of three RC beams subjected to four-
point bending. Results revealed that robust embedded DOFS are
susceptible to strain attenuation compared to commonly used thin
polyimide-coated DOFS bonded to steel reinforcement rods. In contrast,
the protective coating prevents the formation of strain reading
abnormalities, a frequent complaint. Performance-wise, the robust DOFS
provided a reasonable approximation of the beam deflections with errors

ranging from 12.3% to 6.5%.
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Figure 2.5: DOFS in crack detection in rebar and surface, and crack width
monitoring (a) Multiple strain profiles from the DOFS, with the red
triangular shape indicating the determined crack location based on the
strain profile at maximum load and the grey shaded region corresponding
to the DIC position [112]; (b) Detection and identification of cracks at the
commencement of load cycles [113]; (c) Information about the position
and width of cracks is included in the development of crack functions
[39]; (d) Installation of OFSs [39]; (e) Sensors mounted to beams and
adhesives used [113]

Figure 2.5(c) demonstrates generating a crack profile by adding the
individual crack functions of all cracks observed in a strain profile. Since
the method for determining crack widths assumes that the DOFS provides
a measurement of the reinforcement strains, it is not strictly accurate to
apply it to strain profiles that do not correspond to a reinforcement bar.
Because the magnitude of the various strain profiles is virtually proportional
to the distance from the neutral axis, the resulting crack widths will also be
proportionate. This method yields wedge-shaped cracks, a plausible
approximation for elements with dominant bending behaviour. Crack
widths calculated from DOFS strain measurements differed by no more than
+20 pe from digital image correlation values, assuming individual fissures
could be identified in the strain profiles [39]. Figure 2.5(d) and (c) shows
the installation of OFS on rebars and OFS mounted on the surface of the
RC beam. Although these applications [39, 113, 114] discuss the
installation procedures of DOFS, a step-by-step guide is necessary for
better understanding.

Monitoring the corrosion status of steel bars in RC is essential for
maintaining safety and effective asset management. Experiments led Fan
et al. (2020) to devise a DOFS-based in situ corrosion monitoring technique
for RC. Beams immersed in a NaCl solution were impressed with a
continuous current to accelerate corrosion. The DOFS was mounted in a

helix pattern on the steel bar to monitor strains caused by corrosion. Figure
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2.6(a) depicts data from the optical fibre length in contact with the
monitored bar. The installed optical fibre’s typical strain is recorded along
the vertical axis, and the strain measurement is positive in tension. Until t
= 15 h, the strain change detected by the OFS is comparatively small,
indicating that the volume change caused by corrosion products is minimal
in the early stages. After t = 15 hours, tensile strains manifest in the
dispersed sensor, increasing their magnitudes with time.

The uneven distribution of expanding strain along with the OFS
suggests that corrosion is irregularly distributed along the steel bar. Every
strain distribution curve displays peaks and declines. A half-turn of the
optical fibre on the steel bar corresponds to a distance of three centimetres
between the adjacent peak and valley. The proposed solution based on a
DOFS is feasible for in situ real-time monitoring of steel corrosion and
concrete deterioration in RC [115].

Due to its high precision in distributed strain measurement, the
optical frequency domain reflectometry (OFDR) method is more appropriate
for pipeline monitoring. Ren et al. (2018) proposed a novel corrosion
monitoring application of the OFDR method. Corrosion simulations were
conducted to validate this technology. Multiple OFSs were affixed to the
pipe surface at the same corrosion test interval, establishing a sensor array.
Figure 2.6b) depicts the distributed strain profile recorded at various times
and under the same internal pressure. When the pipe model was not
subjected to corrosion, the circumferential distribution of hoop strain
fluctuated around 30 pe. However, after 50 hours, tension was
concentrated on a length between 0.2 and 0.40 m, indicating that this
area’s interior wall had already started to corrode. Comparing the test
results for 0 h, 50 h, 100 h, 150 h, and 200 h reveals that the hoop strain
increases when the internal wall corrodes. The tests demonstrate that
corrosion can be identified using the hoop strain distribution measurement
of the DOFS. The test results suggest pipeline corrosion can be measured
using the hoop strain theory and the DOFS [48].
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Long-distance pipelines deform more rapidly when subjected to

severe conditions such as freezing-thawing and earthquakes. Oil and gas

frequently leak from damaged pipelines once the deformation exceeds a

predetermined threshold. Zhang et al. (2019) proposed a method for

pipeline deformation monitoring that combines DOFS and conjugated beam

techniques. A finite element (FE) model of a 50 m long pipeline and a 4 m

long Polyvinyl Chloride (PVC) pipeline were created to validate the

deformation method.
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Figure 2.6: DOFS in corrosion and deformation monitoring (a) Strain
distributions with the optical fibre in detail [115]; (b) Hoop strain
distribution measured by one DOFS [48]; (c) Comparison of strain data
measured by DOFS and ESGs for the lower surface of pipeline [116]; (d)
Comparison of strain data measured by DOFS and ESGs for the upper
surface of pipeline [116]; (e) Steel bar with a helix optical fibre [115]; (f)
Corrosion test pipe [48]

The PVC pipeline was progressively subjected to varying loads at the
midspan, while the FEA pipeline model simultaneously loaded vertical
displacement at multiple points. In the two investigations, the conjugate
beam method was used to calculate the pipeline’s deformation based on
continuous or distributed strain data and discrete strain data. As shown in
Figures 2.6(c) and (d), the distributed strain recorded by the DOFS, and
the local strain measured by the ESGs is in good agreement. A comparison
between the displacement curve generated using distributed strain data
and the displacement curve calculated using discrete strain data was
performed to validate the deformation monitoring approach. The results of
the two experiments demonstrate that accurate monitoring of pipeline
deformation is possible and that the technology can be applied in the field
[116].

Table 2.2 demonstrates the application of DOFS sensors for SHM on
civil structures. As shown in Table 2.2, the increased spatial resolution

provided by OBR attracted more researchers to OFDR technology.
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Table 2.2: DOFS used in SHM for civil structures

Spatial Sensor No. of Integration | Measured
Reference | Structure | System . length Measurement . Remarks
resolution (m) sensors technique | frequency
[117] Cheong-ri Brillouin | 31.1 cm 40.26 1 Strain DOFS system | 9 Measurement
bridge, optical based on the interval: 4.2
Korea correlati BOCDA sec
on method
domain Strain
analysis resolution:
(BOCDA +15 pe
)
[118] Sant Pau OFDR 1lcm 50 1 Strain OBR system - Measurement
hospital, interval: 1
Barcelona min, 10 min,
1 hour
Sarajevo OFDR 1cm 50 2 Strain OBR system - Measurement
bridge, interval: 5
Barcelona min
[119] Fibre- OFDR 1cm 9.6 10 Strain and OBR 4600 - -
reinforced temperature
polymer
composite,
bridge,
Rzeszow,
Poland
[120] Proposed OFDR 1cm 10 1 Strain OBR system - Measurement
for interval: 5
concrete, I sec
beam OFDR 1cm 5 1 Strain OBR system - Measurement
interval: 5
sec
[113] Concrete OFDR 1cm 5.2 1 Strain OBR system 0.2 Measurement
beam interval: 5
sec
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Spatial

Sensor

No. of

Integration

Measured

Reference | Structure | System . length Measurement . Remarks
resolution (m) sensors technique | frequency
(Laborator
y scale)

[114] Concrete OFDR 5 mm 7.6 1 Strain OBR 4600 - Measurement
cylinder interval: Few
(Laborator Seconds
y scale)

Concrete OFDR 5mm 12 1 Strain OBR 4600 - Measurement
bar interval: Few
(Laborator Seconds

y scale)

[121] Timber BOTDA 0.1m 25 1 Temperature 0OZ Optics - Measurement
concrete and strain foresightt™ interval: 20
composite DSTS min
slab
(Laborator
y scale)

[122] Concrete OFDR 1.3 mm - 10 Strain OBR system 20 -
specimen

[123] RC tensile | OFDR 5mmand | 1.2 5 Strain OBR Odisi-A - Measurement
members 7.5 mm manufactured interval: 3 -

by LUNA 5 sec

technologies
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DOFS sensors have been successfully used to study strain
measurements of rebar, confirm the capability and performance of DOFS in
monitoring bridge structures, evaluate the adequacy of embedding robust
DOFS in a protective sheath, and monitor corrosion. Due to greater
measurement distances and high spatial resolution, the procedures
specified in numerous publications apply to a broader spectrum of civil
engineering applications, despite installation difficulties and harsh
conditions on construction sites. Therefore, DOFS were selected for this

study to construct the sensor networks over FBG sensors.

2.3. Finite element analysis

FEA is a computer-based numerical method for calculating the
behaviour of engineering structures. It predicts how a product will react to
real-world forces [124], vibration [125], heat [126], and fluid flow [127].
FEA can be used to simulate the structural behaviour of RC when subjected
to various loads and stresses. RC is a composite material in which the
concrete resists compression and steel reinforcement bars (rebar) resist
tension. FEA divides the entire structure into smaller, more specific
components called finite elements. The material properties (e.g., elasticity,
plasticity) and governing equations (e.g., equilibrium, compatibility) are
applied to these elements connected at nodes. Unknowns, such as
displacements, strains, and stresses, are obtained by solving the assembled
equations.

FEA can predict the RC behaviour under different loads, identify weak
points in the structure, simulate the effects of varying reinforcement
configurations, and aid in the design of more efficient and resilient
structures. This is especially important when designing structures, such as
bridges, buildings, and dams, that must withstand significant stress.
However, modelling RC in FEA can be pretty complicated due to the
nonlinear behaviour of the materials, the interaction between concrete and
rebar, and other factors such as concrete cracking and crushing.

Consequently, complex material models and numerical techniques are
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frequently required. Material models define how the material functions
under various conditions, and selecting the proper model is crucial for
accurately predicting the behaviour of structures using FEA.

The following are the material models that can be used for RC:

The smeared crack model (SCM) represents cracking in concrete by
‘smearing’ the cracks over the volume of an element, effectively reducing
the element’s stiffness in the cracked direction. The concrete damaged
plasticity (CDP) model is a more complex model that can simulate
concrete’s complex behaviour. It can represent plastic deformation and
damage (cracking and crushing). The linear elastic model, the elastic-
plastic model, and the nonlinear elastic model each have flaws. Hence, the

researcher will further discuss the SCM and the damaged plasticity model.

2.3.1. Smeared crack model

The SCM is a numerical method utilised in FEA to represent the
stress-induced behaviour of materials such as concrete. This model is used
explicitly for monitoring the development and spread of cracks in such
materials. The central premise of the SCM is the distribution or ‘smearing’
of individual cracks over an area, as opposed to representing them as
discrete entities.

This method simplifies the complexity of cracking by transforming
individual cracks into a continuous damage measure within the finite
element; hence the term “smeared”. Thus, the model modifies the stiffness
of the finite elements to reflect the averaged or “smeared” effect of multiple
cracks.

The SCM can help analyse the mechanical behaviour and loading
conditions listed below. Tensile cracking [128], shear cracking [129],
compressive cracking [130], cyclic loading [131], thermal loading [132],
and impact loading [133] are material failure types.

The literature emphasises how well a finite element model simulates
concrete cracking using the smeared crack method, as confirmed by

experimental data from RC beams. The model successfully considers
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variables like bond, fracture energy, and mesh size, and it effectively
predicts the maximum crack width, which is crucial in engineering
applications [134, 135]. The study emphasises the importance of fracture
energy and bond modelling and the influence of mesh size on crack
prediction. However, when attempting to predict the maximum to mean
crack width ratio, the model’s shortcomings became apparent, most likely
due to the inherent heterogeneity of concrete [136].

Dias-da-Costa et al. (2018) highlighted the importance of
understanding model uncertainties in SCM finite element simulations for
concrete structures. Their research revealed differences in mesh sensitivity
between models and emphasised the potential advantages of incorporating
random material properties [137]. Barros et al. (2021) studied RC beams
using a multi-directional smeared crack model, emphasising the
significance of particular parameters. Specific finite elements and bonding
conditions yielded improved results; further research is suggested [138].
For concrete and RC structures, Edalat-Behbahani et al. (2017) proposed a
multidirectional fixed-smeared crack approach and a plastic-damage
model, effectively predicting behaviour up to failure. Additionally, crucial
model parameters influencing load-bearing capability were determined by
the study [130].

Regarding concrete, the SCM provides a practical method for
simulating the material’s non-linear response to external loads, specifically
the formation and development of cracks [128]. The smeared method
accurately depicts the impact of numerous small cracks and their
contribution to the overall deformation and failure of the concrete structure.
Even though the SCM improves computational efficiency, it has limitations.
It may have convergence problems probably created by cracking and strain
localisation [139]. It may have mesh-dependency issues, in which the
analysis results depend on the discrete elements’ size and orientation
[140]. Despite these limitations, the SCM continues to be a valuable
instrument for simulating the behaviour of concrete and other materials in

numerous structural engineering applications.
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2.3.2. CDP model

The Damage Plasticity Model is a complex material model used in
FEA. It is intended to effectively represent concrete’s complex, nonlinear
behaviour under load [141]. This model is founded on combined continuum
damage mechanics and plasticity theory, which collectively account for the
two most important aspects of a material’s response to stress: plasticity
and damage [142].

In the Damage Plasticity Model, the total strain in the material is
determined by adding the elastic strain and plastic strain [143]. By
formulating and solving equations for these strains, the model can predict
the behaviour of concrete under different stress conditions, such as
cracking and crushing [142, 144]. The CDP model can be utilised to analyse
the subsequent mechanical behaviour and load conditions, Fatigue [145],
cyclic loading [143], thermal loading [146], seismic loading [143], creep
and shrinkage [147].

Singh et al. (2017) investigated the use of ultra-high performance
fibre reinforced concrete (UHPFRC) in structural components and the
challenges in its design. They incorporated limited tests with the validation
of the CDP finite element model. Their findings demonstrated that the CDP
model can precisely predict the behaviour of UHPFRC beams, potentially
reducing the need for physical testing [148]. Swoo-Heon (2020) analysed
post-tensioned concrete beams utilising ABAQUS and the CDP model under
the assumption of a perfect steel-concrete bond. Simulations closely
matched real-world tensile deformations and crack patterns, validating the
CDP model's accuracy when appropriately parameterized [149]. Kadhim et
al. (2020) created a 3D CDP model to evaluate the impact behaviour of RC
beams, particularly when reinforced with carbon-fibre-reinforced plastic
(CFRP) sheets. The study discovered that CFRP reinforcement can prevent
concrete failure and reduce displacement. It also highlighted the
importance of transverse sheets and corner treatments in optimising the
impact resistance of CFRP [150]. Zhu et al. (2021) performed a FEA

investigation on pre-damaged RC beams reinforced with UHPC. Their
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precise model included both novel tracking technology and the CDP model.
They provided insights for improving the design of these beams by
analysing various parameters [151].

Both the CDP model and the SCM can simulate the behaviour of RC
in FEA; still, the CDP model frequently provides more comprehensive and
reliable results, making it the model of choice in several situations [152].
The CDP model’s ability to precisely represent both damage and plasticity
in concrete is one of its key advantages. It incorporates elements of
continuum damage mechanics and plasticity theory, thereby capturing the
entire nonlinear behaviour of concrete, including both cracking and plastic
deformation [152]. Therefore, the CDP model was selected for this study.

Table 2.3 lists the applications of CDP modelling in RC beams from
the year 2015 onwards. CPE4R, C3D8R, and C3D8 element types were used
for concrete, while T2D2, T3D2, and B31 were used for reinforcement.
However, C3D8R and T3D2 element types were mostly used for concrete
and reinforcement, respectively. Therefore, the same element types were

selected for this study.
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Table 2.3: Applications of CDP modelling in RC beams

Reference Element types Mesh sizes Dilation Viscosity Remarks
Concrete | Reinforcement (mm) angle/s (°) parameter
[144] CPE4R T2D2 25, 50, and 75 35, 37,40, and | - The FEA modelling was conducted
45 under three test cases.
40, 50, and 70 30, 40, and 50
10, 25, and 50 20, 30, and 40
[149] CPS4R T2D2 20 38 0.1, 0.5, The FEA modelling was conducted
0.5, and under four series.
0.005

[153] - - 25 and 10 35 0.01 Static, modal dynamic and dynamic
implicit analysis was conducted.

[148] C3D8R T3D2 50, 25, and 15 30 0.005 Four beam specimens were tested in
the investigation.

[154] C3D8 B31 - 35 - The elasto-plastic numerical modelling
was investigated under monotonic
loading.

[155] C3D8R T3D2 - 53.2 0.0005 The study was conducted on shear
behaviour.

[156] C3D8R C3D8R 15 50 0.001 The structural response of gravity
beams was assessed.

[157] C3D8R T3D2 - 39 0.0001 Modelling response of ultra-high-

performance fibre RC beams were

analysed.
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Reference Element types Mesh sizes Dilation Viscosity Remarks
Concrete | Reinforcement (mm) angle/s (°) parameter
[158] C3D8R C3D8R 50, 35, 17, 10, 40 - The study aimed to analyse the
5,4, and 3 behaviour of foamed concrete beams
containing partial cement replacement.

[159] C3D8R B31 35, 30, 25, and | 30 - The structural behaviours of steel-

20 reinforced geopolymer concrete beams
were analysed.

[160] C3D8R T3D2 20 36 - FEA model was used to study the
behaviour of RC deep beam with web
openings strengthened with CFRP
sheet.

[161] C3D8R T3D2 40 20 for concrete | O The shear behaviour of RC beams

and 36 UHPFRC strengthened by various ultrahigh-
performance fibre-reinforced concrete
systems was studied.

[162] C3D8R T3D2 5 23 - The behaviour of RC beams under low
temperatures was studied.

[163] C3D8R T3D2 - 50 0.0001 Retrofitting of RC members was
studied.

[164] C3D8R T3D2 20 to 100 30, 25 15 0 The size effect in shear strength of fibre

reinforced plastic (FRP) RC beams was
studied.
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2.4. Deep learning

DL is an Al subfield of machine learning (ML). Traditional ML is limited
in its ability to process natural data in its unprocessed form, necessitating
feature extraction specialists to identify patterns in the input. When
unprocessed data are fed to a DL system, the system autonomously learns
the representation required for detection or classification. DL thrives at
discovering relationships in complex, high-dimensional data, making it
applicable to numerous scientific disciplines [165]. Due to the development
of algorithms and computing hardware, DL has become a topic of much
discussion. DL has been implemented in numerous fields (including mail
filtering, computer vision, speech recognition, audio recognition, machine
translation, bioinformatics, drug design, content design, and game design)
and has demonstrated learning and inference capabilities comparable to or
superior to those of humans [166].

Current applications of DL include fraud detection in financial services
[167, 168], forecasting of financial time series [169, 170], prognostics and
health monitoring [171, 172], medical image processing [173, 174], power
systems [175, 176], and recommender systems [177, 178]. In addition,
there are optimisation algorithms with superior performance in damage
detection and SHM [179-182].

However, in conventional ML techniques, a domain expert must
identify the most applied features to reduce data's complexity and make
patterns more evident to learning algorithms. DL algorithms endeavour to
learn high-level characteristics from data incrementally, which is their most
significant advantage. This eliminates the need for domain-specific
knowledge and extraction of fundamental features. In addition, DL powered
by large amounts of data is a significant factor in comprehending the
reasons for its popularity.

One of the key reasons for the surge in interest in DL-based SHM is
the remarkable decline in the price of sensors, which has made it possible
to install enormous numbers of sensors in host structures and send the

resulting data wirelessly to supercomputers in the cloud. Second, multi-
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core processors have advanced dramatically over the past decade. As a
result, researchers have been focusing on training deep neural networks in
record time by making use of the capabilities of graphics processing units
(GPUs) with the help of newly developed software libraries for programming
languages like Python and MATLAB and cloud computing services provided
by companies like Amazon and Google. As a third point, data is the lifeblood
of every SHM application, and data science and data engineering are now
indispensable for data-driven programs like SHM.

Artificial neural networks (ANN) are computer systems designed to
mimic the biological learning mechanism found in human brains. ANN
consists of processing components known as neurons, which resemble
biological neurons in that they are highly interconnected [183]. These
networks are extensively employed in developing intelligent systems for
pattern recognition, function approximation, optimisation, and forecasting.
The input, hidden, and output layers are the three major layers in a typical
ANN structure. The input layer neurons are utilised to input values from the
environment, the output layer neurons help to obtain the output, and the
hidden layer neurons are positioned between the input and output layers
[184].

In an ANN, the number of concealed layers, connections, and neurons
is proportional to the data complexity. If the data are more complex, the
neural network will require more concealed layers and neurons [185]. The
three primary stages of ANN implementation are the selection of network
parameters, training, and testing. In the first phase of modelling a neural
network, the number of neurons in the input and output layers, the number
of hidden layers, the number of neurons in hidden layers, and the activation
functions must be determined [184]. An ANN with more than one concealed
layer is considered a deep model. Deep models are capable of simulating
complex real-world data. This style of architecture is trained using DL
[186]. A DL model attempts to predict the future using existing measured

or simulated response data.
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2.4.1. Supervised DL

This is the most prevalent approach to DL. A large data set is required
for training purposes, and the output should be appropriately labelled.
During the training period, the error between the predicted output and the
desired output is calculated using an objective function, and the weights
are updated using backpropagation to reduce the error value. Methods
based on gradients are used to optimise the objective function [187]. The
system’s performance is evaluated using a test set following the training
procedure. The testing procedure evaluates the ability to generate
applicable responses to novel inputs or generalisation ability [165]. If the
model’s outputs are discrete or categorical variables, it is a classifier;
otherwise, it is a regression model. Due to its simplicity and training, it
continues to be a popular design among academics and scientists in
virtually all engineering fields. The use of supervised DL in civil engineering
structure applications over the past five years will be investigated in greater
detail.

Vision-based technology, which employs imaging devices as sensors,
is rapidly becoming the most efficient method for structural inspection and
monitoring. Kim et al. (2018) developed a technique using CNN for the
automated detection of fractures on concrete surfaces in situ. AlexNet, a
well-known CNN, has been trained to identify flaws in Internet photographs.
Figures 2.7 (a) and (b) illustrate that the proposed method effectively
identified cracks, even though the experimental environment affects the
difficulty of crack detection. The proposed method’s applicability is
evaluated using field photographs and real-time video frames captured by
an unmanned aerial vehicle. The evaluation results indicate that the
proposed method for fracture detection is highly applicable in the real world
[188].

Atha and Jahanshahi (2018) evaluated CNNs for corrosion detection.
Two pre-trained state of the art CNN architectures and two proposed CNN
architectures are assessed for their efficacy. CNN outperforms vision-based

corrosion detection techniques devised using a simple multi-layered
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perceptron network based on texture and colour analysis. Compared to the
state-of-the-art pre-trained CNN, one of the proposed CNNs significantly
reduces computation time while maintaining corrosion detection
performance equivalent to the state of the art CNN [189].

The increasing number of automobiles, trucks, and other vehicles has
raised the issue of traffic monitoring and management. Frniak et al. (2020)
constructed an experimental platform with horizontally and vertically
placed FBG sensor arrays in the upper pavement strata. Interrogators were
affixed to sensor arrays to monitor pavement deformation caused by
automobiles passing over the pavement. An ANN for visual classification
was utilised to divide automobiles into distinct classes via a closed-circuit
television camera. The output of sensor arrays was confirmed using this
classification. The developed ANN could distinguish trucks from other
automobiles with a 94.9% accuracy rate and classify automobiles into three
distinct categories with a 70.8% accuracy rate [190].

Analysis of seismic hazards is an essential component of construction
engineering. Derakhshani and Foruzan (2019) developed novel models to
estimate the three most critical time-domain parameters of seismic ground
motion. A novel combination of DL and an ANN is employed for forecasting
strong ground motion characteristics such as peak ground acceleration
(PGA), peak ground velocity (PGV), and peak ground displacement (PGD).
The models precisely estimate the site’s PGA, PGV, and PGD [191].

2.4.2. Unsupervised DL

Creating resilient features that preserve the essential data is a
method for more accurately modelling complex real-world data. Developing
domain-specific characteristics for each activity is expensive, time-
consuming, and requires data expertise. Unsupervised learning is the
process of acquiring knowledge from unlabelled data, such as datasets with
undefined outputs that conform to a general rule and (maybe) are classified
in a predictable pattern. This has the benefit of utilising unlabelled data,

which is abundant and simple to acquire, and learning features from data
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instead of manually creating them. In addition, these feature
representation layers can be stacked to construct deep neural networks,
which more accurately model complex data structures. The following
section will elaborate on using Unsupervised DL for civil engineering
structure applications over the past five years.

Autoencoders are unsupervised learning models aiming to find a
representation for a data set, typically involving dimensionality reduction.
Pathirage et al. (2018) presented an autoencoder-based framework for
structural damage detection compatible with deep neural networks that can
identify optimal solutions for highly nonlinear pattern recognition tasks. The
input vector denotes vibration characteristics, mode shapes, and natural
frequencies, while the output vector denotes structural damage.

Figure 2.7(c) depicts the detected structural defects for a particular
case. It has been demonstrated that the identified stiffness reductions using
the proposed methodology are highly close to the actual values, with fewer
false identifications and lower false values compared to the actually
introduced damages and results from ANN approaches. This suggests that
the proposed method may effectively detect predetermined structural flaws
in a laboratory model using experimental testing data containing ambient
noise and uncertainty. The proposed framework has been numerically and
experimentally validated on steel frame structures, and the results
demonstrate that it is more precise and efficient than existing ANN
approaches [192].

Rafiei et al. (2018) proposed a method for evaluating structural
systems’ global and local health based on ambient vibration responses
recorded by sensors. Unsupervised DL was utilised during model creation.
The proposed model has the benefit of not requiring costly experimental
results from a scaled-down version of the structure to simulate various
phases of damage. Only the ambient vibrations of a robust structure are
required. A novel structural health index is proposed in this investigation.
It can monitor the health of structures in real time, both locally and globally,

so that maintenance decisions can be made with better knowledge [193].
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The ANN is trained more efficiently in supervised learning mode when
data from undamaged and damaged structures are available. Real-world
structures, such as bridges, cannot be destroyed to generate damaged
data; consequently, only data from the pristine structure is accessible, and
unsupervised learning mode techniques are necessary. Finite element
modelling can be used as a remedy to generate data during damage and
combined with supervised DL algorithms to produce effective models. DL-
based techniques have been used to detect structural damage and fractures
on concrete surfaces, monitor traffic, and estimate the three most
important time-domain parameters of seismic ground motion. Because AI-
based decision-making strategies are superior, the methodologies outlined
in numerous published papers apply to a broader spectrum of engineering
applications.

Table 2.4 provides DL-based approaches for SHM in civil structures.
The neural network type was selected based on the prediction requirements
and the provided data type. Feedforward neural network (FFNN),
Backpropagation neural network, multilayer feedforward neural network
(MFNN), and multilayer perceptron neural network (MLPNN) are all types
of ANNs, while CNN is a specific type of neural network architecture,
particularly well-suited for image and visual data processing tasks. Most
applications listed in Table 2.4 were based on ANN and CNN applications.
ANN was selected over CNN because this study will not involve visual data
processing.

According to the references, the input datasets for training a model
can group into two main categories: experimental data and numerical data
from finite element methods. It was noted that limited literature had used
ANN and FEA combined applications for SHM predictions [194-196]. The
most frequent data division for training and testing consisted of 80%
training and 20% testing. According to peer-reviewed studies published
over the past five years, there is a growing interest among academicians
in using DL algorithms in SHM. The reasons could be the high level of

prediction accuracy of these systems and their ability to manage highly
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complex data.
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Figure 2.7: DL in crack detection and structural damage identification

(@) Dark concrete surface [188]; (b) Concrete surface with pipes and
electric distribution boxes [188]; (c) Damage identification results from

ANN and the proposed approach [192]; (d) Laboratory model [192]
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Table 2.4:

DL-based methods used in SHM for civil structures

Reference Neural Model training Remarks
network Input Output Dataset Activation Training and Learning Evaluation of
type function at testing data algorithm model
the output percentages/ performance
layer sizes
[197] ANN The number of Seismic The dataset Sigmoid Training set - The mean ANN offers a high
columns per demand for generated on the (70%), a squared error level of
bent, backfill bridge probabilistic validation set (MSE), predictability even
type, the components distribution (15%), and a coefficient of when all features
number of test set (15%) correlation are blended to
spans, the (R), and estimate demand
number of coefficient of models
columns, span determination
length, concrete (R?)
compressive
strength (One
million samples)
[198] FFNN Temperature and | Daily Historical - 80% Training, - Coefficient of Six hidden layers
precipitation of streamflow temperature and 20% Test determination were occupied
the 30 weather precipitation (R?) with 2048, 1024,
stations around profiles were 512, 256,128,
the basin collected for 15 and 64 neurons
years from 2000
for 30 different
stations around
the basin
FFNN Scour depth, Bending FEA created the - 80% Training, - - Four hidden layers
lateral loads, moment training dataset 20% Test were occupied by
angle of friction, 1024, 512, 256,
and axial loads and 128 neurons
[199] CNN 4058 crack Crack The bridge crack | Softmax 80% Training, | A Accuracy, Atrous spatial
images and 2011 | detection dataset in [170] 20% Test mathematic | precision, pyramid pooling
background is artificially ally Specificity and | (ASPP) was used
images augmented to reduced F1 score
generate the learning
dataset rate
[200] CNN The author Three models | The images were | Softmax 80% Training, Bayesian Accuracy, Because of data
manually (The gathered from 20% Test optimisatio | precision scarcity, the pre-
labelled 1,154 existence two primary n trained model
images for three | of major sources: related VGG-16 was
models failure, the research studies used.
component on RC bridges
detection, and search
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Reference Neural Model training Remarks

network Input Output Dataset Activation Training and Learning Evaluation of
type function at testing data algorithm model
the output percentages/ performance
layer sizes
and the engines (Ex:
damage Google Image)
localisation)

[201] FCNN Crack, Crack, Original images Softmax Training set Momentum | Accuracy, The recall for the
background, and | handwriting, (steel box (80%), a algorithm precision, crack class and
handwriting and girders of validation set Specificity and | the F1 scores for
images contain background bridges) are (10%), and a F1 score all three classes
67200 sub- obtained by a test set (10%) show that the
images (each consumer-grade super-resolution
class has 22400 camera (Nikon method reduces
images) D7000); Raw identification

images were accuracy.
divided into sub-
images.

[194] MFNN Strains from Displacement | The FEA model Purelin 96% Training, The scaled MSE The commercial
verified FEM from verified was used to 4% Test conjugate software ABAQUS
model; 60000 FEM model generate strain gradient was used for FEA
data points data, and strains backpropag modelling

and ation purposes.
displacement algorithm

readings were

taken at 11

different

locations.

[202] CNN 6820 total Intact state The original data | Softmax Only 10% of Adam Accuracy The CNN model
samples. Each of | and three set consisted of the whole data consists of 11
the four data forms of 390 samples and set was used trainable hidden
sets had 1,705 simulated was artificially for testing, layers
samples, damage. augmented to while the
including intact generate the remaining
state and three dataset. 90% was split
forms of into training
simulated (80%) and
damage. validation

(20%).

[203] Region- Crack images Crack The crack - - - Accuracy NVIDIA Titan V
based detection and | dataset is Volta hardware
convoluti Boundary created by was used to train
onal boxes have labelling crack the network in an
neural been locations on acceptable

generated to amount of time
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Reference Neural Model training Remarks
network Input Output Dataset Activation Training and Learning Evaluation of
type function at testing data algorithm model
the output percentages/ performance
layer sizes
Networks approximate cropped bridge and handle the
(R-CNN) the cracks’ surface pictures. UAYV data.
size.
[204] CNN 3000 damaged Damage FEA model was Softmax - - Accuracy The bridge girder
images location (51 used to create was modelled
classes were the dataset of using SI bridge 20
created). The | images to (SAP2000)
intact girder identify 50
damage class | locations of
is 0. damage using
the damage
index based on
the gapped
smoothing
method
[195] ANN The normalised Stiffness The FEA model - - The MSE and R- The commercial
modal strain reduction at generated a total Levenberg- | value software ABAQUS
energy-based the number of 114 Marquardt was used for FEA
damage index respective samples. backpropag modelling
(2) nodes. ation purposes.
[205] ANN Strain data Close-range Sigmoid Adam Accuracy This is a
CRFV samples - following Data extracted -
570 vehicles by 7-day field Training set Coml.b'”:td CANN
Non-CRFV (CRFV) and application. (Gr;(a)l(;mg s€ apg 'éalllon °
samples - 660 non-CRFV Strain signal %), a an :
CNN Vehicle class 11 possible samples of 7295 | - validation set Adam Accuracy ;
datasheet vehicle types | vehicles were (20%), and a NMS algorlthm
(Based on used to train the test set (20%) was used with
axle models ANN for CRFV
. ' separation.
clustering)
[206] ANN The deck chord, Critical flutter | Data are - Training set The The coefficient | Five almost
the deck weight, | velocities generated (70%), a Levenberg- | of similar ANN
the structural directly from the validation set Marquardt determination topologies were
damping ratio, experiment (15%), and a backpropag | (R) studied during the
and the air results. test set (15%) | ation study. ANN
density topology No. 1 is
(90000 data presented here.
points)
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Reference Neural Model training Remarks
network Input Output Dataset Activation Training and Learning Evaluation of

type function at testing data algorithm model
the output percentages/ performance
layer sizes

[207] CNN By using 100 Disease and The image - Training set Adam Accuracy, Image stitching

panorama background acquisition step (90%), a precision, and and fusion
images, 19200 generated validation set recall methods were
images were 17,755 photos of (5%), and a used.
created. the steel box test set (5%)
Categories: girder’s bottom.
Disease and Every 100
background photos were

merged, and 138

panoramas were

obtained.

[208] Deep One million data Reconstructin | Only Linear Training set Adam Reconstruction | DCDAE does not
convoluti | points for g same data healthy data is (85%), a error require damage
onal acceleration used for training. validation set labels
denoising | data. Ten thousand (7.5%), and a
autoenco data points were test set
der produced to test (7.5%)

(DCDAE) the damaged
conditions. The
FEA model was
used to create
the dataset.

[209] CNN 800 images - Used the DIV2K - Training - 800 | - - The study was
dataset, which images conducted in 2
contains 1000 Validation - phases and
high-quality 100 images separately
pictures with a trained.
resolution of 2K
and high-
frequency
multiplex
features.

2000 images Crack Five hundred raw | Softmax Validation - 55 | Adam Accuracy,
with different detection crack photos crack images categorical

crack types

were augmented
to 2K using web
scraping and
mobile and DSLR
cameras to
photograph

cross-entropy
loss
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Reference Neural Model training Remarks

network Input Output Dataset Activation Training and Learning Evaluation of
type function at testing data algorithm model
the output percentages/ performance
layer sizes
concrete
structures.

[210] Deep Vibration Health The proposed Softmax - Stochastic K-fold cross- The suggested
convoluti | responses from condition DCNN-based gradient validation system operates
onal smart building approach is decent (k=10) directly on
neural trained and vibration signals
network validated using acquired from
(DCNN) 19 numerical detected

scenarios. structures,
eliminating the
need for time-
consuming
denoising and
feature-selection
step.

[211] CNN 1890 Images Four classes: VGG-16 was Softmax 80% Training, - Accuracy, VGG-16 is based

were used mould, stain, used to pre-train 20% recall, on the imagenet
(Normal and with | deterioration, | the model. Validation precision, F1 dataset, which
defects) and normal Score comprises 14
The total dataset Seven hundred million annotated
contains 2622 thirty-two photos and over
images. images were 20,000 categories
used for for classifying
testing photos with
purposes. mould, stain, or
paint
deterioration.
[212] CNN A balanced mix Damage or Images can be - 80% Training, - Accuracy, Three pre-trained
of undamaged intact divided into 20% Testing recall, networks tailored
and damaged three categories precision, F1 for satellite,
samples (6571 - based on their Score airborne, and UAV

intact, 6560
damaged)

spatial
resolution:
satellite,
airborne, and
unmanned aerial
vehicle (UAV)
images.

image spatial
resolutions and
viewing angles
have been made
publicly available
to the research
community.
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Reference Neural Model training Remarks
network Input Output Dataset Activation Training and Learning Evaluation of
type function at testing data algorithm model
the output percentages/ performance
layer sizes
[213] MLPNN Building height, Crack width The data set was | - With varied Particle K-fold cross- Ground and
building length, and number acquired from combinations swarm validation building
building width, of cracks the KUR Project, of training and | optimisatio | technique movements were
building stiffness each consisting testing data n (PSO) (k=4), closely monitored
ratio, inflexion of ten inputs and sets, the The coefficient | during the
point, maximum two outputs. models were of station’s
settlement, trained and determination construction,
eccentricity, tested four (R?), rmseave utilising ground,
horizontal strain, times. and building
axial stiffness settlement
ratio, and indicators. Data
bending stiffness from 44 buildings
ratio near the station
(Total of 44 were collected
datasets) and analysed.
[214] Recurren | Time variant Time variant The FEA model Linear Training set The Coefficient of 60 Finite element
t neural grouting settlements generated the (70%), a Levenberg- | determination simulations were
network pressure - GP, of 18 dataset validation set Marquardt R2 used to generate
(RNN) Face support monitoring (15%), and a algorithm the dataset.
pressure - SP points test set (15%)
FFNN Eight Maximum
settlements at strain emax
the facade anywhere in
foundation the facade
[215] CNN 10000 google Eight building | The dataset was - Training set - Recall, Building typology
street view typologies manually (60%), a precision, predictions should
images of annotated. validation set accuracy be cautiously
buildings (20%), and a utilised, as the

test set (20%)

CNN performance
for some building
classes is
insufficient for a
straightforward
building
classification.
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2.5. Critical components of RC beams

An RC beam, or RC beam, is a common structural element in
construction. Typically utilised in buildings, bridges, and other structures,
it is designed to resist loads that induce bending and shear stresses. The
essential components include Concrete, Steel Reinforcing Bars (Rebars),
Stirrups or Shear Reinforcing, and Concrete Cover. The design of these
components must consider several factors, including the anticipated beam
loads, environmental conditions, and safety considerations. They must
adhere to the applicable building codes and standards to ensure safety and
longevity [216].

The most prevalent loading condition for RC beams is flexure (or
bending). Under flexural loading, the steel reinforcement bars (rebars) are
the most critical component of an RC beam. Flexural loading causes beam
bending, which generates tensile stresses at the bottom and compressive
stresses at the top. Concrete is strong in compression but brittle in tension.
Therefore, high-tensile-strength steel rebars are located at the bottom of
the beam, where tensile stresses occur. Under tensile stress, the beam
might crack and fail without adequate reinforcement [217].

The steel reinforcement’s design, positioning, and quantity are critical
under flexural loads. The anticipated tensile forces should determine the
reinforcing rod’s size and placement to ensure the beam can safely support
the anticipated loads. In addition, proper anchorage and bonding between
the rebar and the concrete are essential for efficiently transmitting stresses

between the two materials [218].

2.6. OFS and DL applications for SHM

Widespread OFS and DL-based real-world applications can be
observed in SHM systems designed for civil structures such as bridges and
buildings. Over time, the OFS sensor networks installed in key civil
structures generate enormous volumes of raw data (Big data) [219, 220].
The Sant Pau hospital in Barcelona utilised a 50 m long OFS with a 1 cm

spatial resolution and a 1-minute measurement interval [118]. This sensor
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network can generate 43,200 readings along with the fibre per month if
data recording is continuous. The foundation of Big Data Analytics is mining
and extracting meaningful patterns from large input data for decision-
making, prediction, and other inferences.

DL’s capacity to extract high-level, sophisticated abstractions and
data representations from massive amounts of data, especially
unsupervised data, makes it an intriguing instrument for Big Data Analytics.
Conventional ML and feature engineering algorithms are inadequate for
deriving the complex and nonlinear patterns frequently observed in Big
Data. By identifying these features, DL enables the use of relatively simpler
linear models for Big Data analytical tasks such as classification and
prediction, which is essential when building models to accommodate the
scope of Big Data [221]. The subsequent section provided concise
information on how the technologies above were utilised for SHM purposes
in the recent past.

Table 2.5 presents the combined applications of OFS and DL for SHM
in civil structures. The researchers preferred supervised to unsupervised
ML. Supervised DL algorithms can attain greater prediction accuracy with
less complex algorithms than unsupervised DL algorithms. Based on the
author’s review of the relevant literature, currently, there is no integration

or combined application of OFS, FEA, and DL techniques for SHM purposes.

Table 2.5: The combined applications of OFS and DL for SHM

Reference Sensor Measurement DL Training DL
Type (Strain/Temperature) Type Framework
(FBG/DOFS)
Bridge
[222] FBG Temperature, Stress, Supervised -
and displacement data
[223] FBG Strain and temperature | Supervised TensorFlow
[224] FOSs were Strain and temperature | Unsupervised | TensorFlow
used; the
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sensor type is

not specified.

[225] FBG Temperature, Supervised -
deflection, and strain
[226] FBG Dynamic strain Supervised -
Buildings
[227] FBG Strain Supervised -

2.6.1. Bridges

The erosion of soils and gravels encircling bridge piers and abutments
is called bridge scour. Due to its catastrophic impact on bridge safety,
bridge scour garnered considerable attention. Kong et al. (2017) conducted
field tests on an innovative bridge scour monitoring system using FBG
sensors in East Baton Rouge Parish, Louisiana. The functionality of the
proposed system has been validated by sensor responses measured [228].
Ye et al. (2018) installed an SHM system based on FBGs on a steel bridge
spanning the Beijing-Hangzhou Grand Canal in Hangzhou, China. A total of
64 FBG sensors are affixed in the midspan and quarter span of the
orthotropic steel bridge.

Figure 2.8 depicts the FBG-based SHM system installed on the steel
bridge that crosses the Beijing-Hangzhou Grand Canal in Hangzhou, China.
A wavelet multi-resolution analysis approach presented the local stress
behaviours induced by highway loading and temperature impact during
construction and service [98].

Monitoring the deflection of a long-span cantilever bridge during
construction is hampered by multiple construction methods, complex
wiring, and the incapacity to capture real-time data, among other flaws.
Zhang et al. (2019) designed an inclination sensor-based on FBG to monitor
the deflection of cantilever bridges to address these deficiencies. The
prototype deflection monitoring structure is manufactured, and testing

reveals a sensitivity of 10.566 pm/mm and a fitting error of 0.9997.
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Figure 2.8: FBG-based SHM system at steel bridge crossing the Beijing-
Hangzhou Grand Canal located in Hangzhou-China [98]

The designed deflection monitoring device was installed in the
cantilever bridge of the Shaba An’ning River Bridge on Chengdu-Kunming
Railway Line 2, and the feasibility of the deflection sensing structure in
monitoring the construction of cantilever bridges was confirmed [101]. The
Chulitna River Bridge is a five-span steel-girder composite bridge that
spans 790 feet (241 m) and connects Fairbanks and Anchorage in Alaska.
Xiao et al. (2020) installed FBG strain gauges on the lower chord members
of the bridge, and dynamic features such as natural frequencies and mode
shapes were effectively detected using strain gauge readings as vehicles
crossed the bridge. Additionally, a FE model validated the results. The
presented method applies to various bridge vibration sensing applications
[229].

Cheong-ri Bridge connects Cheong-ri Station and Oksan Station on a
commercial railroad line administered by Korea Railroad Corporation;
Figure 2.9 depicts the Cheong-ri Bridge monitoring site. Yoon et al. (2016)
devised a DOFS based on BOCDA to monitor the distributed strain of a

railway bridge’s rail and girder. The distributed strain of a 40.26 m long
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girder and rail was recorded in real-time at 9Hz. The analysis pinpointed
the region of excessive strain on the bridge’s girder induced by the effects
of unsupported sleepers [117]. Rzeszow, the capital of the Podkarpackie
voivodeship, is home to the country’s first road bridge made solely of FRP
composites. This bridge spans a small local stream on an urban route. The
FRP bridge was equipped with distributed optical fibre sensing technology
by Siwowski et al. (2018). The applicability of DOFS based on Rayleigh
scattering for SHM objectives was demonstrated by analysing field data
[119].

Derivation of fragility curves is a standard method for evaluating
seismic vulnerability. Mangalathu et al. (2018) proposed a multi-parameter
fragility methodology that develops bridge-specific fragility curves using an
ANN without clustering bridge classes. The proposed methodology aids in
determining the relative significance of fragility curves for every uncertain
parameter [197]. The widespread opinion holds that hydraulic-related
hazards (e.g., flooding and scour) pose the greatest threat to the safety of
bridges throughout their service lifetimes.

Khandel and Soliman (2019) designed a multi-hazard probabilistic
method to provide bridge administrators and decision-makers with flood
fragility curves based on service life and predicted flood variability. Next,
DL networks and FE modelling quantify the structural performance of the
investigated bridge. The proposed structure is demonstrated on an existing
Oklahoma bridge [198]. Typically, a specialised crew is dispatched to
conduct post-disaster status screenings manually. This method is time-
consuming and susceptible to bias because it significantly relies on the
qualitative opinion of an inspector. Xiao Liang (2019) proposed a three-
level image-based solution for post-disaster monitoring of RC bridges using
DL and novel training methods. CNN was utilised as the neural network.
Bayesian optimisation yielded promising results with >90% accuracy and

robustness across all three-level DL models [200].
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Figure 2.9: Monitoring site at Cheong-ri Bridge [117] (a) Optical fibre
mounted on the outer surface of the rail; (b) mounted on the lower flange
of the girder; (c) DOFS system based on BOCDA method; (d)

configuration of the optical system

Detecting concrete bridge cracks is essential to ensure transportation
safety. The adoption of DL technology enables the automatic and precise
detection of bridge cracks. Xu et al. (2019) suggested a CNN-based end-
to-end bridge crack detection model that takes advantage of atrous
convolution, the ASPP module, and depth-wise separable convolution. The
suggested model attained a 96.37% detection accuracy without prior
training. Experiments revealed that the proposed classification model
outperforms traditional classification models [199].

The construction of long-span bridges widely uses steel box girders.
Xu et al. (2019) identified the fatigue cracks using real-world photos,
including complex disturbance information contained within steel box
girders. A customised fusion CNN architecture is developed that considers
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the multilevel and multiscale characteristics of the input images. The fusion
CNN'’s recognition errors are less than that of a standard CNN during the
training and validation stages [201]. A real-time prediction approach based
on a multilayer ANN for determining a bridge’s vertical dynamic
displacements from longitudinal strains was presented by Moon et al.
(2019) when automobiles pass across it. The proposed method was tested
using a computational model for a real five-girder bridge with a span of 36
m backed up by actual experimental results. The findings show that the
model can accurately forecast overall bridge displacements in real time
based on strain in the field [194].

The increasing use of sophisticated SHM systems in civil
infrastructures generates voluminous data. However, the hostile
environment in which civil structures are constructed contaminates the data
collected by SHM systems, substantially affecting data analysis results. Bao
et al. (2019) proposed a computer vision and DL-based data anomaly
detection system. The model was developed utilising stacked autoencoders.
Acceleration data from the SHM system of a real long-span bridge in China
are utilised to demonstrate the training technique and validate its efficacy
[230].

Data storage has become a significant concern, leading to the
emergence of data compression and reconstruction in SHM as the new
domain for vast infrastructure systems. Frequently, SHM data contaminate
with anomalies that impede structural investigation and evaluation. The
underlying causes of data irregularities are extraordinarily complex. As a
result, reconstructing abnormal data is inherently challenging and obtaining
high accuracy after data compression presents significant obstacles.

Ni et al. (2020) presented a novel data compression and
reconstruction system enabled by DL. The framework comprises a
Convolutional Neural Network (CNN) and an Autoencoder, which can
recover data with high precision at such a low compression ratio. The
proposed technique was validated using China’s long-span bridge

acceleration data [224]. Human eye evaluation, which is inherently
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subjective and time-consuming, is the most prevalent method for bridge
maintenance and monitoring currently available. Wang et al. (2020)
presented a novel computer vision-based automated inspection method for
degrading a steel box girder’s underside. CNN utilised a technique for image
synthesis. Experiments indicate that this method is a viable alternative to
manual inspection and can provide a more standardised and accurate
evaluation [207].

Bae et al. (2020) proposed a novel end-to-end deep super-resolution
crack network (SrcNet) to enhance computer vision-based automatic crack
detection. The proposed SrcNet can significantly improve its ability to
detect cracks through DL by augmenting the pixel resolution of the
unprocessed digital image. According to validation test results, the
proposed SrcNet has a 24% higher detectability of cracks than the fracture
identification results obtained using raw digital images [209]. The "“Las
Navas” viaduct is located close to Cabezdn de La Sal on the A8 at kilometre
250 (Cantabria, Spain). The bridge is one of the first in Spain to employ
embedded FBG microstrain sensors, making it one of a kind. Using this real-
world example constructed in 2000, Urquijo et al. (2019) investigated the
hazards and benefits of fibre optic technologies. Using ML techniques such
as RNN, the originally designed structural sensors help detect, quantify,
and classify operational traffic utilising the infrastructure. This is an
additional advantage of using these measurement sensors in the
infrastructure world [223].

A turnout is a crucial piece of equipment; that is one of the weakest
connections in the railway infrastructure. Due to topographical and
environmental constraints, Continuous Welded Turnouts (CWTs) have been
implemented frequently on high-speed railway bridges, where extra care is
required to ensure high-speed railway safety. The operational status of the
CWT on the bridge was evaluated using FBG sensors and a real-time
monitoring system. Cai et al. (2019) created and implemented this for the
first time in China. Figure 2.10 depicts the Jin-Hu Bridge Monitoring Site.

Using the regression model and the BP neural network model, Multiple
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indicators, such as rail stress and switch rail displacement, were predicted
[222]. Due to their greater precision and durability than conventional strain
gauges, FOSs are ideal for obtaining accurate strain and temperature

measurements of structural members in real time.
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Figure 2.10: Monitoring site of Jin-Hu Bridge [222]

Khandel et al. (2020) employed FBGs to provide a statistical damage
identification and localisation method for assessing the performance of
prestressed concrete bridge girders. Figure 2.11 depicts the laboratory
testing of the ridge girder. The present methodology uses ANNs to establish
a connection between the strain profiles obtained at various sensor
locations across the studied girder. The method detects and localises the
presence of harm at the sensor position [225] without requiring

comprehensive loading information.
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Figure 2.11: Bridge girder testing at a laboratory (a) Placement of

sensors; (b) loading setup [225]

2.6.2. Buildings

Maintaining and preserving historical and cultural heritage buildings
and ensuring their safe operation is becoming increasingly imperative to
monitor their daily condition for early indications of damage or failure. Li et
al. (2018) suggested FBG sensing-based deformation monitoring systems
that can monitor beam deflection, column inclination angle, and mortise-
and-tenon joint dislocation for Chinese traditional wooden constructions.
The results indicate that the proposed deformation monitoring techniques
are suitable and beneficial for monitoring the health of traditional Chinese
wooden structures [231].

Measuring the tilt angle is essential for numerous applications, such
as aviation and civil engineering. Chao et al. (2018) desighed and evaluated
a novel FBG-based optical fibre tilt sensor for detecting the tilt angle of a
dual-axis in two dimensions. The proposed sensor can measure building
inclination due to its superior sensing linearity [231]. Barrias et al. (2018)
presented the main SHM findings from restoring a historically significant
hospital building. Using a new DOFS based on the OBR technique,
continuous strain data with a high spatial resolution was conveyed along
with the optical fibre. Figure 2.12 depicts the DOFSs affixed on the masonry
vaults of Barcelona’s Sant Pau hospital. The DOFS-related OBR theory has

demonstrated its viability in SHM applications for civil engineering and
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continues to emphasise the promising future of such technological
monitoring systems [118].

Current building condition assessment procedures are excessively
time-consuming, laborious, and costly. They pose significant health and
safety risks to surveyors, especially at height and on difficult-to-access roof
levels. Perez et al. (2019) investigated using CNN for the automated
detection and localisation of significant structural defects, such as mould,
deterioration, and stain, in images. The proposed model employs a pre-
trained VGG-16 CNN classifier with class activation mapping for object
localisation. The proposed method detects and localises building defects
with reliability [211]. The ground surface movement caused by tunnelling
in urban areas causes structural damage to adjacent buildings by distorting

and rotating them.

Figure 2.12: DOFS mounted on the masonry vaults at Sant Pau hospital,
Barcelona [118]

Moosazadeh et al. (2019) developed a method to predict building
damage utilising an ANN model and a particle swarm optimisation
technique. Compared to the measured data, the model’s results were
deemed satisfactory [213]. Important structural components’ long-term

strain monitoring is problematic due to unanticipated issues such as sensor
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and data logger failure, communication collapse, and data loss. Oh et al.
(2017) proposed a long-term strain-sensing model using an ANN to predict
column strain responses based on wind-induced behaviour of high-rise
buildings. The ANN model is founded on evolutionary learning and consists
of Radial basis function neural network training and genetic algorithm
evolution. The proposed model is trained and validated using wind data,
such as wind velocities and directions, and associated strains collected by
FBGs [227].

2.7. Review outcome and research gaps

Decades of research have demonstrated the necessity of SHM and
the specifics of SHM measures implemented for numerous critical
infrastructures. This review analysed the current state of optical sensor
technology, FEA for RC beams, and the implementation of DL for SHM of
civil infrastructures. Over the past five years, OFS has been applied to
measure concrete properties, fatigue responses, corrosion, and leakage
monitoring.

Despite their high sensitivity, the use of FBGs in civil structures for
strain and temperature-based applications is declining. According to the
literature, the maximum number of sensors employed was 64, and the
maximum sensitivity achieved was 1.2 pm/pe. FBGS have an advantage for
detecting AE and ultrasonic waves. In civil engineering, both applications
are expanding at a steady rate. DOFS is gaining popularity within the
scientific community. Most researchers preferred OFDR technology for
strain measurements, and some applications have used spatial resolutions
as low as 5 mm. According to the reviewed applications, the OBR technique
was implemented with a maximal sensor length of 50 m and a
measurement interval of 1 minute. Due to greater measurement distances
and high spatial resolution, DOFS were selected over FBGs and other
traditional sensors for this study.

Although both the CDP model and the SCM can simulate the
behaviour of RC in FEA, the CDP model frequently provides more detailed
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and accurate results, making it the model of choice in many instances. A
crucial advantage of the CDP model is its ability to represent damage and
plasticity in concrete accurately. Incorporating elements of continuum
damage mechanics and plasticity theory, it captures the entire nonlinear
behaviour of concrete, including fracture and plastic deformation.
Therefore, the CDP model was chosen for this investigation. CPE4R, C3DS8R,
and C3D8 element types were used for concrete, while T2D2, T3D2, and
B31 element types were used for reinforcement. However, the most
commonly used element types for concrete and reinforcement were C3D8R
(Standard 8-node linear brick element) and T3D2 (standard 2-node linear
3-D truss element), respectively. Therefore, the researcher used the same
element types for this research.

Academics are intrigued by the application of DL algorithms to SHM.
DL models can be trained utilising experimental and numerical data (finite
element methods). The typical data split during model training consists of
80% training and 20% assessment. However, the literature on ANN and
FEA combined applications for SHM predictions were limited. The vast
majority of SHM applications were based on ANN, and the accuracy of each
application was acceptable. Therefore, ANN was chosen for this study. The
CNNs were disregarded because visual data processing is not involved in
this study.

The highest number of training samples used was one million. The
maximum presented prediction accuracy was over 97%. According to the
combined applications of OFS and DL for SHM in civil constructions, the
researchers preferred supervised over unsupervised DL. Strain,
temperature, and vibration measurements were considered during the
studies. According to peer-reviewed studies published over the past five
years, there is a growing interest among academicians in using DL
algorithms in SHM. This may be because these systems have a high
prediction accuracy and can manage highly complex data.

The scalability and adaptability of the system is crucial when
contemplating the integration of FEA, OFS, and DL for SHM in RC beams.
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In the actual world, these beams could be components of smaller structures
or large infrastructures such as bridges. The integrated method should be
adaptable, adjusting to different dimensions without sacrificing precision.
The dynamic nature of real-world conditions, which includes environmental
variables and inherent structural shifts, emphasises the need for resilient
and adaptable methodologies. Understanding the holistic performance of
this integration amidst the complexities of diverse real-world situations
involving RC beams is a significant gap in the current literature.

The literature review revealed the following research gaps: While
some studies have investigated using FEA, OFS, and DL separately for SHM
of concrete structures [194, 195, 222-227], no research is available on
integrating these methods for an effective framework for SHM of RC beams.
Since there are limited studies available on creating a strain dataset from
FEA models for training DL models more research is needed following
validation of the FEA models. Moreover, although many studies have
investigated the use of sensor networks for SHM of concrete structures, a
step-by-step guide on the efficient design and installation procedures of
distributed sensor networks for RC beams is still necessary. Understanding
this disparity can aid in developing more effective and efficient sensor
networks. The efficacy of DL models for SHM of RC beams still requires
further investigation.

After identifying the gaps in the literature and the potential for a
synthesis, it is essential to identify and discuss the challenges that may
accompany the integration of FEA, OFS, and DL for SHM. Data compatibility
and integration constitute one of the most pressing obstacles. Each of the
distinct systems, including FEA, OFS, and DL, generates data with its own
distinct characteristics. Compiling these datasets into a unified entity for
analysis necessitates precision, given the disparities in format and scope
that each may present.

In addition to data harmonisation, the challenge of computational
demand looms large. Combining the resource-intensive processes of deep

learning with the intricate simulations of FEA may exceed the current
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computational limits in terms of processing speed and storage space. The
inclusion of data from these systems also raises the issue of model
validation. When using FEA model outputs as training data for DL models,
the dependability and validity of FEA models become crucial. A lapse in this
phase could perpetuate errors, resulting in overfitting or incorrect
interpretations in the DL phase. While the OFS offers unmatched sensitivity,
it occasionally captures data that is excessively complex or contaminated
with noise. Integrating this with FEA and DL will necessitate a
comprehensive preprocessing regimen, highlighting the significance of
stringent data filtration techniques.

Not to be overlooked is the fact that this project requires inter-
disciplinary expertise. The intersection of FEA, OFS, and DL necessitates a
cross-disciplinary dialogue — a domain where domain-specific jargons and
paradigms may impede effective communication. This integration, while
promising, necessitates a culture of collaboration that is uncommon in

highly specialised fields.
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CHAPTER 3: TRAINING DATA GENERATION AND
DEVELOPMENT OF DEEP LEARNING MODEL

3.1. Introduction

This chapter explores the process of devising and implementing a DL
model based on ANN architecture for analysing strain data to predict the
structural health of RC beams. The highlight of this novel method is the
incorporation of a strain dataset derived from a CDP-based FEA model. This
data set provides a sophisticated representation of nonlinear and damage-
induced plasticity of concrete behaviour.

Initially, the chapter sets the groundwork by explicating the
conceptual SHM framework. Then it delves into the specific stages of the
ANN architecture’s design and construction, illuminating the rigorous
process required to ensure its reliability and efficacy. The chapter then
investigates strain dataset creation, an essential aspect of this endeavour.
This dataset, derived from a validated RC beam FEA model, is used to train
DL models. The discussion incorporates the nuances of creating this unique
dataset and clarifies its contribution to the model training process.

The training phase of the DL model, covered in Chapter 5, is an
essential element of this research. The concentration here remains on
creating and preparing the necessary components for successful model
training, particularly the ANN architecture and the strain dataset. This
chapter concludes by highlighting the enormous potential of incorporating
DL techniques into the structural health prediction of RC beams. It paves
the way for a novel method of predicting and assessing the health of RC
structures by utilising a strain dataset from a CDP-based FEA model. Figure

3.1 illustrates the overview of Chapter 3’s technical contents.
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Figure 3.1: Overview of technical contents of Chapter 3

3.2. Overview of DL model for SHM predictions in RC beams

DL is a branch of ML; however, when raw data is given to a system,
it automatically learns the representation needed for classification or
identification. To be employed in various scientific domains, DL must be
adept at identifying relationships in complicated, high-dimensional data.
The main benefit of using DL techniques is that they seek to extract high-
level features from the data gradually. This eliminates the requirement for
fundamental feature extraction and domain-specific knowledge. DL is
important because it recognises these properties and enables the
implementation of comparatively straightforward linear models for Big Data
analysis tasks like classification and prediction. [Please note Chapter 4
discusses the sample preparation, installation of FOSs, and the
experimental procedure].

Supervised DL is the most typical DL method. A sizable data set is
necessary for training, and the output must be labelled appropriately [30].
During the training phase, an objective function is utilised to modify the
weights via backpropagation. The aim is to minimise the error between the

predicted and intended outputs. Gradient-based techniques are used in this
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context to optimise the objective function [187]. The model’s performance
is assessed using a test set, and the testing process assesses how well the
model generalises to new inputs. This study focused on supervised learning,

where the network is trained with inputs and their associated outputs.

3.2.1. Artificial neuron

McCulloch and Pitts (1943) were the forerunners in studying the
artificial neural network concept [232]. They investigated the fundamental
operational features of basic artificial neurones that corresponded to the
function of biological neurones. The biological neurone and the artificial
neurone can be approximately compared. The term “neurones” refers to
the billions of tightly coupled cells that make up the human brain. According
to Figure 3.2, a neurone consists of a body, an axon, dendrites, and
synapses. The signals (inputs) first received by neighbouring neurones’
dendrites are subsequently transmitted to the cell body, where they are
processed before being transferred to the axon, which then sends the signal
through the synapse to the neighbouring neurones’ dendrites (outputs).
The following neurone receivers (dendrites) across the synaptic junction
receive chemical neurotransmitters when an impulse reaches a synapse.
The neurone can receive and transmit numerous signals simultaneously
because each synapse is connected to nhumerous dendrites. The volume of
signals that flow through a receiving neurone is influenced by its threshold,
the strength of Synoptics, and the strength of the signal coming from the
feeding neurones. Additionally, each synaptic strength (comparable to the
weights in neural networks) determines the strength of the postsynaptic

neuron’s impulse [233].
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The connection weights and threshold roughly correspond to the
activity in a soma, while the wires and interconnections represent the axons
and dendrites, respectively. Both biological networks and ANNs learn by

adjusting the magnitudes of the synapses’ strengths or ANN weights [234].
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Figure 3.3: Mathematical model of the artificial neuron [235]

The artificial neurone, seen in Figure 3.3, is the fundamental
processing component of an ANN. To determine the output y, the neurone

performs the following mathematical operations on the inputs x;.
y=9 (Z_(wixi) + b) (3.1)

74



y = Output

¢ = Activation function
w; = Synaptic weights
x; = Input variable

b = Bias

3.2.2. Artificial neural networks

The building block of larger neural networks is the perceptron or a
single neuron. Effective and potent multi-neuron networks were created to
address non-linear challenges because the capabilities of single-neuron
systems were restricted to linearly separable classes [236]. When
designing multi-neuron networks, numerous single neurons are connected
parallelly to form neurone layers. The total multi-layered ANN system is
created by connecting these neuron layers in sequential order. Modifying
the weights and the bias parameter in accordance with the learning rules
produces the pre-defined outputs (targets) during neural network
“learning”, sometimes referred to as “training”. Therefore, these input-
output sets are also called “training sets” because the neurones are meant
to learn from a set of user-defined experiences (a set of inputs and
outputs).

The input layer, hidden layer, and output layer are the components
of an ANN network. Each layer is built up of several groupings of neurones
with the use of training parameters. The degree to which a network is
generalisable depends significantly on the number of neurones in each
hidden layer and the overall number of hidden layers in the network. One
of the most important aspects of network training is the network’s ability
to generalise, which can be defined as the ‘ability to reproduce outputs that
are similar to training samples and to produce outputs that are plausible
for inputs that were not utilised in training’.

Overtraining may result in the network becoming “overfitted”, a

problem in network training that a trained network should avoid. Overfitting
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occurs when the learning algorithm fits the trained outputs very closely to
the training set, minimising the training error. This has the negative effect
of preventing generalisation and producing unrealistic outputs for the new
set of inputs. In the past few decades, several strategies have been
proposed to prevent overfitting and improve the generalisation capacity of
the network. Pruning, the regularisation approach, and the early stopping
method have reduced the overfitting effect. This study avoided network
overfitting by adopting the early stopping strategy, which is the simplest
method to manage while the network is being trained. This is accomplished
by manually halting the training process when the validation set error

increases while the training set error decreases.

3.2.3. Backpropagation algorithms

An ANN can be used to make predictions only after training with an
existing input-output data set. The backpropagation supervised learning
technique is often used to train ANNs. The training technique of an ANN
employing backpropagation consists of two phases: forwards propagation
followed by backward propagation. During forwards propagation, data are
transferred to the output layer via random-weighted hidden layers. At the
completion of the forwards pass, the predicted output of the model may
not correspond to the desired output. Modifications are made to the
network’s weights such that the projected output is as close as possible to
the desired result by adjusting the weight during the step of backward
propagation. Backward propagation requires calculating and propagating
the error’s derivative (the difference between the desired output and the
projected output). Backpropagation by gradient descent is the technical
term for this process. The error derivative is employed to modify the
weights to reduce output error [237]. Figure 3.4 displays a typical ANN
topology.
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Figure 3.4: Typical ANN topology

At the end of the forwards pass, the error function corresponding to

the weight W is computed as represented by the equation (3.2)

k=n

EW) = %ZIYk Ak (3.2)
k=1

Where,

X = [Xy,X,,..Xn] = Input Vector

Y= 1[Y,Y,..Y,] = Qutput Vector

Y= [V, .Y] = ANN's estimated output vector

w = [w®,w®] = Weight matrices vector for layers 1 and 2

77



In the backwards pass, the derivative of the error function is
computed and update the weights according to the following equation
(3.3):

5 E(W)

W= W:: —
ij ij swy (3.3)

Where,

a = Learning rate

W;j = Specific weight connecting the units I and j

The general algorithm for backpropagation can be summarised as

follows:

1. Initialise the network weights with modest random weights.

2. Present the training dataset’s input vector to the network.

3. The propagation of the input to produce the output is known as the
feedforward phase of the input.

4. Compute the error by comparing the predicted network output and the
desired network output.

5. Backpropagate the error through the network, also known as the
backpropagation of error.

6. Adjust the weight to reduce the error as much as possible.

7. Repeat steps 2-6 until there is no improvement in the error.

3.2.4. Proposed ANN architecture

The main objective of the ANN is to predict the structural health of
the tension rebar of an RC beam using the concrete surface strain data as
an input. For this purpose, the optimal number of hidden layers was
determined on the problem’s complexity. When training data (obtained via
FEA) and testing data (obtained experimentally) are in two dimensions, the

ANN cannot help predict the outcomes. One potential solution to this issue
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is to apply principal component analysis (PCA), which can simplify high-
dimensional data and preserve underlying trends and patterns.

PCA was used to set an equal number of input nodes for FEA-
extracted data and experimental data by decreasing their dimensions. Each
network’s number of input and output nodes corresponds to the number of
variables in the input and output data sets. The number of hidden layers
and the number of neurones within a hidden layer were determined via trial
and error to achieve optimal training and validation accuracy. This is
because the trial-and-error method is more straightforward and intuitive,
encourages the investigation of various hyperparameter combinations, and
fosters a deeper understanding of the issue and how hyperparameters
impact model performance.

The training data set is randomly split into training, validation, and
testing subsets. Generally, data sets can be separated into 60% to 90%
training data, 5% to 20% validation data, and 5% to 20% test data [197,
201, 205-207]. This study allocated 64% of the data to training, 16% to
validation, and 20% to testing. In this work, the input data consisted of the
strain retrieved along the surface sensor path from the FEA model, and the
output was the rebar status showing whether a present rebar strain was
exceeded (or not).

In the suggested ANN, the output node is adopted in the output layer,
where “1” denotes that the limit was exceeded and “0” denotes that the
limit was not exceeded. Therefore, this model has two output classes. The
model was trained to predict the rebar tension status using the rebar yield
limit (considered 2500 pg). Engineers can significantly benefit from using
concrete surface strain data as input to DL models because embedded rebar
is typically unavailable for visual inspection. This method allows early
detection of deterioration indicators, including cracking and overloading.

Activation functions are of great significance in artificial neural
networks since they are responsible for determining the output of a neuron
based on a particular set of input(s). The inclusion of non-linearity in the

model is crucial as it enables the network to effectively learn from errors
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and adapt, hence facilitating the acquisition of intricate patterns. Given the
nature of this investigation, which pertains to binary classification, it is
expected that the outcome will yield the probability associated with the
selection of the positive class. As a result, it is necessary for the output to
be within the numerical range of 0 to 1. The selection of the "sigmoid"
function appears to be an appropriate choice for this particular purpose.
The sigmoid function is considered to be one of the earliest employed
activation functions. The activation function, known for its distinctive S-
shaped curve, has consistently been utilised in neural networks specifically
developed for binary classification tasks. Due to its mathematical design,
the sigmoid function effectively and seamlessly transfers its inputs to
values within the range of 0 and 1. It is worth mentioning that greater
negative inputs tend to approach 0, whilst larger positive inputs tend to
approach 1. A crucial aspect of this mapping is the numerical value of 0.5.
This assumption holds significance as it serves as a decisive factor in
defining the inclination of an input towards one of the two classes.

When shifting focus to the concealed levels of architecture, a distinct
paradigm emerges. The rectified linear unit (ReLU) function is given priority
in this context. The ReLU has emerged as a widely adopted activation
function in many neural network architectures. Upon initial observation, it
may appear that ReLU consists of two linear segments combined. However,
within the wider context of brain computations, RelLU is unequivocally
classified as a nonlinear function. The hallmark of this system lies in its
operational simplicity. Inputs that possess a positive value or are equal to
zero remain unaltered and are transmitted in their original form.
Nevertheless, any negative input experiences a process of transformation,
resulting in its value being reduced to zero. This behaviour confers certain
advantageous qualities upon the RelLU. Firstly, it demonstrates
computational efficiency, frequently leading to expedited training epochs.
Moreover, it has been observed that the use of the ReLU activation function
might help alleviate the issue of the vanishing gradient problem, which is a

well-known challenge often encountered when employing activation
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functions like as the sigmoid, particularly in networks with multiple layers.
In order to provide a more concrete viewpoint, Figure 3.5 illustrates the
distinctions between the RelLU and sigmoid functions in a visual manner.
This depiction highlights their respective operational ranges and significant

transition points.
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Figure 3.5: (a) RelLU transfer function; (b) Logistic sigmoid transfer

function

The ANN proposed in this study comprises one input layer, two hidden
layers, and one output layer. The RelLU function acts as the transfer
function between the initial three contiguous layers, whereas the sigmoid
function is implemented between the last two layers. One class have
considerably more instances than the other. This imbalance can result in
biased model performance, as the algorithm may become more sensitive
to the majority class and fail to classify instances from the minority class
accurately. The synthetic minority oversampling technique (SMOTE) was
used to avoid the problem of class imbalance. Multiple performance
indicators may be employed in classification tasks, but no single metric is
thoroughly instructive. Therefore, this analysis employed accuracy (the
proportion of correctly classified data), precision, and

recall demonstrating the model’s performance for each case.
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Precision is calculated by dividing the proportion of accurately
predicted positive outcomes (true positives) by the total number of positive
outcomes predicted. The Recall is a measure of completeness calculated by
dividing the proportion of positives accurately classified as positives (true
positives) by the total number of positives. The upcoming sections will
cover the technique for producing strain data, while Chapter 5 explores the

outcomes of training the DL model and making predictions.

3.3. How FEA enhances data collection in SHM

Data gathering or data accumulation is the most crucial phase of an
SHM process, as it affects the success of future operations. FEA plays a
crucial role in this procedure, especially in extracting strain data, a
fundamental aspect of SHM. Several factors contribute to the importance
of strain data extraction utilising FEA models in SHM.

First, FEA can accurately simulate the physical behaviour of a
structure under various conditions, yielding accurate strain data for the
SHM framework. It considers the complexities of material properties,
loading conditions, and geometric details, which makes FEA strain data
extraction a reliable starting point. Second, FEA models offer efficiency by
reducing the need for expensive and time-consuming physical prototypes
and tests. These models can simulate extreme conditions that may be
difficult or dangerous to recreate in real life, thus saving additional time
and resources. In addition, the FEA-generated strain data enables a
comprehensive structural analysis. It facilitates the identification of strain
peaks, potential sites of failure, and a comprehensive evaluation of the
structure’s safety.

The extracted strain data are crucial for training DL models within an
SHM framework. The accurate, dependable, and exhaustive data generated
by FEA enhances the prediction capabilities of these algorithms, allowing
for the early detection of structural issues and boosting the overall
performance of the SHM system. In conclusion, the retrieval of strain data

from FEA models is not only significant but also the optimal method for
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initiating and training an SHM framework. It lays the groundwork for
dependable, efficient, and effective SHM, saving time, money, and possibly

even lives.

3.4. Material model for steel reinforcement

Rebars and stirrups (steel reinforcement) exhibit equivalent stress-
strain characteristics. They exhibit linear elastic behaviour until they yield,
after which they exhibit plasticity. For the steel reinforcement, it was
assumed that the modulus of elasticity is 200 GPa and the yield stress is
450 MPa. The material parameters for the steel components were obtained
from the datasheets of the material suppliers, and a stress-strain curve was
generated using the model supplied by Ramberg and Osgood (1943) [238].

A density of 7800 kg/m3 was assumed for all steel components.

3.5. Material model for concrete

The concrete material model is the most critical model for simulating
a flexural test, as the member’s failure is highly dependent on the
behaviour of the concrete. Choosing an appropriate material model for
concrete is crucial for FEA accuracy. Elastic properties and a damaged
plasticity model for concrete are provided and analysed along with material
parameters. It is noteworthy to acknowledge that the equations presented
are widely accepted formulas utilised in the industry to forecast the
performance of concrete under diverse load circumstances. The majority of
these equations are from CEB-FIP Model Code 90 [239] which possess an
empirical quality, as they have been obtained after comprehensive

experimental testing conducted on concrete examples.

3.5.1. Elastic properties of concrete

Concrete’s elastic characteristics are primarily influenced by its
constituent ingredients, particularly the aggregates. The concrete’s
elasticity modulus, E., is an essential parameter in understanding its

mechanical behaviour under load. The CEB-FIP Model Code 90 provides
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methodologies and empirical relations, such as the one presented, which
are based on extensive experimental data and collaborative research across
different countries and institutions [239]. In this study E. was calculated

using the CEB-FIP model code 90 specifications given in Equation (3.4).

fcm 1/3 )

E;=E, [—] (forn in MPa) (3.4)
ﬁ:mo

fem = fox +8 (MPa) (3.5)

Where,

fem = Mean value of concrete compressive strength

femo = 10 MPa

E.,, = 2.15x10% MPa

fee = The characteristic compressive strength

Experimentally determining f,, typically entails subjecting concrete
samples to a compressive load until failure and measuring the maximal
compressive load sustained by the sample. The compressive strength is
then calculated by dividing this value by the sample's cross-sectional area.
For the purposes the analyses, all concrete grades were deemed to have a
Poisson's ratio of 0.2 and a normal-weight concrete density of 2400 kg/m?3.
The elastic properties outlined above were applied uniformly to all concrete
material models utilised in this study. In cases which perform only an elastic
analysis of a concrete structure, the initial plastic strain must be accounted

for by adopting a reduced modulus of elasticity, E., as per equation (3.6).

E. = 0.85E,; (3.6)

3.5.2. CDP model
The CDP model available in both ABAQUS/Standard and

ABAQUS/Explicit can be utilised to simulate concrete and other quasi-brittle
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materials in different structures. The CDP model relies on two primary
failure modes: tensile cracking and compressive crushing. The evolution of
the yield surface is determined by two hardening factors that lead to failure
under tensile and compressive loads. A softening stress-strain response
characterises the post-failure behaviour under compression. When dealing
with cracked concrete in tension, the strain softening behaviour is defined
by either a tension stiffening model that considers post-failure stress-strain
behaviour or a fracture energy-based cracking criterion. The CDP model is
intended for situations where concrete is exposed to arbitrary loading

conditions, including cyclic loading.

Plasticity parameters

A non-associated plasticity flow rule is followed in the CDP model,
which means that the plastic potential function and yield surface are not
coincident. Under extremely high levels of inelastic stress, concrete can
undergo a considerable volume change, often known as dilatation. The
dilatation is capable of being represented by a suitable plastic potential
function. In contrast, the hardening rule could specify the yield surface. The

plastic parameters considered by the CDP model are as follows:

Dilation angle, W is defined in the p-q plane, and value is inserted in
degrees.

Eccentricity, € is a small positive value that determines the rate at
which the hyperbolic flow potential approaches its
asymptotic limit.

fbo/fco Obo/Oco iS the ratio of initial equi-biaxial compressive
yield stress to initial uniaxial compressive yield stress.

K K¢ is the ratio of the second stress invariant on the
tensile meridian, q(TM), to that on the compressive
meridian, q(CM), at initial yield for any given value of

the pressure invariant p such that the maximum
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principal stress is negative. It must comply with the
condition 0.5 < K¢ <1.0.
Viscosity In Abaqus/Standard analyses, the viscosity parameter
parameter is utilised to introduce visco-plastic regularisation into
the concrete constitutive equations. This parameter is

disregarded in the Abaqus/Explicit.

The plastic characteristics discussed earlier, including dilation angle
and eccentricity, are determined through the utilisation of empirical
relationships and experimental observations of concrete subjected to
different loading circumstances. The assessment of these parameters
necessitates the use of specialised testing equipment and setups, as they
play a crucial role in mimicking the behaviour of concrete under various
stress conditions. To obtain comprehensive approaches about the
derivation of these parameters, readers are kindly directed to references
[144, 240].

Compressive behaviour

The stress-strain relationship of plain concrete under uniaxial
compression was obtained by applying Equation (3.7) from the CEB-FIP
Model Code 90. Figure 3.6 presents the schematic representation of the

stress-strain relationship for the nonlinear structural analysis of concrete.

Q.e_c_(s_c)z

o = - —dta e for lecl < |ecim| (3.7)
1+ (E—cl - 2) 2

Where,

E; = The tangent modulus according to eq. 3.4

o, = The compression stress (MPa)

& = The compression strain
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E., = f,,/0.0022 = Secant modulus from the origin to the peak

compressive stress f.,

As seen in Figure 3.7, the compressive uniaxial response of concrete
is linear up to the initial yield stress, o.,. After reaching the peak
compressive stress, the material’s response shifts towards plastic
deformation characterised by stress hardening; subsequently, strain
softening occurs o,,. When the concrete specimen is unloaded at any
position on the softening branch of the stress-strain curve, the compressive
damage variable, d., characterises the degradation of the material’s elastic
stiffness. The compressive damage variable has a value of zero (0) for
undamaged material and a value of one (1) for complete loss of

compressive strength.

$ e
e
cm g g
] !
{ ,' 1
! 7 |
! 7 {
' / |
/ |
/ 1
ll I
/ ! J¢ lim
; ! | /
/ ! |\
III | { \\
’ I
¢ Eoi T
/ ! | ~
E : | o N
ci
€c €c lim &

Figure 3.6: Schematic representation of the stress-strain relation for
uniaxial compression (CEB FIP Model code 1990)
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Figure 3.7: Response of concrete to uniaxial loading in compression
(ABAQUS manual)

The compressive damage variable, d., was derived from Equation
(3.8) as supplied in the ABAQUS manual if E, is the elastic stiffness of the

undamaged material and ¢, is the total compressive strain.

o= (11— do)Ey(ec — €c~pl) (3.8)
Where,
e~ P! = Compressive equivalent plastic strain

To determine the compressive behaviour and concrete compression
damage, the ABAQUS CDP model utilises the yield stress versus inelastic
strain curve and the damage parameter versus inelastic strain curve.
According to the ABAQUS manual, the compressive inelastic (or crushing)

strain, ¢.~™*, is determined using Equation (3.9).

dC O-C
1— d,E,

g M= g, Pl

(3.9)
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The parameters utilised in equation (3.7) and the subsequent
equations until equation (3.9) are derived from the stress-strain
characteristics of concrete when subjected to compressive forces. The
equations presented here are from the CEB-FIP Model Code 90 [239] and
ABAQUS manual [241].

Tensile behaviour

Concrete tensile failure is usually a discrete phenomenon. Therefore,
a stress-strain diagram for uncracked concrete and a stress-crack opening
diagram, as shown in Figure 3.8, should describe the tensile behaviour. The
bilinear stress-strain relationship given by equations (3.10) and (3.11)

applies to uncracked concrete subjected to tension.

For o,s < 0.9 foim

Oct = E¢i " €ct (3.10)

For 0.9 feem < 0ot < ferm

0.1fctm
Oct = fctm — m . (000015 — ECt) (311)
' Eci

E; = The tangent modulus according to eq. 3.4
faem = The tensile strength in (MPa)
o, = The tensile stress in (MPa)

&t = The tensile strain
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Figure 3.8: Stress-strain and stress-crack opening diagram for uniaxial
tension (CEB FIP Model code 1990)

The ABAQUS manual recommends employing a tension stiffening
technique for situations with no or minimal reinforcement in key model
regions. When dealing with problems related to unreinforced or minimal
RC, it is preferable to describe the brittle behaviour of concrete by
specifying the fracture energy instead of defining a stress-strain
relationship in tension. According to Hillerborg et al. (1976), fracture
energy Gy can be defined as the amount of energy necessary to produce a
stress-free crack with a unit area [242]. In a specific grade of concrete, the
fracture energy can be represented by the area below the unloading section
of the stress-crack opening curve.

The softening response of concrete can be defined in multiple ways
using the fracture energy concept. Defining tensile cracking through a linear
approximation that accounts for the loss of strength after cracking is a
suitable approach. Although the linear softening method can produce
reasonably accurate results, it tends to overestimate the stiffness of the
material response. Hillerborg (1985) [243] proposed that using a bilinear
function can provide a more precise definition of the softening behaviour of

concrete under tension.
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The variable d, for tensile damage is derived from equation (3.12).
Abaqus automatically converts cracking strain values to plastic strain
values using the relationship (3.13). The fracture energy G, computed from
the expression (3.14) according to CEB-FIP model code 90, where f.,, is
the base value of mean compressive cylinder strength with a constant value
of 10 MPa and G, is the base value of the fracture energy, which is
dependent on the aggregate’s maximum size. For a cracked section, the
bilinear stress-crack opening relation given by equation (3.15) is used to

determine the crack opening (3.18).

de=1- 2% (3.12)

fetm

~ck — ~pl _t
&t &P+ 1= 4,k (3.13)
0.7
Gr = Gro () (3.14)
w
Oct = fctm - (1 - 0.85W_1> FOI‘ 0.15 fctm < Oct < fctm (315)
0.15f,
Opp = (WC_—CVZI) (W, —w) For 0 < o, < 0.15f4m (3.16)
Gr
wy =2 — 0.15w, (3.17)
fctm
Gy
We = affctm (318)
Where,
&~ = cracking strain
&Pt = equivalent plastic strain in tension
w = The crack opening (mm)
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wq = The crack opening (mm) for o, = 0.15f,11,

W, = The crack opening (mm) for ., = 0
Gy = The fracture energy (Nmm/mm?2)
feem = The tensile strength (MPa)
ar = The coefficient depends on the maximum aggregate size (dmax)

3.5.3. Finite element type and mesh

In conventional numerical simulations of RC structures, it is
commonly presumed that concrete is a homogeneous material [244].
Numerous studies [152, 245] have utilised a solid, homogeneous material
to represent concrete. The literature review reveals that C3D8R and T2D2
are, respectively, the most common modelling elements for concrete and
reinforcement. In this investigation, the concrete beams were modelled
using C3D8R with reduced integration and hourglass control. Brick
elements are favoured in many model sections because they provide an
equally accurate solution while requiring less computational time. In the
context of the current model, which was constructed using Abaqus/Explicit,
it is important to note that there was no convergence issue associated with
the brick elements.

Tetrahedral elements are known to exhibit a variety of geometric
characteristics. To prevent shear locking in solid elements, the reduced
integration method has to be utilised. Without this, the elements could
become inappropriate for bending applications due to their extreme rigidity.
This method is also advantageous because it reduces the required
computational time for the analysis.

Separately, truss elements were used to depict rebars in the model.
These truss components, specifically T3D2, were selected due to their
efficiency in representing elements that can only support compressive or
tensile stresses. Using these components for reinforcing bars and stirrups

is @ method for optimising the model for reduced computation time.
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3.5.4. Constraints and contact interactions

After assembling the model components, the appropriate constraints
and contact interactions are applied to ensure that the simulation produces
accurate and reliable results. The constraint between the reinforcement and
the concrete beam was modelled using ABAQUS’ embedded region feature
to make modelling as simple as possible. This constraint links the nodes of
a truss element with those of a solid element in a kinematic manner. As a
result, the truss element node displacement is calculated as the average
displacement of its nearby solid element nodes. The analysis, in this case,
was conducted under the assumption that the reinforcement and concrete
had a perfect bond. For the usual behaviour, the friction coefficient was
selected to be 0.3, and a hard contact was selected as the contact
interaction property between the loading arrangement and the concrete

beam.

3.5.5. Load application and analysis procedure

FEA analyses of RC have been performed using a variety of
approximation approaches and commercial software packages. ABAQUS /
Explicit Version 2019 performed FE analysis in this work. The dynamic
explicit procedure is an effective method for addressing a wide range of
nonlinear issues, specifically in structural engineering. Explicit methods are
not influenced by the characteristics or duration of the loading, and they
necessitate a smaller increment size compared to implicit methods. In
contrast, the increment size of implicit methods is typically determined by
convergence and accuracy concerns. Hence, explicit methods have a lower
computing cost per increment than implicit methods.

ABAQUS/Explicit was selected for this project due to its ability to
handle problems involving complex contact interactions, extremely
nonlinear quasi-static scenarios, and degrading or failing materials [246-
249]. Complex contact interactions are frequently simpler to specify when
explicit methods are used as opposed to implicit ones. Methodologies

developed by ABAQUS/Explicit can be advantageous for structures
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subjected to complex contact interactions during loading. While it is
acknowledged that ABAQUS/Standard may provide verifiable results for
non-stress wave dominated cases, ABAQUS/Explicit offers a more practical
approach, especially when ABAQUS/Standard faces convergence
challenges. Although recent developments such as XFEM have enhanced
ABAQUS/Standard's failure simulation capabilities, in this study XFEM have
not been provided results closer to experimental results. Therefore,
ABAQUS/Explicit was chosen for this project due to its resource efficiency
and prowess in addressing complex contact scenarios. Materials that exhibit
stiffness degradation and failure, such as the brittle materials studied for
this project, can cause significant convergence issues in implicit processes,
which justifies the use of ABAQUS/Explicit. Such materials, comparable to
concrete, may experience a sharp decrease in load-bearing capacity,
resulting in a significant increase in kinetic energy, which ABAQUS/Explicit
can simulate accurately.

The top surface of the beam is displaced in the dynamic explicit
analysis by providing a uniform load to the “loading arrangement” using
the amplitude function to ensure a quasi-static solution. Throughout the
analysis, the quasi-static solution primarily restricts the kinetic energy of
the flexural test to a modest value. After testing various loading rates, the
optimal loading rate has been determined to be 2.5 mm/sec. The
computing efficiency of a quasi-static analysis employing the dynamic
explicit technique is ensured by raising the time increment or introducing
mass scaling into the model. The ratio of kinetic energy to internal energy
and external energy (ALLKE/ALLWK) must always be evaluated and should
be less than 5 per cent. For all simulations, the ratio of kinetic energy to
internal energy and external energy is less than 1%, which is within the

permitted range of 5%.

3.5.6. CDP model parameters
The CDP model includes concrete’s plastic, compressive, and tensile

behaviours. The CDP model considers concrete homogeneous, isotropic,
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and continuous [240]. The primary parameters considered in this study
were dilation angle (y), flow potential eccentricity (g), the ratio of
compressive strength under biaxial loading to uniaxial compressive
strength (fb0/fc0), shape factor (K), viscosity parameter (u), elasticity
modulus of concrete (Ec), concrete compressive behaviour, concrete tensile
behaviour, and density. A viscosity parameter was not used because
ABAQUS/Explicit was employed for the simulation; hence, its value was

presumed to be 0 [249]. Table 3.1 lists the recommended CDP properties.

Table 3.1: CDP properties for FEA model

Dilation Angle | Eccentricity | fbo/fco K Viscosity
parameter
31° -45° 0.1 1.16 0.667 0

3.6. Strain data extraction from FEA models

SHM algorithms can make conclusions concerning the structural
integrity of a structure. Modern AI approaches, such as DL, can serve the
same function. Nevertheless, having thousands of data points may be
necessary to effectively train DL models, as a higher amount of training
data often leads to a more accurate model. However, executing thousands
of experiments to extract data is not realistic in terms of time or cost.
Hence, by adjusting various model parameters such as loads, boundary
conditions, loading rates, and loading conditions, FEA models can generate
hundreds of distributed data points. The study involved developing a Finite
Element model specifically designed to extract distributed strain data by
considering variations in load as a key factor.

The accuracy of a DL model is determined by the amount of training
data used to train the model. In the CDP model, the dilation angle holds
great significance as it is one of the most crucial features for smaller values,
the material is brittle; for larger ones, it is stiff. Typically, the angle of
dilatation of concrete ranges between 13° and 56° [250]. In this study,

strain data were generated using a series of simulations in which the angle
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of dilation was adjusted from 31° to 45° (with an increment of 1°). The
field output request interval for each simulation was modified by
considering the frequency of evenly spaced time intervals, and the CDP
model was loaded until the rebar yields. Therefore, the surface and rebar
data can be retrieved until reaching the elastic limit.

As described earlier, a notable adjustment was made to the angle of
dilation parameter in the CDP model. This was done to obtain a
comprehensive understanding of the DL model's sensitivity to changes in
the angle of dilatation and its effect on the accuracy and reliability of the
generated strain data. The choice of this particular parameter adjustment
was motivated by the fundamental significance of the angle of dilatation in
characterizing concrete behaviour, where moving leftwards represent
brittle material responses and moving rightwards values represent stiffer
behaviour. By exploring this parameter within the typical range observed
in concrete structures [141, 142, 246, 251, 252] and conducting a series
of simulations under varying conditions, this study aimed to generate strain
data from the CDP model's ability to capture a broad spectrum of material
behaviours. The simulations incorporated both elastic and plastic behaviour
of concrete until the rebar yielded, allowing for a comprehensive analysis
of strain patterns and structural responses. This investigation's findings
provide valuable insights into the model's robustness and applicability in
real-world engineering scenarios, thereby augmenting the understanding
of concrete's behaviour under varying conditions.

Two types of RC beam geometries, namely short-span and long-span
were modelled using CDP-based FEA. The FEA modelling process involved
creating separate models for each type of beam geometry and specifying
relevant material properties, dimensions, and loading conditions. The first
FEA was performed with a short-span RC beam, followed by the long-span
beams, and data extraction was used to analyse the beams’ behaviour
under different loading conditions. Figure 3.9 displays the Reinforcement
details and sectional view of the short-span RC beam. The loading,

boundary conditions, and mesh arrangement are displayed in Figure 3.10.
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Table 3.2 lists the proposed concrete and steel properties for the short-

span RC beam FEA model.

Table 3.2: Material properties for the short-span RC beam

. Young’'s modulus Poisson’s
M | T
ateria ype (MPa) ratio
Concrete Isotropic 26370 0.2
Steel Isotropic 200000 0.3
Stirrups @4 @ 165 mm C/C
/ R24
-

1400 mm

Shear Bar Overhang = 25 mm

\ / Rebar 38

25 mm ‘ Rebar @10

100 mm —|=—u]

Figure 3.9: Reinforcement details and sectional view of the short-span RC

beam
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Figure 3.10: FEA model of short-span RC beam (a) Boundary conditions

and loading configuration; (b) Mesh configuration

The FEA model was created using four different types of elements.
There are 292 elements of the T3D2 type, 2712 elements of the C3D8R
type, 218 elements of the R3D4 type, and only four elements of the R3D3
type. Figure 3.11 illustrates establishing two paths for data extraction, one
for surface strain data and the other for rebar strain data. Strain data for
each node was retrieved using ABAQUS’s XY data option. Path points,
including intersections, were selected, and the option "Remove duplicate
XY pairs” was chosen. A long-span beam model of 4000 mm long with a
200 mm by 400 mm cross section was proposed for the simulation to

generate strain data for the subsequent stage.
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Figure 3.11: Loading arrangement and data extraction paths of short-

span RC beam (a) Surface and rebar data extraction path; (b) FEA

surface and rebar strain data extraction path

Table 3.3: CDP model parameters for strain data generation

Dilation angle (°) | Steps Number of data points per sensor

path
(No. of dilation angles * Steps)

31° to 45°
(15 angles)

2000 30,000
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Table 3.3 presents the CDP model parameters for strain data
generation. Figure 3.12 displays beam definitions of the long-span RC
beam, and Table 3.4 lists the proposed concrete and steel properties for
the long-span RC beam FEA model.

#7@200 c/c #2@500 c/c #7@200 clc

L/
i

e
N

400 |

4000

Longitudinal Section

(C30)

30
2712 }}:

Hook 75 1
2120 T10@200

[200]

Section A-A
(R20C30)

Figure 3.12: Beam definitions for R2Z0C30 RC beam

Table 3.4: Material properties the long-span RC beam FEA model

Young’s modulus Poisson’s
Material Type (MPa) ratio
Concrete Isotropic 27106 0.2
Steel Isotropic 200000 0.3

Figure 3.13 illustrates the load, boundary conditions, and mesh
configuration of long-span beam. The Beam supports were modelled per
Figure 3.13 (a), and the material was selected as steel. Figure 3.13 (b)
displays the mesh configuration. The supports were subjected to encastre

boundary condition, which means the supports have been rigidly fixed to
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prevent any movement or rotation at their endpoints. The number and type
of elements used in the model are 22156 - C3D8R and 1512 - T3D2.

D
A\
[SHLE

Loading
Arrangement

Encastre boundary

(a)

(b)
Figure 3.13: (a) Loading and boundary condition; (b) Mesh configuration

Three strain data generation paths were proposed as per Figure 3.14:
the bottom surface path, the side surface path, and along the tension rebar.
Table 3.5 presents the beam nomenclature. Strain data were generated
through a series of simulations for 15 different dilation angles. Table 3.6
lists the CDP model parameters used to generate strain data, and Figure

3.15 shows the proposed loading arrangements for strain data generation.
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Figure 3.14: (a) FEA Bottom surface data extraction path; (b) FEA side

surface data extraction path; (c) FEA rebar surface data extraction path
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Table 3.5: Beam nomenclature

R20C30
R20 - Rebar size is 20 mm
C30 - Concrete cover thickness is 30 mm

Table 3.6: FEA model parameters for strain data generation

Dilation angle (°) Steps Number of data points per each
sensor

(No. of dilation angles * Steps)

31° to 45° (15 angles) 2500 37,500

Total number of data used to 75,000
train the model

(Bottom sensor + Side sensor)

100 mm 100 mm

Figure 3.15: Proposed loading arrangements for strain data generation

The strain data were extracted, and the developed DL model was
trained using two proposed FEA models. Initially, the DL model was trained
using the dataset of short-span RC beams. After verifying the accuracy of
the DL model’s predictions against experimental measurements from
DOFS, the next round of training began using the dataset of a long-span
beam size. The results were presented in Chapter 5 for better

understanding.

3.6.1. Mesh convergence study
The maximum mesh size studied was 50 mm since the beam width

is limited to 100 mm. Mesh sizes smaller than 25 mm were not considered
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because the aggregate size was 20 mm. A convergence study was done

with 50 mm, 35 mm, 30 mm, and 25 mm mesh sizes. The mesh

convergence study demonstrated that after reducing the mesh size to 25

mm, the results stabilised and closely mirrored the experimental behaviour.

Therefore, a 25 mm mesh size was chosen for the FEA. Mesh convergence

study for short-span RC beam was presented in Figure 3.16 at 16 kN load.

The experimental deflection and simulation deflection were recoded as

1.325 mm and 1.281 mm, respectively. The percentage of difference was

calculated as 3.32%. Table 3.7 presents the most appropriate dilation angle

and other respective CDP properties for short-span RC beam.

Table 3.7: CDP properties of short-span RC beam

M50

M35

M30

Mesh size (mm)

Beam Dilation . . Viscosity
No. Angle Eccentricity | fbo/fco K parameter
Bl 43° 0.1 1.16 0.667 0

1.5
g ././"_‘
51.0
c
i)
0
Q0.5
(O]
&
0.0

M25

Figure 3.16: Mesh convergence study for short-span RC beam

For the

long-span RC beam, the experimental

deflection and

simulation deflection were recorded as 21.42 mm and 22.32 mm,
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respectively. The percentage difference between the two was calculated as
4.2%. Figure 3.17 presents the study results. The optimal dilation angle
and corresponding properties of the CDP model are presented in Table 3.8.
Chapter 5 of this study clearly presents the FEA model validation and

simulation results.

Table 3.8: CDP properties for long-span R20C30 Beam

Beam Dilation . . Viscosity
No. Angle Eccentricity | fbo/feo K parameter
R20C30 43° 0.1 1.16 0.667 0
30
3
c
i)
0
210
(O]
a
0

M50 M35 M30 M25
Mesh size (mm)

Figure 3.17: Mesh convergence study for long-span beam

3.7. Summary

The chapter begins with an explanation of the conceptual SHM
framework, followed by a thorough examination of a DL model based on
ANN architecture designed to interpret strain data for predicting the
structural health of RC beams using a supervised learning approach. The
DL model was developed using FEA based concrete surface strain data as
input to predict the structural health of tension rebars in an RC beam.

Adjusting the weights and biases of the neurons using the backpropagation
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algorithm, which entails forward and backward propagation of data through
the network, is to train an ANN.

This research proposes an ANN architecture with one input layer, two
hidden layers, and one output layer. Between the input and hidden layers,
the RelLU activation function is used, while the sigmoid activation function
is used between the hidden and output layers. A classification-based DL
model was developed using only strain data to predict the structural health
of RC beams. The training phase of the DL model will be discussed in
Chapter 5. The current emphasis is on assembling and preparing the
necessary elements for successful model training, particularly the ANN
architecture and the strain dataset.

Integrating the strain dataset generated by a CDP-based FEA model,
which captures the nonlinearity and damage-induced plasticity of concrete,
is novel to this method. Using CDP modelling, ABAQUS 2019 finite element
software was used to develop two FEA models for short-span and long-span
beam sizes. A method was proposed to extract strain data from FEA
models, which was then used to train a DL model for the novel framework
presented herein. These strain measurements were collected from two
surfaces: the surface of concrete and the surface of rebar. In the proposed
strain data generation method, the angle of dilation for the CDP model
parameter was increased from 31 to 45 degrees. This data will be used to
train a DL model, while experimental strain data will be used to evaluate
the DL model.
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CHAPTER 4: IMPLEMENTATION OF DISTRIBUTED
SENSOR NETWORKS AND DATA ACQUISITION

4.1. Introduction

This chapter is an integral part of the research project. It investigates
the installation and operation of the sensor network on RC beams, which
inputs directly into the proposed SHM framework. This investigation is
divided into three major sections, each addressing a topic essential to the
successful implementation of DOFS networks, the primary data acquisition
mechanism for the SHM framework.

Installation of sensors on concrete surfaces and rebars within RC
beams requires meticulous attention to several factors, including sensor
placement, orientation, and attachment methods. These factors are crucial
for the sensor network’s success and the SHM framework’s overall efficacy,
as improper sensor positioning, or attachment could result in inaccurate
representations of the structural health.

Strain is an important structural health indicator for RC beams. This
chapter explains the methods and procedures for strain monitoring using
the installed sensors, including calibration and data collection. This
chapter’s ultimate goal is to provide a practical guide for designing and
implementing distributed sensor networks for SHM of RC beams, thereby
contributing directly to the efficacy of the proposed SHM framework. In
addition to aiding in the practical implementation of the SHM system, this
investigation endeavours to contribute to the larger objective of improving
the safety, performance, and durability of RC infrastructures.

Figure 4.1 presents the overview of the technical contents of Chapter
4. Experimental results and their behaviour will be detailed for clarity in
Chapter 5.
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| Series of Experiments |

| Sensor installation | Strain monitoring | Testing procedure |

¢

' .

Short-span RC beam Long-span RC Beams
Investigate the suitability of DOFS to monitor Experimenting on six representative size RC
reinforced concrete beams beams under symmetricand asymmetric loading
conditions to extract distributed strain data

Figure 4.1: Overview of the technical contents of Chapter 4

4.2. Sensor installation

The installation of sensors is a crucial factor in SHM applications as it
directly impacts the overall system performance. This particular study used
a single-mode optical fibre, SMF-28, with a cladding diameter of 125
micrometres, as the DOFS. The sensor was installed on two surfaces to
ensure accurate measurements: the concrete surface and the rebar.

When choosing adhesives for the investigation, special consideration
was paid to their innate qualities to make sure they complied with project
requirements. Employing TECHNIGLUE R15 and R60 was based on a
number of important considerations. Particularly important for long-term
structural monitoring in concrete infrastructures that may be subject to
moisture and environmental changes, their demonstrated endurance under
various environmental circumstances is what made them stand out. The
thixotropic properties of these adhesives, which guaranteed a continuous
bond layer and, as a result, dependable and accurate data transfer from
the sensors, were equally significant. Additionally, it was determined that
their cost-performance balance was economically favourable for the
investigation. Their simple mixing and room-temperature drying eliminated
the need for specialist equipment, providing additional financial

advantages.
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4.2.1. Sensor installation on concrete

The adhesive used to attach the DOFS to the concrete surface was
TECHNIGLUE R60. This particular glue is an epoxy resin formulated to be
solvent-free and can cure at room temperature when used with
TECHNIGLUE hardeners. This results in a strong, waterproof bond.
Additionally, the adhesive is thixotropic, allowing it to fill gaps and hold up
well on vertical surfaces. The concrete surface should be wire brushed to
remove dirt/debris before applying the adhesive. As per the datasheet, the
resin and hardener should be mixed in a 2:1 ratio. Figure 4.2 displays
TECHNIGLUE R60, and Figure 4.3 depicts a FOS attached to a concrete
surface using this adhesive. Table 4.1 provides detailed information

regarding the adhesive’s curing and cured properties.

—

Figure 4.2: TECHNIGLUE R60 and H60
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Figure 4.3: Concrete surface attached to FOS
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Table 4.1: The cure characteristics and cured properties of TECHNIGLUE
R60

Cure characteristics

Pot life -100g @ 25°C (in air) 40 minutes
Cured to a solid state @ 25°C 12 hours
Cured properties

Tensile strength (ASTM D638-97) 55 MPa
Tensile elongation at break (ASTM D638-97) 7%
Flexural strength (ASTM 790-03) 80 MPa
Flexural strain (ASTM 790-03) 5%

4.2.2. Sensor installation on rebar

TECHNIGLUE R15 was used to attach the sensor to the rebar. The
glue is a soft, thixotropic, solvent-free epoxy paste specifically formulated
for use with H15 hardeners to cure at room temperature and produce a
high-strength structural adhesive for bonding metals, particularly
aluminium and steel. A grove is needed to position the sensor along the
rebar. When the rebar length is low, this grove can be milled using a milling
machine (the cutting length depends on the milling machine specification),
while at higher lengths, the grove can be cut by an angle grinder. The
surfaces should be clean and free from grease and/or loose particles before
the application. The resin and hardener should be mixed in a 1:1 ratio per
the datasheet.

Table 4.2 lists the cure characteristics and cured properties. Figure
4.4 shows the two-component epoxy glues used for the sensor mounting,
and Figure 4.5 illustrates the groove on rebar, positioned DOFS and rebar

attached sensor.
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Figure 4.4: TECHNIGLUE R15 and H15

Groove

_ Fibre optic sensor

e R15 Epoxy glue (Cured)
’/ —.’

(c)

Figure 4.5: (a) The groove cut on the rebar; (b) DOFS before attachment;
(c) Attached DOFS to the rebar by R15 Epoxy glue
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Table 4.2: The cure characteristics and cured properties of TECHNIGLUE
R15

Cure characteristics

Pot life -100g @ 25°C (in air) 83 minutes
Cured to a solid state @ 25°C 8 hours
Mechanical properties

Ultimate tensile strength 22.4 MPa

The emerging sensors from the attachments should be carefully
handled after attaching the sensor to a concrete surface or rebar. These
sensors must be protected and ensure their reliable performance using
proper safeguards. Polyethylene (PE) tubing (0.92 mm x 0.42 mm) and
furcation tubes (3 mm) were used for this purpose. The PE tubing was
inserted into the furcation tube before inserting the sensor. Figure 4.6

presents the PE tubing and furcation tubes.

Pi'LD

(a) (b)

Figure 4.6: (a) PE tubing; (b) Furcation tubes

On reflection and analysis of the sensor installation performed on
both the concrete surface and the reinforcing bars, the procedure appears
to be effective and accurate based on the knowledge gained during this
project. The careful selection of the appropriate adhesive for each surface,
the proper preparation of the surfaces, the careful placement and
attachment of sensors, and the subsequent implementation of protection
measures for the installed sensors facilitated the installation of a robust

sensor network. The meticulous execution of the procedure, the
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performance history of the embedded sensors, and the data collected
validated the approach. Therefore, it is proposed that this approach can
serve as a trustworthy guideline for future sensor installations in similar

SHM applications.

4.3. Strain monitoring

The strain monitoring was performed by using LUNA OBR 4600, which
uses optical backscattered reflectometry (OBR) technology. Figure 4.7
shows the OBR 4600 system for interrogation of DOFS. OBR is an essential
tool for shorter fibre spans due to its distinctive combination of ultra-high
spatial resolution and sensitivity. OBR 4600 can detect and measure
continuous strain and temperature by analysing the Rayleigh scatter
inherent for commercially available optical fibres, with a user-specified
spatial resolution as low as 0.32 mm. The apparatus features three scan
measuring ranges: 30 m mode, 70 m mode, and 2000 m extended range.

The whole experimental session used the 70 m mode.

N OBR 4600 Unit

\ OBR control software

Figure 4.7: OBR 4600 system for interrogation of DOFS
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Calibrating the OBR equipment is necessary before making
measurements. The OBR calibration eliminates the impacts of the
measurement network to ensure that the measured data only represent the
device being tested. Calibration should be performed at least once every
24 hours in a typical laboratory or industrial environment. The area’s
ambient conditions mainly govern the necessity for recalibration. If the
temperature fluctuates significantly, calibration may be required more
frequently than once per 24 hours. A longer time may be sufficient if the
ambient temperature is extremely stable.

The calibration process can be done using the supplied reference fibre
and reflector to the instrument. The calibration should be checked after the
calibration process by examining the return loss curve under the frequency
domain. The resulting curve should be quite flat within the instrument’s
precision range, with a mean value of around 0.0 to -1.0 dB. The second
calibration is necessary if the return loss curve is not flat. Table 4.3 provides
the specifications of LUNA OBR 4600 according to the manufacturer’s

datasheet.

Table 4.3: Specifications of LUNA OBR 4600

Parameter Specification Units
Wavelength range (nominal)

OBR 4600 1525 - 1610 nm
Maximum device length

Standard mode 30 or 70 m
Extended range mode 2000 m
Sampling resolution

30 m mode 10 Mm
70 m mode 20 Hm
Extended range mode (2000 m) 1 mm
Distributed sensing

Spatial resolution +1.0 cm
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Temperature resolution +0.1 °C

Strain resolution +1.0 ME

A spatial resolution of 1 cm [253] was used for the entire
experimental session. The sensor length was considered 2.5 cm, and the
sensor spacing was 1 cm. The OBR 4600 was used to store and monitor the
strain measurements during the experiments. The attached DOFS to the
beams should be connected to OBR 4600 via FC/APC connectors before
taking any measurements. Since bare fibre does not come up with these
connectors, splicing is necessary to connect the sensor to FC/APC

connector. Figure 4.8 shows FC/APC connector.

Figure 4.8: FC/APC connector

4.4. The testing procedure of RC beams

Testing allows for evaluating the structural performance and
behaviour of the RC beams under loading conditions. This study proposed
two beam types to investigate flexural loading: short-span RC beams and
long-span RC beams.

The three-point bending test is more appropriate for short-span RC
beams because the highest moment occurs at the midpoint of the beam,
where the load is applied. This maximises the bending moment, simplifying
predicting and analysing the failure mode. In addition, this preliminary test
is straightforward and economical. A four-point bending test is
recommended for long-span beam dimensions since it generates a larger
region of constant moment between the two applied loads, thereby
providing a more accurate representation of the beam’s behaviour under

typical loading conditions. This provides more precise information on the
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flexural capacity and response of the beam.

In addition, using this test to represent the beam size diminished
shear effects and made the results more representative of real-world
conditions. During flexural testing of beams, OBR 4600 recorded strain
measurements from DOFS about the applied load.

It is essential to note that all flexural tests on the RC beams were
conducted in a laboratory setting under standard conditions. Although
specific data on temperature and humidity during testing periods were not
recorded, the laboratory is typically kept at a constant temperature and
relative humidity with minimal fluctuations. To maintain consistent
conditions throughout the experiment, direct exposure to external elements
such as sunlight, wind, and rain was avoided. It is essential to observe that
the controlled environment was intended to mitigate any external
influences that could affect the structural behaviour of the beams. The
equipment used to record strain measurements from DOFS, the OBR 4600,

was also operated under these standard laboratory conditions.

4.4.1. Short-span RC beam

As the first experimental session, a short-span RC beam was cast and
instrumented with distributed FOSs to extract strain data along the
concrete surface and rebars. These experimental data will help to correlate
the FEA.

The beam cast used in this study had 1400 mm x 100 mm x 250 mm
dimensions and was reinforced with 8 mm diameter rebars for the top
reinforcement and 10 mm diameter rebars for the bottom reinforcement.
For the stirrups, 6 mm diameter bars were used, with a stirrup spacing of
165 mm maintained for all beams. The stirrups’ purpose was to minimise
shear failure. Geometrical, mechanical, and reinforcing features were
selected to accommodate the beam’s dimensions for testing on the MTS
sans testing machine and to facilitate its handling. Grade 25 concrete
premix was used to cast the beam, then stored for seven days in wet

conditions and 21 days in room conditions. After 28 days of casting, the
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concrete’s mean cylinder compressive strength was experimentally
determined to be 28 MPa. The designh was as per the British standards BS
8110 - Part 1:1985. Figure 4.9 shows the beam definition.

Stirrups @4 @ 165 mm C/C

L L]

1400 mm

Shear Bar Overhang = 25 mm

\ / Rebar @8

25> mm Rebar @10

100 mm —— =]

Figure 4.9: Short-span RC beam definition

(a) (b)

Figure 4.10: (a) Reinforcement cage inside the mould; (b) Cast concrete

beam
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Figure 4.11: Sensor layout for short-span RC beam

Surface mounted fiber optic sensor

Rebar mounted fiber optic sensor

(b)

Figure 4.12: (a) Surface-mounted FOS; (b) Rebar-mounted FOS

Casting beam with DOFS sensor in short-span RC beam is illustrated
in Figure 4.10, while Figure 4.11 displays the layout of sensors used for

monitoring the beam. Figure 4.12 depicts both surface-mounted and rebar-
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mounted FOSs installed on short-span RC beam. The mounted sensor
length of the bottom sensor was limited to 1000 mm due to the ease of
handling. The beams were tested using an MTS Sans Testing Machine with
a 2000 kN capacity. The beam was subjected to a three-point bending
arrangement and was simply supported. The loading span of the beams
was 1200 mm, and they were loaded midway along the middle centreline.
The beam was designated as B1 and loaded up to 16.0 kN.

The experiment aimed not to strain the rebar plastically but to
examine the strain patterns below the beam’s design load. As a result,
applied load levels below the design load limit were selected. The crosshead
movement rate on the testing apparatus was adjusted at 1 mm per minute,
and 15-second intervals helped to space the measurements evenly. The
test was stopped at 75 seconds (at 16 kN load). Figure 4.13 illustrates the
testing procedure for the beam, conducted using the MTS sans testing

machine.

Loading
arrangement ]

] " ‘l
- s AN\
) e

BT —&

Figure 4.13: Testing of the beam
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4.4.2. Long-span RC beams

After successfully completing the testing of short-span RC beams and
FEA validation, it was concluded that DOFS measurements provide
acceptable results and are suitable for monitoring concrete beams under
flexural loading (Chapter 5 provides details). Moreover, the recorded
experimental data were inserted into the developed DL model, and the
model could predict the tension rebar status correctly. Therefore, the
second series of experimental sessions commenced studying long-span
beam sizes to represent real world structures.

Three RC beams were cast and instrumented with distributed FOSs
to extract strain data along the concrete bottom surface, side surface, and
rebars under symmetric flexural loading.

The beams were cast according to the beam definition shown in
Figure 4.14. Each beam was 4000 mm long, 200 mm wide, and 400 mm
high. A 12 mm rebar was selected for every beam for the compression side,
and rebars of 12 mm, 16 mm, and 20 mm reinforced the tension side. Table

4.4 provides the beam description.

#7@200 cic #2@500 clc #7@200 c/c
A /
7 4 4 g
2
| 4000 —A !
Longitudinal Section
(C30)
4T12 % 2T12 30 2T12 %
T Hook 7505 | T Hook 75 j F
Hook 75 B T10@200  2T16 ].7“0@2“0 2720 T10@200
r— 2 \d
|2QQ\ |2QQ| |2QQ{
Section A-A Section A-A Section A-A
(R12C30) (R16C30) (R20C30)

Figure 4.14: Beam definitions of R12C30, R16C30, and R20C30
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Table 4.4: Beam description for R12C30, R16C30, and R20C30

Beam | Concrete Tension Compression Bottom cover
grade rebar size rebar size thickness
(mm) (mm) (mm)
R12C30 12
R16C30 25 16 12 30
R20C30 20

All beams were maintained with a 30 mm concrete cover. The beams

were cast using a grade 25 concrete mix and kept wet for seven days. The

experimental value of the concrete’s mean cylinder compressive strength

was 29.9 MPa. The RC beams were designated according to the tension
rebar sizes used as R12C30, R16C30, and R20C30. The beam design
followed the European Community standard EN 1992-1-1: Eurocode 2:

Design of concrete structures. Figure 4.15 shows the casting process of the

beams.

(b)
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(c)

Figure 4.15: (a) Reinforcement cage; (b) Reinforcement cage inside the

mould; (c) Casted concrete beam

Two concrete surface sensors, a side sensor, and a bottom sensor,

were selected to analyse the sensor behaviour according to different paths.

Due to the need for room for handling and transporting the beams, the

length of both surface sensors was capped at 3000 mm. Figure 4.16
displays the sensor arrangement.

To rebar

v

— From rebar

3R

AC

? 25 mm
Side

< > sensor
OBR 4000 mm
4600
Bottom
Side View sensor
3000 mm

Bottom View

Figure 4.16: Sensor Layout
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Before embedding sensors into the concrete beam, all DOFS-attached
rebars (R12, R16, and R20) were tested under three-point loads to ensure
their functionality and repeatability. Figure 4.17 presents the schematic
configuration of rebar testing, while Figure 4.18 demonstrates the
experimental setup for rebar testing. It was decided to use three weights
to distribute the load across the rebar at the centre position. The weights
were specified as 1.1 pounds, 2.5 pounds, and 5 pounds, respectively. Each
weight was loaded and unloaded three consecutive times to each rebar.

Figure 4.19, Figure 4.20, and Figure 4.21 show the strain variation
along the rebars R12, R16 and R20, respectively, for the loadings. The
figures show no significant variation in strain for a particular load. The
results indicated that all rebars had excellent functionality and
repeatability. Therefore, these DOFS-attached rebars were good to embed

inside the concrete.

3940 mm

=L Supports J
. & .

500 mm Weight 500 mm

|

Figure 4.17: Configuration for rebar testing
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Figure 4.18: Experimental setup of rebar testing
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Figure 4.19: Strain variation along the rebar R12
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Figure 4.20: Strain variation along the rebar R16
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Figure 4.21: Strain variation along the rebar R20
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The DOFS were attached to the concrete surface after 28 days of
curing period after the casting. Figure 4.22 shows the mounted surface

sensors on the side and the bottom.

Side Sensor

Figure 4.22: Mounted surface sensors

A hydraulically operated load frame with a 50 ton capacity was used
for testing the beams. All beams were simply supported, and a four-point
bending system was utilised for the loading. The beam’s span was 3800
mm. Figure 4.23 displays the schematic diagram of the loading
arrangement, and Figure 4.24 illustrates the experimental beam loading

arrangement.
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Figure 4.23: Schematic diagram of loading arrangement

Figure 4.24: The experimental beam loading arrangement

R20C30 was the first beam to be tested since this beam attracts the highest
bending moment. Hence, the same beam will have the highest shear
demand in the current set of beams. The beam was loaded at 10 kN
intervals until failure occurred, and the OBR 4600 recorded strain readings.
The beam failed at 160 kN. Figure 4.25 shows the connected OBR 4600
with the beam.
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Figure 4.25: The connected OBR 4600 with the beam

R16C30 was the next beam to test. However, here the beam was not
loaded until failure by incremental loading at once since understanding the
DOFS behaviour under repetitive loading was necessary. The beam was
loaded in four stages to gather strain data. The objective of this type of
loading was to extract the strain data to analyse how well the DL model
performed when these data were given as input.

The beam was loaded up to 25 kN in 5 kN intervals in the first stage.
After obtaining data, the beam was unloaded and relaxed for 10 minutes.
The purpose of relaxation time was to reduce the impact of any residual
strains. The first stage was repeated in the second stage. In the third stage,
the beam was loaded up to 50 kN in 5 kN intervals. After reaching the 50
kN limit, the beam was unloaded and relaxed for 10 minutes. As per the
final stage, the beam was loaded until failure occurred, and the load at
failure was 120 kN.

The R12C30 beam followed the same testing procedure as the
R16C30 beam. However, the initial loading limit was reduced to 15 kN in 5

kN intervals since this beam attracts the lowest bending moment. Next, the
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beam was unloaded and relaxed for 10 minutes. As per the second stage,
the beam was loaded up to 15 kN again, and data were recorded. In the
third stage, the beam was loaded up to 30 kN in 5 kN intervals by
multiplying the initial load limit twice. After reaching the 30 kN limit, the
beam was unloaded and relaxed for 10 minutes. As per the final stage, the
beam was loaded until failure occurred; the load at failure was 80 kN. After
successfully completing the second experimental session, the results
indicated that DOFS measurements provide acceptable results in
monitoring concrete beams under symmetric flexural loading (Chapter 5
provides further details).

To enhance the robustness of the DL model, the DL model must
produce accurate results when strain data are entered from asymmetric
loading conditions. Therefore, it is necessary to study asymmetric flexural
loading conditions. The third series of experimental sessions thus
commenced.

Three RC beams were cast using varying concrete grades and bottom
cover thicknesses to enhance diversity. The same reinforcement
arrangement was used, and the beams were instrumented with distributed
FOSs, like the experimental session two, to extract strain data.

Figure 4.26 shows the beam definition. The concrete cover thickness
and concrete grade were set to 60 mm and grade 50, respectively. The
experimental value of the concrete’s mean cylinder compressive strength
was 58.5 MPa. The RC beams were designated according to the tension
rebar sizes used as R12C60, R16C60, and R20C60.

Table 4.5 lists the description for R12C60, R16C60, and R20C60
beams. The beam design followed the European Community standard EN

1992-1-1: Eurocode 2: Design of concrete structures.

129



#7@200 clc #2@500 clc #7@200 clc
.\
7 7 4 él'
=
| 4000 —A |
Longitudinal Section
(C80)
4712 |3—0 2712 |3—U 2712 13_0
Hook 75 T Hook 75 T Hook 75 T
0ok 75 : T10@200 HOK f T10@200 o0 }T10@200
200| L 60 200 f 60 200| [ 60
Section A-A Section A-A Section A-A
(R12C60) (R16C80) (R20C80)

Figure 4.26: Beam definition of R12C60, R16C60, and R20C60

Table 4.5: Beam description for R12C60, R16C60, and R20C60

Beam Concrete | Tension rebar Compression Bottom cover
grade size (mm) rebar size thickness
(mm) (mm)
R12C30 12
R16C30 50 16 12 60
R20C30 20

Figure 4.27 presents the proposed schematic diagrams for loading
configurations. The first beam examined was R20C60, tested with loading
configuration (a). The loading configuration (b) was used for R12C60 and
R16C60 beams. All beams were loaded at 5 kN intervals until the spectral
shift quality (SSQ) slightly exceeded the 0.15 limit (Chapter 5 will discuss
further details).
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Figure 4.27: The proposed schematic diagrams for loading configurations

4.5. Summary

This chapter examines the meticulous process of establishing
distributed sensor networks using DOFS and the methodical approach to
derive strain data from RC beams subjected to flexural loading in various
configurations. These configurations consist of three-point and four-point
bending for symmetric and asymmetric loading regimes. The process
contributes directly to the overarching framework designed to create a
robust SHM system.

The optical fibre SMF-28 serves as the DOFS and is used to measure
strain. DOFS are attached to the rebars using a 1:1 mixture of TECHNIGLUE
R15 and H15S. DOFS are affixed to the concrete surface using a 2:1
mixture of TECHNIGLUE R60 and H60S. The strain is monitored using a
LUNA OBR 4600. The testing sessions maintain a spatial resolution of 1 cm,
with a sensor length of 2.5 cm and a sensor spacing of 1 cm. This was
maintained using OBR4600.

During the first experimental session, a single short-span RC beam is
cast and instrumented with DOFS to collect strain data. After successful
initial tests, it was determined that DOFS measurements yield acceptable

results, making them suitable for monitoring concrete beams subjected to

131



flexural loading. Next, the collected data were evaluated using the DL
model.

In a second series of experimental tests, larger beams were subjected
to symmetric and asymmetric flexural loads. Variations in concrete grade
and bottom cover thickness are incorporated to ensure the DL model’s
robustness and the SHM framework’s efficacy in various structural
scenarios.

All experimental results are presented in the subsequent chapter,
with a detailed discussion of collected strain data and its analysis. This
information helps evaluate the predictive capabilities of the DL model in the
context of structural health. Consequently, this chapter contributes to the

larger objective of developing a comprehensive and efficient SHM system.
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CHAPTER 5: PERFORMANCE EVALUATION OF SHM
FRAMEWORK

5.1. Introduction

This chapter investigates the efficacy of the DL model for predicting
the structural health of RC beams which can assist with the inspection and
maintenance of civil infrastructures. The chapter will present the study’s
experimental and simulation results, the training procedure for the DL
model, and the structural health predictions for concrete beams subjected
to symmetric and asymmetric flexural loading. Figure 5.1 illustrates the

overview of the technical contents of Chapter 5.

| Structural health predictions for RC beams |

Short-span RC beam Long-span RC Beams

Beam size: 1400 mmx 100 mm x 250 mm Beam size: 4000 mm x 200 mm x 400 mm
Cover thickness: 25 mm Cover thickness: 30 mm / 60 mm
Concrete grade: 25 Concrete grade: 25/ 50
Tension rebar size: 10 mm Tension rebar size: 12 mm, 16 mm and 20
Loading: Symmetric mm
No of beams: 1 Loading: Symmetric and asymmetric

No of beams: 6

Rebar strain behaviour
Rebar strain behaviour

Concrete surface strain behaviour
Concrete surface strain behaviour

Exploring the relationship between steps,
dilation angles, and strain patterns for Effect of spectral shift quality (55Q)
dataset construction
DL predictions
DL predictions

DL model sensitivity analysis

Figure 5.1: Overview of the technical contents of Chapter 5

The experimental data used in this analysis include strain data
collected from concrete beams subjected to flexural loading using
distributed fibre optic sensing as described in Chapter 4. Simulation data
described in Chapter 3 were validated for the training DL model. The

collected strain data behaviour was studied, and features representing the
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structural health of the concrete beams were extracted. The trained DL
model helped predict the structural health of seven concrete beams, which
were compared with the actual structural health of the beams. The model

accuracy was evaluated.

5.2. Comparison of experimental and simulation results for short-
span RC beam

This section presents a study on the strain patterns for a short-span
RC concrete beam of size 1400 mm x 100 mm x 250 mm subjected to
three-point bending under flexural loading. The experimental and
simulation strain data were analysed to identify the strain behaviour of the
concrete surface and the rebar of beam B1l. The study focused on
evaluating the capacity of DOFS to provide precise and valuable
quantitative information on the strain experienced by RC elements under
flexural loading. Additionally, the study aimed to pinpoint the areas where
the highest strain values occurred and analyse the corresponding patterns

of strain distribution, as elaborated in this section.

5.2.1. Rebar and surface strain

The strain data obtained from the DOFSs attached to the rebar were
examined with the strain values predicted by the simulations for beam B1.
Figure 5.2 compares the experimental and simulated strain measurements

for the bottom rebar of beam B1.
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Figure 5.2: Experimental strain vs simulation strain results of the bottom
rebar of the beam B1 at 16 kN load

Figure 5.2 depicts the highest experimental peak strain at mid-span
as 766 peg, while the simulated peak strain is 686 pe. The experimental and
simulation strain patterns show good alignment with each other. The higher
experimental peak strains were due to the concrete surface cracking, which
passes through the rebars. The strain pattern satisfactorily correlated with
optical fibre strain measurements and FEA results.

Since the maximum rebar strain values recorded for both
experiments were significantly lower than the 2500 micro strain limit, which
represents the yielding of steel, the rebars have not undergone plastic
deformation and have not reached the yield strain of the steel, even under
the maximum applied load of 16 kN. Therefore, the beam is deemed to be
in good structural health.

The strain measurements obtained by the concrete surface-mounted
OFSs were used to verify the extracted surface strain values from the
simulation for beam B1l. The experimental strain curve in Figure 5.3

displays eight peak values along the beam length, with the highest peak
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strain observed at the mid-span, measuring 1566 pe. In contrast, the
simulation strain curve indicates the highest peak value of 1196 pe with
eight peak values. Hence the number of peaks for experimental and
simulation peaks were equal. All peaks of both curves are located between
0.2 m and 1.2 m along the beam length.

The primary failure modes of concrete are tension cracking and
compression crushing (rather unlikely at this stage). Tensile stresses above
the tensile strength of concrete lead to cracking, a significant vulnerability
of concrete. The presence of rebars helps to limit the extent of these cracks
in RC. Cracks provide valuable insights into the extent of damage within

concrete structures.
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Figure 5.3: Experimental surface strain vs simulation surface strain
results of the beam B2 at 16 kN load
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Figures 5.3 display the wave behaviour of both experimental and
simulated strain data. The appearance of strain spikes usually indicates the
development of cracks due to tension, while valleys suggest lower concrete

strain. Typically, concrete cracks when the tensile strain surpasses 100 pe
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to 120 pe [254]. There is a significant difference between the experimental
and simulated strain values along the beam length. It could be due to
possible debonding of the fibre with the concrete surface initiated by
hairline cracks. This can cause the fibre to elongate independently, leading
to unusually higher strain readings. It is a standard practice to draw the
crack patterns manually. Hairline cracks were visible after the experiment,
as shown in Figure 5.4, which displays visible hairline cracks on the fibre at
the bottom surface of beam B1 under 16 kN load.

Figure 5.5 shows a FOS on a cracked concrete surface. An acceptable
agreement was observed between the optical fibre strain readings and the
FEA results. Additionally, the experimental results presented in Figure 5.3
agreed well with the locations where hairline cracks were visible, as

depicted in Figure 5.4.

DOF Sensor Hairline

Figure 5.4: Hairline crack locations appeared on the bottom surface of the

beams
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Figure 5.5: FOS in a cracked concrete surface

5.2.2. Exploring the relationship between steps, dilation angles,
and strain patterns for dataset construction

Distributed strain data obtained from DFOS can be essential for SHM
algorithms to make informed judgments about structural integrity.
Recently, sophisticated AI techniques such as DL have been used for the
same purpose. However, training these DL models requires thousands or
even hundreds of thousands of data points, as more data means higher
accuracy. Unfortunately, conducting a significant number of data extraction
experiments is not feasible in terms of time and cost. However, FEA models
can surmount this obstacle because they can extract tens of thousands of
distributed data points by simply modifying model parameters such as
loading rates, boundary conditions, loading conditions, and loads. In this
investigation, a finite element model was created and analysed to extract
distributed strain data concerning load variations.

The strain changes resulting from an increase in load were simulated
using FEA for the surface and rebar of Bl. These simulations were
conducted in 20 steps, but for clarity, the strain changes are presented in
ten steps in Table 5.1. The dilation angles for B1 were maintained at a
constant 42° throughout the simulations. Figures 5.6 and 5.7 depict the

strain variations observed in the surface and rebar, respectively.
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Table 5.1: Load with respect to step

Step 1 2 3 4 5 6 7 8 9 10
Load 0.5 2 5.5 85| 10 |10.5|12.5|13.5| 14.5 16
(kN)
Maximum | 3 14 | 38 | 61 | 70 | 681 | 735 | 914 | 1019|1196
surface
strain
(pe)
Maximum | 3 13 | 34 54 | 62 | 499 | 515 | 554 | 630 | 686
rebar
strain
(He)
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Figure 5.6: Surface strain against sensor length obtained from simulation

under increasing load - Beam B1
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Figure 5.7: Rebar strain against sensor length obtained from simulation
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Figure 5.8: Surface strain against sensor length obtained from simulation

for varying dilation angles - Beam B1

140



1000

800
— r/\//\\/
w
E 600 > \/ 310
c [ ,
E —35°
& 400 \ 400

45°
200
0 s

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Sensor length (m)

Figure 5.9: Rebar strain against sensor length obtained from simulation

for varying dilation angles - Beam B1

According to Figures 5.6 and 5.7, the strain of the surface and the
rebar increased with the step increment of the simulation. Nevertheless,
there was a considerable difference between Step 5 and Step 6 since crack
initiation occurred after Step 5. The relative loads for the fifth and sixth
steps are 10 kN and 10.5 kN, respectively. Figures 5.8 and 5.9 shows how
the dilation angle affects the strain variation along the concrete surface and
rebar. Although 15 dilation angles were studied from 31° to 45°, the results
presented here only for four angles to maintain the clarity. Considering both
figures, the strain values over the length of the sensor vary significantly as
the dilation angle increases. The cracked length is longer for lesser dilation
angles and shorter for higher ones. Larger values of the dilation angle result
in a stiffer material, whilst smaller values result in a more brittle material.
Hence, it is reasonable for both figures to exhibit significant strain peaks
along the sensor length for lower dilation angles.

Each step and angle of dilation had its unique strain pattern according

to the load. Therefore, changing the number of steps and dilation angles
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could be a potential technique to construct a strain dataset. A strain dataset
was generated using this method to train a DL model. Therefore, the
proposed experimental and modelling methodologies based on CDP can
create a strain dataset by considering variations in beam geometry,

concrete grades, reinforcements, and loading conditions.

5.3. Experimental and simulation results for long-span RC beams

This section details the strain pattern investigation of six concrete
beams measuring 4000 mm x 200 mm x 400 mm, specifically R12C30,
R16C30, R20C30, R12C60, R16C60, and R20C60, that underwent four-
point bending under flexural loading. Experimental and simulation strain
data were studied to determine the strain behaviour of the concrete surface
and rebar for the R20C30 beam. The other beams were experimentally
studied and kept for the prediction stage.

The primary objective of this study was to extract and analyse the
strain measurements along the sensor lengths under flexural loading for all
beams. Furthermore, the study aimed to utilise this strain data as a test

set to evaluate the performance of a DL model in predicting the beams

structural health.

5.3.1. Effect of SSQ on DOFS readings

According to the manufacturer of the data acquisition system (OBR
4600), the SSQ is a measure of the correlation between the reflected
spectra obtained from the measured data and the reference data [255].

The SSQ values can be determined using the following formula (5.1):

] ] MAXIMUM(l]j(v)*l]j(v—vj)) (5.1)
Spectral Shift Quality (S5Q) =
Where,
Uj(v) = Baseline spectrum for a given data segment
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Uij(v—v;) = The spectrum measured during a strain or temperature
change

* = The symbol stands for the cross-correlation operator.

In theory, the SSQ should fall within the 0 to 1 range. Here, a value
of 1 represents ‘perfect correlation’, and 0 represents ‘no correlation’. The
manufacturer recommends disregarding any data with an SSQ of 0.15 or
lower since it is highly likely that the strain or temperature variation
exceeds the measurable range after reaching this threshold. Consequently,
any measurements with an SSQ value of 0.15 or lower were excluded from
the analysis.

The following study analysed the effect of SSQ on DOFS readings of
the R20C30 beam by considering the rebar attached sensor and bottom
surface attached sensor.

The sensor readings were taken at 10 kN intervals, but to clarify the
results, they were presented at 20 kN intervals. Figure 5.10 shows the raw
strain data, strain data with values below the 0.15 SSQ threshold removed,
SSQ variation, and the 0.15 SSQ threshold for the rebar DOFS at 120 kN,
140 kN, and 160 kN. The strain data for 120 kN indicates that data were
not impacted, and the SSQ variation along the rebar was above the 0.15
SSQ threshold. However, the 140 and 160 kN graphs reveal that the SSQ
variation was below the threshold at several locations. This provides clear

evidence of the significant impact on the measured data.
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Figure 5.10: Raw strain data, after removing raw strain data below 0.15
SSQ threshold, SSQ and 0.15 SSQ threshold for rebar DOFS at different

loadings
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Figure 5.11: Raw strain data, after removing raw strain data below 0.15
SSQ threshold, SSQ and 0.15 SSQ threshold for bottom surface DOFS at
different loadings
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Figure 5.10 shows a clear trend where an increased applied load leads
to decreased SSQ values, indicating many data points that fall outside the
measurable range of DOFS. This was due to propagating cracks in the
concrete cross-section, which resulted in higher strain transfer to the rebars
that exceeded the measurable range of the DOFS sensors. Consequently,
the raw data that fell below the threshold were deemed inaccurate and
unreliable. They were removed based on the manufacturer’s
recommendations.

The DOFS sensor used in this application only withstands loads up to
120 kN and is limited to 75% of the failure load. However, the experimental
results revealed a maximum strain measurement exceeding 80% of the
rebar’s yield strain. As such, it is recommended to utilise rebar-attached
DOFS sensors in RC structures.

Figure 5.11 displays the analysis results of the strain data obtained
from the bottom surface DOFS at different loadings, starting from 40 kN.
The figure presents raw strain data, raw strain data after removing the data
less than or equal to 0.15 SSQ threshold, SSQ variation, and 0.15 SSQ
threshold. The strain data at 40 kN load is unaffected, and the SSQ
variation along the DOFS was not below the 0.15 SSQ threshold. However,
for the 60 kN and 80 kN loadings, the SSQ variation graph is below the
threshold level at multiple locations.

Consequently, affected data were removed per the manufacturer’s
suggestions. The strain variation of the 60 kN and 80 kN graphs clearly
illustrates how the data were affected. The SSQ levels decreased with
increasing loads, and the number of affected data increased accordingly. It
is worth noting that the surface-attached DOFS sensor can only withstand
up to 40 kN load and 25% of the failure load. The concrete surface-attached
DOFS was significantly affected by low SSQ values when compared with the
rebar-attached DOFS. This is because the initiation of cracks and increasing
crack widths on the concrete surface due to the increasing loads led to

exceeding the measurable range of the DOFS-attached surface sensor.
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Therefore, caution is advised when employing surface-attached DOFS
sensors in RC structures, especially under high loads.

The experimental findings revealed that the bottom surface sensor
was the first to reach the 0.15 SSQ threshold, followed by the side sensor
for all six beams under investigation. Table 5.2 presents the Effect of SSQ

on long-span RC beams.

Table 5.2: Effect of SSQ on beams

Load R12C30 R16C30 R20C30
(kN) Bottom Side Bottom Side Bottom Side
sensor sensor sensor sensor sensor sensor
10
SSQ > 0.15 SsQ >
20 SSQ > SSsQ >
0.15
30 0.15 0.15 SSQ >
40 0.15
50
5 SSQ <£0.15 SSQ < <s <s
< <
0.15 Q Q
70 0.15 0.15 SSQ <
0.15
Load R12C60 R16C60 R20C60
(kN) Bottom Side Bottom Side Bottom Side
sensor sensor sensor sensor sensor sensor
5
10
SSQ > 0.15 SSQ >
15 SSQ > SsQ >
0.15 SSQ >
20 0.15 0.15
0.15
25
30
35 SSQ < 0.15 SSQ <
SSQ < SSQ <
40 0.15 SSQ <
0.15 0.15
0.15

According to the manufacturer’s instructions, measurements equal to
or less than 0.15 SSQ were disregarded. Despite this, inconsistencies in the

strain readings, also reported by other researchers [253, 256], were still
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present in the data. Anomalous data points were identified and eliminated
from the dataset to address this issue. Data presented in this section are
exclusively based on the maximum load the side surface sensors could

reach for the beams before falling below the 0.15 SSQ limit.

5.3.2. Rebar and surface strain - R20C30

Figure 5.12 depicts strain measurements obtained from the
experiment and simulation for the rebar in beam R20C30 for two different
load scenarios, namely 40 kN and 60 kN. Both the experimental and
simulated strain patterns exhibited a high degree of correlation. When the
load was at 60 kN, the maximum strain observed in the experiment for the
rebar was 992 L.

The strain peaks observed in the rebar exhibit a wave-like behaviour
in all measurements, which becomes more pronounced with increasing
load. The cause is the propagation of cracks along the concrete. Figure 5.13
provides a detailed explanation of this trend. It shows fluctuation in strain
results for the bottom surface sensor and the rebar sensor under a 10 kN
load for the beam R20C30. The graph shows that the spikes in the rebar
strain correspond to the surface strain peaks. Typically, the appearance of
strain peaks indicates the occurrence of tension-induced cracks in that
area, while strain valleys imply less strain on the concrete. Since surface
strain spikes result from crack formation, so do the spikes in rebar strain.
Therefore, it can be concluded that the rebar strain peaks result from

concrete cracks extending beyond the rebars.
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Figure 5.12: Experimental vs simulation rebar strain for beam R20C30

At 60 kN load, a difference of 128 pe existed between the maximum
experimental and simulation strains. The highest simulated rebar strain was
864 pe. This was because the wave-like behaviour was much more

pronounced in the experimental strain data than in the simulation results

for all measurements.
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Figure 5.13: Strain variation of rebar and bottom surface sensor at 10 kN
load for beam R20C30
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Figure 5.14 presents the strain measurements collected from both
the experiment and simulation for the R20C30 beam’s bottom surface
sensor at 40 kN. The maximum experimental strain was measured as 3557

ME, while the peak strain recorded from the simulation was 2811 pe.
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Figure 5.14: Experimental vs simulation bottom surface strain for beam
R20C30 at 40kN

Figure 5.15 depicts the strain variation along the side surface of beam
R20C30, as measured through experimentation and simulation, under two
load conditions: 40 kN and 60 kN. At 60 kN load, the maximum
experimental strain recorded was 5614 pg, while the maximum strain
registered in simulations was 4753 pue. It should be noted that the surface

sensor used for this measurement was positioned 25 mm above the bottom

surface of the concrete beam wall.
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Figure 5.15: Experimental vs simulation side surface strain for beam
R20C30 (a) at 40kN; (b) at 60kN

Figure 5.15 demonstrates an increase in the amplitude and frequency
of strain peaks as the load increased, attributed to the initiation, and
widening of cracks in the concrete material. Both the bottom and side
surfaces of the beam exhibited significant cracking under the presented
loads, and strain peaks were observable throughout the sensor length.
Notably, there were differences between the experimental and simulated

crack positions and the strain magnitude along the beam’s length, and the
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default CDP model’s isotropic nature may limit its capacity to predict
complex anisotropic cracking patterns accurately.

Despite these factors, the experimental and simulated data agreed
on the number of peak strains and the overall strain pattern. Figure 5.14
indicated 14 instances of peak strain values in the experimental data and
13 instances in the FEA data. Figure 5.15 (a) showed 15 peak strains in the
experimental data and 13 in the FEA data, while Figure 5.15 (b)
demonstrated 17 instances of peak strains in the experimental and FEA
analyses.

Therefore, the strain distribution (overall strain pattern) allows
validation of the FEA model. The strain data were generated to train a DL
model using CDP-based FEA data.

5.3.3. Rebar and surface strain - R16C30

The beam R16C30 was loaded in three different loading stages: the
first and the second stages involve loading up to 25 kN, and the third stage
involves loading up to 40 kN. Notably, the data presented in these figures
are based on a threshold of 0.15 SSQ. Figure 5.16 provides data for
variation in the rebar strain during different loading stages.

Figures 5.17 and 5.18 present data for variation in the bottom and
side surface strain during different stages of loading, respectively. Insights
can be gained into the behaviour of the bottom and side surface of the
beam under different loading conditions by analysing the data presented in
Figures 5.17 and 5.18.
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Figure 5.16: The experimental rebar strain variation for R16C30
(a) 0-25kN; (b) 0-25kN; (c) 0-40kN
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Figure 5.17: The experimental bottom surface strain variation for R16C30
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Figure 5.18: The experimental side surface strain variation for R16C30 (a)
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Upon analysing Figure 5.16, the main observation is the presence of
a residual rebar strain in Figures 5.16 (b) and (c), despite the beam being
relaxed for 10 minutes. A slight increase in rebar strain was noted during
the second loading phase [see Figures 5.16 (a) and (b)]. One potential
explanation for the slight increase in rebar strain could be attributed to
cracks within the concrete. In contrast, Figure 5.16 (a) shows no residual
rebar strain. Additionally, the figures showed strain peaks and valleys like
those observed in beam R20C30.

Analysing Figures 5.17 and 5.18 reveals that the strain increases as
the load is applied (which is expected). However, it should also be noted
that a residual surface strain is present in Figures 5.17 (b), (c), and Figures
5.18 (b) and (c), like the residual rebar strain observed in Figures 5.16 (b)
and (c). Even though the 25 kN limit was intended to ensure the beam
remained within its elastic range according to the hand calculation, strain
peaks were already evident and concrete surface cracking had occurred

before reaching this limit.

5.3.4. Rebar and surface strain - R12C30

The rebar strain changes at different stages of loading for beam
R12C30 are illustrated in Figure 5.19. This beam was loaded in three
stages. The first and second stages involved loading up to 15 kN each, and
the third stage involved loading up to 30 kN. It is important to note that
the data depicted in these figures were obtained using a 0.15 SSQ
threshold.
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Figure 5.19: The experimental rebar strain variation for R12C30
(a) 0-15kN; (b) 0-15kN; (c) 0-20kN
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Figure 5.20: The experimental bottom surface strain variation for R12C30
(a) 0-15kN; (b) 0-15kN; (c) 0-20kN
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Figure 5.21: The experimental side surface strain variation for R12C30

(a) 0-15kN; (b) 0-15kN; (c) 0-20kN
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The key finding of examining Figure 5.19 is that residual rebar strain
noted in Figure 5.19 (b) and (c), even after the beam was allowed to relax
for 10 minutes (the same observation as in R16C30). Furthermore, a slight
rise in rebar strain was observed during the second loading phase. In
contrast, Figure 5.19 (a) exhibits no residual rebar strain. Based on an
analysis of Figures 5.20 and 5.21, there is a presence of residual surface
strain in certain stages, specifically in Figures 5.20 (b) and (c) and Figure
5.21 (b) and (c). This is similar to the residual rebar strain in Figure 5.19
(b) and (c). Surface cracking of the concrete continued though the loading
limit was 15 kN. Due to loading and reloading, the crack may not close due
to aggregate interlocking and remain open to some extent, making it report

some strain (residual) after unloading.

5.3.5. The behaviour of residual strain

This section describes the assessment of the residual rebar strain in
R12C30 and R16C30 beams after the initial and subsequent loading stages.
Figures 5.22 and 5.23 compare the residual strain after each loading stage.
The figures demonstrate a slight increase in the residual strain during the
second loading stage compared to the first stage for both beams.

When an RC beam is subjected to a load, both the concrete and rebar
undergo deformation, increasing their strain. However, after unloading, the
concrete and rebar may not return to their original positions, which results
in residual strain. One of the main reasons for residual strain is the presence
of cracks in the concrete, which can cause the rebar to experience
additional strain. This additional strain can contribute to the residual strain
after unloading.

In this case, the residual strain was slightly increased during the
second pass of loading when compared to the first pass. This increase in
residual strain can be attributed to cracks in the concrete during the first
stage, which may have weakened the structure (stiffness reduction after
cracking) and made it more vulnerable to further damage during the second

stage of loading.
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Figure 5.22: Comparison of residual rebar strain after the first stage of
loading and second stage of loading for beam R12C30
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Figure 5.23: Comparison of residual rebar strain after the first stage of
loading and second stage of loading for beam R16C30

A study investigated the effect of the adhesive used on the residual
strain on the rebar. The experiment aimed to assess the residual strain of
12 mm and 16 mm diameter rebars with a procedure involving loading and

unloading using a universal tensile machine. Figure 5.24 illustrates the
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schematic diagram of the rebar with the attached DOFS, and Figure 5.25

presents the experimental setup.

Rebar Rebar attached DOFS
\ /
) 300 mm -
1000 mm

Figure 5.24: Schematic diagram of rebar with attached DOFS

- — ]
Attached DOFS =
sensor -

T Universal tensile
9 testing machine

Figure 5.25: Experimental setup of rebar testing
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Figure 5.26: Rebar strain variation at loading and unloading

(a) 12 mm diameter; (b) 16 mm diameter

Figure 5.26 (a) and (b) show the strain variations of rebar size 12
mm and 16 mm during loading and unloading. The rebars were strained up

to a maximum of 2500 pg, but the results indicate that the residual strain
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on the rebars is insignificant. This concludes that the impact of adhesive on

residual strain is negligible.

5.3.6. Rebar and surface strain - R20C60

Figure 5.27 illustrates the experimental rebar strain detected across
the sensor length, with a maximum strain of 790 pe recorded. The strain
peaks were confined to the 1.0 to 3.0 m range. This is because the loading
arrangement in the experiment had a relatively short-span of 600 mm,
meaning that the applied load was concentrated within that small area. As

a result, the strain readings were also concentrated within that sensor area.
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Figure 5.27: The experimental rebar strain variation for beam R20C60

Figures 5.28 and 5.29 illustrate experimental data on strain
measured on the concrete specimen’s bottom and side surfaces,
respectively. Only a limited number of strain peaks were noted in both
figures, up to a load of 30 kN. The maximum strain recorded for the bottom
sensor at this load level was 3354 pe and 4010 pe at 35 kN for the side
sensor.

Figure 5.29 displays the experimental data on strain measured on the
side surface of the concrete beam. As the load increased, new strain peaks
appeared, indicating the development of concrete cracks. Specifically, new

peaks have unexpectedly appeared in the side sensor graph between 30
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and 35 kN. Interestingly, the peak strain positions of the side sensor at 35
kN are well aligned with the peak strain positions of the rebar at 35 kN,
which can be identified in Figure 5.27. This alignment of peak strains

indicates damage in the concrete near the reinforcing bar.
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Figure 5.28: The experimental bottom surface strain variation for beam
R20C60
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Figure 5.29: The experimental side surface strain variation for beam
R20C60

5.3.7. Rebar and surface strain — R16C60
Asymmetric loading is an essential consideration in structural

engineering, as it can significantly affect the behaviour and performance of
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a structure. When a structure is subjected to asymmetric loading, the
resulting stresses and strains can be distributed unevenly. Therefore,
testing the effects of asymmetric loading on the proposed DL model is
crucial for robust SHM predictions.

The beam was asymmetrically loaded, and the variation in rebar
strain along the beam under experimental conditions is displayed in Figure
5.30, resulting in two distinct strain peaks of 725 pe and 730 pe under a
load of 30 kN. The graph shows that the load-affected area is less than 1

meter along the beam length.
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Figure 5.30: The experimental rebar strain variation for beam R16C60

Figures 5.31 and 5.32 present the surface strain variation along the
bottom and side sensors. Both graphs display two separate strain peaks
closely aligned, particularly when considering their position along the
sensor. This concludes that only two cracks occurred during the loading
process. The maximum strain recorded for the bottom sensors was 1929

He at a 25 kN load, while the side sensor recorded a maximum strain of

3759 pe.
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Figure 5.31: The experimental bottom surface strain variation for beam

R16C60
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Figure 5.32: The experimental side surface strain variation for beam
R16C60

5.3.8. Rebar and surface strain - R12C60

Figure 5.33 illustrates the experimental rebar strain for beam
R12C60. While two peaks of strain are visible, one peak is more prominent
than the other, indicating a maximum strain of 649 pe. This suggests that
the corresponding crack is larger in size compared to the other one. The

difference between the values of the two strain peaks is 462 pe.
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Figure 5.33: The experimental rebar strain variation for beam R12C60

Figures 5.34 and 5.35 depict the surface strain variation along the
bottom and side sensors, respectively. The cracked length observed in both
graphs is less than 1m. Two peaks of strain are visible, and one peak is

more pronounced than the other, consistent with the findings described in

Figure 5.33.
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Figure 5.34: The experimental bottom surface strain variation for beam
R12C60
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Figure 5.35: The experimental side surface strain variation for beam
R12C60

5.4. DL model training and testing with experimental data

Within this section, the DL model developed in Chapter 3 underwent
training using strain data extracted through FEA, followed by testing the DL
model by experimental strain data acquired by DOFS. The optimal number
of neurons was determined to achieve the highest training accuracy
through a trial-and-error approach during the training process. This
approach was preferred due to its flexibility and ability to provide faster
initial results.

The task involved using strain data obtained from a surface sensor
path in an FEA model as input to determine the rebar status (i.e., whether
the present rebar strain had exceeded/or not) as output. An ANN was
proposed to achieve this, with the output layer consisting of an output node.
The output node was assigned a value of “1” (if the limit was exceeded) or
“0” (if the limit was not exceeded) based on the rebar yield limit of 2500
ME. The initial training of the ANN was conducted using a dataset of short-

span RC beams.

5.4.1. Short-span RC beams
The ANN suggested in this investigation consisted of 25 input

neurons, with 15 neurons in the first hidden layer, 10 neurons in the second
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hidden layer, and a single output neuron. The DL model was trained to
predict the rebar tension status by 20% for this study.

The model’s training accuracy was 99.91%, while its validation
accuracy was 99.85%. Recall and precision were 0.9975 and 0.9972,
respectively. Figures 5.36 and 5.37 display the proposed ANN for short-
span RC beams and model accuracy plots, respectively. Five experimental
data sets under multiple load regimes were inserted to evaluate the DL

model, and Table 5.3 presents the outcomes.
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Figure 5.36: Proposed ANN for short-span RC beams
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Figure 5.37: DL model accuracy vs number of epochs

Table 5.3: Comparison of experimental outcome vs predicted outcome of
the DL model

Experimental DOFS Prediction of the DL model
surface strain measured 0 - 500 pe limit not exceeded in the
dataset (s) maximum rebar
rebar 1 - 500 pe limit exceeded in the
strain (pe) rebar (20% limit)

15 59 0

30 411 0

45 513 1

60 660 1

75 766 1

The study findings reveal that the DL model developed could
accurately categorise rebar strain by using experimental strain data for

short-span RC beams. However, the created DL model should be capable
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of predicting the structural health of long-span RC beams in concrete

structures. More information is provided under the following heading.

5.4.2. Long-span RC beams

The DL model was trained using the R20C30 dataset containing
75,000 data points. The ANN employed in this study comprised 101 input
neurons, 10 neurons in the first hidden layer, 8 neurons in the second
hidden layer, and 1 output neuron. The model was trained to predict the
rebar tension statuses at 10% increments from 10% to 90%, with the yield
strain of steel as 2500 pe. To evaluate the model performance, accuracy,
precision, and recall were used for each case. Figure 5.38 shows the

proposed ANN for long-span RC beams.
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Figure 5.38: Proposed ANN for long-span RC beams

After training, the DL model was used to predict the rebar tension

state for experimental data obtained using DOFS. Table 5.4 presents the
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assigned classes for each rebar tension state, while Table 5.5 provides
guidance for prediction. Table 5.6 shows the results of the DL model’s
predictions for the experimental data obtained from the bottom sensor and
side sensor for beams R12C30, R16C30, and R20C30, respectively.

Table 5.4: Assigned classes

Class Rebar tension state

Class O Rebar is strained within 0 pe - 250 pe
Class 1 Rebar is strained within 251 peg - 500 pe
Class 2 Rebar is strained within 501 peg - 750 pe
Class 3 Rebar is strained within 751 pe - 1000 pe
Class 4 Rebar is strained within 1001 pe - 1250 pe
Class 5 Rebar is strained within 1251 pe - 1500 pe
Class 6 Rebar is strained within 1501 pe - 1750 pe
Class 7 Rebar is strained within 1751 pe - 2000 pe
Class 8 Rebar is strained within 2001 pe - 2250 pe

Table 5.5: Guide for predictions

Colour Description

Correct prediction

Incorrect prediction

Table 5.6: DL model predictions for R20C30, R16C30, and R12C30

Beam, loading Load Maximum Rebar tension
and sensor (kN) experimental rebar state
description strain (pg) in the prediction

input data set

R20C30 bottom 10 71 Class O
sensor 20 185 Class O
30 438 Class 1
40 638 Class 2
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R20C30 side 10 71 Class O
sensor 20 185 Class O
30 438 Class 1
40 638 Class 1
50 823 Class 2
60 992 Class 3
R16C30 bottom 5 25 Class O
sensor - first 10 74 Class O
stage up to 25 kN 15 127 Class O
20 266 Class 0
25 434 Class O
R16C30 side 5 25 Class O
sensor - first 10 74 Class 0
stage up to 25 kN 15 127 Class 0
20 266 Class O
25 434 Class O
R16C30 bottom 5 232 Class O
sensor - second 10 287 Class O
stage up to 25 kN 15 346 Class 0
20 408 Class O
25 469 Class 0
R16C30 side 5 232 Class 1
sensor - second 10 287 Class 1
stage up to 25 kN 15 346 Class 1
20 408 Class 0
25 469 Class O
R16C30 bottom 5 247 Class O
sensor - third 10 309 Class 0
stage up to 30 kN 15 370 Class 0
20 439 Class O
25 494 Class O
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30 645 Class 1
R16C30 side 5 247 Class 1
sensor - third 10 309 Class 1
stage up to 40 kN 15 370 Class 0

20 439 Class 0

25 494 Class 0

30 645 Class 1

35 826 Class 2

40 993 Class 2
R12C30 bottom 5 18 Class 0
sensor - first 10 80 Class O
stage up to 15 kN 15 492 Class 1
R12C30 side 5 18 Class 0
sensor - first 10 80 Class 0
stage up to 15 kN 15 492 Class 1
R12C30 bottom 5 391 Class 1
sensor - second 10 471 Class 1
stage up to 15 kN 15 586 Class 1
R12C30 side 5 391 Class 1
sensor - second 10 471 Class 1
stage up to 15 kN 15 586 Class 1
R12C30 bottom 5 344 Class 1
sensor - third 10 414 Class 1
stage up to 20 kN 15 498 Class 1

20 776 Class 3
R12C30 side 5 344 Class 1
sensor - third 10 414 Class 1
stage up to 20 kN 15 498 Class 1

20 776 Class 1
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Despite achieving high scores for training accuracy, validation
accuracy, precision, and recall (all above 99%), the model’s class prediction
accuracy was only 56% for experimental data, correctly predicting 36 out
of 64 cases. The accuracy of predicting beam R20C30 was 80% because
the DL model was trained using the R20C30 dataset, resulting in higher
prediction accuracy for that particular beam. However, other beams had
lower prediction accuracy. This indicates that the model is unreliable for
making accurate predictions and requires further improvements.

Instead of using raw distributed R20C30 FEA strain data as inputs to
the DL model, a study was conducted to train the DL model by basic
statistical parameters such as maximum, minimum, average, and standard
deviation, which were calculated for each row data in the R20C30 strain
dataset. After optimising the model using these parameters, the DL model
performed well using only maximum, minimum, and average strains as
input training parameters. As a result, the proposed ANN will use these
parameters as inputs for future studies. Figure 5.39 presents the proposed
ANN with new input parameters.

On the basis of this foundational knowledge, a deeper delve into the
parametric analysis reveals more nuanced details. To improve the
performance of the DL model and streamline its input parameters, a
comprehensive sensitivity analysis was conducted. This investigation
investigated the accuracy of predictions derived from various statistical
parameters and their combinations as summarises in Table 5.7. Individual
reliance on the Minimum parameter resulted in an accuracy of 4.16%.
However, the Maximum and Average parameters, when used separately,
exhibited significantly superior accuracy, with values of 60.45% and
53.12%, respectively. Notable is the observation regarding combined
parameters: while a pairing of Minimum and Maximum obtained a 64.58%
accuracy rate, the combination of Minimum and Average significantly
outperformed other sets, achieving an impressive 77.08% accuracy rate.
Surprisingly, combining Maximum and Average produced an accuracy of

53.12%, identical to that of the Average parameter alone. This nuanced

176



investigation not only validates the crucial roles of the Maximum and
Average parameters, but also highlights the combined effectiveness of the
Minimum and Average parameters in the predictive model. Such
discoveries have significant ramifications for future DL model
configurations, highlighting the importance of judicious parameter selection

for optimal performance.

Table 5.7: Sensitivity analysis of input parameters

Input Parameter Prediction Accuracy (%)
1 Minimum 4.16
2 Maximum 60.41
3 Average 53.12
4 | Minimum and Maximum 64.58
5 Minimum and Average 77.08
6 Maximum and Average 53.12

Table 5.8 summarises the performance indicators of the DL model
after training with stat parameters, which include the maximum training
accuracy, validation accuracy, precision, and recall for each rebar strain
limit. Table 5.8 presents the DL model predictions for R20C30, R16C30,
R12C30, R20C30, R16C30, and R12C30.
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Figure 5.39: Proposed ANN with new input parameters

Table 5.8: DL Model performance indicators — Training with stat parameters

Model training Model performance
(Rebar strain Training Validation | Precision Recall
limits) accuracy accuracy
(%) (%)
10% 99.80 99.75 0.9995 0.9961
20% 99.41 99.45 0.9944 0.9933
30% 99.45 99.37 0.9944 0.9950
40% 98.92 98.99 0.9919 0.9888
50% 99.24 99.20 0.9918 0.9929
60% 99.21 99.28 0.9909 0.9932
70% 98.96 98.98 0.9874 0.9892
80% 98.96 98.88 0.9873 0.9930
90% 98.64 98.51 0.9831 0.9899
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Table 5.9: The DL model predictions for R20C30, R16C30, R12C30,
R20C30, R16C30, and R12C30

Beam, loading and Load Maximum Rebar tension
sensor description (kN) experimental state
rebar strain prediction
(He) in the
input data set

R20C30 bottom 10 71 Class 0
sensor 20 185 Class 1
30 438 Class 1

40 638 Class 2

R20C30 side sensor 10 71 Class 0
20 185 Class 1

30 438 Class 1

40 638 Class 2

50 823 Class 3

60 992 Class 3

R16C30 bottom 5 25 Class O
sensor - first stage up 10 74 Class O
to 25 kN 15 127 Class O
20 266 Class 1

25 434 Class 1

R16C30 side sensor - 5 25 Class O
first stage up to 25 kN 10 74 Class 0
15 127 Class O

20 266 Class 1

25 434 Class 1

R16C30 bottom 5 232 Class O
sensor — second stage 10 287 Class 1
up to 25 kN 15 346 Class 1
20 408 Class 1
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25 469 Class 1
R16C30 side sensor - 5 232 Class 1
second stage up to 25 10 287 Class 1
kN 15 346 Class 1
20 408 Class 1
25 469 Class 1
R16C30 bottom 5 247 Class 1
sensor - third stage 10 309 Class 1
up to 30 kN 15 370 Class 1
20 439 Class 1
25 494 Class 1
30 645 Class 1
R16C30 side sensor - 5 247 Class 1
third stage up to 40 10 309 Class 1
kN 15 370 Class 1
20 439 Class 1
25 494 Class 1
30 645 Class 1
35 826 Class 2
40 993 Class 2
R12C30 bottom 5 18 Class O
sensor - first stage up 10 80 Class O
to 15 kN 15 492 Class 1
R12C30 side sensor - 5 18 Class O
first stage up to 15 kN 10 80 Class 0
15 492 Class 1
R12C30 bottom 5 391 Class 1
sensor — second stage 10 471 Class 1
up to 15 kN 15 586 Class 1
5 391 Class 1
10 471 Class 1
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R12C30 side sensor - 15 586 Class 1
second stage up to 15
kN
R12C30 bottom 5 344 Class 1
sensor - third stage 10 414 Class 1
up to 20 kN 15 498 Class 1
20 776 Class 1
R12C30 side sensor - 5 344 Class 1
third stage up to 20 10 414 Class 1
kN 15 498 Class 1
20 776 Class 2
R20C60 bottom 5 17 Class O
sensor 10 31 Class O
15 85 Class 0
20 258 Class 1
25 476 Class 1
30 659 Class 1
R20C60 side sensor 5 17 Class 0
10 31 Class O
15 85 Class O
20 258 Class 0
25 476 Class 1
30 659 Class 1
35 790 Class 2
R16C60 bottom 5 18 Class O
sensor 10 32 Class O
15 57 Class O
20 188 Class O
25 493 Class 1
R16C60 side sensor 5 18 Class O
10 32 Class O
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15 57 Class 0
20 188 Class O
25 493 Class 1
30 730 Class 2
R12C60 bottom 5 9 Class 0
sensor 10 20 Class 0
15 35 Class O
20 614 Class 1
R12C60 side sensor 5 9 Class 0
10 20 Class 0
15 35 Class O
20 614 Class 1

According to Table 5.9, the DL model’s class prediction accuracy was
deemed acceptable, achieving a success rate of 81.25% (76 out of 96). The
incorrect predictions can be separated into two categories. Firstly, incorrect
predictions are possible if the actual rebar strain is extremely close to the
limit that defines the classes. Secondly, as previously discussed in Section
5.3.3, the experimental rebar strain exhibited a “wavy behaviour” as
loading increased, compared to the simulated rebar strain, which resulted
in inaccurate predictions. Despite these limitations, the model’s accuracy
remains satisfactory as the DL model provided reliable predictions for both
symmetric and asymmetric loading conditions. Hence, it can be utilised as
the most suitable model to assess the structural health of RC beams.

It is recommended to analyse the results based on individual sensors.
The attached bottom sensor was analysed initially, achieving an 84.45%
accuracy rate by correctly predicting 38 out of 45 observations. The side
sensor had a 78.43% accuracy rate, with 40 out of 51 observations
predicted correctly. Since the accuracy of both sensors exceeded 78%, the
suggested SHM system’s usefulness can be improved by using either sensor

as a substitute if one fails, thereby eliminating dependence on a single
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sensor. However, the bottom sensor was significantly affected by low SSQ
values (< 0.15) under increasing loads, despite its 84.45% accuracy. As a
result, the author recommends using side sensors instead of bottom

sensors for increasing loads.

5.4.3. DL model sensitivity analysis

Sensitivity analysis is a vital tool for assessing how the output of a
DL model changes when the input parameters are varied. In the context of
SHM prediction, sensitivity analysis is crucial for evaluating how changes in
input parameters can affect the accuracy and reliability of SHM algorithms
in detecting and predicting structural damage. The DL model’s performance
with limited information can be evaluated by limiting the input data.
Therefore, to assess model robustness, the performance of the statistical
parameter-based DL model with limited strain input data was evaluated.
The DL model inputs, maximum, minimum, and average strain, were
calculated considering this limited data input. This was conducted in two
phases.

During the initial stage of the model assessment, strain data were
obtained, as illustrated in Figure 5.40. Specifically, 25% of the sensor data
was chosen for each segment, and the entire experimental dataset,
consisting of 96 data points from the Experimental stage of long-span beam
size, was evaluated. Table 5.10 presents the sensitivity analysis results

using the proposed method during the first phase.
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Figure 5.40: Strain data extracting segments for phase 1

183



Table 5.10: Sensitivity analysis for Phase 1

Segment Prediction accuracy (%)
A 54
B 69
C 79
D 54

The information in Table 5.9 indicates that the accuracy obtained
using strain data from Segment A and Segment D is the lowest at 54%. On
the other hand, Segment B yields an accuracy of 69%, while Segment C
provides the highest accuracy of 79%.

Segment C achieved the highest accuracy level because the
asymmetric loading was applied above this segment, which positively
impacted the increase in accuracy. The underlying reasons for higher
accuracies obtained in segments C and D could be that these sections
exhibit more strain variation than other sections. Consequently, data will
be selected from the central region of the sensor to conduct phase 2 of the
sensitivity analysis.

Figure 5.41 indicates that the sensitivity analysis for Phase 2 involved
introducing strain data from the centre of the beam, beginning at 10% and
increasing in 10% (0.3 m) increments up to 100%. Meanwhile, Figure 5.42
illustrates how the prediction accuracy varies concerning the percentage of
input data.

As per Figure 5.42, the accuracy of prediction increases with the
percentage of input data, but the rate of increase gradually diminishes. The
data indicate that prediction accuracy begins at 52% when there is 10%
input data and rises steadily to 81% when there is 100% input data.
However, the rate of increase in accuracy decreases as the percentage of
input data increases. For instance, there is a 22%-point increase in
accuracy when the input data increases from 10 to 20%, but only a one per
cent point increase in accuracy when the input data increases from 80 to
90%.
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Figure 5.41: Strain data extracting segments for phase 2
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Figure 5.42: Variation of prediction accuracy for phase 2

During the DL model’s testing phase, the substantial increase (22%)
in predictive accuracy from 10% to 20% of the input data may be

attributable to two critical factors.
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First, the variation and range of the three parameters maximum
strain, minimum strain, and average strain within the first 10% of the test
data may make it difficult for the model to make accurate predictions,
resulting in a reduced accuracy level. As the model is exposed to the
remaining 10% of the test data, the distribution of the parameters may
become more closely aligned with the training data, significantly improving
predictive performance.

Second, the impact of each parameter on the model’s prediction can
vary. If, for example, maximum strain is a highly influential parameter and
the initial 10% of test data exhibited atypical values for this parameter, the
accuracy could be compromised. As the model is evaluated on the
remaining 10% of the data, its accuracy will likely increase if these values
lie within a more typical range. Even with 20% of the input data, it is
evident that an acceptable accuracy level of 74% can be achieved.
Therefore, the author recommends using at least 20% of input data with
this DL model.

In the field of SHM for RC beams, established techniques such as AE
monitoring, vibration-based monitoring, and ultrasonic testing have
traditionally set the benchmark. The research introduces a novel framework
that employs concrete surface strain as the primary input to a DL model,
with the objective of predicting rebar strain classifications. To the best of
author’s knowledge, this framework for SHM in concrete beams has not
been adopted, resulting in a lack of direct benchmarks for this technique.

While broader SHM techniques offer well-established benchmarks in
terms of precision and adaptability, this framework's methodology stands
out due to its uniqueness. The developed DL model displays a remarkable
accuracy of 81.25 percent. Moreover, a sensitivity analysis reveals an
accuracy of 74% when only 20% of the input data are utilized, highlighting
its robustness. Recognized are the challenges posed by the absence of
direct benchmarks for this specific method within the framework. However,
it is anticipated that the research will set the groundwork for future studies

in this pioneering field. The emergence of benchmarks is anticipated to
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facilitate comparisons between studies with comparable objectives as the
method gains widespread acceptance.

The primary contribution of this study is the development of a novel
and versatile SHM framework that incorporates the capabilities of FOS, FEA,
and DL. The primary goal was to develop a method that is adaptable and
generalizable across a variety of structural applications. To validate and
demonstrate the capability of this framework, RC beams were chosen as
the first test subject since these beams could be parts of bigger
infrastructure, like bridges, or smaller, simpler constructions in the real
world. While the study did concentrate extensively on these beams, it is
important to note that the SHM framework's principles are not limited to
this specific application. In essence, other researchers and practitioners can
adapt the framework to other structural forms, materials, and conditions
with relative ease. The primary objective is to provide the community with
a structured method that, while tested on RC beams, has the foundational
scope to be extrapolated to diverse real-world situations.

Therefore, it provides a foundational model for those who wish to
extend this research or employ the framework in various contexts,
potentially leading to additional advancements and applications in the

broader field of structural health monitoring.

5.5. Summary

The chapter presented the study's results on predicting the structural
health of concrete beams using DL techniques to aid in maintaining and
inspecting civil infrastructure. The chapter covered experimental and
simulation results, the model training process, and predictions for
symmetric and asymmetric flexural loading.

The strain behaviours of RC beams under flexural loading were
investigated using a combination of empirical data and simulations to
generate a robust dataset required for model development in an intensive
and detailed two-tiered experimental process. The strain pattern and peak

strain locations on the beam’s concrete and rebar surface correlated with
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FEA results, validating the effectiveness of CDP-based FEA for in-depth
strain data mining. As a consequence of this preliminary phase, six long-
span RC beams (R12C30, R16C30, R20C30, R12C60, R16C60, and
R20C60) measuring 4000 mm x 200 mm x 400 mm were subjected to
four-point bending tests. A benchmark was established for the predictive
simulations of the remaining beams by experimentally validating the strain
behaviour of the concrete surface and reinforcing rods of the R20C30 beam.
These beams were subjected to both symmetric and asymmetric loading
conditions, and strain measurements along sensor lengths were
meticulously recorded under varying loading conditions to generate a
comprehensive dataset. This data-driven, holistic comprehension of
structural integrity is exemplified by using this robust and comprehensive
strain data as a test set to evaluate the performance of a DL model in
predicting the structural health of RC beams.

The DL model underwent training using the R20C30 dataset, which
included 75,000 data points. Of this, 64% was allocated for training, 16%
for validation, and 20% for testing. The model was designed to predict
rebar tension statuses at 10% increments ranging from 10% to 90%. A
study was conducted to incorporate basic statistical parameters such as
maximum, minimum, average, and standard deviation instead of using
solely distributed strain data as inputs. Optimising the model with these
parameters revealed that the model performs well when utilising only
maximum, minimum, and average as inputs. The model’s class prediction
accuracy was acceptable, achieving a success rate of 81.25% (76 out of
96).

Sensitivity analysis assessed the accuracy of DL model predictions.
Two phases of sensitivity analysis were conducted using strain data from
different sensor segments. The central region of the sensor was selected
for Phase 2 after considering Phase 1 results. Notably, the prediction
accuracy increases as the percentage of input data increases. Still, the rate
of increase slows down, and with only 20% of input data, a reasonable

accuracy of 74% can be achieved.
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This extensive study anticipates that the experimental results
validate the efficacy of CDP-based FEA for strain data mining, thereby
reinforcing the foundational integrity of the proposed framework. The
presence of a rigorous validation and testing phase within the framework
not only ensures its accuracy but also emphasises its dependability. The
model’s ability to predict structural health is supported by an impressive
class prediction accuracy of 81.25% (76 out of 96). The sensitivity analysis
demonstrates a remarkable 74% accuracy with only 20% of the input data,
indicating its efficacy and practical applicability despite limited data input.
The inherent flexibility of the framework, designed to estimate rebar
tension statuses in 10% increments, accommodates varying levels of
analysis granularity and permits customisation to meet specific needs. In
addition, incorporating fundamental statistical parameters such as
maximum, minimum, and average as inputs makes the framework more
user-friendly and accessible. The robustness of the proposed framework
and its potential to pave the way for an innovative, data-driven approach

to predicting and comprehending structural integrity is thus reaffirmed.
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CHAPTER 6: CONCLUSIONS AND FUTURE
RESEARCH

6.1. Overview of the research work

Chapter Six provides a comprehensive overview of the research
conducted for this thesis. This chapter reviews the main research findings
and their implications for the field, summarises the research contributions
presented in this doctoral thesis, and discusses their prospective impact on
the field. Finally, it suggests potential areas for future research.

This study’s primary outcome was a framework for monitoring the
structural health of RC beams using distributed sensor networks, FEA, and
DL. The research objectives were identifying critical components for sensor
network installation, generating a strain dataset from a validated FEA
model for DL model training, designing, and developing sensor attachment
methods, and developing a DL model for structural health prediction in RC
beams.

This study incorporated a literature review, experimental work, FEA
modelling, and developing a DL model to form a framework. The research
contributed to a better understanding of SHM in RC beams. It demonstrated
the potential of distributed sensor networks, FEA modelling, and DL

techniques to improve the safety of these structures.

6.2. Summary of the key findings
This research has introduced a new SHM method for RC beams that

utilises DOFS, FEA, and DL to anticipate the rebar tension state of a

structure while it is subjected to service loads. Key findings from each stage

of the research are as follows:

1. The literature review highlighted the significance of identifying critical
components in RC beams, choosing appropriate sensors, and the most
suitable techniques of FE modelling and DL for SHM. Due to its significant
role in flexural failure and its influence on structural health prediction,

the rebar was chosen as the most critical component in RC beams in this
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study. DOFS were selected because of their sensitivity and precision in
measuring strain along the beam’s surface, outperforming conventional
strain sensors in this application. A CDP-based FEA model was chosen
to accurately simulate the behaviour of concrete beams and bridge the
distance between experimental data and predictive modelling. In
addition, a DL model based on ANN was selected for structural health
prediction.

2. This study has successfully created a CDP-based FEA model for SHM
applications to comprehend how a detailed FEA model for RC beams can
be developed and correlated with experimental data from the DOFS
sensor network. It revealed that the CDP-based FEA model correlates
well with experimental stain data gathered by the DOFS network, which
includes rebar sensors, side surface sensors, and bottom sensors. This
admissible correlation demonstrates the model’s precision and
dependability. The model was validated in two distinct phases to ensure
its robustness: the first phase focused on short-span RC beams, and the
second phase investigated long-span RC beams. This study
demonstrates the credibility of the CDP-based FEA model in accurately
anticipating the behaviour and integrity of RC structures by analysing
the performance of the FEA model under flexural loading.

3. The most efficient method for creating a strain dataset from the FEA
model for training the DL model was to generate a comprehensive and
diverse dataset by strategically varying the dilation angle and the
number of steps in the FEA model. This methodology ensures that the
dataset encompasses a wide variety of strain scenarios. A
comprehensive and diverse dataset is necessary for training a DL model
because it enables the model to generalise well to new, unexplored data,
thereby enhancing the model’s overall performance. A reinforced
concrete element has a unique dilation angle. However, the goal is to
train how the DL model adapts to variations in the dilation angle, even
though these variations may not occur in isolation in practice. A variety

of strain patterns ranging from brittle to stiffer conditions were
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introduced into the dataset by modifying the dilation angle in the FEA
model. Concrete is a complex and heterogeneous material with inherent
uncertainties and variations in its characteristics. It was expected that
considering various dilation angles would help the SHM prediction model
to enhance robustness and uncertainty quantification. Changing the
number of FEA model steps is an additional essential aspect of the
method. This parameter controls the granularity and resolution of the
generated strain data, allowing the dataset to contain a range of levels
of detail.

. In the SHM context, it can be difficult to secure optimally and position
sensors on the concrete surface and rebars of RC beams. The sensor
attachment method and installation procedures devised in this study
effectively addressed these obstacles. As the attachment method, two
varieties of adhesive bonding using a two-component epoxy glue were
chosen due to their numerous benefits, including ease of installation,
durability, and minimal interference with the RC beam’s structural
integrity. The installation procedures were meticulously designed,
considering variables such as surface preparation, curing time, and
environmental conditions to ensure accurate sensor positioning - a
crucial aspect for accurate strain measurements. The secure and optimal
positioning of sensors enabled precise strain monitoring on the RC
beams, resulting in accurate measurements for the DL model’s input. By
implementing these methods and procedures, the study accomplished a
high level of reliability and precision in measuring the surface and rebar
strain of RC beams, with potential applications in real-world structures.
. The DL model was created to predict the structural health of RC beams
using data obtained by the DOFS sensor network. This network is
comprised of two types of concrete surface sensors: attached to the
bottom surface and side surface, which monitor the structural health
under several loading conditions, such as symmetric and asymmetric
loads. The DL model’s performance and its applicability for evaluating

the structural health of concrete beams were assessed based on the

192



accuracy of its predictions. The outcomes demonstrate that the DL
model performs well, attaining an overall accuracy of 81.25%
(predicting 76 out of 96 instances correctly) for symmetric and
asymmetric loading conditions. Each sensor’s accuracy was analysed
under section 5.4.2 to better understand the model’s efficacy. The
bottom sensor’s accuracy rate was 84.45%, while the side sensor’s
accuracy rate was 78.43%. The comparably high levels of accuracy of
both sensors enable their potential interchangeability or replacement.
Due to its comparable accuracy in measurement, the alternative sensor
could preserve the integrity of data collection in the event of sensor
failure or unavailability. This interchangeability ensures data integrity
and provides operational continuity during critical situations, thereby
enhancing the system’s overall robustness and resilience. In addition,
this strategy offers practical and cost-effective benefits, as it eliminates
the need for specific alternatives for each sensor type. This adaptability
increases the robustness of the proposed SHM system by reducing its
reliance on a single sensor type and assuring continued operation. The
sensitivity analysis indicates that 74% accuracy can be achieved with
just 20% of input data. This suggests that the model can make accurate

predictions with a limited amount of data.

6.3. Summary of the contributions

This doctoral thesis has significantly contributed to the field of SHM
of the RC beams through the research presented. Following is a summary
of key contributions:

1. A Comprehensive SHM Framework for RC Beams: This study presents
an innovative framework for SHM in RC beams, including identifying
critical components, the design of sensor attachment methods,
generation of a strain dataset from a validated FEA model, and the
development of a DL model for structural health prediction. This
exhaustive framework will serve as a guide for future research in the

sector and enhance the potential for SHM applications in RC structures.
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2. CDP-Based FEA Model: The development and validation of a CDP-based
FEA model for SHM applications in RC beams is a notable contribution of
this study. This model precisely simulates the behaviour of RC beams
under various loading conditions and provides a dependable method for
generating strain datasets for DL model training. In addition, the
validation of the model on both short and long-span RC beams by using
strain data demonstrates its versatility and applicability across a wide
range of structural dimensions.

3. Strain Dataset Generation Methodology: The research has developed a
method for generating an exhaustive and diverse strain dataset from
the FEA model. The proposed method, which entails varying the dilation
angle and number of steps in the FEA model, ensures that the dataset
contains a wide variety of strain scenarios, thereby augmenting the
overall performance of the DL model.

4. Sensor Attachment Method and Installation Procedures: The research
has produced reliable methods and procedures for installing sensors on
RC beams. These protocols guarantee the optimal placement of sensors,
resulting in accurate strain measurements that improve the
dependability of SHM. This contribution is significant because it
addresses a critical problem in SHM and thus offers a potential solution
for accurate strain measurement in real world RC structures.

5. DL Model for Structural Health Prediction: The development of a DL
model capable of accurately predicting the structural health of RC beams
is a substantial contribution to SHM. The model’s high accuracy and
sensitivity analysis demonstrated its dependability and suitability for
SHM in RC beams, which indicates the potential for accurate predictions
with limited data. In addition, analysing the precision of various sensors
under varying loading conditions provides potential strategies for
ensuring data integrity and operational continuity in emergencies.

This thesis contributes substantially to the existing knowledge in SHM
of RC beams. The exhaustive SHM framework, the methods for sensor

installation, the validated FEA model, the novel strain dataset generation
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methodology, and the reliable DL model all offer potential solutions to the
challenges associated with  SHM of RC beams. In addition, these
contributions pave the way for future research and development in this vital
field.

6.4. Generalisation of the SHM framework

The SHM framework proposed in this study is for RC beams. Figure
6.1 presents the flowchart for the generalisation of the framework. The
following stages explained in the text can generalise the framework for a

variety of structures and conditions:

Figure 6.1: Flowchart for generalisation of the framework

1. Identify critical components: As per this study, a new analysis is
necessary to identify the most crucial structural components for the type
of structure under investigation. These components may differ
depending on the structure type. This initial stage is essential for
establishing the SHM framework’s focus.

2. Choose appropriate sensors: The selection of sensors must be
reconsidered in light of the structure’s type, and the identified critical
components. For instance, if the structure is made of a distinct material,

more sensitive sensors to that material may be necessary.
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3. Reconfigure the FEA modelling: Depending on the complexity and
characteristics of the new structure, it may be necessary to reconfigure
the existing FEA model. This may involve selecting a different FEA model
or modifying the current model’s parameters.

4. Modify the method of sensor attachment and installation procedures:
Depending on the material and geometry of the new structure, a new
method for securing and positioning sensors may be required.

5. Adapt the data generation methodology: Depending on FEA and DL
models, the data generation methodology may need to be modified. The
dilation angle and number of steps may vary in the FEA model, if the
structure is concrete.

6. Reconfigure the DL techniques: Depending on the complexity and
characteristics of the new structure, reconfiguring the existing DL model
may be necessary. The model may have to modify to accommodate
various input data types or generate several predictions.

The framework introduced in this study can be generalised to other
structures and conditions by following these procedures. Remembering that
each new framework application may need modifications and adaptations
to fit the particular context is necessary. Nonetheless, the study’s overall

methodology and lessons learned can serve as a valuable guide.

6.5. Suggestions for future research
Considering the advancements in SHM and the growing reliance on such

systems for the safety of infrastructure, the following directions can provide

valuable insights for future research:

1. Sensor Exploration: To optimise SHM systems, a comprehensive
analysis of various DOFS sensors is required. To determine the optimal
sensor for specific applications, its precision, sensitivity, durability, and
price must be evaluated. In addition, exploring multi-sensor fusion
techniques may provide a means to improve accuracy and guarantee

redundant data acquisition in SHM scenarios.
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. Sensor Longevity: As sensors serve as the eyes and hearing of SHM
systems, their durability and environmental stability are essential. Their
operational life and dependability can be determined through rigorous
testing in varying temperatures, humidity levels, and physical stressors.
Such evaluations provide a greater comprehension of the sensor's
performance over extended time periods and under varying conditions.
. Framework Extension: Expanding the scope of the current SHM
framework can cast light on its applicability to diverse RC structures
including slabs, columns, and even expansive structures such as bridges
and multi-story buildings. Incorporating additional non-destructive
evaluation methods can enhance the framework and ensure an all-
encompassing monitoring strategy.

. FEA Models: A greater demand exists for sophisticated CDP based FEA
models that can accurately depict the various types of damage,
deterioration processes, and detailed non-linear behaviours that
concrete exhibits under various loads.

. Comparative Studies: A comparative study of various methodologies
applied to similar RC structures can be useful for maximising the efficacy
of SHM systems. This would highlight their respective benefits,
limitations, and ideal applications. In addition, a combination of
traditional monitoring systems and emerging DL models could provide

an advanced SHM strategy that combines the best of both realms.
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