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ABSTRACT 

This thesis presents a novel framework for structural health 

monitoring (SHM) of reinforced concrete (RC) beams based on fibre optic 

sensor (FOS) technology, finite element analysis (FEA), and deep learning 

(DL). The proposed research addresses the limitations of existing SHM 

methods by constructing a tailored sensor network, a comprehensive strain 

dataset, and an efficient DL model for accurate predictions. The study 

began with a comprehensive analysis of current SHM practises, focusing on 

applying and incorporating FOS, FEA, and DL in monitoring structural 

health. Distributed optical fibre sensors were used to establish a sensor 

network and acquire strain data from RC beams subjected to different 

loading conditions. Concrete damaged plasticity-based FEA model was 

established and validated with experimental strain data. The validated 

model has been used to generate a strain dataset. This dataset was then 

used to train a DL model for predicting the structural health of RC beams 

based on artificial neural network architecture. The proposed SHM 

framework was exhaustively validated via a two-tiered experimental 

procedure involving short and long-span RC beams subjected to various 

loading scenarios. The predictive capabilities of the DL model were 

evaluated rigorously using the extensive strain data derived from these 

experiments. The model prediction has been classified into eight classes, 

and the prediction accuracy was impressive 81.25%. Sensitivity analysis 

revealed a robust prediction accuracy of 74% with only 20% of input data. 

This study is novel due to its integrated approach to SHM, which leverages 

the assets of FOS, FEA, and DL to provide precise, data-driven insights into 

the structural health of RC beams. This method not only improves the 

efficacy and precision of SHM, but it also has the potential to be applied to 

other types of structures, thereby creating new research opportunities and 

field advancements. 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

The significance of structural health monitoring (SHM) in civil 

engineering has increased in recent years, as it is essential for sustaining 

the safety, resilience, and durability of infrastructure assets such as bridges 

[1-3], buildings [4-6], and pipelines [7-9], which are the backbone of 

modern societies. Demand for dependable and efficient civil structures has 

increased as the global population and rate of urbanisation continue to rise. 

These structures are subject to a multitude of stressors, such as natural 

hazards such as earthquakes [10-12] and floods [13-15], material 

degradation due to ageing [16-18] and corrosion [19-21], and mechanical 

loads from traffic and wind forces [22, 23], which can lead to structural 

deterioration or even destructive failure. 

Engineers can identify and monitor the health of these structures by 

using SHM techniques, allowing for the early detection of damage, defects, 

or other distress symptoms. This data enables asset managers to make 

informed decisions regarding maintenance, repair, and replacement, 

ensuring the infrastructure’s structural integrity and functionality [24]. This 

proactive approach reduces the risk of structural failure and its associated 

consequences, including loss of life and property. It also optimises resource 

allocation, thereby reducing financial and environmental costs associated 

with infrastructure management.  

SHM also contributes to the ecological development of our built 

environment by extending the service life of structures and decreasing the 

demand for new construction [25]. The environmental impact of civil 

engineering projects can be diminished by perpetually monitoring and 

addressing structural issues, as fewer raw materials and energy are 

consumed, and waste generation is minimised. In addition, SHM 

technologies can monitor infrastructure resilience to climate change and 

other environmental challenges [26] by providing data-driven insights into 
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structural behaviour under varying conditions and facilitating the 

development of adaptive strategies. 

SHM systems can also provide valuable data for research and 

development, enabling engineers to better understand the structures’ 

behaviour under various loading conditions [27]. This leads to more 

efficient, durable, and resilient infrastructure design and construction. In 

this way, SHM contributes to developing innovative materials, designs, and 

construction techniques that will influence the future of our built 

environment. 

Reinforced concrete (RC) beams serve as a fundamental component 

in the construction of a broad range of civil structures, including buildings 

[28] and bridges [29]. They play a crucial role in the modern infrastructure. 

The inherent properties of RC, a composite material formed by embedding 

steel reinforcement bars within a concrete matrix, enable it to withstand 

both compressive and tensile loads effectively. This unique combination of 

strength and ductility enables RC beams to distribute structural loads 

efficiently and provide robust support for the diverse load-carrying needs 

of infrastructure assets.  

Current methods of SHM for civil structures, including concrete 

beams, play a crucial role in preserving the integrity and safety of these 

vital infrastructure components. Several non-destructive techniques have 

been developed and implemented to evaluate and monitor the condition of 

civil structures, allowing engineers and asset managers to make informed 

decisions regarding maintenance and repair strategies [30]. 

Non-destructive testing (NDT) techniques are extensively employed 

in SHM because they permit structural health evaluation without damaging 

the beams. Despite the subjectivity of human judgement and accessibility 

restrictions, visual inspection [31, 32] continues to be a popular and cost-

effective technique. Advanced NDT techniques like ground-penetrating 

radar (GPR) [33], which uses electromagnetic waves to detect internal 

defects, acoustic emission (AE) monitoring [34], which tracks the release 

of elastic energy due to micro-cracking within the concrete, and vibration-
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based monitoring [35], which tracks changes in a structure’s vibrational 

characteristics (such as natural frequency, mode shapes, or damping ratio) 

to track damage, have been developed to overcome these limitations. 

Even though the mentioned SHM methodologies are effective and 

indispensable, they have limitations. For example, visual inspection heavily 

relies on the observer’s subjective judgement and experience [36]. This 

technique may neglect internal irregularities or flaws that are not readily 

apparent on the surface. Moreover, conducting a thorough visual 

examination can be difficult when dealing with expansive or architecturally 

complex structures. 

Although GPR is an effective method for detecting internal defects, 

The difficulty associated with interpreting and comprehending the resulting 

data is one of the most significant drawbacks of the GPR technique, which 

is the subject of substantial criticism regarding its potential application 

[37]. AE testing is similarly circumscribed; it is susceptible to interference 

from ambient noise, necessitating stringent control of the testing 

environment. Associating each AE signal with a particular damage 

mechanism is a significant concern when employing the AE technique [38]. 

In addition, AE can only detect active defects presently emitting sound, 

leaving dormant defects undetected. Furthermore, in vibration-based SHM, 

damage detection, localization, and quantification are complex tasks. 

Although numerous damage indicators and damage indices based on 

vibration parameters have been proposed, their sensitivities are insufficient 

for early damage detection [35]. 

The potential of distributed fibre optic sensor (DFOS) networks, finite 

element analysis (FEA), and deep learning (DL) in SHM are enormous, as 

these cutting-edge technologies can revolutionise how infrastructure is 

evaluated and maintained. Distributed optical fibre sensor (DOFS) allow for 

the continuous, real-time monitoring of structures, capturing vital data 

regarding their response to various loads and environmental conditions. 

These sensor networks can be configured to monitor specific parameters, 

such as strain [39], temperature [40], or vibration [41], providing valuable 
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insights into the behaviour and performance of the structure. These sensor 

networks can be deployed to monitor a parameter in a distributed fashion 

[42], allowing comprehensive structural health evaluation. 

When coupled with DL algorithms, FEA and DOFS-based large 

datasets can be efficiently processed and analysed, enabling the detection 

of subtle structural changes that may indicate damage or deterioration. DL 

models can learn complex patterns and relationships from data, enhancing 

the precision and dependability of health predictions. Moreover, integrating 

distributed sensor networks and DL models in SHM systems can result in 

the development of proactive maintenance strategies, optimising resource 

allocation, and extending the service life of structures. Combining these 

technologies can revolutionise the field of SHM by enhancing the safety and 

resiliency of our civil infrastructure while simultaneously reducing 

maintenance costs and environmental impact. Therefore, the researchers 

are investigating the viability of DOFS networks, FEA, and the use of DL 

technologies to surmount the limitations of current SHM methods for RC 

beams.  

 

1.2. Research problems   

1. Lack of research work on proper integration of recent advancements in 

sensing, large data analysis, and health predictions into a framework is 

a major remaining problem in SHM of civil infrastructures. 

2. Unavailability of a comprehensive and representative dataset of strains 

for DL model training, i.e., analytical which can be correlated from 

operational data of a RC structure/component. 

3. Scarcity of procedures for designing and implementing sensor networks 

for RC structures/components. 

4. Inadequate research work on creating, training and evaluating an 

Effective DL Model for a SHM framework 
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1.3. Research objectives and significance 

This research intends to develop an SHM framework for RC beams, 

concentrating on creating a detailed FEA model for training data generation, 

developing a DL model for structural health prediction, and implementation 

of distributed sensor networks for data acquisition. The research objectives 

are: 

1. Review current methods and applications of fibre optic sensor (FOS), 

FEA, and DL-based SHM models for civil infrastructures; identify the 

critical points within RC beams for developing a distributed sensor 

network integral to the proposed SHM framework based on this 

understanding. 

2. Create a comprehensive strain dataset from a validated FEA model for 

training a DL model. Within the SHM framework, this procedure will 

serve as the foundation for developing a robust structural health 

prediction algorithm. 

3. Develop a distributed sensor network for RC beams. The sensor network 

will function as the SHM framework’s primary mechanism for data 

acquisition. 

4. Train a DL model for structural health prediction using FEA model data 

and test this model using sensor network data. This procedure will 

evaluate the performance of the DL model in predicting the structural 

health of RC beams under various conditions. This objective is the last 

part of the proposed framework. 

 

This study’s significance is broad, as it addresses critical aspects of 

SHM for RC beams through a comprehensive approach that includes sensor 

network installation, FEA modelling, and DL model development for 

structural health prediction. This research contributes to the SHM field by 

developing a systematic method for selecting critical items in RC beams for 

sensor network installation, thereby improving the efficiency and precision 

of monitoring structural health. In addition, the design and development of 

distributed sensor attachments and installation procedures will enhance the 
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quality of data collected for real-world applications. The detailed FEA model, 

validated by experimental data from the sensor network, will improve the 

accuracy and dependability of SHM techniques. The proposed SHM 

framework for RC beams is illustrated in Figure 1.1.  

 

 

Figure 1.1: SHM framework for RC beams 
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Effective SHM techniques will enable early detection of structural 

damage. Hence it will enhance overall safety and minimise the risk of 

catastrophic failure. This study also offers significant advantages for 

infrastructure management and maintenance. The proposed framework for 

structural health prediction will facilitate more informed decision-making, 

resulting in cost reductions, improved resource allocation, and possibly an 

extension of RC beams’ service life.  

The framework devised in this study can applies to other types of 

structures, such as bridges, buildings, and tunnels, thereby expanding the 

research scope and applicability. SHM’s efficacy and precision can be 

enhanced by incorporating additional data sources and advances in sensor 

technology. In addition, the multidisciplinary nature of this study, which 

combines civil engineering, computer science, and fibre optic sensing, can 

inspire new research collaborations, and advance the field of SHM. 

 

1.4. Structure of the thesis 

The structure of the thesis is as follows: 

1. Introduction: This chapter provides the background, research problems, 

research objectives and significance, and a thesis outline. 

2. Literature review: This chapter reviews the existing literature on SHM in 

reinforced civil structures, DFOS networks, FEA modelling methods for 

RC beams, and DL models for structural health prediction. The first 

objective of the study is addressed here. 

3. Training data generation and development of deep learning model: This 

chapter discusses the FEA model, creating the strain dataset, and 

developing DL models. This chapter covers the development of the 

proposed framework's DL model as well as data generation for DL model 

training. The second objective of the research is covered in this chapter. 

4. Implementation of distributed sensor networks and data acquisition: 

This chapter covers developing sensor attachments and installation 

procedures, and the experimental setup and data acquisition from the 

sensor network. In addition to describing the DOFS data acquisition 
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component of the framework, this chapter in-depth addresses the third 

objective of the study.  

5. Performance evaluation of SHM framework: This chapter presents the 

correlation of FEA models with experimental data, evaluation of the 

performance of the DL model, and sensitivity analysis. The SHM 

prediction, the last element of the suggested SHM framework, is covered 

in this chapter along with the fourth objective. 

6. Conclusions and future research: This final chapter summarises the 

overview of the research work, key findings, contributions, 

generalisation of the SHM framework, and recommendations for future 

research and development in the field of SHM.  

 

This structure provides a coherent and logical research organisation, 

guiding the reader through various study stages. 
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1.6. Summary  

This introductory chapter lays the groundwork for thoroughly 

examining the development of an SHM framework for RC beams. The 

proposed research will evaluate and enhance current methods and 

applications of FOS technology, FEA, and DL in SHM models. 

Evaluation of extant methodologies and their incorporation into a 

cohesive SHM framework constitutes the research problem. This 

comprehensively analyses how FOS, FEA, and DL complement one another 

and their compatibility with current practices. A secondary problem entails 

implementation of optimal sensor network for RC beams that can react to 

the changing conditions of the beam it monitors. Creating an exhaustive 

and representative strain dataset from a validated FEA model for training 

DL models is an additional challenge. The accuracy of the FEA model is 

essential for producing a high-quality strain dataset, which directly impacts 

the DL model’s ability to predict structural health. Developing, training, and 

evaluating an effective DL model within the proposed SHM framework is 

challenging. The model must be able to process vast volumes of data, 

extract meaningful features, and make accurate predictions. 

The significance of this study resides in its potential contributions to 

SHM, infrastructure management, and maintenance for RC beams. The 

proposed framework will enhance the quality of collected data, improve the 

efficacy and precision of monitoring structural health, and facilitate making 

informed decisions. This study also bears promise for future research 

because its methodologies and tools could be applied to other structure 

types, fostering new research collaborations and advancements in the SHM 

field. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

SHM plays a pivotal role in safeguarding the integrity of civil 

infrastructures, especially RC beams, which are a fundamental element of 

such structures. Early detection of possible problems allows for 

preventative maintenance, thus saving time, resources, and, potentially, 

lives. This literature review will delve into the existing body of knowledge 

around three key areas:  

(1) the use and application of FOS networks in SHM,  

(2) the application of FEA in modelling RC beams, and  

(3) the potential of DL models in predicting structural health. 

 

Despite significant advances in these areas, there are noticeable gaps 

in integrating and optimizing these technologies for the specific context of 

RC beams. While FOS technologies have been employed successfully for 

SHM in various contexts, their systematic application, particularly 

concerning optimal distribution and data interpretation, needs further 

exploration. Similarly, the correlation of FEA models with experimental data 

from FOS sensor networks is another relatively less researched area. 

Additionally, creating accurate and reliable strain datasets from FEA models 

for training DL models requires further investigation. 

The use of DL models has been ground-breaking in numerous fields; 

however, its application for SHM in predicting the health of RC beams is not 

exploited fully. Current models may need refinement or exploration of 

different types of neural networks that could yield better results. Combining 

SHM with FOS, FEA, and DL models opens up a promising new area of 

research. 

This literature review aims to provide a comprehensive understanding 

of these themes, critically assess the current methodologies and 

technologies, and identify potential gaps in the literature that could serve 

as focal points for future research. 
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2.2. Fibre optic sensor-based SHM 

SHM systems rely heavily on the sensors’ precision, the quantity of 

data collected, and the data analysis algorithms’ efficacy. Due to its 

lightweight reliability, stability, small size, immunity to external 

electromagnetic perturbations, low power, high sensitivity, multiplexing 

capability, and wide bandwidth, fibre optic sensing is among the most 

exciting and rapidly expanding research fields for enhancing inspection 

accuracy and performance. In addition, substantial drawbacks include high 

costs and end-user unfamiliarity [42-47]. Due to the numerous advantages 

of fibre optic sensing, FOSs are preferred over conventional sensors [48-

53].  

FOSs have replaced conventional sensors in various applications, i.e., 

strain, vibration, electric, acoustic, magnetic fields, acceleration, rotation, 

pressure, temperature, linear and angular position, humidity, viscosity, and 

chemical measurements. Due to their dielectric property, fibre-optic 

sensors can be used in harsh environments such as relatively high 

temperatures, high voltage, or corrosive materials; they can also conduct 

remote sensing [54]. Different types of embedded or surface-mounted 

sensors are available for SHM systems. However, only fibre-based systems 

can perform integrated, quasi-distributed, and fully distributed 

measurements on or even within the structure over long distances [55]. 

Due to their distinct capabilities, research on various optical fibre sensors 

(OFSs) has risen to the top of engineers’ and scientists’ research agendas. 

Consequently, more research has been performed on OFSs for SHM 

systems, such as civil infrastructure [56-59], mechanical apparatus [60], 

robotics [61], and aerospace applications [62-65]. 

Fibre optic monitoring systems have been devised and successfully 

implemented recently. When properly engineered and manufactured, OFS 

can be highly resilient and long-lasting in the most demanding 

environment. Owing to the long-term dependability and low maintenance 

requirements of OFS, optical sensing will be less expensive than its 

electrical counterpart. The sensor in optical sensing is contained within an 
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optical fibre. Changes to a monitored parameter, such as strain and 

temperature, alter the directed light’s intensity, phase, spectral content, 

polarization state, or a combination thereof. These modifications could be 

interpreted as parameter modifications. The optical fibre connects the 

sensor to the data acquisition system. A single optical fibre can be used for 

transmission and sensing, and multiple sensors can operate 

simultaneously. Consequently, installation in the environment can be made 

more accessible.  

OFSs are classified according to their sensors, which include discrete 

or point sensors and distributed sensors. A point sensor provides a single 

measurement parameter pertinent to the sensor’s location, whereas 

distributed sensors measure multiple measurements continuously and not 

at a specific location [66]. The cost of distributed sensing of multiple 

measurement sites can be significantly lower than that of a conventional 

single-point sensor due to the absence of expensive and difficult 

deployment and complex data acquisition methods. Point or distributed 

FOSs capture only the positional strains in the fibre. A crack alters the strain 

field only close to the crack’s tip, leaving the global strain field unaffected; 

therefore, it can be detected only when damages occur close to the optical 

fibre path. This will be the most significant limitation of the technique. Many 

inherent benefits are associated with modern OFS, such as it is inherently 

safe and explosion-proof and is particularly suited for health monitoring 

applications [67]. The smaller size of OFS allows it to operate in 

environments with limited space [68]. However, the OFS is highly fragile 

and susceptible to failure or damage in harsh field conditions [39, 69]. 

The FOSs can measure over long distances without electrically active 

components and are crucial for monitoring large and distant structures such 

as pipelines, bridges, and dams [68]. The only devices that require the 

power supply are the laser light source and the analyser. Power supplies 

for commercially available FBG interrogators range from 15 W to 25 W (2 

to 16 channels); Optical Distributed Sensor Interrogators are 240W to 

300W (Luna ODiSI 6100/ ODiSI-B 5.0), and optical backscatter 
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reflectometers are 100W (Luna OBR 4600). FBG and DOFS sensors will be 

further discussed since they are used extensively in SHM-based 

applications in civil engineering structures. 

 

2.2.1. FBG sensors 

FBG sensors are the most widely used grating-based sensors, 

extensively used for SHM in civil structures, aerospace, automotive, 

biomechanics, and maritime areas [70, 71] due to their high sensitivity to 

multiple physical, chemical, and biomedical environmental parameters 

[57]. An FBG reflects a portion of incoming light with a specific wavelength, 

known as the Bragg wavelength while allowing the preponderance of 

incoming light to pass through unaffected. The index of fibre refraction and 

the grating pitch determine the Bragg wavelength, which is affected by 

external environment variations [72, 73]. The grating’s period and reflected 

wavelength change correspondingly when a local deformation is present, 

allowing the detection of the local strain [74]. Figures 2.1a, b illustrate the 

FBG operating principle and a typical configuration for FBG interrogation.   

Changes in the transmitted and reflected optical spectra can help 

investigate physical and chemical parameters [75-77]. Numerous physical 

parameter changes can be monitored when an FBG is embedded or bonded 

to the necessary host material. Any strain in the fibre at the Bragg grating 

can alter the Bragg wavelength reflected, which can be precisely detected. 

FBG sensors can measure temperature, humidity, strain, vibration, 

deformation, and displacement [78-84]. FBG sensors offer the same 

advantages as optical fibre sensors (OFS). Because wavelength-division 

multiplexing, spatial-division-multiplexing, and time-division-multiplexing 

can be implemented directly in the fibre without altering the fibre diameter, 

FBG sensors can be multiplexed using the same techniques as FOS. This 

property makes FBG sensors ideal for a wide range of applications. 

Designing and packaging these devices using sensitive packaging 

techniques is necessary to guarantee the safety of FBG sensors. FBG 

sensors have been used over the past five years to measure concrete-
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related parameters, fatigue responses of steel wires, the use of FBGs in 

prestressed concrete, reinforcement strain corrosion, and leakage 

monitoring. The subsequent section will elaborate on the use of FBG 

sensors. 

 

 

Figure 2.1: (a) Working principle of FBG; (b) Typical configuration of FBG 

interrogation 
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Applications of FBG sensors are dispersed across a vast region. 

Yazdizadeh et al. (2017) employed electrical strain gauges (ESG) and 

embedded FBG sensors to investigate shrinkage and creep in three distinct 

concrete grades: Normal strength concrete, high-performance concrete 

(HPC), and ultra-high-performance concrete (UHPC).  

Figure 2.2(a) displays the shrinkage strain variation measured by 

FBG sensors over 56 days for three different concrete types. The maximum 

shrinkage is observed within the first week after casting, and the shrinkage 

strains have remained stable after 35 days. The overall shrinkage strain of 

concrete is nearly equivalent to the shrinkage strain measured after 35 

days, so long-term shrinkage is not required to be measured. This graph 

demonstrates that high-strength concrete diminishes less than ordinary 

concrete, and shrinkage decreases with increased concrete strength.  

Figure 2.2(b) illustrates the creep strain variation over 28 days (after 

loading). As can be seen, the creep strain increased rapidly in all three 

varieties of concrete during the first week after loading and stabilised after 

three weeks. Alternatively, it becomes less eerie as concrete matures. The 

graphs demonstrate that as the strength of the concrete increases, creep 

decreases and that the creep characteristics of UHPC and HPC follow the 

same pattern as those of standard concrete. The fibre-optic method is 

preferable to using an ESG for analysing the time-dependent properties of 

concrete [85]. 

 Cable is the predominant load-bearing component on cable-

supported bridges. Zheng et al. (2018) conducted experiments using FBGs 

to monitor the force of bridge cable tension. The FBGs were bonded with 

steel wire using structural adhesive, and the relevant measurability and 

dependability of the adhesive-bonded FBGs with steel wire were evaluated 

using cyclic loading and unloading tests and fatigue tests. As depicted in 

Figure 2.2(c), the load-wavelength lines for the fatigued sample fell slightly, 

indicating that the 200 million fatigue cycles reduced the wavelength of 

FBGs operating at the same load on steel wire. Load and wavelength had a 

linear relationship for both the loading and unloading processes, and the 
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data line from the loading process was parallel to the data line from the 

unloading process [86]. 

The value and distribution law of prestress and the bond stress of the 

steel strand determine the structural integrity of a prestressed concrete 

structure. Zhu et al. (2021) studied the stress distribution in a prestressed 

steel strand and the bond stress development between the steel strand and 

concrete. It was proposed to embed a quasi-distributed FBG sensor in a 

longitudinal groove of the centre wire of a steel strand. The test results 

indicate that the quasi-distributed FBG sensor embedded in the centre wire 

of the steel strand can effectively monitor the steel strand’s stress 

distribution and beam damage, with a maximum tensile monitoring error 

of 3.42%.  

Figure 2.2(d) illustrates the stress distribution in T-beam FBG sensors 

at different load levels. Notably, the stress in the steel strands increases 

with the load’s progressive increase. The diagrams demonstrate that the 

stress distribution in the steel strands of the beam changes from dense to 

sparse. Under load, the reactive powder concrete beam’s steel fibres and 

bottom tensile steel bars carry the tensile tension. As a result, the tension 

in the steel strand is barely increased. 

Nonetheless, once the tensile steel bars have yielded, the steel 

strand’s stress increases swiftly. On the self-sensing steel strand, tensile 

tests are conducted to ascertain the distribution of prestress and bond 

stress along the anchorage length. During the tensile process, the quasi-

distributed FBG sensor can accurately measure fluctuations in steel strand 

stress and bond stress along its anchorage length, according to the results 

[87]. 
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Figure 2.2: FBGs in shrinkage, creep, fatigue, and prestressed concrete 

(a) Shrinkage strain readings from FBG sensors [85]; (b) Creep strain 

readings from FBG sensors [85]; (c) Load vs wavelength curves of 

adhesive-bonded FBGs in cyclic loading and unloading tests with steel 

wire sample [86]; (d) The distribution of stress in a steel strand under 

load [87]; (e) Cylinder with embedded FBG sensor [85]; (f) Steel wire 

attached FBGs sample fatigue test [86] 
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Since RC is a highly nonlinear material, its distinguishing 

characteristics are more complicated than other structural substances. 

Kaklauskas et al. (2019) evaluated a variety of experimental configurations 

to acquire more precise and reliable information on reinforcing strain 

distribution. Accurate information regarding the relationship between the 

concrete and embedded reinforcement is necessary to make less dispersed 

and more reliable predictions for cracking in RC elements. This 

experiment’s most significant outcomes were the reinforcement strain 

measurements at various loading values for each strain gauge location 

(FBGs and ESGs). The acquired data allowed for plotting spatial variations 

in the strain distribution along the reinforcement length. Figure 2.3(a) 

displays the results of both experimental experiments at four different 

loading intervals. As loading increases, the strain profile gradient becomes 

more precipitous. Greater loading, i.e. the strain rate, increases bond 

stress—bond properties directly influence this result. While the 

experimental methods yielded reasonably accurate and uniform strain 

variations throughout the steel bar, the specimen strain results from the 

FBG optical gauge test revealed anomalies, particularly near the specimen’s 

end [88]. 

Corrosion of RC components has been identified as the primary 

mechanism of structural deterioration for reinforced steel structures. By 

combining AE and FBG strain measurement, Li et al. (2017) presented the 

results of an experimental investigation into corrosion monitoring of a steel-

reinforced mortar block. The initiation and propagation of cracks, and the 

onset of concrete cover cracking, were identified using continuous tensile 

strain monitoring with FBG strain sensors. 

The circumferential strain fluctuation of the reinforced mortar was 

determined using an FBG strain sensor. The specimen was measured from 

the moment the electrical current was introduced until the moment it 

cracked. Figure 2.3(b) depicts the strain data over 36 days. As observed, 

the strain increased as corrosion products accumulated and imposed 

internal pressure on the mortar. Initially, the strain grew at a rate of 
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approximately 1,000 µε per five days but later reduced to around 500 µε 

per five days. Cracks caused the increase in strain rate, which made more 

space for corrosion by-products. When cracks form, corrosion products fill 

the crevices before applying stress to the mortar. The jagged variation in 

the strain curve after twenty-four days results from redistributing corrosion 

products into the expanding fractures as the crack front propagates deeper 

into the cover. This phase is called the crack propagation phase. The AE 

events characterise the corrosion development in terms of corrosion-

induced AE events. In contrast, the FBG strain measurement describes the 

corrosion in terms of concrete expansion due to rebar corrosion. The results 

suggest that combining these two non-destructive techniques has 

tremendous potential to monitor and characterise RC degradation [89]. 

Failure due to fatigue occurs when cyclic (or variable) stress causes 

cracks in materials and structural components. By analysing the 

deformation mechanism of FBG reflection spectra, Zhao et al. (2020) 

introduced a novel damage feature, spectral area, which was effectively 

retrieved for detecting crack sites.  

First, strain data were obtained using the extended finite element 

method (XFEM) and fatigue crack propagation. Secondly, a fatigue 

crack growth monitoring test was performed using FBG sensors, and the 

strain values at the FBG sensor locations associated with crack propagation 

were determined using the digital image correlation (DIC) technique. The 

full-field strain measurement technique surmounted the standard strain 

gauge limitation, which measured only the mean strain along the grating. 

Figure 2.3(c) illustrates the strain distribution across the FBG1 grating for 

varying crack lengths. While the spectral region was immune to 

temperature change and experimental noise, it was extremely sensitive to 

the complex, non-uniform strain field induced by crack damage. In addition, 

the 10 mm FBG sensor demonstrated a wider detection range for fracture 

damage than the 5 mm FBG sensor [90]. 

FBG sensors have been used to study shrinkage and creep, monitor 

bridge cable force, investigate stress distribution in a prestressed steel 
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strand, and determine the development of bond stress between a 

prestressed steel strand and concrete. It also examines the reinforcing 

strain distribution, monitors corrosion, and detects crack sites. Due to 

installation difficulties, harsh conditions on construction sites, and cost 

considerations resulting from the increased number of sensors, the 

methodologies described in many published works are inapplicable to a 

broader range of engineering applications. Table 2.1 illustrates the use of 

FBG sensors for SHM on civil structures. Overall, the strain was the most 

frequently measured parameter; most applications have utilised a 

maximum of 64 FBGs.  

FBG sensors have historically held a prestigious position in the field 

of SHM, due to their pioneering innovations and inherent robustness. In 

numerous SHM applications, these sensors have solidified their position 

over time. One cannot ignore their unrivalled sensitivity and versatility, 

which enables the precise measurement of a variety of environmental 

parameters. Given their numerous applications, FBGs have become an 

integral part of everything from aerospace structures to biomechanical 

systems. As with all technological landscapes, the only constant is change. 

Recent data and prevalent trends have shed light on a discernible 

preference shift in certain industries, notably civil constructions. Here, the 

previously uncontested domain of FBGs appears to be diminishing [30]. 

This preference shift merits investigation into its fundamental causes. 

Investigating this transition reveals a wide range of variables. First 

off, while FBGs are praised for their flawless sensitivity and precision, their 

cost implications are significant from an economic perspective [91]. They 

are frequently compared to newly developed distributed sensing 

technologies, which promise comparable precision while offering extensive 

coverage and possibly smaller environmental impacts. Moreover, in an era 

characterised by accelerated technological advancements, the emergence 

of DOFS technology is an important sign. DOFS, with its truly distributed 

sensing capabilities and enticing cost structures [92], may be 

overshadowing the benefits that were once exclusive to FBGs. 
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For detecting AEs and ultrasonic waves, FBGs have long been 

extensively used [93-95]. However, DOFS appear to offer a more practical 

answer when one considers large-scale civil engineering projects 

necessitating thorough coverage and complex strain profiling. This may be 

tipping the scales in favour of DOFS, along with the perception that it is 

simple to integrate and use DOFS in monitoring and data collecting 

procedures, particularly in expansive structures. 

However, it is necessary to urge caution against premature 

generalisations. FBGs have etched out a niche in specific applications where 

their capabilities remain unmatched. Their indispensable role in detecting 

acoustic emissions, ultrasonic waves, and niche functions in civil 

engineering is not only maintained, but is also expanding. This 

demonstrates their dynamic significance within the overall SHM paradigm. 
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Figure 2.3: FBGs in rebars, corrosion and crack length measurements (a) 

Experimental distributions of reinforcing strains along steel bars at 

various loading stages [88]; (b) Strain history as determined by the FBG 

strain measurement [89]; (c) Strain throughout the grating direction as 

measured by the FBG1 sensor at various crack lengths [90]; (d) 

Experimental setup of FBG sensor test [88]; (e) Reinforced mortar 

specimen and sensor installation [89] 
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Table 2.1: FBG sensors used in SHM for civil structures 

Reference Structure No. of 

FBG 

Sensitivity Measured 

parameters 

Wavelengths 

(nm) 

Integration 

technique 

Remarks 

[96] Proposed for concrete 

structures 

2 - Strain with 

temperature 

compensation 

- Micron optics SM 

130 

- 

[97] Proposed for bridges 1 3.357 

pm/με 

Strain - Homemade FBG 

interrogator 

Range: ±600με 

Reflectivity: 90% 

 

[98] Steel bridge crossing 

the Beijing-Hangzhou 

grand canal located in 

Hangzhou, China 

64 - Strain 1526 to 1561 Si425 optical 

sensing interrogator 

from micron optics 

Reflectivity: 

more than 85% 

[99] No. 14301 longwall 

working face of the 

Shaqu coal 

Mine, Lvliang city, 

Shanxi province, 

China 

2 1.21 pm/µε Strain 1530.859 and 

1537.568 

SM125 FBG 

interrogator 

produced by micron 

optics 

- 

[100] Bridge No. 24 of 

highway No. 86 in 

Taiwan 

7 - Strain 1,526.96  Sm130 micron 

optics 

Reflectivity: 

93.87% 

[101] The cantilever bridge 

of Shaba An’ning river 

bridge on line 2 of the 

Chengdu–Kunming 

railway 

2 - Strain 1531.885 and 

1534.184 

OSA Resolution: 0.1 

pm 

 

[102] Dongsheng garden A5 

building, located in 

Fushan Bay area 

(Qingdao, China) 

8 0.5013  

pm/με 

Strain and 

temperature 

1529, 1564, 

1557, 1525, 

1519, 1548, 

1534, 1562 

SI425 (Micron optics 

incorporated) 

- 

[103] Proposed for buildings 2 FBG1: 

0.132 nm/◦  

FBG2: 

0.128 nm/◦ 

Inclination 

angle 

1548.877 and 

1551.84  

OSA - 



 

25 
 

2.2.2. Distributed optical fibre sensors 

DOFS is one of the potential SHM solutions among the numerous new 

sensing technologies [104]. As a function of the spatial distribution of the 

monitoring probe, DOFS has the potential to become a key technology for 

dynamic in situ data acquisition (strain and temperature) on a wide variety 

of structures. Consequently, these sensing systems can be combined with 

novel instrumentation technologies to evaluate the entire structure. This 

can also establish a real-time connection between the local monitoring 

probe and decision-makers via internet-based telecommunication 

apparatus [105]. DOFS provides the same advantages as OFS. 

Nevertheless, they can monitor the physical variations of the entire 

fibre in a genuinely distributed manner. In distributed sensing, a single 

connection cable is sufficient for communication, whereas traditional 

sensors require multiple cables for the same purpose. This unique benefit 

makes DOFS more cost-effective and appropriate for civil structures [106]. 

Typically, a specific and limited number of data points are extracted 

to evaluate structural behaviour [107]. The number of strain sensors 

required to generate the complete strain profile may increase swiftly for 

large-scale structures. Sensors that are quasi-distributed may provide 

valuable information about local behaviour. However, these sensors cannot 

measure an object’s behaviour along a predefined path. DOFS typically 

provides thousands of sensing sites and can measure two- or three-

dimensional strain distributions. 

Raman, Brillouin, and Rayleigh scattering processes can occur in a 

DOFS [108]. Figure 2.4 illustrates backscattered light from various fibre 

locations, three scattering modes, and a typical OTDR and Brillouin optical 

time domain analysis (BOTDA) configuration. Raman-based sensors 

measure only temperature, whereas Brillouin- and Rayleigh-based sensors 

measure strain, temperature, and vibration [109]. Brillouin optical time 

domain reflectometer (BOTDR) relies on spontaneous Brillouin scattering, 

whereas BOTDA relies on stimulated Brillouin scattering. The BOTDR-based 

system has the advantage of being able to be monitored from one end of 
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the sensing fibre [110]. Optical frequency domain reflectometry (OFDR) is 

based on Rayleigh scattering with spatial resolution on a millimetre scale 

[111]; Optical backscattered reflectometer (OBR) utilises the same 

technology. In the past five years, DOFS have been employed to measure 

concrete parameters, fatigue responses, corrosion, and leakage 

monitoring. 

Sensing devices are crucial components of SHM systems. Berrocal et 

al. (2021) investigated the use of DOFS based on the OFDR of Rayleigh 

backscattering for SHM in civil engineering structures. The DOFS system 

acquired strain measurements of rebar with the same precision as standard 

electrical foil gauges. Figure 2.5(a) depicts the evolution of DOFS-measured 

strain profiles throughout the cyclic loading test of the beam via a series of 

curves. Cracks can be linked to local maximums in the reinforcement’s 

strain profile using the same reasoning as in the preceding section. Away 

from the crack, as the load is partially transferred to the concrete through 

bond action, the strain at the reinforcement decreases until the stresses 

are compatible, or the concrete reaches its tensile strength—a new crack 

will form at this point. In addition, examining DOFS strain profiles with high 

spatial resolution enabled the early detection of crack initiation [112]. 

All civil engineering infrastructures are susceptible to the effects of 

time and deterioration and external factors that imperil their structural 

integrity, cause significant economic losses, pollute the environment, and 

endanger the safety of their users. Barrias et al. (2019) reported laboratory 

test results in which two RC beams were outfitted with DOFS to monitor 

strain in four longitudinal segments affixed to their bottom surface. The 

test aimed to validate the DOFS’s capability and efficacy in monitoring 

bridge structures over time, and two specimens were subjected to a 2 

million load cycle fatigue test for this purpose. The amplitude of the fatigue 

test’s stress range was comparable to that of a typical highway bridge 

subjected to automobile traffic. In addition, each of the four DOFS 

components was bonded with a specific adhesive to evaluate the fatigue 

resistance of common adhesive agents.  
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Figure 2.4: (a) Backscattered lights from different locations of the fibre 

and scattering modes; (b) Typical configuration of OTDR setup; (c) 

Typical configuration of BOTDA setup 
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Figure 2.5(b) depicts a pre-cracked beam subjected to two million 

load cycles with the same load range during the test. As observed from the 

various DOFS bonded segments, the location of the cracks is between SG2 

and SG3. The strain values across the numerous DOFS segments and strain 

gauges differ slightly after crack detection. This may result from strain 

redistribution in the component following cracking around the discontinuity 

that creates the crack, influenced by the stiffness of the bonding materials 

used. Compared to findings derived with strain gauges, the strains 

measured throughout the experiments were accurate and consistent, as 

demonstrated by the results. Therefore, fatigue loading did not affect the 

DOFS’s ability to acquire longitudinal strain profiles [113]. 

Monitoring systems for structural health could make structures 

already under construction safer and more durable. In terms of vertical 

deflection and crack width, Berrocal et al. (2021) assessed the suitability 

of embedding robust DOFS within a protective sheath in order to accurately 

measure the performance indicators of three RC beams subjected to four-

point bending. Results revealed that robust embedded DOFS are 

susceptible to strain attenuation compared to commonly used thin 

polyimide-coated DOFS bonded to steel reinforcement rods. In contrast, 

the protective coating prevents the formation of strain reading 

abnormalities, a frequent complaint. Performance-wise, the robust DOFS 

provided a reasonable approximation of the beam deflections with errors 

ranging from 12.3% to 6.5%.  
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Figure 2.5: DOFS in crack detection in rebar and surface, and crack width 

monitoring (a) Multiple strain profiles from the DOFS, with the red 

triangular shape indicating the determined crack location based on the 

strain profile at maximum load and the grey shaded region corresponding 

to the DIC position [112]; (b) Detection and identification of cracks at the 

commencement of load cycles [113]; (c) Information about the position 

and width of cracks is included in the development of crack functions 

[39]; (d) Installation of OFSs [39]; (e) Sensors mounted to beams and 

adhesives used [113] 

 

Figure 2.5(c) demonstrates generating a crack profile by adding the 

individual crack functions of all cracks observed in a strain profile. Since 

the method for determining crack widths assumes that the DOFS provides 

a measurement of the reinforcement strains, it is not strictly accurate to 

apply it to strain profiles that do not correspond to a reinforcement bar. 

Because the magnitude of the various strain profiles is virtually proportional 

to the distance from the neutral axis, the resulting crack widths will also be 

proportionate. This method yields wedge-shaped cracks, a plausible 

approximation for elements with dominant bending behaviour. Crack 

widths calculated from DOFS strain measurements differed by no more than 

±20 µε from digital image correlation values, assuming individual fissures 

could be identified in the strain profiles [39]. Figure 2.5(d) and (c) shows 

the installation of OFS on rebars and OFS mounted on the surface of the 

RC beam. Although these applications [39, 113, 114] discuss the 

installation procedures of DOFS, a step-by-step guide is necessary for 

better understanding.   

Monitoring the corrosion status of steel bars in RC is essential for 

maintaining safety and effective asset management. Experiments led Fan 

et al. (2020) to devise a DOFS-based in situ corrosion monitoring technique 

for RC. Beams immersed in a NaCl solution were impressed with a 

continuous current to accelerate corrosion. The DOFS was mounted in a 

helix pattern on the steel bar to monitor strains caused by corrosion. Figure 
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2.6(a) depicts data from the optical fibre length in contact with the 

monitored bar. The installed optical fibre’s typical strain is recorded along 

the vertical axis, and the strain measurement is positive in tension. Until t 

= 15 h, the strain change detected by the OFS is comparatively small, 

indicating that the volume change caused by corrosion products is minimal 

in the early stages. After t = 15 hours, tensile strains manifest in the 

dispersed sensor, increasing their magnitudes with time.  

The uneven distribution of expanding strain along with the OFS 

suggests that corrosion is irregularly distributed along the steel bar. Every 

strain distribution curve displays peaks and declines. A half-turn of the 

optical fibre on the steel bar corresponds to a distance of three centimetres 

between the adjacent peak and valley. The proposed solution based on a 

DOFS is feasible for in situ real-time monitoring of steel corrosion and 

concrete deterioration in RC [115]. 

Due to its high precision in distributed strain measurement, the 

optical frequency domain reflectometry (OFDR) method is more appropriate 

for pipeline monitoring. Ren et al. (2018) proposed a novel corrosion 

monitoring application of the OFDR method. Corrosion simulations were 

conducted to validate this technology. Multiple OFSs were affixed to the 

pipe surface at the same corrosion test interval, establishing a sensor array. 

Figure 2.6b) depicts the distributed strain profile recorded at various times 

and under the same internal pressure. When the pipe model was not 

subjected to corrosion, the circumferential distribution of hoop strain 

fluctuated around 30 µε. However, after 50 hours, tension was 

concentrated on a length between 0.2 and 0.40 m, indicating that this 

area’s interior wall had already started to corrode. Comparing the test 

results for 0 h, 50 h, 100 h, 150 h, and 200 h reveals that the hoop strain 

increases when the internal wall corrodes. The tests demonstrate that 

corrosion can be identified using the hoop strain distribution measurement 

of the DOFS. The test results suggest pipeline corrosion can be measured 

using the hoop strain theory and the DOFS [48]. 
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Long-distance pipelines deform more rapidly when subjected to 

severe conditions such as freezing-thawing and earthquakes. Oil and gas 

frequently leak from damaged pipelines once the deformation exceeds a 

predetermined threshold. Zhang et al. (2019) proposed a method for 

pipeline deformation monitoring that combines DOFS and conjugated beam 

techniques. A finite element (FE) model of a 50 m long pipeline and a 4 m 

long Polyvinyl Chloride (PVC) pipeline were created to validate the 

deformation method.  
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Figure 2.6: DOFS in corrosion and deformation monitoring (a) Strain 

distributions with the optical fibre in detail [115]; (b) Hoop strain 

distribution measured by one DOFS [48]; (c) Comparison of strain data 

measured by DOFS and ESGs for the lower surface of pipeline [116]; (d) 

Comparison of strain data measured by DOFS and ESGs for the upper 

surface of pipeline [116]; (e) Steel bar with a helix optical fibre [115]; (f) 

Corrosion test pipe [48] 

 

The PVC pipeline was progressively subjected to varying loads at the 

midspan, while the FEA pipeline model simultaneously loaded vertical 

displacement at multiple points. In the two investigations, the conjugate 

beam method was used to calculate the pipeline’s deformation based on 

continuous or distributed strain data and discrete strain data. As shown in 

Figures 2.6(c) and (d), the distributed strain recorded by the DOFS, and 

the local strain measured by the ESGs is in good agreement. A comparison 

between the displacement curve generated using distributed strain data 

and the displacement curve calculated using discrete strain data was 

performed to validate the deformation monitoring approach. The results of 

the two experiments demonstrate that accurate monitoring of pipeline 

deformation is possible and that the technology can be applied in the field 

[116]. 

Table 2.2 demonstrates the application of DOFS sensors for SHM on 

civil structures. As shown in Table 2.2, the increased spatial resolution 

provided by OBR attracted more researchers to OFDR technology.
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Table 2.2: DOFS used in SHM for civil structures  

Reference Structure System 
Spatial 

resolution 

Sensor 

length 

(m) 

No. of 

sensors 
Measurement 

Integration 

technique 

Measured 

frequency 
Remarks 

[117]  Cheong-ri 

bridge, 

Korea 

Brillouin 

optical 

correlati

on 

domain 

analysis 

(BOCDA

) 

  

31.1 cm 40.26  1 Strain DOFS system 

based on the 

BOCDA 

method 

9 Measurement 

interval: 4.2 

sec 

 

Strain 

resolution: 

±15 µε  

[118]  Sant Pau 

hospital, 

Barcelona 

OFDR 

 

1 cm 50  1 Strain OBR system - Measurement 

interval: 1 

min, 10 min, 

1 hour 

 

Sarajevo 

bridge, 

Barcelona  

OFDR 1 cm 50  2 Strain OBR system - Measurement 

interval: 5 

min 

[119]  Fibre-

reinforced 

polymer 

composite, 

bridge, 

Rzeszow, 

Poland 

OFDR 1 cm 9.6  10 Strain and 

temperature 

OBR 4600 - - 

[120]  Proposed 

for 

concrete, I 

beam 

OFDR 1 cm 10  1 Strain OBR system - Measurement 

interval: 5 

sec 

OFDR 1 cm 5  1 Strain OBR system - Measurement 

interval: 5 

sec 

[113]  Concrete 

beam 

OFDR 1 cm 5.2  1 Strain OBR system 0.2  Measurement 

interval: 5 

sec 
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Reference Structure System 
Spatial 

resolution 

Sensor 

length 

(m) 

No. of 

sensors 
Measurement 

Integration 

technique 

Measured 

frequency 
Remarks 

(Laborator

y scale) 

[114]  Concrete 

cylinder 

(Laborator

y scale) 

OFDR 5 mm 7.6  1 Strain OBR 4600 - Measurement 

interval: Few 

Seconds 

Concrete 

bar 

(Laborator

y scale) 

OFDR 5 mm 12  1 Strain OBR 4600 - Measurement 

interval: Few 

Seconds 

[121]  Timber 

concrete  

composite 

slab 

(Laborator

y scale) 

BOTDA 0.1 m 25  1 Temperature 

and strain 

OZ Optics 

foresighttm 

DSTS 

- Measurement 

interval: 20 

min 

[122]  Concrete 

specimen 

OFDR 1.3 mm - 10 Strain OBR system 20  - 

[123]  RC tensile 

members 

OFDR 5 mm and 

7.5 mm 

1.2  5 Strain OBR Odisi-A 

manufactured 

by LUNA 

technologies 

- Measurement 

interval: 3 – 

5 sec 
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DOFS sensors have been successfully used to study strain 

measurements of rebar, confirm the capability and performance of DOFS in 

monitoring bridge structures, evaluate the adequacy of embedding robust 

DOFS in a protective sheath, and monitor corrosion. Due to greater 

measurement distances and high spatial resolution, the procedures 

specified in numerous publications apply to a broader spectrum of civil 

engineering applications, despite installation difficulties and harsh 

conditions on construction sites. Therefore, DOFS were selected for this 

study to construct the sensor networks over FBG sensors.  

 

2.3. Finite element analysis 

FEA is a computer-based numerical method for calculating the 

behaviour of engineering structures. It predicts how a product will react to 

real-world forces [124], vibration [125], heat [126], and fluid flow [127]. 

FEA can be used to simulate the structural behaviour of RC when subjected 

to various loads and stresses. RC is a composite material in which the 

concrete resists compression and steel reinforcement bars (rebar) resist 

tension. FEA divides the entire structure into smaller, more specific 

components called finite elements. The material properties (e.g., elasticity, 

plasticity) and governing equations (e.g., equilibrium, compatibility) are 

applied to these elements connected at nodes. Unknowns, such as 

displacements, strains, and stresses, are obtained by solving the assembled 

equations. 

FEA can predict the RC behaviour under different loads, identify weak 

points in the structure, simulate the effects of varying reinforcement 

configurations, and aid in the design of more efficient and resilient 

structures. This is especially important when designing structures, such as 

bridges, buildings, and dams, that must withstand significant stress. 

However, modelling RC in FEA can be pretty complicated due to the 

nonlinear behaviour of the materials, the interaction between concrete and 

rebar, and other factors such as concrete cracking and crushing. 

Consequently, complex material models and numerical techniques are 
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frequently required. Material models define how the material functions 

under various conditions, and selecting the proper model is crucial for 

accurately predicting the behaviour of structures using FEA.  

The following are the material models that can be used for RC:  

The smeared crack model (SCM) represents cracking in concrete by 

‘smearing’ the cracks over the volume of an element, effectively reducing 

the element’s stiffness in the cracked direction. The concrete damaged 

plasticity (CDP) model is a more complex model that can simulate 

concrete’s complex behaviour. It can represent plastic deformation and 

damage (cracking and crushing). The linear elastic model, the elastic-

plastic model, and the nonlinear elastic model each have flaws. Hence, the 

researcher will further discuss the SCM and the damaged plasticity model.   

 

2.3.1. Smeared crack model 

The SCM is a numerical method utilised in FEA to represent the 

stress-induced behaviour of materials such as concrete. This model is used 

explicitly for monitoring the development and spread of cracks in such 

materials. The central premise of the SCM is the distribution or ‘smearing’ 

of individual cracks over an area, as opposed to representing them as 

discrete entities.  

This method simplifies the complexity of cracking by transforming 

individual cracks into a continuous damage measure within the finite 

element; hence the term “smeared”. Thus, the model modifies the stiffness 

of the finite elements to reflect the averaged or “smeared” effect of multiple 

cracks.  

The SCM can help analyse the mechanical behaviour and loading 

conditions listed below. Tensile cracking [128], shear cracking [129], 

compressive cracking [130], cyclic loading [131], thermal loading [132], 

and impact loading [133] are material failure types. 

The literature emphasises how well a finite element model simulates 

concrete cracking using the smeared crack method, as confirmed by 

experimental data from RC beams. The model successfully considers 
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variables like bond, fracture energy, and mesh size, and it effectively 

predicts the maximum crack width, which is crucial in engineering 

applications [134, 135]. The study emphasises the importance of fracture 

energy and bond modelling and the influence of mesh size on crack 

prediction. However, when attempting to predict the maximum to mean 

crack width ratio, the model’s shortcomings became apparent, most likely 

due to the inherent heterogeneity of concrete [136].  

Dias-da-Costa et al. (2018) highlighted the importance of 

understanding model uncertainties in SCM finite element simulations for 

concrete structures. Their research revealed differences in mesh sensitivity 

between models and emphasised the potential advantages of incorporating 

random material properties [137]. Barros et al. (2021) studied RC beams 

using a multi-directional smeared crack model, emphasising the 

significance of particular parameters. Specific finite elements and bonding 

conditions yielded improved results; further research is suggested [138]. 

For concrete and RC structures, Edalat-Behbahani et al. (2017) proposed a 

multidirectional fixed-smeared crack approach and a plastic-damage 

model, effectively predicting behaviour up to failure. Additionally, crucial 

model parameters influencing load-bearing capability were determined by 

the study [130]. 

Regarding concrete, the SCM provides a practical method for 

simulating the material’s non-linear response to external loads, specifically 

the formation and development of cracks [128]. The smeared method 

accurately depicts the impact of numerous small cracks and their 

contribution to the overall deformation and failure of the concrete structure. 

Even though the SCM improves computational efficiency, it has limitations. 

It may have convergence problems probably created by cracking and strain 

localisation [139]. It may have mesh-dependency issues, in which the 

analysis results depend on the discrete elements’ size and orientation 

[140]. Despite these limitations, the SCM continues to be a valuable 

instrument for simulating the behaviour of concrete and other materials in 

numerous structural engineering applications.  
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2.3.2. CDP model 

The Damage Plasticity Model is a complex material model used in 

FEA. It is intended to effectively represent concrete’s complex, nonlinear 

behaviour under load [141]. This model is founded on combined continuum 

damage mechanics and plasticity theory, which collectively account for the 

two most important aspects of a material’s response to stress: plasticity 

and damage [142].  

In the Damage Plasticity Model, the total strain in the material is 

determined by adding the elastic strain and plastic strain [143]. By 

formulating and solving equations for these strains, the model can predict 

the behaviour of concrete under different stress conditions, such as 

cracking and crushing [142, 144]. The CDP model can be utilised to analyse 

the subsequent mechanical behaviour and load conditions, Fatigue [145], 

cyclic loading [143], thermal loading [146], seismic loading [143], creep 

and shrinkage [147].  

Singh et al. (2017) investigated the use of ultra-high performance 

fibre reinforced concrete (UHPFRC) in structural components and the 

challenges in its design. They incorporated limited tests with the validation 

of the CDP finite element model. Their findings demonstrated that the CDP 

model can precisely predict the behaviour of UHPFRC beams, potentially 

reducing the need for physical testing [148]. Swoo-Heon (2020) analysed 

post-tensioned concrete beams utilising ABAQUS and the CDP model under 

the assumption of a perfect steel-concrete bond. Simulations closely 

matched real-world tensile deformations and crack patterns, validating the 

CDP model's accuracy when appropriately parameterized [149]. Kadhim et 

al. (2020) created a 3D CDP model to evaluate the impact behaviour of RC 

beams, particularly when reinforced with carbon-fibre-reinforced plastic 

(CFRP) sheets. The study discovered that CFRP reinforcement can prevent 

concrete failure and reduce displacement. It also highlighted the 

importance of transverse sheets and corner treatments in optimising the 

impact resistance of CFRP [150]. Zhu et al. (2021) performed a FEA 

investigation on pre-damaged RC beams reinforced with UHPC. Their 
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precise model included both novel tracking technology and the CDP model. 

They provided insights for improving the design of these beams by 

analysing various parameters [151]. 

Both the CDP model and the SCM can simulate the behaviour of RC 

in FEA; still, the CDP model frequently provides more comprehensive and 

reliable results, making it the model of choice in several situations [152]. 

The CDP model’s ability to precisely represent both damage and plasticity 

in concrete is one of its key advantages. It incorporates elements of 

continuum damage mechanics and plasticity theory, thereby capturing the 

entire nonlinear behaviour of concrete, including both cracking and plastic 

deformation [152]. Therefore, the CDP model was selected for this study.  

Table 2.3 lists the applications of CDP modelling in RC beams from 

the year 2015 onwards. CPE4R, C3D8R, and C3D8 element types were used 

for concrete, while T2D2, T3D2, and B31 were used for reinforcement. 

However, C3D8R and T3D2 element types were mostly used for concrete 

and reinforcement, respectively. Therefore, the same element types were 

selected for this study.  
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Table 2.3: Applications of CDP modelling in RC beams 

Reference Element types Mesh sizes 

(mm) 

Dilation 

angle/s (°) 

Viscosity 

parameter 

Remarks 

Concrete Reinforcement 

[144] CPE4R T2D2 25, 50, and 75 35, 37, 40, and 

45 

- The FEA modelling was conducted 

under three test cases. 

40, 50, and 70 30, 40, and 50 

10, 25, and 50 20, 30, and 40 

[149] CPS4R T2D2 20 38 0.1, 0.5, 

0.5, and 

0.005 

The FEA modelling was conducted 

under four series. 

[153] - - 25 and 10 35 0.01 Static, modal dynamic and dynamic 

implicit analysis was conducted. 

[148] C3D8R T3D2 50, 25, and 15 30 0.005 Four beam specimens were tested in 

the investigation. 

[154] C3D8 B31 - 35 - The elasto-plastic numerical modelling 

was investigated under monotonic 

loading. 

[155] C3D8R T3D2 - 53.2 0.0005 The study was conducted on shear 

behaviour. 

[156] C3D8R C3D8R 15 50 0.001 The structural response of gravity 

beams was assessed. 

[157] C3D8R T3D2 - 39 0.0001 Modelling response of ultra-high-

performance fibre RC beams were 

analysed. 
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Reference Element types Mesh sizes 

(mm) 

Dilation 

angle/s (°) 

Viscosity 

parameter 

Remarks 

Concrete Reinforcement 

[158] C3D8R C3D8R 50, 35, 17, 10, 

5, 4, and 3 

40 - The study aimed to analyse the 

behaviour of foamed concrete beams 

containing partial cement replacement. 

[159] C3D8R B31 35, 30, 25, and 

20 

30 - The structural behaviours of steel-

reinforced geopolymer concrete beams 

were analysed. 

[160] C3D8R T3D2 20 36 - FEA model was used to study the 

behaviour of RC deep beam with web 

openings strengthened with CFRP 

sheet. 

[161] C3D8R T3D2 40 20 for concrete 

and 36 UHPFRC 

0 The shear behaviour of RC beams 

strengthened by various ultrahigh-

performance fibre-reinforced concrete 

systems was studied. 

[162] C3D8R T3D2 5  23 - The behaviour of RC beams under low 

temperatures was studied.  

[163] C3D8R T3D2 - 50 0.0001 Retrofitting of RC members was 

studied. 

[164] C3D8R T3D2 20 to 100 30, 25 15 0 The size effect in shear strength of fibre 

reinforced plastic (FRP) RC beams was 

studied. 
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2.4. Deep learning  

DL is an AI subfield of machine learning (ML). Traditional ML is limited 

in its ability to process natural data in its unprocessed form, necessitating 

feature extraction specialists to identify patterns in the input. When 

unprocessed data are fed to a DL system, the system autonomously learns 

the representation required for detection or classification. DL thrives at 

discovering relationships in complex, high-dimensional data, making it 

applicable to numerous scientific disciplines [165]. Due to the development 

of algorithms and computing hardware, DL has become a topic of much 

discussion. DL has been implemented in numerous fields (including mail 

filtering, computer vision, speech recognition, audio recognition, machine 

translation, bioinformatics, drug design, content design, and game design) 

and has demonstrated learning and inference capabilities comparable to or 

superior to those of humans [166]. 

Current applications of DL include fraud detection in financial services 

[167, 168], forecasting of financial time series [169, 170], prognostics and 

health monitoring [171, 172], medical image processing [173, 174], power 

systems [175, 176], and recommender systems [177, 178]. In addition, 

there are optimisation algorithms with superior performance in damage 

detection and SHM [179-182].  

However, in conventional ML techniques, a domain expert must 

identify the most applied features to reduce data‘s complexity and make 

patterns more evident to learning algorithms. DL algorithms endeavour to 

learn high-level characteristics from data incrementally, which is their most 

significant advantage. This eliminates the need for domain-specific 

knowledge and extraction of fundamental features. In addition, DL powered 

by large amounts of data is a significant factor in comprehending the 

reasons for its popularity. 

One of the key reasons for the surge in interest in DL-based SHM is 

the remarkable decline in the price of sensors, which has made it possible 

to install enormous numbers of sensors in host structures and send the 

resulting data wirelessly to supercomputers in the cloud. Second, multi-
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core processors have advanced dramatically over the past decade. As a 

result, researchers have been focusing on training deep neural networks in 

record time by making use of the capabilities of graphics processing units 

(GPUs) with the help of newly developed software libraries for programming 

languages like Python and MATLAB and cloud computing services provided 

by companies like Amazon and Google. As a third point, data is the lifeblood 

of every SHM application, and data science and data engineering are now 

indispensable for data-driven programs like SHM. 

Artificial neural networks (ANN) are computer systems designed to 

mimic the biological learning mechanism found in human brains. ANN 

consists of processing components known as neurons, which resemble 

biological neurons in that they are highly interconnected [183]. These 

networks are extensively employed in developing intelligent systems for 

pattern recognition, function approximation, optimisation, and forecasting. 

The input, hidden, and output layers are the three major layers in a typical 

ANN structure. The input layer neurons are utilised to input values from the 

environment, the output layer neurons help to obtain the output, and the 

hidden layer neurons are positioned between the input and output layers 

[184].  

In an ANN, the number of concealed layers, connections, and neurons 

is proportional to the data complexity. If the data are more complex, the 

neural network will require more concealed layers and neurons [185]. The 

three primary stages of ANN implementation are the selection of network 

parameters, training, and testing. In the first phase of modelling a neural 

network, the number of neurons in the input and output layers, the number 

of hidden layers, the number of neurons in hidden layers, and the activation 

functions must be determined [184]. An ANN with more than one concealed 

layer is considered a deep model. Deep models are capable of simulating 

complex real-world data. This style of architecture is trained using DL 

[186]. A DL model attempts to predict the future using existing measured 

or simulated response data. 
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2.4.1. Supervised DL 

This is the most prevalent approach to DL. A large data set is required 

for training purposes, and the output should be appropriately labelled. 

During the training period, the error between the predicted output and the 

desired output is calculated using an objective function, and the weights 

are updated using backpropagation to reduce the error value. Methods 

based on gradients are used to optimise the objective function [187]. The 

system’s performance is evaluated using a test set following the training 

procedure. The testing procedure evaluates the ability to generate 

applicable responses to novel inputs or generalisation ability [165]. If the 

model’s outputs are discrete or categorical variables, it is a classifier; 

otherwise, it is a regression model. Due to its simplicity and training, it 

continues to be a popular design among academics and scientists in 

virtually all engineering fields. The use of supervised DL in civil engineering 

structure applications over the past five years will be investigated in greater 

detail. 

Vision-based technology, which employs imaging devices as sensors, 

is rapidly becoming the most efficient method for structural inspection and 

monitoring. Kim et al. (2018) developed a technique using CNN for the 

automated detection of fractures on concrete surfaces in situ. AlexNet, a 

well-known CNN, has been trained to identify flaws in Internet photographs. 

Figures 2.7 (a) and (b) illustrate that the proposed method effectively 

identified cracks, even though the experimental environment affects the 

difficulty of crack detection. The proposed method’s applicability is 

evaluated using field photographs and real-time video frames captured by 

an unmanned aerial vehicle. The evaluation results indicate that the 

proposed method for fracture detection is highly applicable in the real world 

[188].  

Atha and Jahanshahi (2018) evaluated CNNs for corrosion detection. 

Two pre-trained state of the art CNN architectures and two proposed CNN 

architectures are assessed for their efficacy. CNN outperforms vision-based 

corrosion detection techniques devised using a simple multi-layered 
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perceptron network based on texture and colour analysis. Compared to the 

state-of-the-art pre-trained CNN, one of the proposed CNNs significantly 

reduces computation time while maintaining corrosion detection 

performance equivalent to the state of the art CNN [189]. 

The increasing number of automobiles, trucks, and other vehicles has 

raised the issue of traffic monitoring and management. Frniak et al. (2020) 

constructed an experimental platform with horizontally and vertically 

placed FBG sensor arrays in the upper pavement strata. Interrogators were 

affixed to sensor arrays to monitor pavement deformation caused by 

automobiles passing over the pavement. An ANN for visual classification 

was utilised to divide automobiles into distinct classes via a closed-circuit 

television camera. The output of sensor arrays was confirmed using this 

classification. The developed ANN could distinguish trucks from other 

automobiles with a 94.9% accuracy rate and classify automobiles into three 

distinct categories with a 70.8% accuracy rate [190].  

Analysis of seismic hazards is an essential component of construction 

engineering. Derakhshani and Foruzan (2019) developed novel models to 

estimate the three most critical time-domain parameters of seismic ground 

motion. A novel combination of DL and an ANN is employed for forecasting 

strong ground motion characteristics such as peak ground acceleration 

(PGA), peak ground velocity (PGV), and peak ground displacement (PGD). 

The models precisely estimate the site’s PGA, PGV, and PGD [191]. 

 

2.4.2. Unsupervised DL 

Creating resilient features that preserve the essential data is a 

method for more accurately modelling complex real-world data. Developing 

domain-specific characteristics for each activity is expensive, time-

consuming, and requires data expertise. Unsupervised learning is the 

process of acquiring knowledge from unlabelled data, such as datasets with 

undefined outputs that conform to a general rule and (maybe) are classified 

in a predictable pattern. This has the benefit of utilising unlabelled data, 

which is abundant and simple to acquire, and learning features from data 



 

47 
 

instead of manually creating them. In addition, these feature 

representation layers can be stacked to construct deep neural networks, 

which more accurately model complex data structures. The following 

section will elaborate on using Unsupervised DL for civil engineering 

structure applications over the past five years. 

Autoencoders are unsupervised learning models aiming to find a 

representation for a data set, typically involving dimensionality reduction. 

Pathirage et al. (2018) presented an autoencoder-based framework for 

structural damage detection compatible with deep neural networks that can 

identify optimal solutions for highly nonlinear pattern recognition tasks. The 

input vector denotes vibration characteristics, mode shapes, and natural 

frequencies, while the output vector denotes structural damage.  

Figure 2.7(c) depicts the detected structural defects for a particular 

case. It has been demonstrated that the identified stiffness reductions using 

the proposed methodology are highly close to the actual values, with fewer 

false identifications and lower false values compared to the actually 

introduced damages and results from ANN approaches. This suggests that 

the proposed method may effectively detect predetermined structural flaws 

in a laboratory model using experimental testing data containing ambient 

noise and uncertainty. The proposed framework has been numerically and 

experimentally validated on steel frame structures, and the results 

demonstrate that it is more precise and efficient than existing ANN 

approaches [192].  

Rafiei et al. (2018) proposed a method for evaluating structural 

systems’ global and local health based on ambient vibration responses 

recorded by sensors. Unsupervised DL was utilised during model creation. 

The proposed model has the benefit of not requiring costly experimental 

results from a scaled-down version of the structure to simulate various 

phases of damage. Only the ambient vibrations of a robust structure are 

required. A novel structural health index is proposed in this investigation. 

It can monitor the health of structures in real time, both locally and globally, 

so that maintenance decisions can be made with better knowledge [193]. 
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The ANN is trained more efficiently in supervised learning mode when 

data from undamaged and damaged structures are available. Real-world 

structures, such as bridges, cannot be destroyed to generate damaged 

data; consequently, only data from the pristine structure is accessible, and 

unsupervised learning mode techniques are necessary. Finite element 

modelling can be used as a remedy to generate data during damage and 

combined with supervised DL algorithms to produce effective models. DL-

based techniques have been used to detect structural damage and fractures 

on concrete surfaces, monitor traffic, and estimate the three most 

important time-domain parameters of seismic ground motion.  Because AI-

based decision-making strategies are superior, the methodologies outlined 

in numerous published papers apply to a broader spectrum of engineering 

applications. 

Table 2.4 provides DL-based approaches for SHM in civil structures. 

The neural network type was selected based on the prediction requirements 

and the provided data type. Feedforward neural network (FFNN), 

Backpropagation neural network, multilayer feedforward neural network 

(MFNN), and multilayer perceptron neural network (MLPNN) are all types 

of ANNs, while CNN is a specific type of neural network architecture, 

particularly well-suited for image and visual data processing tasks. Most 

applications listed in Table 2.4 were based on ANN and CNN applications. 

ANN was selected over CNN because this study will not involve visual data 

processing. 

According to the references, the input datasets for training a model 

can group into two main categories: experimental data and numerical data 

from finite element methods. It was noted that limited literature had used 

ANN and FEA combined applications for SHM predictions [194-196]. The 

most frequent data division for training and testing consisted of 80% 

training and 20% testing. According to peer-reviewed studies published 

over the past five years, there is a growing interest among academicians 

in using DL algorithms in SHM. The reasons could be the high level of 

prediction accuracy of these systems and their ability to manage highly 
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complex data. 

 

 

Figure 2.7: DL in crack detection and structural damage identification 

 (a) Dark concrete surface [188]; (b) Concrete surface with pipes and 

electric distribution boxes [188]; (c) Damage identification results from 

ANN and the proposed approach [192]; (d) Laboratory model [192] 

 

c 
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Table 2.4: DL-based methods used in SHM for civil structures  

Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

[197]  ANN The number of 
columns per 
bent, backfill 
type, the 
number of 
spans, the 
number of 
columns, span 

length, concrete 
compressive 
strength (One 
million samples) 

Seismic 
demand for 
bridge 
components 

The dataset 
generated on the 
probabilistic 
distribution 

Sigmoid Training set 
(70%), a 
validation set 
(15%), and a 
test set (15%) 

- The mean 
squared error 
(MSE), 
coefficient of 
correlation 
(R), and 
coefficient of 
determination 

(R2) 

ANN offers a high 
level of 
predictability even 
when all features 
are blended to 
estimate demand 
models 

[198]  FFNN Temperature and 
precipitation of 
the 30 weather 
stations around 
the basin 

Daily 
streamflow 

Historical 
temperature and 
precipitation 
profiles were 
collected for 15 
years from 2000 
for 30 different 
stations around 
the basin 

- 80% Training, 
20% Test 

- Coefficient of 
determination 
(R2) 

Six hidden layers 
were occupied 
with 2048, 1024, 
512, 256,128, 
and 64 neurons 

FFNN Scour depth, 
lateral loads, 
angle of friction, 
and axial loads 

Bending 
moment 

FEA created the 
training dataset  

- 80% Training, 
20% Test 

- - Four hidden layers 
were occupied by 
1024, 512, 256, 
and 128 neurons  

[199]  CNN 4058 crack 
images and 2011 
background 
images 

Crack 
detection 

The bridge crack 
dataset in [170] 
is artificially 
augmented to 
generate the 
dataset 

Softmax 80% Training, 
20% Test 

A 
mathematic
ally 
reduced 
learning 
rate 

Accuracy, 
precision, 
Specificity and 
F1 score 

Atrous spatial 
pyramid pooling 
(ASPP) was used 

[200] CNN  The author 
manually 
labelled 1,154 
images for three 
models 

Three models 
(The 
existence 
of major 
failure, the 
component 
detection, 

The images were 
gathered from 
two primary 
sources: related 
research studies 
on RC bridges 
and search 

Softmax 80% Training, 
20% Test 

Bayesian 
optimisatio
n 

Accuracy, 
precision 

Because of data 
scarcity, the pre-
trained model 
VGG-16 was 
used. 
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Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

and the 
damage 
localisation) 

engines (Ex: 
Google Image) 

[201]  FCNN Crack, 
background, and 
handwriting 
images contain 
67200 sub-
images (each 
class has 22400 
images)  

Crack, 
handwriting, 
and 
background 

Original images 
(steel box 
girders of 
bridges) are 
obtained by a 
consumer-grade 
camera (Nikon 
D7000); Raw 
images were 
divided into sub-
images. 

Softmax Training set 
(80%), a 
validation set 
(10%), and a 
test set (10%) 

Momentum 
algorithm 

Accuracy, 
precision, 
Specificity and 
F1 score 

The recall for the 
crack class and 
the F1 scores for 
all three classes 
show that the 
super-resolution 
method reduces 
identification 
accuracy. 

[194]   MFNN Strains from 
verified FEM 
model; 60000 
data points 

Displacement 
from verified 
FEM model 

The FEA model 
was used to 
generate strain 
data, and strains 
and 
displacement 
readings were 
taken at 11 
different 
locations.  

Purelin 96% Training, 
4% Test 

The scaled 
conjugate 
gradient 
backpropag
ation 
algorithm 

MSE The commercial 
software ABAQUS 
was used for FEA 
modelling 
purposes. 

[202]  CNN 6820 total 
samples. Each of 
the four data 
sets had 1,705 
samples, 
including intact 
state and three 
forms of 
simulated 
damage. 

Intact state 
and three 
forms of 
simulated 
damage. 

The original data 
set consisted of 
390 samples and 
was artificially 
augmented to 
generate the 
dataset. 

Softmax Only 10% of 
the whole data 
set was used 
for testing, 
while the 
remaining 
90% was split 
into training 
(80%) and 
validation 
(20%). 

Adam Accuracy The CNN model 
consists of 11 
trainable hidden 
layers 

[203]  Region-
based 
convoluti
onal 
neural 

Crack images Crack 
detection and 
Boundary 
boxes have 
been 
generated to 

The crack 
dataset is 
created by 
labelling crack 
locations on 

- - - Accuracy NVIDIA Titan V 
Volta hardware 
was used to train 
the network in an 
acceptable 
amount of time 
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Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

Networks 
(R-CNN) 

approximate 
the cracks’ 
size. 

cropped bridge 
surface pictures. 

and handle the 
UAV data. 

[204]  CNN 3000 damaged 
images 

Damage 
location (51 
classes were 
created). The 
intact girder 
damage class 
is 0. 

FEA model was 
used to create 
the dataset of 
images to 
identify 50 
locations of 
damage using 
the damage 
index based on 
the gapped 
smoothing 
method 

Softmax - - Accuracy The bridge girder 
was modelled 
using SI bridge 20 
(SAP2000) 

[195]  ANN The normalised 
modal strain 
energy-based 
damage index 
(Z) 

Stiffness 
reduction at 
the 
respective 
nodes. 

The FEA model 
generated a total 
number of 114 
samples. 

- - The 
Levenberg-
Marquardt 
backpropag
ation 

MSE and R-
value 

The commercial 
software ABAQUS 
was used for FEA 
modelling 
purposes. 

[205]  ANN Strain data  
CRFV samples – 
570 
Non-CRFV 
samples - 660 

Close-range 
following 
vehicles 
(CRFV) and 
non-CRFV 

Data extracted 
by 7-day field 
application. 
Strain signal 
samples of 7295 
vehicles were 
used to train the 
models. 

Sigmoid 

Training set 
(60%), a 
validation set 
(20%), and a 
test set (20%) 

Adam Accuracy 
This is a 
combined 
application of ANN 
and CNN. 
 
NMS algorithm 
was used with 
ANN for CRFV 
separation. 

CNN Vehicle class 
datasheet 

11 possible 
vehicle types 
(Based on 
axle 
clustering) 

- Adam Accuracy 

[206]  ANN The deck chord, 
the deck weight, 
the structural 
damping ratio, 
and the air 
density 
(90000 data 
points)   

Critical flutter 
velocities 

Data are 
generated 
directly from the 
experiment 
results. 

- Training set 
(70%), a 
validation set 
(15%), and a 
test set (15%) 

The 
Levenberg-
Marquardt 
backpropag
ation 

The coefficient 
of 
determination 
(R) 

Five almost 
similar ANN 
topologies were 
studied during the 
study. ANN 
topology No. 1 is 
presented here. 
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Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

[207]  CNN By using 100 
panorama 
images, 19200 
images were 
created. 
Categories: 
Disease and 
background   

Disease and 
background   

The image 
acquisition step 
generated 
17,755 photos of 
the steel box 
girder’s bottom. 
Every 100 
photos were 
merged, and 138 
panoramas were 
obtained.  

- Training set 
(90%), a 
validation set 
(5%), and a 
test set (5%) 

Adam Accuracy, 
precision, and 
recall 

Image stitching 
and fusion 
methods were 
used. 

[208]  Deep 
convoluti
onal 
denoising 
autoenco
der 
(DCDAE) 

One million data 
points for 
acceleration 
data. 
 
 

Reconstructin
g same data 

Only 
healthy data is 
used for training. 
Ten thousand 
data points were 
produced to test 
the damaged 
conditions. The 
FEA model was 
used to create 
the dataset.  

Linear  Training set 
(85%), a 
validation set 
(7.5%), and a 
test set 
(7.5%) 

Adam Reconstruction 
error 

DCDAE does not 
require damage 
labels 

[209]  CNN 800 images 
 
 

- Used the DIV2K 
dataset, which 
contains 1000 
high-quality 

pictures with a 
resolution of 2K 
and high-
frequency 
multiplex 
features.  

- Training – 800 
images 
Validation -
100 images 

- - The study was 
conducted in 2 
phases and 
separately 

trained.  

2000 images 
with different 
crack types 

Crack 
detection  

Five hundred raw 
crack photos 
were augmented 
to 2K using web 
scraping and 
mobile and DSLR 
cameras to 
photograph 

Softmax Validation – 55 
crack images 

Adam Accuracy, 
categorical 
cross-entropy 
loss 



 

54 
 

Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

concrete 
structures. 

[210]  Deep 
convoluti
onal 
neural 
network 
(DCNN) 

Vibration 
responses from 
smart building 

Health 
condition 

The proposed 
DCNN-based 
approach is 
trained and 
validated using 
19 numerical 
scenarios. 

Softmax - Stochastic 
gradient 
decent 

K-fold cross-
validation 
(k=10) 
 

The suggested 
system operates 
directly on 
vibration signals 
acquired from 
detected 
structures, 
eliminating the 
need for time-
consuming 
denoising and 
feature-selection 
step. 

[211]  CNN 1890 Images 
were used 
(Normal and with 
defects) 
 

Four classes: 
mould, stain, 
deterioration, 
and normal 

VGG-16 was 
used to pre-train 
the model.  
 
The total dataset 
contains 2622 
images.  

Softmax 80% Training, 
20% 
Validation 
 
Seven hundred 
thirty-two 
images were 
used for 
testing 
purposes.  

- Accuracy, 
recall, 
precision, F1 
Score 

VGG-16 is based 
on the imagenet 
dataset, which 
comprises 14 
million annotated 
photos and over 
20,000 categories 
for classifying 
photos with 
mould, stain, or 
paint 
deterioration. 

[212]  CNN A balanced mix 

of undamaged 
and damaged 
samples (6571 – 
intact, 6560 
damaged) 

Damage or 

intact 

Images can be 

divided into 
three categories 
based on their 
spatial 
resolution: 
satellite, 
airborne, and 
unmanned aerial 
vehicle (UAV) 
images. 

- 80% Training, 

20% Testing 

- Accuracy, 

recall, 
precision, F1 
Score 

Three pre-trained 

networks tailored 
for satellite, 
airborne, and UAV 
image spatial 
resolutions and 
viewing angles 
have been made 
publicly available 
to the research 
community. 
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Reference 
 

Neural 
network 

type 

Model training Remarks 

Input Output Dataset Activation 
function at 
the output 

layer 

Training and 
testing data 

percentages/
sizes 

Learning 
algorithm 

 

Evaluation of 
model 

performance 

[213]  MLPNN Building height, 
building length, 
building width, 
building stiffness 
ratio, inflexion 
point, maximum 
settlement, 
eccentricity, 
horizontal strain, 
axial stiffness 
ratio, and 
bending stiffness 
ratio 
(Total of 44 
datasets)  

Crack width 
and number 
of cracks 

The data set was 
acquired from 
the KUR Project, 
each consisting 
of ten inputs and 
two outputs. 

- With varied 
combinations 
of training and 
testing data 
sets, the 
models were 
trained and 
tested four 
times. 

Particle 
swarm 
optimisatio
n (PSO) 

K-fold cross-
validation 
technique 
(k=4), 
The coefficient 
of 
determination 
(R2), rmseave 
 
 

Ground and 
building 
movements were 
closely monitored 
during the 
station’s 
construction, 
utilising ground, 
and building 
settlement 
indicators. Data 
from 44 buildings 
near the station 
were collected 
and analysed. 

[214]  Recurren
t neural 
network 
(RNN) 

Time variant 
grouting 
pressure – GP, 
Face support 
pressure - SP 
 

Time variant 
settlements 
of 18 
monitoring 
points 

The FEA model 
generated the 
dataset  

Linear  Training set 
(70%), a 
validation set 
(15%), and a 
test set (15%) 

The 
Levenberg-
Marquardt 
algorithm 

Coefficient of 
determination 
R2 
 

60 Finite element 
simulations were 
used to generate 
the dataset. 

FFNN Eight 
settlements at 
the facade 
foundation 

Maximum 
strain ɛmax 

anywhere in 
the facade 

[215] CNN 10000 google 
street view 
images of 
buildings 

Eight building 
typologies 

The dataset was 
manually 
annotated. 

- Training set 
(60%), a 
validation set 
(20%), and a 
test set (20%) 

- Recall, 
precision, 
accuracy 

Building typology 
predictions should 
be cautiously 
utilised, as the 
CNN performance 
for some building 
classes is 
insufficient for a 
straightforward 
building 
classification. 
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2.5. Critical components of RC beams 

An RC beam, or RC beam, is a common structural element in 

construction. Typically utilised in buildings, bridges, and other structures, 

it is designed to resist loads that induce bending and shear stresses. The 

essential components include Concrete, Steel Reinforcing Bars (Rebars), 

Stirrups or Shear Reinforcing, and Concrete Cover. The design of these 

components must consider several factors, including the anticipated beam 

loads, environmental conditions, and safety considerations. They must 

adhere to the applicable building codes and standards to ensure safety and 

longevity [216]. 

The most prevalent loading condition for RC beams is flexure (or 

bending). Under flexural loading, the steel reinforcement bars (rebars) are 

the most critical component of an RC beam. Flexural loading causes beam 

bending, which generates tensile stresses at the bottom and compressive 

stresses at the top. Concrete is strong in compression but brittle in tension. 

Therefore, high-tensile-strength steel rebars are located at the bottom of 

the beam, where tensile stresses occur. Under tensile stress, the beam 

might crack and fail without adequate reinforcement [217]. 

The steel reinforcement’s design, positioning, and quantity are critical 

under flexural loads. The anticipated tensile forces should determine the 

reinforcing rod’s size and placement to ensure the beam can safely support 

the anticipated loads. In addition, proper anchorage and bonding between 

the rebar and the concrete are essential for efficiently transmitting stresses 

between the two materials [218]. 

 

2.6. OFS and DL applications for SHM 

Widespread OFS and DL-based real-world applications can be 

observed in SHM systems designed for civil structures such as bridges and 

buildings. Over time, the OFS sensor networks installed in key civil 

structures generate enormous volumes of raw data (Big data) [219, 220]. 

The Sant Pau hospital in Barcelona utilised a 50 m long OFS with a 1 cm 

spatial resolution and a 1-minute measurement interval [118]. This sensor 
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network can generate 43,200 readings along with the fibre per month if 

data recording is continuous. The foundation of Big Data Analytics is mining 

and extracting meaningful patterns from large input data for decision-

making, prediction, and other inferences.  

DL’s capacity to extract high-level, sophisticated abstractions and 

data representations from massive amounts of data, especially 

unsupervised data, makes it an intriguing instrument for Big Data Analytics. 

Conventional ML and feature engineering algorithms are inadequate for 

deriving the complex and nonlinear patterns frequently observed in Big 

Data. By identifying these features, DL enables the use of relatively simpler 

linear models for Big Data analytical tasks such as classification and 

prediction, which is essential when building models to accommodate the 

scope of Big Data [221]. The subsequent section provided concise 

information on how the technologies above were utilised for SHM purposes 

in the recent past. 

Table 2.5 presents the combined applications of OFS and DL for SHM 

in civil structures. The researchers preferred supervised to unsupervised 

ML. Supervised DL algorithms can attain greater prediction accuracy with 

less complex algorithms than unsupervised DL algorithms. Based on the 

author’s review of the relevant literature, currently, there is no integration 

or combined application of OFS, FEA, and DL techniques for SHM purposes. 

 

Table 2.5: The combined applications of OFS and DL for SHM 

Reference 

 

Sensor 

Type 

(FBG/DOFS) 

Measurement 

(Strain/Temperature) 

DL Training 

Type 

 

DL 

Framework 

 

Bridge 

[222] FBG Temperature, Stress, 

and displacement data 

Supervised - 

[223] FBG Strain and temperature Supervised TensorFlow 

[224]  FOSs were 

used; the 

Strain and temperature  Unsupervised TensorFlow 
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sensor type is 

not specified. 

[225]  FBG Temperature, 

deflection, and strain 

Supervised - 

[226]  FBG Dynamic strain Supervised - 

Buildings 

[227]  FBG Strain Supervised - 

 

2.6.1. Bridges 

The erosion of soils and gravels encircling bridge piers and abutments 

is called bridge scour. Due to its catastrophic impact on bridge safety, 

bridge scour garnered considerable attention. Kong et al. (2017) conducted 

field tests on an innovative bridge scour monitoring system using FBG 

sensors in East Baton Rouge Parish, Louisiana. The functionality of the 

proposed system has been validated by sensor responses measured [228]. 

Ye et al. (2018) installed an SHM system based on FBGs on a steel bridge 

spanning the Beijing-Hangzhou Grand Canal in Hangzhou, China. A total of 

64 FBG sensors are affixed in the midspan and quarter span of the 

orthotropic steel bridge.  

Figure 2.8 depicts the FBG-based SHM system installed on the steel 

bridge that crosses the Beijing-Hangzhou Grand Canal in Hangzhou, China. 

A wavelet multi-resolution analysis approach presented the local stress 

behaviours induced by highway loading and temperature impact during 

construction and service [98]. 

Monitoring the deflection of a long-span cantilever bridge during 

construction is hampered by multiple construction methods, complex 

wiring, and the incapacity to capture real-time data, among other flaws. 

Zhang et al. (2019) designed an inclination sensor-based on FBG to monitor 

the deflection of cantilever bridges to address these deficiencies. The 

prototype deflection monitoring structure is manufactured, and testing 

reveals a sensitivity of 10.566 pm/mm and a fitting error of 0.9997. 
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Figure 2.8: FBG-based SHM system at steel bridge crossing the Beijing-

Hangzhou Grand Canal located in Hangzhou–China [98] 

 

The designed deflection monitoring device was installed in the 

cantilever bridge of the Shaba An’ning River Bridge on Chengdu-Kunming 

Railway Line 2, and the feasibility of the deflection sensing structure in 

monitoring the construction of cantilever bridges was confirmed [101]. The 

Chulitna River Bridge is a five-span steel-girder composite bridge that 

spans 790 feet (241 m) and connects Fairbanks and Anchorage in Alaska. 

Xiao et al. (2020) installed FBG strain gauges on the lower chord members 

of the bridge, and dynamic features such as natural frequencies and mode 

shapes were effectively detected using strain gauge readings as vehicles 

crossed the bridge. Additionally, a FE model validated the results. The 

presented method applies to various bridge vibration sensing applications 

[229]. 

Cheong-ri Bridge connects Cheong-ri Station and Oksan Station on a 

commercial railroad line administered by Korea Railroad Corporation; 

Figure 2.9 depicts the Cheong-ri Bridge monitoring site. Yoon et al. (2016) 

devised a DOFS based on BOCDA to monitor the distributed strain of a 

railway bridge’s rail and girder. The distributed strain of a 40.26 m long 
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girder and rail was recorded in real-time at 9Hz. The analysis pinpointed 

the region of excessive strain on the bridge’s girder induced by the effects 

of unsupported sleepers [117]. Rzeszow, the capital of the Podkarpackie 

voivodeship, is home to the country’s first road bridge made solely of FRP 

composites. This bridge spans a small local stream on an urban route. The 

FRP bridge was equipped with distributed optical fibre sensing technology 

by Siwowski et al. (2018). The applicability of DOFS based on Rayleigh 

scattering for SHM objectives was demonstrated by analysing field data 

[119]. 

Derivation of fragility curves is a standard method for evaluating 

seismic vulnerability. Mangalathu et al. (2018) proposed a multi-parameter 

fragility methodology that develops bridge-specific fragility curves using an 

ANN without clustering bridge classes. The proposed methodology aids in 

determining the relative significance of fragility curves for every uncertain 

parameter [197]. The widespread opinion holds that hydraulic-related 

hazards (e.g., flooding and scour) pose the greatest threat to the safety of 

bridges throughout their service lifetimes. 

 Khandel and Soliman (2019) designed a multi-hazard probabilistic 

method to provide bridge administrators and decision-makers with flood 

fragility curves based on service life and predicted flood variability. Next, 

DL networks and FE modelling quantify the structural performance of the 

investigated bridge. The proposed structure is demonstrated on an existing 

Oklahoma bridge [198]. Typically, a specialised crew is dispatched to 

conduct post-disaster status screenings manually. This method is time-

consuming and susceptible to bias because it significantly relies on the 

qualitative opinion of an inspector. Xiao Liang (2019) proposed a three-

level image-based solution for post-disaster monitoring of RC bridges using 

DL and novel training methods. CNN was utilised as the neural network. 

Bayesian optimisation yielded promising results with >90% accuracy and 

robustness across all three-level DL models [200]. 
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Figure 2.9: Monitoring site at Cheong-ri Bridge [117] (a) Optical fibre 

mounted on the outer surface of the rail; (b) mounted on the lower flange 

of the girder; (c) DOFS system based on BOCDA method; (d) 

configuration of the optical system 

  

Detecting concrete bridge cracks is essential to ensure transportation 

safety. The adoption of DL technology enables the automatic and precise 

detection of bridge cracks. Xu et al. (2019) suggested a CNN-based end-

to-end bridge crack detection model that takes advantage of atrous 

convolution, the ASPP module, and depth-wise separable convolution. The 

suggested model attained a 96.37% detection accuracy without prior 

training. Experiments revealed that the proposed classification model 

outperforms traditional classification models [199].  

The construction of long-span bridges widely uses steel box girders. 

Xu et al. (2019) identified the fatigue cracks using real-world photos, 

including complex disturbance information contained within steel box 

girders. A customised fusion CNN architecture is developed that considers 
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the multilevel and multiscale characteristics of the input images. The fusion 

CNN’s recognition errors are less than that of a standard CNN during the 

training and validation stages [201]. A real-time prediction approach based 

on a multilayer ANN for determining a bridge’s vertical dynamic 

displacements from longitudinal strains was presented by Moon et al. 

(2019) when automobiles pass across it. The proposed method was tested 

using a computational model for a real five-girder bridge with a span of 36 

m backed up by actual experimental results. The findings show that the 

model can accurately forecast overall bridge displacements in real time 

based on strain in the field [194]. 

The increasing use of sophisticated SHM systems in civil 

infrastructures generates voluminous data. However, the hostile 

environment in which civil structures are constructed contaminates the data 

collected by SHM systems, substantially affecting data analysis results. Bao 

et al. (2019) proposed a computer vision and DL-based data anomaly 

detection system. The model was developed utilising stacked autoencoders. 

Acceleration data from the SHM system of a real long-span bridge in China 

are utilised to demonstrate the training technique and validate its efficacy 

[230].  

Data storage has become a significant concern, leading to the 

emergence of data compression and reconstruction in SHM as the new 

domain for vast infrastructure systems. Frequently, SHM data contaminate 

with anomalies that impede structural investigation and evaluation. The 

underlying causes of data irregularities are extraordinarily complex. As a 

result, reconstructing abnormal data is inherently challenging and obtaining 

high accuracy after data compression presents significant obstacles.  

Ni et al. (2020) presented a novel data compression and 

reconstruction system enabled by DL. The framework comprises a 

Convolutional Neural Network (CNN) and an Autoencoder, which can 

recover data with high precision at such a low compression ratio. The 

proposed technique was validated using China’s long-span bridge 

acceleration data [224]. Human eye evaluation, which is inherently 
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subjective and time-consuming, is the most prevalent method for bridge 

maintenance and monitoring currently available. Wang et al. (2020) 

presented a novel computer vision-based automated inspection method for 

degrading a steel box girder’s underside. CNN utilised a technique for image 

synthesis. Experiments indicate that this method is a viable alternative to 

manual inspection and can provide a more standardised and accurate 

evaluation [207]. 

Bae et al. (2020) proposed a novel end-to-end deep super-resolution 

crack network (SrcNet) to enhance computer vision-based automatic crack 

detection. The proposed SrcNet can significantly improve its ability to 

detect cracks through DL by augmenting the pixel resolution of the 

unprocessed digital image. According to validation test results, the 

proposed SrcNet has a 24% higher detectability of cracks than the fracture 

identification results obtained using raw digital images [209]. The “Las 

Navas” viaduct is located close to Cabezón de La Sal on the A8 at kilometre 

250 (Cantabria, Spain). The bridge is one of the first in Spain to employ 

embedded FBG microstrain sensors, making it one of a kind. Using this real-

world example constructed in 2000, Urquijo et al. (2019) investigated the 

hazards and benefits of fibre optic technologies. Using ML techniques such 

as RNN, the originally designed structural sensors help detect, quantify, 

and classify operational traffic utilising the infrastructure. This is an 

additional advantage of using these measurement sensors in the 

infrastructure world [223]. 

A turnout is a crucial piece of equipment; that is one of the weakest 

connections in the railway infrastructure. Due to topographical and 

environmental constraints, Continuous Welded Turnouts (CWTs) have been 

implemented frequently on high-speed railway bridges, where extra care is 

required to ensure high-speed railway safety. The operational status of the 

CWT on the bridge was evaluated using FBG sensors and a real-time 

monitoring system. Cai et al. (2019) created and implemented this for the 

first time in China. Figure 2.10 depicts the Jin-Hu Bridge Monitoring Site. 

Using the regression model and the BP neural network model, Multiple 
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indicators, such as rail stress and switch rail displacement, were predicted 

[222]. Due to their greater precision and durability than conventional strain 

gauges, FOSs are ideal for obtaining accurate strain and temperature 

measurements of structural members in real time. 

 

 

Figure 2.10: Monitoring site of Jin-Hu Bridge [222] 

 

Khandel et al. (2020) employed FBGs to provide a statistical damage 

identification and localisation method for assessing the performance of 

prestressed concrete bridge girders. Figure 2.11 depicts the laboratory 

testing of the ridge girder. The present methodology uses ANNs to establish 

a connection between the strain profiles obtained at various sensor 

locations across the studied girder. The method detects and localises the 

presence of harm at the sensor position [225] without requiring 

comprehensive loading information. 
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Figure 2.11: Bridge girder testing at a laboratory (a) Placement of 

sensors; (b) loading setup [225] 

 

2.6.2. Buildings 

Maintaining and preserving historical and cultural heritage buildings 

and ensuring their safe operation is becoming increasingly imperative to 

monitor their daily condition for early indications of damage or failure. Li et 

al. (2018) suggested FBG sensing-based deformation monitoring systems 

that can monitor beam deflection, column inclination angle, and mortise-

and-tenon joint dislocation for Chinese traditional wooden constructions. 

The results indicate that the proposed deformation monitoring techniques 

are suitable and beneficial for monitoring the health of traditional Chinese 

wooden structures [231].  

Measuring the tilt angle is essential for numerous applications, such 

as aviation and civil engineering. Chao et al. (2018) designed and evaluated 

a novel FBG-based optical fibre tilt sensor for detecting the tilt angle of a 

dual-axis in two dimensions. The proposed sensor can measure building 

inclination due to its superior sensing linearity [231]. Barrias et al. (2018) 

presented the main SHM findings from restoring a historically significant 

hospital building. Using a new DOFS based on the OBR technique, 

continuous strain data with a high spatial resolution was conveyed along 

with the optical fibre. Figure 2.12 depicts the DOFSs affixed on the masonry 

vaults of Barcelona’s Sant Pau hospital. The DOFS-related OBR theory has 

demonstrated its viability in SHM applications for civil engineering and 
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continues to emphasise the promising future of such technological 

monitoring systems [118]. 

Current building condition assessment procedures are excessively 

time-consuming, laborious, and costly. They pose significant health and 

safety risks to surveyors, especially at height and on difficult-to-access roof 

levels. Perez et al. (2019) investigated using CNN for the automated 

detection and localisation of significant structural defects, such as mould, 

deterioration, and stain, in images. The proposed model employs a pre-

trained VGG-16 CNN classifier with class activation mapping for object 

localisation. The proposed method detects and localises building defects 

with reliability [211]. The ground surface movement caused by tunnelling 

in urban areas causes structural damage to adjacent buildings by distorting 

and rotating them.  

 

 

Figure 2.12: DOFS mounted on the masonry vaults at Sant Pau hospital, 

Barcelona [118] 

 

Moosazadeh et al. (2019) developed a method to predict building 

damage utilising an ANN model and a particle swarm optimisation 

technique. Compared to the measured data, the model’s results were 

deemed satisfactory [213]. Important structural components’ long-term 

strain monitoring is problematic due to unanticipated issues such as sensor 
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and data logger failure, communication collapse, and data loss. Oh et al. 

(2017) proposed a long-term strain-sensing model using an ANN to predict 

column strain responses based on wind-induced behaviour of high-rise 

buildings. The ANN model is founded on evolutionary learning and consists 

of Radial basis function neural network training and genetic algorithm 

evolution. The proposed model is trained and validated using wind data, 

such as wind velocities and directions, and associated strains collected by 

FBGs [227]. 

 

2.7. Review outcome and research gaps 

Decades of research have demonstrated the necessity of SHM and 

the specifics of SHM measures implemented for numerous critical 

infrastructures. This review analysed the current state of optical sensor 

technology, FEA for RC beams, and the implementation of DL for SHM of 

civil infrastructures. Over the past five years, OFS has been applied to 

measure concrete properties, fatigue responses, corrosion, and leakage 

monitoring.  

Despite their high sensitivity, the use of FBGs in civil structures for 

strain and temperature-based applications is declining. According to the 

literature, the maximum number of sensors employed was 64, and the 

maximum sensitivity achieved was 1.2 pm/µε. FBGS have an advantage for 

detecting AE and ultrasonic waves. In civil engineering, both applications 

are expanding at a steady rate. DOFS is gaining popularity within the 

scientific community. Most researchers preferred OFDR technology for 

strain measurements, and some applications have used spatial resolutions 

as low as 5 mm. According to the reviewed applications, the OBR technique 

was implemented with a maximal sensor length of 50 m and a 

measurement interval of 1 minute. Due to greater measurement distances 

and high spatial resolution, DOFS were selected over FBGs and other 

traditional sensors for this study. 

Although both the CDP model and the SCM can simulate the 

behaviour of RC in FEA, the CDP model frequently provides more detailed 
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and accurate results, making it the model of choice in many instances. A 

crucial advantage of the CDP model is its ability to represent damage and 

plasticity in concrete accurately. Incorporating elements of continuum 

damage mechanics and plasticity theory, it captures the entire nonlinear 

behaviour of concrete, including fracture and plastic deformation. 

Therefore, the CDP model was chosen for this investigation. CPE4R, C3D8R, 

and C3D8 element types were used for concrete, while T2D2, T3D2, and 

B31 element types were used for reinforcement. However, the most 

commonly used element types for concrete and reinforcement were C3D8R 

(Standard 8-node linear brick element) and T3D2 (standard 2-node linear 

3-D truss element), respectively. Therefore, the researcher used the same 

element types for this research.  

Academics are intrigued by the application of DL algorithms to SHM. 

DL models can be trained utilising experimental and numerical data (finite 

element methods). The typical data split during model training consists of 

80% training and 20% assessment. However, the literature on ANN and 

FEA combined applications for SHM predictions were limited. The vast 

majority of SHM applications were based on ANN, and the accuracy of each 

application was acceptable. Therefore, ANN was chosen for this study. The 

CNNs were disregarded because visual data processing is not involved in 

this study. 

The highest number of training samples used was one million. The 

maximum presented prediction accuracy was over 97%. According to the 

combined applications of OFS and DL for SHM in civil constructions, the 

researchers preferred supervised over unsupervised DL. Strain, 

temperature, and vibration measurements were considered during the 

studies. According to peer-reviewed studies published over the past five 

years, there is a growing interest among academicians in using DL 

algorithms in SHM. This may be because these systems have a high 

prediction accuracy and can manage highly complex data. 

The scalability and adaptability of the system is crucial when 

contemplating the integration of FEA, OFS, and DL for SHM in RC beams. 
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In the actual world, these beams could be components of smaller structures 

or large infrastructures such as bridges. The integrated method should be 

adaptable, adjusting to different dimensions without sacrificing precision. 

The dynamic nature of real-world conditions, which includes environmental 

variables and inherent structural shifts, emphasises the need for resilient 

and adaptable methodologies. Understanding the holistic performance of 

this integration amidst the complexities of diverse real-world situations 

involving RC beams is a significant gap in the current literature. 

The literature review revealed the following research gaps: While 

some studies have investigated using FEA, OFS, and DL separately for SHM 

of concrete structures [194, 195, 222-227], no research is available on 

integrating these methods for an effective framework for SHM of RC beams. 

Since there are limited studies available on creating a strain dataset from 

FEA models for training DL models more research is needed following 

validation of the FEA models. Moreover, although many studies have 

investigated the use of sensor networks for SHM of concrete structures, a 

step-by-step guide on the efficient design and installation procedures of 

distributed sensor networks for RC beams is still necessary. Understanding 

this disparity can aid in developing more effective and efficient sensor 

networks. The efficacy of DL models for SHM of RC beams still requires 

further investigation. 

After identifying the gaps in the literature and the potential for a 

synthesis, it is essential to identify and discuss the challenges that may 

accompany the integration of FEA, OFS, and DL for SHM. Data compatibility 

and integration constitute one of the most pressing obstacles. Each of the 

distinct systems, including FEA, OFS, and DL, generates data with its own 

distinct characteristics. Compiling these datasets into a unified entity for 

analysis necessitates precision, given the disparities in format and scope 

that each may present. 

In addition to data harmonisation, the challenge of computational 

demand looms large. Combining the resource-intensive processes of deep 

learning with the intricate simulations of FEA may exceed the current 
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computational limits in terms of processing speed and storage space. The 

inclusion of data from these systems also raises the issue of model 

validation. When using FEA model outputs as training data for DL models, 

the dependability and validity of FEA models become crucial. A lapse in this 

phase could perpetuate errors, resulting in overfitting or incorrect 

interpretations in the DL phase. While the OFS offers unmatched sensitivity, 

it occasionally captures data that is excessively complex or contaminated 

with noise. Integrating this with FEA and DL will necessitate a 

comprehensive preprocessing regimen, highlighting the significance of 

stringent data filtration techniques. 

Not to be overlooked is the fact that this project requires inter-

disciplinary expertise. The intersection of FEA, OFS, and DL necessitates a 

cross-disciplinary dialogue — a domain where domain-specific jargons and 

paradigms may impede effective communication. This integration, while 

promising, necessitates a culture of collaboration that is uncommon in 

highly specialised fields. 
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CHAPTER 3: TRAINING DATA GENERATION AND 

DEVELOPMENT OF DEEP LEARNING MODEL 

3.1. Introduction 

This chapter explores the process of devising and implementing a DL 

model based on ANN architecture for analysing strain data to predict the 

structural health of RC beams. The highlight of this novel method is the 

incorporation of a strain dataset derived from a CDP-based FEA model. This 

data set provides a sophisticated representation of nonlinear and damage-

induced plasticity of concrete behaviour. 

Initially, the chapter sets the groundwork by explicating the 

conceptual SHM framework. Then it delves into the specific stages of the 

ANN architecture’s design and construction, illuminating the rigorous 

process required to ensure its reliability and efficacy. The chapter then 

investigates strain dataset creation, an essential aspect of this endeavour. 

This dataset, derived from a validated RC beam FEA model, is used to train 

DL models. The discussion incorporates the nuances of creating this unique 

dataset and clarifies its contribution to the model training process. 

The training phase of the DL model, covered in Chapter 5, is an 

essential element of this research. The concentration here remains on 

creating and preparing the necessary components for successful model 

training, particularly the ANN architecture and the strain dataset. This 

chapter concludes by highlighting the enormous potential of incorporating 

DL techniques into the structural health prediction of RC beams. It paves 

the way for a novel method of predicting and assessing the health of RC 

structures by utilising a strain dataset from a CDP-based FEA model. Figure 

3.1 illustrates the overview of Chapter 3’s technical contents.  
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Figure 3.1: Overview of technical contents of Chapter 3 

 

3.2. Overview of DL model for SHM predictions in RC beams 

DL is a branch of ML; however, when raw data is given to a system, 

it automatically learns the representation needed for classification or 

identification. To be employed in various scientific domains, DL must be 

adept at identifying relationships in complicated, high-dimensional data. 

The main benefit of using DL techniques is that they seek to extract high-

level features from the data gradually. This eliminates the requirement for 

fundamental feature extraction and domain-specific knowledge. DL is 

important because it recognises these properties and enables the 

implementation of comparatively straightforward linear models for Big Data 

analysis tasks like classification and prediction. [Please note Chapter 4 

discusses the sample preparation, installation of FOSs, and the 

experimental procedure]. 

Supervised DL is the most typical DL method. A sizable data set is 

necessary for training, and the output must be labelled appropriately [30]. 

During the training phase, an objective function is utilised to modify the 

weights via backpropagation. The aim is to minimise the error between the 

predicted and intended outputs. Gradient-based techniques are used in this 
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context to optimise the objective function [187]. The model’s performance 

is assessed using a test set, and the testing process assesses how well the 

model generalises to new inputs. This study focused on supervised learning, 

where the network is trained with inputs and their associated outputs.  

 

3.2.1. Artificial neuron 

McCulloch and Pitts (1943) were the forerunners in studying the 

artificial neural network concept [232]. They investigated the fundamental 

operational features of basic artificial neurones that corresponded to the 

function of biological neurones. The biological neurone and the artificial 

neurone can be approximately compared. The term “neurones” refers to 

the billions of tightly coupled cells that make up the human brain. According 

to Figure 3.2, a neurone consists of a body, an axon, dendrites, and 

synapses. The signals (inputs) first received by neighbouring neurones’ 

dendrites are subsequently transmitted to the cell body, where they are 

processed before being transferred to the axon, which then sends the signal 

through the synapse to the neighbouring neurones’ dendrites (outputs). 

The following neurone receivers (dendrites) across the synaptic junction 

receive chemical neurotransmitters when an impulse reaches a synapse. 

The neurone can receive and transmit numerous signals simultaneously 

because each synapse is connected to numerous dendrites. The volume of 

signals that flow through a receiving neurone is influenced by its threshold, 

the strength of Synoptics, and the strength of the signal coming from the 

feeding neurones. Additionally, each synaptic strength (comparable to the 

weights in neural networks) determines the strength of the postsynaptic 

neuron’s impulse [233]. 
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Figure 3.2: Biological Neuron 

 

The connection weights and threshold roughly correspond to the 

activity in a soma, while the wires and interconnections represent the axons 

and dendrites, respectively. Both biological networks and ANNs learn by 

adjusting the magnitudes of the synapses’ strengths or ANN weights [234].  

 

 

Figure 3.3: Mathematical model of the artificial neuron [235] 

 

The artificial neurone, seen in Figure 3.3, is the fundamental 

processing component of an ANN. To determine the output 𝑦, the neurone 

performs the following mathematical operations on the inputs 𝑥𝑖. 

 

𝑦 =  𝜑 (∑ (𝜔𝑖𝑥𝑖) + 𝑏
𝑖

)  (3.1) 
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Where, 

𝑦 = Output 

𝜑 = Activation function 

𝜔𝑖 = Synaptic weights 

𝑥𝑖 = Input variable 

𝑏 = Bias 

 

3.2.2. Artificial neural networks 

The building block of larger neural networks is the perceptron or a 

single neuron. Effective and potent multi-neuron networks were created to 

address non-linear challenges because the capabilities of single-neuron 

systems were restricted to linearly separable classes [236]. When 

designing multi-neuron networks, numerous single neurons are connected 

parallelly to form neurone layers. The total multi-layered ANN system is 

created by connecting these neuron layers in sequential order. Modifying 

the weights and the bias parameter in accordance with the learning rules 

produces the pre-defined outputs (targets) during neural network 

“learning”, sometimes referred to as “training”. Therefore, these input-

output sets are also called “training sets” because the neurones are meant 

to learn from a set of user-defined experiences (a set of inputs and 

outputs).  

The input layer, hidden layer, and output layer are the components 

of an ANN network. Each layer is built up of several groupings of neurones 

with the use of training parameters. The degree to which a network is 

generalisable depends significantly on the number of neurones in each 

hidden layer and the overall number of hidden layers in the network. One 

of the most important aspects of network training is the network’s ability 

to generalise, which can be defined as the ‘ability to reproduce outputs that 

are similar to training samples and to produce outputs that are plausible 

for inputs that were not utilised in training’.  

Overtraining may result in the network becoming “overfitted”, a 

problem in network training that a trained network should avoid. Overfitting 
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occurs when the learning algorithm fits the trained outputs very closely to 

the training set, minimising the training error. This has the negative effect 

of preventing generalisation and producing unrealistic outputs for the new 

set of inputs. In the past few decades, several strategies have been 

proposed to prevent overfitting and improve the generalisation capacity of 

the network. Pruning, the regularisation approach, and the early stopping 

method have reduced the overfitting effect. This study avoided network 

overfitting by adopting the early stopping strategy, which is the simplest 

method to manage while the network is being trained. This is accomplished 

by manually halting the training process when the validation set error 

increases while the training set error decreases. 

 

3.2.3. Backpropagation algorithms 

An ANN can be used to make predictions only after training with an 

existing input-output data set. The backpropagation supervised learning 

technique is often used to train ANNs. The training technique of an ANN 

employing backpropagation consists of two phases: forwards propagation 

followed by backward propagation. During forwards propagation, data are 

transferred to the output layer via random-weighted hidden layers. At the 

completion of the forwards pass, the predicted output of the model may 

not correspond to the desired output. Modifications are made to the 

network’s weights such that the projected output is as close as possible to 

the desired result by adjusting the weight during the step of backward 

propagation. Backward propagation requires calculating and propagating 

the error’s derivative (the difference between the desired output and the 

projected output). Backpropagation by gradient descent is the technical 

term for this process. The error derivative is employed to modify the 

weights to reduce output error [237]. Figure 3.4 displays a typical ANN 

topology.  
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Figure 3.4: Typical ANN topology 

 

At the end of the forwards pass, the error function corresponding to 

the weight W is computed as represented by the equation (3.2) 

 

𝐸(𝑊) =  
1

2
∑|𝑌𝑘 − 𝑌𝑘̂|

2
𝑘=𝑛

𝑘=1

  (3.2) 

 

Where, 

𝑋 =  [𝑋1, 𝑋2, … 𝑋𝑛] = Input Vector  

𝑌 =  [𝑌1, 𝑌2, … 𝑌𝑛] = Output Vector  

𝑌̂ =  [𝑌1̂, 𝑌2̂, … 𝑌𝑛̂] = ANN’s estimated output vector  

𝑊 =  [𝑊(1), 𝑊(2)] = Weight matrices vector for layers 1 and 2  
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In the backwards pass, the derivative of the error function is 

computed and update the weights according to the following equation 

(3.3): 

 

𝑊𝑖𝑗 =  𝑊𝑖𝑗 −  𝛼
𝛿 𝐸(𝑊)

𝛿 𝑊𝑖𝑗
   (3.3) 

 

Where, 

𝛼 = Learning rate 

𝑊𝑖𝑗 = Specific weight connecting the units I and j 

 

The general algorithm for backpropagation can be summarised as 

follows: 

1. Initialise the network weights with modest random weights. 

2. Present the training dataset’s input vector to the network. 

3. The propagation of the input to produce the output is known as the 

feedforward phase of the input. 

4. Compute the error by comparing the predicted network output and the 

desired network output. 

5. Backpropagate the error through the network, also known as the 

backpropagation of error. 

6. Adjust the weight to reduce the error as much as possible. 

7. Repeat steps 2–6 until there is no improvement in the error. 

 

3.2.4. Proposed ANN architecture 

The main objective of the ANN is to predict the structural health of 

the tension rebar of an RC beam using the concrete surface strain data as 

an input. For this purpose, the optimal number of hidden layers was 

determined on the problem’s complexity. When training data (obtained via 

FEA) and testing data (obtained experimentally) are in two dimensions, the 

ANN cannot help predict the outcomes. One potential solution to this issue 
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is to apply principal component analysis (PCA), which can simplify high-

dimensional data and preserve underlying trends and patterns.  

PCA was used to set an equal number of input nodes for FEA-

extracted data and experimental data by decreasing their dimensions. Each 

network’s number of input and output nodes corresponds to the number of 

variables in the input and output data sets. The number of hidden layers 

and the number of neurones within a hidden layer were determined via trial 

and error to achieve optimal training and validation accuracy. This is 

because the trial-and-error method is more straightforward and intuitive, 

encourages the investigation of various hyperparameter combinations, and 

fosters a deeper understanding of the issue and how hyperparameters 

impact model performance. 

The training data set is randomly split into training, validation, and 

testing subsets. Generally, data sets can be separated into 60% to 90% 

training data, 5% to 20% validation data, and 5% to 20% test data [197, 

201, 205-207]. This study allocated 64% of the data to training, 16% to 

validation, and 20% to testing. In this work, the input data consisted of the 

strain retrieved along the surface sensor path from the FEA model, and the 

output was the rebar status showing whether a present rebar strain was 

exceeded (or not).  

In the suggested ANN, the output node is adopted in the output layer, 

where “1” denotes that the limit was exceeded and “0” denotes that the 

limit was not exceeded. Therefore, this model has two output classes. The 

model was trained to predict the rebar tension status using the rebar yield 

limit (considered 2500 µε). Engineers can significantly benefit from using 

concrete surface strain data as input to DL models because embedded rebar 

is typically unavailable for visual inspection. This method allows early 

detection of deterioration indicators, including cracking and overloading. 

Activation functions are of great significance in artificial neural 

networks since they are responsible for determining the output of a neuron 

based on a particular set of input(s). The inclusion of non-linearity in the 

model is crucial as it enables the network to effectively learn from errors 
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and adapt, hence facilitating the acquisition of intricate patterns. Given the 

nature of this investigation, which pertains to binary classification, it is 

expected that the outcome will yield the probability associated with the 

selection of the positive class. As a result, it is necessary for the output to 

be within the numerical range of 0 to 1. The selection of the "sigmoid" 

function appears to be an appropriate choice for this particular purpose. 

The sigmoid function is considered to be one of the earliest employed 

activation functions. The activation function, known for its distinctive S-

shaped curve, has consistently been utilised in neural networks specifically 

developed for binary classification tasks. Due to its mathematical design, 

the sigmoid function effectively and seamlessly transfers its inputs to 

values within the range of 0 and 1. It is worth mentioning that greater 

negative inputs tend to approach 0, whilst larger positive inputs tend to 

approach 1. A crucial aspect of this mapping is the numerical value of 0.5. 

This assumption holds significance as it serves as a decisive factor in 

defining the inclination of an input towards one of the two classes. 

When shifting focus to the concealed levels of architecture, a distinct 

paradigm emerges. The rectified linear unit (ReLU) function is given priority 

in this context. The ReLU has emerged as a widely adopted activation 

function in many neural network architectures. Upon initial observation, it 

may appear that ReLU consists of two linear segments combined. However, 

within the wider context of brain computations, ReLU is unequivocally 

classified as a nonlinear function. The hallmark of this system lies in its 

operational simplicity. Inputs that possess a positive value or are equal to 

zero remain unaltered and are transmitted in their original form. 

Nevertheless, any negative input experiences a process of transformation, 

resulting in its value being reduced to zero. This behaviour confers certain 

advantageous qualities upon the ReLU. Firstly, it demonstrates 

computational efficiency, frequently leading to expedited training epochs. 

Moreover, it has been observed that the use of the ReLU activation function 

might help alleviate the issue of the vanishing gradient problem, which is a 

well-known challenge often encountered when employing activation 
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functions like as the sigmoid, particularly in networks with multiple layers. 

In order to provide a more concrete viewpoint, Figure 3.5 illustrates the 

distinctions between the ReLU and sigmoid functions in a visual manner. 

This depiction highlights their respective operational ranges and significant 

transition points. 

 

 

Figure 3.5: (a) ReLU transfer function; (b) Logistic sigmoid transfer 

function 

 

The ANN proposed in this study comprises one input layer, two hidden 

layers, and one output layer. The ReLU function acts as the transfer 

function between the initial three contiguous layers, whereas the sigmoid 

function is implemented between the last two layers. One class have 

considerably more instances than the other. This imbalance can result in 

biased model performance, as the algorithm may become more sensitive 

to the majority class and fail to classify instances from the minority class 

accurately. The synthetic minority oversampling technique (SMOTE) was 

used to avoid the problem of class imbalance. Multiple performance 

indicators may be employed in classification tasks, but no single metric is 

thoroughly instructive. Therefore, this analysis employed accuracy (the 

proportion of correctly classified data), precision, and 

recall demonstrating the model’s performance for each case.  
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Precision is calculated by dividing the proportion of accurately 

predicted positive outcomes (true positives) by the total number of positive 

outcomes predicted. The Recall is a measure of completeness calculated by 

dividing the proportion of positives accurately classified as positives (true 

positives) by the total number of positives. The upcoming sections will 

cover the technique for producing strain data, while Chapter 5 explores the 

outcomes of training the DL model and making predictions. 

 

3.3. How FEA enhances data collection in SHM  

Data gathering or data accumulation is the most crucial phase of an 

SHM process, as it affects the success of future operations. FEA plays a 

crucial role in this procedure, especially in extracting strain data, a 

fundamental aspect of SHM. Several factors contribute to the importance 

of strain data extraction utilising FEA models in SHM.  

First, FEA can accurately simulate the physical behaviour of a 

structure under various conditions, yielding accurate strain data for the 

SHM framework. It considers the complexities of material properties, 

loading conditions, and geometric details, which makes FEA strain data 

extraction a reliable starting point. Second, FEA models offer efficiency by 

reducing the need for expensive and time-consuming physical prototypes 

and tests. These models can simulate extreme conditions that may be 

difficult or dangerous to recreate in real life, thus saving additional time 

and resources. In addition, the FEA-generated strain data enables a 

comprehensive structural analysis. It facilitates the identification of strain 

peaks, potential sites of failure, and a comprehensive evaluation of the 

structure’s safety.  

The extracted strain data are crucial for training DL models within an 

SHM framework. The accurate, dependable, and exhaustive data generated 

by FEA enhances the prediction capabilities of these algorithms, allowing 

for the early detection of structural issues and boosting the overall 

performance of the SHM system. In conclusion, the retrieval of strain data 

from FEA models is not only significant but also the optimal method for 
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initiating and training an SHM framework. It lays the groundwork for 

dependable, efficient, and effective SHM, saving time, money, and possibly 

even lives. 

 

3.4. Material model for steel reinforcement 

Rebars and stirrups (steel reinforcement) exhibit equivalent stress-

strain characteristics. They exhibit linear elastic behaviour until they yield, 

after which they exhibit plasticity. For the steel reinforcement, it was 

assumed that the modulus of elasticity is 200 GPa and the yield stress is 

450 MPa. The material parameters for the steel components were obtained 

from the datasheets of the material suppliers, and a stress-strain curve was 

generated using the model supplied by Ramberg and Osgood (1943) [238]. 

A density of 7800 kg/m3 was assumed for all steel components. 

 

3.5. Material model for concrete 

The concrete material model is the most critical model for simulating 

a flexural test, as the member’s failure is highly dependent on the 

behaviour of the concrete. Choosing an appropriate material model for 

concrete is crucial for FEA accuracy. Elastic properties and a damaged 

plasticity model for concrete are provided and analysed along with material 

parameters. It is noteworthy to acknowledge that the equations presented 

are widely accepted formulas utilised in the industry to forecast the 

performance of concrete under diverse load circumstances. The majority of 

these equations are from CEB-FIP Model Code 90 [239] which possess an 

empirical quality, as they have been obtained after comprehensive 

experimental testing conducted on concrete examples. 

 

3.5.1. Elastic properties of concrete 

Concrete’s elastic characteristics are primarily influenced by its 

constituent ingredients, particularly the aggregates. The concrete’s 

elasticity modulus, 𝐸𝑐𝑖, is an essential parameter in understanding its 

mechanical behaviour under load. The CEB-FIP Model Code 90 provides 
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methodologies and empirical relations, such as the one presented, which 

are based on extensive experimental data and collaborative research across 

different countries and institutions [239]. In this study 𝐸𝑐𝑖 was calculated 

using the CEB-FIP model code 90 specifications given in Equation (3.4).  

 

𝐸𝑐𝑖 = 𝐸𝑐𝑜 [
𝑓𝑐𝑚

𝑓𝑐𝑚𝑜
]

1/3

 (𝑓𝑐𝑚 in MPa) (3.4) 

   

𝑓𝑐𝑚 =  𝑓𝑐𝑘 + 8 (MPa) (3.5) 

 

Where, 

𝑓𝑐𝑚  = Mean value of concrete compressive strength 

𝑓𝑐𝑚𝑜 = 10 MPa 

𝐸𝑐𝑜 = 2.15 x 104 MPa 

𝑓𝑐𝑘   = The characteristic compressive strength 

 

Experimentally determining 𝑓𝑐𝑚 typically entails subjecting concrete 

samples to a compressive load until failure and measuring the maximal 

compressive load sustained by the sample. The compressive strength is 

then calculated by dividing this value by the sample's cross-sectional area. 

For the purposes the analyses, all concrete grades were deemed to have a 

Poisson's ratio of 0.2 and a normal-weight concrete density of 2400 kg/m3. 

The elastic properties outlined above were applied uniformly to all concrete 

material models utilised in this study. In cases which perform only an elastic 

analysis of a concrete structure, the initial plastic strain must be accounted 

for by adopting a reduced modulus of elasticity, 𝐸𝑐, as per equation (3.6). 

 

𝐸𝑐 = 0.85𝐸𝑐𝑖  (3.6) 

 

3.5.2. CDP model 

The CDP model available in both ABAQUS/Standard and 

ABAQUS/Explicit can be utilised to simulate concrete and other quasi-brittle 
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materials in different structures. The CDP model relies on two primary 

failure modes: tensile cracking and compressive crushing. The evolution of 

the yield surface is determined by two hardening factors that lead to failure 

under tensile and compressive loads. A softening stress-strain response 

characterises the post-failure behaviour under compression. When dealing 

with cracked concrete in tension, the strain softening behaviour is defined 

by either a tension stiffening model that considers post-failure stress-strain 

behaviour or a fracture energy-based cracking criterion. The CDP model is 

intended for situations where concrete is exposed to arbitrary loading 

conditions, including cyclic loading. 

 

Plasticity parameters 

A non-associated plasticity flow rule is followed in the CDP model, 

which means that the plastic potential function and yield surface are not 

coincident. Under extremely high levels of inelastic stress, concrete can 

undergo a considerable volume change, often known as dilatation. The 

dilatation is capable of being represented by a suitable plastic potential 

function. In contrast, the hardening rule could specify the yield surface. The 

plastic parameters considered by the CDP model are as follows: 

 

Dilation angle, Ѱ is defined in the p-q plane, and value is inserted in 

degrees. 

Eccentricity, ε is a small positive value that determines the rate at 

which the hyperbolic flow potential approaches its 

asymptotic limit. 

fb0/fc0 σb0/σc0 is the ratio of initial equi-biaxial compressive 

yield stress to initial uniaxial compressive yield stress. 

K Kc is the ratio of the second stress invariant on the 

tensile meridian, q(TM), to that on the compressive 

meridian, q(CM), at initial yield for any given value of 

the pressure invariant p such that the maximum 
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principal stress is negative. It must comply with the 

condition 0.5 < Kc <1.0. 

Viscosity 

parameter 

In Abaqus/Standard analyses, the viscosity parameter 

is utilised to introduce visco-plastic regularisation into 

the concrete constitutive equations. This parameter is 

disregarded in the Abaqus/Explicit. 

 

The plastic characteristics discussed earlier, including dilation angle 

and eccentricity, are determined through the utilisation of empirical 

relationships and experimental observations of concrete subjected to 

different loading circumstances. The assessment of these parameters 

necessitates the use of specialised testing equipment and setups, as they 

play a crucial role in mimicking the behaviour of concrete under various 

stress conditions. To obtain comprehensive approaches about the 

derivation of these parameters, readers are kindly directed to references 

[144, 240]. 

 

Compressive behaviour 

The stress-strain relationship of plain concrete under uniaxial 

compression was obtained by applying Equation (3.7) from the CEB-FIP 

Model Code 90. Figure 3.6 presents the schematic representation of the 

stress-strain relationship for the nonlinear structural analysis of concrete. 

 

𝜎𝑐  =  − 

𝐸𝑐𝑖

𝐸𝑐1
∙

𝜀𝑐

𝜀𝑐1
− (

𝜀𝑐

𝜀𝑐1
)

2

1 +  (
𝐸𝑐𝑖

𝐸𝑐1
− 2) ∙

𝜀𝑐

𝜀𝑐1

∙ 𝑓𝑐𝑚 for |𝜀𝑐|< |𝜀𝑐,𝑙𝑖𝑚| (3.7) 

 

Where, 

𝐸𝑐𝑖 = The tangent modulus according to eq. 3.4 

𝜎𝑐 = The compression stress (MPa) 

𝜀𝑐 = The compression strain 
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𝐸𝑐1 = 𝑓𝑐𝑚/0.0022 = Secant modulus from the origin to the peak 

compressive stress 𝑓𝑐𝑚 

 

As seen in Figure 3.7, the compressive uniaxial response of concrete 

is linear up to the initial yield stress, 𝜎𝑐0. After reaching the peak 

compressive stress, the material’s response shifts towards plastic 

deformation characterised by stress hardening; subsequently, strain 

softening occurs 𝜎𝑐𝑢. When the concrete specimen is unloaded at any 

position on the softening branch of the stress-strain curve, the compressive 

damage variable, 𝑑𝑐, characterises the degradation of the material’s elastic 

stiffness. The compressive damage variable has a value of zero (0) for 

undamaged material and a value of one (1) for complete loss of 

compressive strength. 

 

 

Figure 3.6: Schematic representation of the stress-strain relation for 

uniaxial compression (CEB FIP Model code 1990) 

 



 

88 
 

 

Figure 3.7: Response of concrete to uniaxial loading in compression 

(ABAQUS manual) 

 

The compressive damage variable, 𝑑𝑐, was derived from Equation 

(3.8) as supplied in the ABAQUS manual if 𝐸0 is the elastic stiffness of the 

undamaged material and 𝜀𝑐 is the total compressive strain. 

 

𝜎𝑐 = (1 −  𝑑𝑐)𝐸0(𝜀𝑐 − 𝜀𝑐
~𝑝𝑙)        (3.8) 

 

Where, 

𝜀𝑐
~𝑝𝑙 = Compressive equivalent plastic strain 

 

To determine the compressive behaviour and concrete compression 

damage, the ABAQUS CDP model utilises the yield stress versus inelastic 

strain curve and the damage parameter versus inelastic strain curve. 

According to the ABAQUS manual, the compressive inelastic (or crushing) 

strain, 𝜀𝑐
~𝑖𝑛, is determined using Equation (3.9). 

 

𝜀𝑐
~𝑖𝑛 =  𝜀𝑐

~𝑝𝑙 + 
𝑑𝑐

1 −  𝑑𝑐

𝜎𝑐

𝐸0
  (3.9) 
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The parameters utilised in equation (3.7) and the subsequent 

equations until equation (3.9) are derived from the stress-strain 

characteristics of concrete when subjected to compressive forces. The 

equations presented here are from the CEB-FIP Model Code 90 [239] and 

ABAQUS manual [241].  

 

Tensile behaviour 

Concrete tensile failure is usually a discrete phenomenon. Therefore, 

a stress-strain diagram for uncracked concrete and a stress-crack opening 

diagram, as shown in Figure 3.8, should describe the tensile behaviour. The 

bilinear stress-strain relationship given by equations (3.10) and (3.11) 

applies to uncracked concrete subjected to tension.  

 

For 𝜎𝑐𝑡  ≤ 0.9 𝑓𝑐𝑡𝑚   

𝜎𝑐𝑡 = 𝐸𝑐𝑖 ∙ 𝜀𝑐𝑡     (3.10) 

   

For 0.9 𝑓𝑐𝑡𝑚 ≤  𝜎𝑐𝑡  ≤  𝑓𝑐𝑡𝑚   

𝜎𝑐𝑡 =  𝑓𝑐𝑡𝑚 −  
0.1𝑓𝑐𝑡𝑚

0.00015−
0.9𝑓𝑐𝑡𝑚

𝐸𝑐𝑖

∙ (0.00015 −  𝜀𝑐𝑡)    (3.11) 

 

Where, 

𝐸𝑐𝑖 = The tangent modulus according to eq. 3.4 

𝑓𝑐𝑡𝑚 = The tensile strength in (MPa) 

𝜎𝑐𝑡 = The tensile stress in (MPa) 

𝜀𝑐𝑡 = The tensile strain 
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Figure 3.8: Stress-strain and stress-crack opening diagram for uniaxial 

tension (CEB FIP Model code 1990) 

 

The ABAQUS manual recommends employing a tension stiffening 

technique for situations with no or minimal reinforcement in key model 

regions. When dealing with problems related to unreinforced or minimal 

RC, it is preferable to describe the brittle behaviour of concrete by 

specifying the fracture energy instead of defining a stress-strain 

relationship in tension. According to Hillerborg et al. (1976), fracture 

energy 𝐺𝑓 can be defined as the amount of energy necessary to produce a 

stress-free crack with a unit area [242]. In a specific grade of concrete, the 

fracture energy can be represented by the area below the unloading section 

of the stress-crack opening curve. 

The softening response of concrete can be defined in multiple ways 

using the fracture energy concept. Defining tensile cracking through a linear 

approximation that accounts for the loss of strength after cracking is a 

suitable approach. Although the linear softening method can produce 

reasonably accurate results, it tends to overestimate the stiffness of the 

material response. Hillerborg (1985) [243] proposed that using a bilinear 

function can provide a more precise definition of the softening behaviour of 

concrete under tension. 
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The variable 𝑑𝑡 for tensile damage is derived from equation (3.12). 

Abaqus automatically converts cracking strain values to plastic strain 

values using the relationship (3.13). The fracture energy 𝐺𝑓 computed from 

the expression (3.14) according to CEB-FIP model code 90, where 𝑓𝑐𝑚𝑜 is 

the base value of mean compressive cylinder strength with a constant value 

of 10 MPa and 𝐺𝑓𝑜 is the base value of the fracture energy, which is 

dependent on the aggregate’s maximum size. For a cracked section, the 

bilinear stress-crack opening relation given by equation (3.15) is used to 

determine the crack opening (3.18).  

 

𝑑𝑡 = 1 −  
𝜎𝑐𝑡

𝑓𝑐𝑡𝑚
    (3.12) 

   

𝜀𝑡
~𝑐𝑘 =  𝜀𝑡

~𝑝𝑙 +  
𝑑𝑡

1 −  𝑑𝑡

𝜎𝑡

𝐸0
  (3.13) 

   

𝐺𝑓 =  𝐺𝑓𝑜 (
𝑓𝑐𝑚

𝑓𝑐𝑚𝑜
)

0.7

     (3.14) 

   

𝜎𝑐𝑡 =  𝑓𝑐𝑡𝑚 −  (1 − 0.85
𝑤

𝑤1
) For 0.15 𝑓𝑐𝑡𝑚 ≤  𝜎𝑐𝑡  ≤  𝑓𝑐𝑡𝑚 (3.15) 

    

𝜎𝑐𝑡 =   
0.15𝑓𝑐𝑡𝑚

(𝑤𝑐 − 𝑤1)
∙ (𝑤𝑐 − 𝑤) For 0 ≤  𝜎𝑐𝑡  ≤  0.15𝑓𝑐𝑡𝑚 (3.16) 

   

𝑤1 = 2
𝐺𝑓

𝑓𝑐𝑡𝑚
− 0.15𝑤𝑐  (3.17) 

𝑤𝑐 = 𝛼𝑓

𝐺𝑓

𝑓𝑐𝑡𝑚
  (3.18) 

 

Where, 

𝜀𝑡
~𝑐𝑘 = cracking strain 

𝜀𝑡
~𝑝𝑙 = equivalent plastic strain in tension 

𝑤 = The crack opening (mm) 
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𝑤1 = The crack opening (mm) for 𝜎𝑐𝑘 =  0.15𝑓𝑐𝑡𝑚  

𝑤𝑐 = The crack opening (mm) for 𝜎𝑐𝑡 =  0 

𝐺𝑓 = The fracture energy (Nmm/mm2) 

𝑓𝑐𝑡𝑚 = The tensile strength (MPa) 

𝛼𝑓 = The coefficient depends on the maximum aggregate size (dmax) 

 

3.5.3. Finite element type and mesh 

In conventional numerical simulations of RC structures, it is 

commonly presumed that concrete is a homogeneous material [244]. 

Numerous studies [152, 245] have utilised a solid, homogeneous material 

to represent concrete. The literature review reveals that C3D8R and T2D2 

are, respectively, the most common modelling elements for concrete and 

reinforcement. In this investigation, the concrete beams were modelled 

using C3D8R with reduced integration and hourglass control. Brick 

elements are favoured in many model sections because they provide an 

equally accurate solution while requiring less computational time. In the 

context of the current model, which was constructed using Abaqus/Explicit, 

it is important to note that there was no convergence issue associated with 

the brick elements. 

Tetrahedral elements are known to exhibit a variety of geometric 

characteristics. To prevent shear locking in solid elements, the reduced 

integration method has to be utilised. Without this, the elements could 

become inappropriate for bending applications due to their extreme rigidity. 

This method is also advantageous because it reduces the required 

computational time for the analysis. 

Separately, truss elements were used to depict rebars in the model. 

These truss components, specifically T3D2, were selected due to their 

efficiency in representing elements that can only support compressive or 

tensile stresses. Using these components for reinforcing bars and stirrups 

is a method for optimising the model for reduced computation time. 
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3.5.4. Constraints and contact interactions 

After assembling the model components, the appropriate constraints 

and contact interactions are applied to ensure that the simulation produces 

accurate and reliable results. The constraint between the reinforcement and 

the concrete beam was modelled using ABAQUS’ embedded region feature 

to make modelling as simple as possible. This constraint links the nodes of 

a truss element with those of a solid element in a kinematic manner. As a 

result, the truss element node displacement is calculated as the average 

displacement of its nearby solid element nodes. The analysis, in this case, 

was conducted under the assumption that the reinforcement and concrete 

had a perfect bond. For the usual behaviour, the friction coefficient was 

selected to be 0.3, and a hard contact was selected as the contact 

interaction property between the loading arrangement and the concrete 

beam. 

 

3.5.5. Load application and analysis procedure 

FEA analyses of RC have been performed using a variety of 

approximation approaches and commercial software packages. ABAQUS / 

Explicit Version 2019 performed FE analysis in this work. The dynamic 

explicit procedure is an effective method for addressing a wide range of 

nonlinear issues, specifically in structural engineering. Explicit methods are 

not influenced by the characteristics or duration of the loading, and they 

necessitate a smaller increment size compared to implicit methods. In 

contrast, the increment size of implicit methods is typically determined by 

convergence and accuracy concerns. Hence, explicit methods have a lower 

computing cost per increment than implicit methods. 

ABAQUS/Explicit was selected for this project due to its ability to 

handle problems involving complex contact interactions, extremely 

nonlinear quasi-static scenarios, and degrading or failing materials [246-

249]. Complex contact interactions are frequently simpler to specify when 

explicit methods are used as opposed to implicit ones. Methodologies 

developed by ABAQUS/Explicit can be advantageous for structures 
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subjected to complex contact interactions during loading. While it is 

acknowledged that ABAQUS/Standard may provide verifiable results for 

non-stress wave dominated cases, ABAQUS/Explicit offers a more practical 

approach, especially when ABAQUS/Standard faces convergence 

challenges. Although recent developments such as XFEM have enhanced 

ABAQUS/Standard's failure simulation capabilities, in this study XFEM have 

not been provided results closer to experimental results. Therefore, 

ABAQUS/Explicit was chosen for this project due to its resource efficiency 

and prowess in addressing complex contact scenarios. Materials that exhibit 

stiffness degradation and failure, such as the brittle materials studied for 

this project, can cause significant convergence issues in implicit processes, 

which justifies the use of ABAQUS/Explicit. Such materials, comparable to 

concrete, may experience a sharp decrease in load-bearing capacity, 

resulting in a significant increase in kinetic energy, which ABAQUS/Explicit 

can simulate accurately. 

The top surface of the beam is displaced in the dynamic explicit 

analysis by providing a uniform load to the “loading arrangement” using 

the amplitude function to ensure a quasi-static solution. Throughout the 

analysis, the quasi-static solution primarily restricts the kinetic energy of 

the flexural test to a modest value. After testing various loading rates, the 

optimal loading rate has been determined to be 2.5 mm/sec. The 

computing efficiency of a quasi-static analysis employing the dynamic 

explicit technique is ensured by raising the time increment or introducing 

mass scaling into the model. The ratio of kinetic energy to internal energy 

and external energy (ALLKE/ALLWK) must always be evaluated and should 

be less than 5 per cent. For all simulations, the ratio of kinetic energy to 

internal energy and external energy is less than 1%, which is within the 

permitted range of 5%. 

 

3.5.6. CDP model parameters 

The CDP model includes concrete’s plastic, compressive, and tensile 

behaviours. The CDP model considers concrete homogeneous, isotropic, 
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and continuous [240]. The primary parameters considered in this study 

were dilation angle (ψ), flow potential eccentricity (ε), the ratio of 

compressive strength under biaxial loading to uniaxial compressive 

strength (fb0/fc0), shape factor (K), viscosity parameter (μ), elasticity 

modulus of concrete (Ec), concrete compressive behaviour, concrete tensile 

behaviour, and density. A viscosity parameter was not used because 

ABAQUS/Explicit was employed for the simulation; hence, its value was 

presumed to be 0 [249]. Table 3.1 lists the recommended CDP properties. 

 

Table 3.1: CDP properties for FEA model 

Dilation Angle Eccentricity fb0/fc0 K 
Viscosity 

parameter 

31° - 45° 0.1 1.16 0.667 0 

 

3.6. Strain data extraction from FEA models 

SHM algorithms can make conclusions concerning the structural 

integrity of a structure. Modern AI approaches, such as DL, can serve the 

same function. Nevertheless, having thousands of data points may be 

necessary to effectively train DL models, as a higher amount of training 

data often leads to a more accurate model. However, executing thousands 

of experiments to extract data is not realistic in terms of time or cost. 

Hence, by adjusting various model parameters such as loads, boundary 

conditions, loading rates, and loading conditions, FEA models can generate 

hundreds of distributed data points. The study involved developing a Finite 

Element model specifically designed to extract distributed strain data by 

considering variations in load as a key factor. 

The accuracy of a DL model is determined by the amount of training 

data used to train the model. In the CDP model, the dilation angle holds 

great significance as it is one of the most crucial features for smaller values, 

the material is brittle; for larger ones, it is stiff. Typically, the angle of 

dilatation of concrete ranges between 13° and 56° [250]. In this study, 

strain data were generated using a series of simulations in which the angle 
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of dilation was adjusted from 31° to 45° (with an increment of 1°). The 

field output request interval for each simulation was modified by 

considering the frequency of evenly spaced time intervals, and the CDP 

model was loaded until the rebar yields. Therefore, the surface and rebar 

data can be retrieved until reaching the elastic limit.  

As described earlier, a notable adjustment was made to the angle of 

dilation parameter in the CDP model. This was done to obtain a 

comprehensive understanding of the DL model's sensitivity to changes in 

the angle of dilatation and its effect on the accuracy and reliability of the 

generated strain data. The choice of this particular parameter adjustment 

was motivated by the fundamental significance of the angle of dilatation in 

characterizing concrete behaviour, where moving leftwards represent 

brittle material responses and moving rightwards values represent stiffer 

behaviour. By exploring this parameter within the typical range observed 

in concrete structures [141, 142, 246, 251, 252] and conducting a series 

of simulations under varying conditions, this study aimed to generate strain 

data from the CDP model's ability to capture a broad spectrum of material 

behaviours. The simulations incorporated both elastic and plastic behaviour 

of concrete until the rebar yielded, allowing for a comprehensive analysis 

of strain patterns and structural responses. This investigation's findings 

provide valuable insights into the model's robustness and applicability in 

real-world engineering scenarios, thereby augmenting the understanding 

of concrete's behaviour under varying conditions. 

Two types of RC beam geometries, namely short-span and long-span 

were modelled using CDP-based FEA. The FEA modelling process involved 

creating separate models for each type of beam geometry and specifying 

relevant material properties, dimensions, and loading conditions. The first 

FEA was performed with a short-span RC beam, followed by the long-span 

beams, and data extraction was used to analyse the beams’ behaviour 

under different loading conditions. Figure 3.9 displays the Reinforcement 

details and sectional view of the short-span RC beam. The loading, 

boundary conditions, and mesh arrangement are displayed in Figure 3.10. 
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Table 3.2 lists the proposed concrete and steel properties for the short-

span RC beam FEA model.  

 

Table 3.2: Material properties for the short-span RC beam  

Material Type 
Young’s modulus 

(MPa) 

Poisson’s 

ratio 

Concrete Isotropic 26370 0.2 

Steel Isotropic 200000 0.3 

 

 

Figure 3.9: Reinforcement details and sectional view of the short-span RC 

beam 
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      a)           b) 

Figure 3.10: FEA model of short-span RC beam (a) Boundary conditions 

and loading configuration; (b) Mesh configuration 

 

The FEA model was created using four different types of elements. 

There are 292 elements of the T3D2 type, 2712 elements of the C3D8R 

type, 218 elements of the R3D4 type, and only four elements of the R3D3 

type. Figure 3.11 illustrates establishing two paths for data extraction, one 

for surface strain data and the other for rebar strain data. Strain data for 

each node was retrieved using ABAQUS’s XY data option. Path points, 

including intersections, were selected, and the option “Remove duplicate 

XY pairs” was chosen.  A long-span beam model of 4000 mm long with a 

200 mm by 400 mm cross section was proposed for the simulation to 

generate strain data for the subsequent stage. 

 

Pinned 

support 

Roller 

support 

Loading 

Arrangement 
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(a) 

 

 

 

 

 

 

 

(b) 

Figure 3.11: Loading arrangement and data extraction paths of short-

span RC beam (a) Surface and rebar data extraction path; (b) FEA 

surface and rebar strain data extraction path 

 

Table 3.3: CDP model parameters for strain data generation  

Dilation angle (°) Steps Number of data points per sensor 

path 

(No. of dilation angles * Steps) 

31° to 45° 

(15 angles) 

2000 30,000 

  

Surface strain data 

extraction path 

Load 

1000 mm 

1400 mm 

1200 mm 

Rebar strain data 

extraction path 

Rebar 

strain data 

extraction 

path 

Surface 

strain data 

extraction 

path 
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Table 3.3 presents the CDP model parameters for strain data 

generation. Figure 3.12 displays beam definitions of the long-span RC 

beam, and Table 3.4 lists the proposed concrete and steel properties for 

the long-span RC beam FEA model.  

 

 

 

Figure 3.12: Beam definitions for R20C30 RC beam 

 

Table 3.4: Material properties the long-span RC beam FEA model 

Material Type 
Young’s modulus 

(MPa) 

Poisson’s 

ratio 

Concrete Isotropic 27106 0.2 

Steel Isotropic 200000 0.3 

  

Figure 3.13 illustrates the load, boundary conditions, and mesh 

configuration of long-span beam. The Beam supports were modelled per 

Figure 3.13 (a), and the material was selected as steel. Figure 3.13 (b) 

displays the mesh configuration. The supports were subjected to encastre 

boundary condition, which means the supports have been rigidly fixed to 
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prevent any movement or rotation at their endpoints. The number and type 

of elements used in the model are 22156 – C3D8R and 1512 – T3D2. 

 

 

(a) 

 

(b) 

Figure 3.13: (a) Loading and boundary condition; (b) Mesh configuration 

 

Three strain data generation paths were proposed as per Figure 3.14: 

the bottom surface path, the side surface path, and along the tension rebar. 

Table 3.5 presents the beam nomenclature. Strain data were generated 

through a series of simulations for 15 different dilation angles. Table 3.6 

lists the CDP model parameters used to generate strain data, and Figure 

3.15 shows the proposed loading arrangements for strain data generation. 
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(a) 

 

(b) 

 

c) 

Figure 3.14: (a) FEA Bottom surface data extraction path; (b) FEA side 

surface data extraction path; (c) FEA rebar surface data extraction path 
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Table 3.5: Beam nomenclature  

R20C30  

R20 - Rebar size is 20 mm 

C30 - Concrete cover thickness is 30 mm 

 

Table 3.6: FEA model parameters for strain data generation  

Dilation angle (°) Steps Number of data points per each 

sensor 

(No. of dilation angles * Steps) 

31° to 45° (15 angles) 2500 37,500 

Total number of data used to 

train the model 

(Bottom sensor + Side sensor) 

75,000 

 

 

Figure 3.15: Proposed loading arrangements for strain data generation 

 

 The strain data were extracted, and the developed DL model was 

trained using two proposed FEA models. Initially, the DL model was trained 

using the dataset of short-span RC beams. After verifying the accuracy of 

the DL model’s predictions against experimental measurements from 

DOFS, the next round of training began using the dataset of a long-span 

beam size. The results were presented in Chapter 5 for better 

understanding. 

 

3.6.1. Mesh convergence study 

 The maximum mesh size studied was 50 mm since the beam width 

is limited to 100 mm. Mesh sizes smaller than 25 mm were not considered 
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because the aggregate size was 20 mm. A convergence study was done 

with 50 mm, 35 mm, 30 mm, and 25 mm mesh sizes. The mesh 

convergence study demonstrated that after reducing the mesh size to 25 

mm, the results stabilised and closely mirrored the experimental behaviour. 

Therefore, a 25 mm mesh size was chosen for the FEA. Mesh convergence 

study for short-span RC beam was presented in Figure 3.16 at 16 kN load. 

The experimental deflection and simulation deflection were recoded as 

1.325 mm and 1.281 mm, respectively. The percentage of difference was 

calculated as 3.32%. Table 3.7 presents the most appropriate dilation angle 

and other respective CDP properties for short-span RC beam.   

 

Table 3.7: CDP properties of short-span RC beam 

Beam 

No. 

Dilation 

Angle 
Eccentricity fb0/fc0 K 

Viscosity 

parameter 

B1 43° 0.1 1.16 0.667 0 

 

 

Figure 3.16: Mesh convergence study for short-span RC beam 

  

For the long-span RC beam, the experimental deflection and 

simulation deflection were recorded as 21.42 mm and 22.32 mm, 
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respectively. The percentage difference between the two was calculated as 

4.2%. Figure 3.17 presents the study results. The optimal dilation angle 

and corresponding properties of the CDP model are presented in Table 3.8. 

Chapter 5 of this study clearly presents the FEA model validation and 

simulation results.  

 

Table 3.8: CDP properties for long-span R20C30 Beam 

Beam 

No. 

Dilation 

Angle 
Eccentricity fb0/fc0 K 

Viscosity 

parameter 

R20C30 43° 0.1 1.16 0.667 0 

 

 

Figure 3.17: Mesh convergence study for long-span beam 

 

3.7. Summary  

The chapter begins with an explanation of the conceptual SHM 

framework, followed by a thorough examination of a DL model based on 

ANN architecture designed to interpret strain data for predicting the 

structural health of RC beams using a supervised learning approach. The 

DL model was developed using FEA based concrete surface strain data as 

input to predict the structural health of tension rebars in an RC beam. 

Adjusting the weights and biases of the neurons using the backpropagation 
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algorithm, which entails forward and backward propagation of data through 

the network, is to train an ANN.  

This research proposes an ANN architecture with one input layer, two 

hidden layers, and one output layer. Between the input and hidden layers, 

the ReLU activation function is used, while the sigmoid activation function 

is used between the hidden and output layers. A classification-based DL 

model was developed using only strain data to predict the structural health 

of RC beams. The training phase of the DL model will be discussed in 

Chapter 5. The current emphasis is on assembling and preparing the 

necessary elements for successful model training, particularly the ANN 

architecture and the strain dataset. 

Integrating the strain dataset generated by a CDP-based FEA model, 

which captures the nonlinearity and damage-induced plasticity of concrete, 

is novel to this method. Using CDP modelling, ABAQUS 2019 finite element 

software was used to develop two FEA models for short-span and long-span 

beam sizes. A method was proposed to extract strain data from FEA 

models, which was then used to train a DL model for the novel framework 

presented herein. These strain measurements were collected from two 

surfaces: the surface of concrete and the surface of rebar. In the proposed 

strain data generation method, the angle of dilation for the CDP model 

parameter was increased from 31 to 45 degrees. This data will be used to 

train a DL model, while experimental strain data will be used to evaluate 

the DL model. 
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CHAPTER 4: IMPLEMENTATION OF DISTRIBUTED 

SENSOR NETWORKS AND DATA ACQUISITION 

4.1. Introduction  

This chapter is an integral part of the research project. It investigates 

the installation and operation of the sensor network on RC beams, which 

inputs directly into the proposed SHM framework. This investigation is 

divided into three major sections, each addressing a topic essential to the 

successful implementation of DOFS networks, the primary data acquisition 

mechanism for the SHM framework. 

Installation of sensors on concrete surfaces and rebars within RC 

beams requires meticulous attention to several factors, including sensor 

placement, orientation, and attachment methods. These factors are crucial 

for the sensor network’s success and the SHM framework’s overall efficacy, 

as improper sensor positioning, or attachment could result in inaccurate 

representations of the structural health. 

Strain is an important structural health indicator for RC beams. This 

chapter explains the methods and procedures for strain monitoring using 

the installed sensors, including calibration and data collection. This 

chapter’s ultimate goal is to provide a practical guide for designing and 

implementing distributed sensor networks for SHM of RC beams, thereby 

contributing directly to the efficacy of the proposed SHM framework. In 

addition to aiding in the practical implementation of the SHM system, this 

investigation endeavours to contribute to the larger objective of improving 

the safety, performance, and durability of RC infrastructures.  

Figure 4.1 presents the overview of the technical contents of Chapter 

4. Experimental results and their behaviour will be detailed for clarity in 

Chapter 5. 
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Figure 4.1: Overview of the technical contents of Chapter 4 

 

4.2. Sensor installation 

The installation of sensors is a crucial factor in SHM applications as it 

directly impacts the overall system performance. This particular study used 

a single-mode optical fibre, SMF-28, with a cladding diameter of 125 

micrometres, as the DOFS. The sensor was installed on two surfaces to 

ensure accurate measurements: the concrete surface and the rebar. 

When choosing adhesives for the investigation, special consideration 

was paid to their innate qualities to make sure they complied with project 

requirements. Employing TECHNIGLUE R15 and R60 was based on a 

number of important considerations. Particularly important for long-term 

structural monitoring in concrete infrastructures that may be subject to 

moisture and environmental changes, their demonstrated endurance under 

various environmental circumstances is what made them stand out. The 

thixotropic properties of these adhesives, which guaranteed a continuous 

bond layer and, as a result, dependable and accurate data transfer from 

the sensors, were equally significant. Additionally, it was determined that 

their cost-performance balance was economically favourable for the 

investigation. Their simple mixing and room-temperature drying eliminated 

the need for specialist equipment, providing additional financial 

advantages. 
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4.2.1. Sensor installation on concrete  

The adhesive used to attach the DOFS to the concrete surface was 

TECHNIGLUE R60. This particular glue is an epoxy resin formulated to be 

solvent-free and can cure at room temperature when used with 

TECHNIGLUE hardeners. This results in a strong, waterproof bond. 

Additionally, the adhesive is thixotropic, allowing it to fill gaps and hold up 

well on vertical surfaces. The concrete surface should be wire brushed to 

remove dirt/debris before applying the adhesive. As per the datasheet, the 

resin and hardener should be mixed in a 2:1 ratio. Figure 4.2 displays 

TECHNIGLUE R60, and Figure 4.3 depicts a FOS attached to a concrete 

surface using this adhesive. Table 4.1 provides detailed information 

regarding the adhesive’s curing and cured properties. 

 

 

Figure 4.2: TECHNIGLUE R60 and H60 

 

 

Figure 4.3: Concrete surface attached to FOS 
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Table 4.1: The cure characteristics and cured properties of TECHNIGLUE 

R60 

Cure characteristics 

Pot life -100g @ 25ºC (in air) 40 minutes 

Cured to a solid state @ 25ºC 12 hours 

Cured properties 

Tensile strength (ASTM D638-97) 55 MPa 

Tensile elongation at break (ASTM D638-97) 7% 

Flexural strength (ASTM 790-03) 80 MPa 

Flexural strain (ASTM 790-03) 5% 

 

4.2.2. Sensor installation on rebar  

TECHNIGLUE R15 was used to attach the sensor to the rebar. The 

glue is a soft, thixotropic, solvent-free epoxy paste specifically formulated 

for use with H15 hardeners to cure at room temperature and produce a 

high-strength structural adhesive for bonding metals, particularly 

aluminium and steel. A grove is needed to position the sensor along the 

rebar. When the rebar length is low, this grove can be milled using a milling 

machine (the cutting length depends on the milling machine specification), 

while at higher lengths, the grove can be cut by an angle grinder. The 

surfaces should be clean and free from grease and/or loose particles before 

the application. The resin and hardener should be mixed in a 1:1 ratio per 

the datasheet.  

Table 4.2 lists the cure characteristics and cured properties. Figure 

4.4 shows the two-component epoxy glues used for the sensor mounting, 

and Figure 4.5 illustrates the groove on rebar, positioned DOFS and rebar 

attached sensor.  
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Figure 4.4:  TECHNIGLUE R15 and H15 

 

 

Figure 4.5: (a) The groove cut on the rebar; (b) DOFS before attachment; 

(c) Attached DOFS to the rebar by R15 Epoxy glue 
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Table 4.2: The cure characteristics and cured properties of TECHNIGLUE 

R15 

Cure characteristics 

Pot life -100g @ 25ºC (in air) 83 minutes 

Cured to a solid state @ 25ºC 8 hours 

Mechanical properties 

Ultimate tensile strength 22.4 MPa 

 

The emerging sensors from the attachments should be carefully 

handled after attaching the sensor to a concrete surface or rebar. These 

sensors must be protected and ensure their reliable performance using 

proper safeguards. Polyethylene (PE) tubing (0.92 mm x 0.42 mm) and 

furcation tubes (3 mm) were used for this purpose. The PE tubing was 

inserted into the furcation tube before inserting the sensor. Figure 4.6 

presents the PE tubing and furcation tubes.  

 

 

Figure 4.6: (a) PE tubing; (b) Furcation tubes 

 

On reflection and analysis of the sensor installation performed on 

both the concrete surface and the reinforcing bars, the procedure appears 

to be effective and accurate based on the knowledge gained during this 

project. The careful selection of the appropriate adhesive for each surface, 

the proper preparation of the surfaces, the careful placement and 

attachment of sensors, and the subsequent implementation of protection 

measures for the installed sensors facilitated the installation of a robust 

sensor network. The meticulous execution of the procedure, the 
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performance history of the embedded sensors, and the data collected 

validated the approach. Therefore, it is proposed that this approach can 

serve as a trustworthy guideline for future sensor installations in similar 

SHM applications. 

 

4.3. Strain monitoring 

The strain monitoring was performed by using LUNA OBR 4600, which 

uses optical backscattered reflectometry (OBR) technology. Figure 4.7 

shows the OBR 4600 system for interrogation of DOFS. OBR is an essential 

tool for shorter fibre spans due to its distinctive combination of ultra-high 

spatial resolution and sensitivity. OBR 4600 can detect and measure 

continuous strain and temperature by analysing the Rayleigh scatter 

inherent for commercially available optical fibres, with a user-specified 

spatial resolution as low as 0.32 mm. The apparatus features three scan 

measuring ranges: 30 m mode, 70 m mode, and 2000 m extended range. 

The whole experimental session used the 70 m mode.  

 

 

Figure 4.7: OBR 4600 system for interrogation of DOFS 
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Calibrating the OBR equipment is necessary before making 

measurements. The OBR calibration eliminates the impacts of the 

measurement network to ensure that the measured data only represent the 

device being tested. Calibration should be performed at least once every 

24 hours in a typical laboratory or industrial environment. The area’s 

ambient conditions mainly govern the necessity for recalibration. If the 

temperature fluctuates significantly, calibration may be required more 

frequently than once per 24 hours. A longer time may be sufficient if the 

ambient temperature is extremely stable.  

The calibration process can be done using the supplied reference fibre 

and reflector to the instrument. The calibration should be checked after the 

calibration process by examining the return loss curve under the frequency 

domain. The resulting curve should be quite flat within the instrument’s 

precision range, with a mean value of around 0.0 to -1.0 dB. The second 

calibration is necessary if the return loss curve is not flat. Table 4.3 provides 

the specifications of LUNA OBR 4600 according to the manufacturer’s 

datasheet. 

 

Table 4.3: Specifications of LUNA OBR 4600 

Parameter Specification Units 

Wavelength range (nominal) 

OBR 4600 1525 – 1610 nm 

Maximum device length 

Standard mode 30 or 70 m 

Extended range mode 2000 m 

Sampling resolution 

30 m mode 10 µm 

70 m mode 20 µm 

Extended range mode (2000 m) 1 mm 

Distributed sensing 

Spatial resolution ±1.0 cm  
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Temperature resolution ±0.1 oC 

Strain resolution ±1.0 µε 

 

 A spatial resolution of 1 cm [253] was used for the entire 

experimental session. The sensor length was considered 2.5 cm, and the 

sensor spacing was 1 cm. The OBR 4600 was used to store and monitor the 

strain measurements during the experiments. The attached DOFS to the 

beams should be connected to OBR 4600 via FC/APC connectors before 

taking any measurements. Since bare fibre does not come up with these 

connectors, splicing is necessary to connect the sensor to FC/APC 

connector. Figure 4.8 shows FC/APC connector.  

 

 

Figure 4.8: FC/APC connector 

 

4.4. The testing procedure of RC beams  

Testing allows for evaluating the structural performance and 

behaviour of the RC beams under loading conditions. This study proposed 

two beam types to investigate flexural loading: short-span RC beams and 

long-span RC beams.  

The three-point bending test is more appropriate for short-span RC 

beams because the highest moment occurs at the midpoint of the beam, 

where the load is applied. This maximises the bending moment, simplifying 

predicting and analysing the failure mode. In addition, this preliminary test 

is straightforward and economical. A four-point bending test is 

recommended for long-span beam dimensions since it generates a larger 

region of constant moment between the two applied loads, thereby 

providing a more accurate representation of the beam’s behaviour under 

typical loading conditions. This provides more precise information on the 
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flexural capacity and response of the beam.  

In addition, using this test to represent the beam size diminished 

shear effects and made the results more representative of real-world 

conditions. During flexural testing of beams, OBR 4600 recorded strain 

measurements from DOFS about the applied load.  

It is essential to note that all flexural tests on the RC beams were 

conducted in a laboratory setting under standard conditions. Although 

specific data on temperature and humidity during testing periods were not 

recorded, the laboratory is typically kept at a constant temperature and 

relative humidity with minimal fluctuations. To maintain consistent 

conditions throughout the experiment, direct exposure to external elements 

such as sunlight, wind, and rain was avoided. It is essential to observe that 

the controlled environment was intended to mitigate any external 

influences that could affect the structural behaviour of the beams. The 

equipment used to record strain measurements from DOFS, the OBR 4600, 

was also operated under these standard laboratory conditions.  

 

4.4.1. Short-span RC beam 

As the first experimental session, a short-span RC beam was cast and 

instrumented with distributed FOSs to extract strain data along the 

concrete surface and rebars. These experimental data will help to correlate 

the FEA.  

The beam cast used in this study had 1400 mm x 100 mm x 250 mm 

dimensions and was reinforced with 8 mm diameter rebars for the top 

reinforcement and 10 mm diameter rebars for the bottom reinforcement. 

For the stirrups, 6 mm diameter bars were used, with a stirrup spacing of 

165 mm maintained for all beams. The stirrups’ purpose was to minimise 

shear failure. Geometrical, mechanical, and reinforcing features were 

selected to accommodate the beam’s dimensions for testing on the MTS 

sans testing machine and to facilitate its handling. Grade 25 concrete 

premix was used to cast the beam, then stored for seven days in wet 

conditions and 21 days in room conditions. After 28 days of casting, the 
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concrete’s mean cylinder compressive strength was experimentally 

determined to be 28 MPa. The design was as per the British standards BS 

8110 – Part 1:1985. Figure 4.9 shows the beam definition.  

 

 

Figure 4.9: Short-span RC beam definition 

 

 

Figure 4.10: (a) Reinforcement cage inside the mould; (b) Cast concrete 

beam 
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Figure 4.11: Sensor layout for short-span RC beam 

 

 

Figure 4.12: (a) Surface-mounted FOS; (b) Rebar-mounted FOS 

 

Casting beam with DOFS sensor in short-span RC beam is illustrated 

in Figure 4.10, while Figure 4.11 displays the layout of sensors used for 

monitoring the beam. Figure 4.12 depicts both surface-mounted and rebar-
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mounted FOSs installed on short-span RC beam. The mounted sensor 

length of the bottom sensor was limited to 1000 mm due to the ease of 

handling. The beams were tested using an MTS Sans Testing Machine with 

a 2000 kN capacity. The beam was subjected to a three-point bending 

arrangement and was simply supported. The loading span of the beams 

was 1200 mm, and they were loaded midway along the middle centreline. 

The beam was designated as B1 and loaded up to 16.0 kN.  

The experiment aimed not to strain the rebar plastically but to 

examine the strain patterns below the beam’s design load. As a result, 

applied load levels below the design load limit were selected. The crosshead 

movement rate on the testing apparatus was adjusted at 1 mm per minute, 

and 15-second intervals helped to space the measurements evenly. The 

test was stopped at 75 seconds (at 16 kN load).  Figure 4.13 illustrates the 

testing procedure for the beam, conducted using the MTS sans testing 

machine. 

 

 

Figure 4.13: Testing of the beam 

 



 

120 
 

4.4.2. Long-span RC beams 

After successfully completing the testing of short-span RC beams and 

FEA validation, it was concluded that DOFS measurements provide 

acceptable results and are suitable for monitoring concrete beams under 

flexural loading (Chapter 5 provides details). Moreover, the recorded 

experimental data were inserted into the developed DL model, and the 

model could predict the tension rebar status correctly. Therefore, the 

second series of experimental sessions commenced studying long-span 

beam sizes to represent real world structures.  

Three RC beams were cast and instrumented with distributed FOSs 

to extract strain data along the concrete bottom surface, side surface, and 

rebars under symmetric flexural loading. 

The beams were cast according to the beam definition shown in 

Figure 4.14. Each beam was 4000 mm long, 200 mm wide, and 400 mm 

high. A 12 mm rebar was selected for every beam for the compression side, 

and rebars of 12 mm, 16 mm, and 20 mm reinforced the tension side. Table 

4.4 provides the beam description. 

 

 

 

Figure 4.14: Beam definitions of R12C30, R16C30, and R20C30 
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Table 4.4: Beam description for R12C30, R16C30, and R20C30 

Beam Concrete 

grade 

Tension 

rebar size 

(mm) 

Compression 

rebar size 

(mm) 

Bottom cover 

thickness 

(mm) 

R12C30 

25 

12 

12 30 R16C30 16 

R20C30 20 

 

All beams were maintained with a 30 mm concrete cover. The beams 

were cast using a grade 25 concrete mix and kept wet for seven days. The 

experimental value of the concrete’s mean cylinder compressive strength 

was 29.9 MPa. The RC beams were designated according to the tension 

rebar sizes used as R12C30, R16C30, and R20C30. The beam design 

followed the European Community standard EN 1992-1-1: Eurocode 2: 

Design of concrete structures. Figure 4.15 shows the casting process of the 

beams. 

 

 



 

122 
 

 

Figure 4.15: (a) Reinforcement cage; (b) Reinforcement cage inside the 

mould; (c) Casted concrete beam 

 

Two concrete surface sensors, a side sensor, and a bottom sensor, 

were selected to analyse the sensor behaviour according to different paths. 

Due to the need for room for handling and transporting the beams, the 

length of both surface sensors was capped at 3000 mm. Figure 4.16 

displays the sensor arrangement. 

 

 

Figure 4.16: Sensor Layout 
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Before embedding sensors into the concrete beam, all DOFS-attached 

rebars (R12, R16, and R20) were tested under three-point loads to ensure 

their functionality and repeatability. Figure 4.17 presents the schematic 

configuration of rebar testing, while Figure 4.18 demonstrates the 

experimental setup for rebar testing. It was decided to use three weights 

to distribute the load across the rebar at the centre position. The weights 

were specified as 1.1 pounds, 2.5 pounds, and 5 pounds, respectively. Each 

weight was loaded and unloaded three consecutive times to each rebar.  

Figure 4.19, Figure 4.20, and Figure 4.21 show the strain variation 

along the rebars R12, R16 and R20, respectively, for the loadings. The 

figures show no significant variation in strain for a particular load. The 

results indicated that all rebars had excellent functionality and 

repeatability. Therefore, these DOFS-attached rebars were good to embed 

inside the concrete.  

 

 

Figure 4.17: Configuration for rebar testing 
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Figure 4.18: Experimental setup of rebar testing 

 

 

Figure 4.19: Strain variation along the rebar R12 
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Figure 4.20: Strain variation along the rebar R16 

 

 

 

Figure 4.21: Strain variation along the rebar R20 
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The DOFS were attached to the concrete surface after 28 days of 

curing period after the casting. Figure 4.22 shows the mounted surface 

sensors on the side and the bottom.  

 

 

Figure 4.22: Mounted surface sensors 

 

A hydraulically operated load frame with a 50 ton capacity was used 

for testing the beams. All beams were simply supported, and a four-point 

bending system was utilised for the loading. The beam’s span was 3800 

mm. Figure 4.23 displays the schematic diagram of the loading 

arrangement, and Figure 4.24 illustrates the experimental beam loading 

arrangement.   
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Figure 4.23: Schematic diagram of loading arrangement 

 

 

Figure 4.24: The experimental beam loading arrangement 

  

R20C30 was the first beam to be tested since this beam attracts the highest 

bending moment. Hence, the same beam will have the highest shear 

demand in the current set of beams. The beam was loaded at 10 kN 

intervals until failure occurred, and the OBR 4600 recorded strain readings. 

The beam failed at 160 kN. Figure 4.25 shows the connected OBR 4600 

with the beam.  



 

128 
 

 

Figure 4.25: The connected OBR 4600 with the beam 

 

 R16C30 was the next beam to test. However, here the beam was not 

loaded until failure by incremental loading at once since understanding the 

DOFS behaviour under repetitive loading was necessary. The beam was 

loaded in four stages to gather strain data. The objective of this type of 

loading was to extract the strain data to analyse how well the DL model 

performed when these data were given as input.  

The beam was loaded up to 25 kN in 5 kN intervals in the first stage. 

After obtaining data, the beam was unloaded and relaxed for 10 minutes. 

The purpose of relaxation time was to reduce the impact of any residual 

strains. The first stage was repeated in the second stage. In the third stage, 

the beam was loaded up to 50 kN in 5 kN intervals. After reaching the 50 

kN limit, the beam was unloaded and relaxed for 10 minutes. As per the 

final stage, the beam was loaded until failure occurred, and the load at 

failure was 120 kN.       

 The R12C30 beam followed the same testing procedure as the 

R16C30 beam. However, the initial loading limit was reduced to 15 kN in 5 

kN intervals since this beam attracts the lowest bending moment. Next, the 
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beam was unloaded and relaxed for 10 minutes. As per the second stage, 

the beam was loaded up to 15 kN again, and data were recorded. In the 

third stage, the beam was loaded up to 30 kN in 5 kN intervals by 

multiplying the initial load limit twice. After reaching the 30 kN limit, the 

beam was unloaded and relaxed for 10 minutes. As per the final stage, the 

beam was loaded until failure occurred; the load at failure was 80 kN. After 

successfully completing the second experimental session, the results 

indicated that DOFS measurements provide acceptable results in 

monitoring concrete beams under symmetric flexural loading (Chapter 5 

provides further details).  

To enhance the robustness of the DL model, the DL model must 

produce accurate results when strain data are entered from asymmetric 

loading conditions. Therefore, it is necessary to study asymmetric flexural 

loading conditions. The third series of experimental sessions thus 

commenced.  

Three RC beams were cast using varying concrete grades and bottom 

cover thicknesses to enhance diversity. The same reinforcement 

arrangement was used, and the beams were instrumented with distributed 

FOSs, like the experimental session two, to extract strain data.  

Figure 4.26 shows the beam definition. The concrete cover thickness 

and concrete grade were set to 60 mm and grade 50, respectively. The 

experimental value of the concrete’s mean cylinder compressive strength 

was 58.5 MPa. The RC beams were designated according to the tension 

rebar sizes used as R12C60, R16C60, and R20C60.  

Table 4.5 lists the description for R12C60, R16C60, and R20C60 

beams. The beam design followed the European Community standard EN 

1992-1-1: Eurocode 2: Design of concrete structures.  
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Figure 4.26: Beam definition of R12C60, R16C60, and R20C60 

 

Table 4.5: Beam description for R12C60, R16C60, and R20C60 

Beam Concrete 

grade 

Tension rebar 

size (mm) 

Compression 

rebar size 

(mm) 

Bottom cover 

thickness 

(mm) 

R12C30 

50 

12 

12 60 R16C30 16 

R20C30 20 

 

Figure 4.27 presents the proposed schematic diagrams for loading 

configurations. The first beam examined was R20C60, tested with loading 

configuration (a). The loading configuration (b) was used for R12C60 and 

R16C60 beams. All beams were loaded at 5 kN intervals until the spectral 

shift quality (SSQ) slightly exceeded the 0.15 limit (Chapter 5 will discuss 

further details). 
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(a) 

 

 

(b) 

Figure 4.27: The proposed schematic diagrams for loading configurations 

 

4.5. Summary  

This chapter examines the meticulous process of establishing 

distributed sensor networks using DOFS and the methodical approach to 

derive strain data from RC beams subjected to flexural loading in various 

configurations. These configurations consist of three-point and four-point 

bending for symmetric and asymmetric loading regimes. The process 

contributes directly to the overarching framework designed to create a 

robust SHM system. 

The optical fibre SMF-28 serves as the DOFS and is used to measure 

strain. DOFS are attached to the rebars using a 1:1 mixture of TECHNIGLUE 

R15 and H15S. DOFS are affixed to the concrete surface using a 2:1 

mixture of TECHNIGLUE R60 and H60S. The strain is monitored using a 

LUNA OBR 4600. The testing sessions maintain a spatial resolution of 1 cm, 

with a sensor length of 2.5 cm and a sensor spacing of 1 cm. This was 

maintained using OBR4600.   

During the first experimental session, a single short-span RC beam is 

cast and instrumented with DOFS to collect strain data. After successful 

initial tests, it was determined that DOFS measurements yield acceptable 

results, making them suitable for monitoring concrete beams subjected to 
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flexural loading. Next, the collected data were evaluated using the DL 

model.  

In a second series of experimental tests, larger beams were subjected 

to symmetric and asymmetric flexural loads. Variations in concrete grade 

and bottom cover thickness are incorporated to ensure the DL model’s 

robustness and the SHM framework’s efficacy in various structural 

scenarios. 

All experimental results are presented in the subsequent chapter, 

with a detailed discussion of collected strain data and its analysis. This 

information helps evaluate the predictive capabilities of the DL model in the 

context of structural health. Consequently, this chapter contributes to the 

larger objective of developing a comprehensive and efficient SHM system. 
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CHAPTER 5: PERFORMANCE EVALUATION OF SHM 

FRAMEWORK 

5.1. Introduction 

This chapter investigates the efficacy of the DL model for predicting 

the structural health of RC beams which can assist with the inspection and 

maintenance of civil infrastructures. The chapter will present the study’s 

experimental and simulation results, the training procedure for the DL 

model, and the structural health predictions for concrete beams subjected 

to symmetric and asymmetric flexural loading. Figure 5.1 illustrates the 

overview of the technical contents of Chapter 5. 

 

 

Figure 5.1: Overview of the technical contents of Chapter 5 

 

The experimental data used in this analysis include strain data 

collected from concrete beams subjected to flexural loading using 

distributed fibre optic sensing as described in Chapter 4. Simulation data 

described in Chapter 3 were validated for the training DL model. The 

collected strain data behaviour was studied, and features representing the 
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structural health of the concrete beams were extracted. The trained DL 

model helped predict the structural health of seven concrete beams, which 

were compared with the actual structural health of the beams. The model 

accuracy was evaluated.  

  

5.2. Comparison of experimental and simulation results for short-

span RC beam 

This section presents a study on the strain patterns for a short-span 

RC concrete beam of size 1400 mm x 100 mm x 250 mm subjected to 

three-point bending under flexural loading. The experimental and 

simulation strain data were analysed to identify the strain behaviour of the 

concrete surface and the rebar of beam B1. The study focused on 

evaluating the capacity of DOFS to provide precise and valuable 

quantitative information on the strain experienced by RC elements under 

flexural loading. Additionally, the study aimed to pinpoint the areas where 

the highest strain values occurred and analyse the corresponding patterns 

of strain distribution, as elaborated in this section. 

 

5.2.1. Rebar and surface strain  

The strain data obtained from the DOFSs attached to the rebar were 

examined with the strain values predicted by the simulations for beam B1. 

Figure 5.2 compares the experimental and simulated strain measurements 

for the bottom rebar of beam B1.  
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Figure 5.2: Experimental strain vs simulation strain results of the bottom 

rebar of the beam B1 at 16 kN load 

 

Figure 5.2 depicts the highest experimental peak strain at mid-span 

as 766 µε, while the simulated peak strain is 686 µε. The experimental and 

simulation strain patterns show good alignment with each other. The higher 

experimental peak strains were due to the concrete surface cracking, which 

passes through the rebars. The strain pattern satisfactorily correlated with 

optical fibre strain measurements and FEA results. 

Since the maximum rebar strain values recorded for both 

experiments were significantly lower than the 2500 micro strain limit, which 

represents the yielding of steel, the rebars have not undergone plastic 

deformation and have not reached the yield strain of the steel, even under 

the maximum applied load of 16 kN. Therefore, the beam is deemed to be 

in good structural health.  

The strain measurements obtained by the concrete surface-mounted 

OFSs were used to verify the extracted surface strain values from the 

simulation for beam B1. The experimental strain curve in Figure 5.3 

displays eight peak values along the beam length, with the highest peak 
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strain observed at the mid-span, measuring 1566 µε. In contrast, the 

simulation strain curve indicates the highest peak value of 1196 µε with 

eight peak values. Hence the number of peaks for experimental and 

simulation peaks were equal. All peaks of both curves are located between 

0.2 m and 1.2 m along the beam length.  

The primary failure modes of concrete are tension cracking and 

compression crushing (rather unlikely at this stage). Tensile stresses above 

the tensile strength of concrete lead to cracking, a significant vulnerability 

of concrete. The presence of rebars helps to limit the extent of these cracks 

in RC. Cracks provide valuable insights into the extent of damage within 

concrete structures. 

 

 

Figure 5.3: Experimental surface strain vs simulation surface strain 

results of the beam B2 at 16 kN load 

 

Figures 5.3 display the wave behaviour of both experimental and 

simulated strain data. The appearance of strain spikes usually indicates the 

development of cracks due to tension, while valleys suggest lower concrete 

strain. Typically, concrete cracks when the tensile strain surpasses 100 µε 
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to 120 µε [254]. There is a significant difference between the experimental 

and simulated strain values along the beam length. It could be due to 

possible debonding of the fibre with the concrete surface initiated by 

hairline cracks. This can cause the fibre to elongate independently, leading 

to unusually higher strain readings. It is a standard practice to draw the 

crack patterns manually. Hairline cracks were visible after the experiment, 

as shown in Figure 5.4, which displays visible hairline cracks on the fibre at 

the bottom surface of beam B1 under 16 kN load.  

Figure 5.5 shows a FOS on a cracked concrete surface. An acceptable 

agreement was observed between the optical fibre strain readings and the 

FEA results. Additionally, the experimental results presented in Figure 5.3 

agreed well with the locations where hairline cracks were visible, as 

depicted in Figure 5.4. 

 

 

Figure 5.4: Hairline crack locations appeared on the bottom surface of the 

beams 
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Figure 5.5: FOS in a cracked concrete surface 

 

5.2.2. Exploring the relationship between steps, dilation angles, 

and strain patterns for dataset construction  

Distributed strain data obtained from DFOS can be essential for SHM 

algorithms to make informed judgments about structural integrity. 

Recently, sophisticated AI techniques such as DL have been used for the 

same purpose. However, training these DL models requires thousands or 

even hundreds of thousands of data points, as more data means higher 

accuracy. Unfortunately, conducting a significant number of data extraction 

experiments is not feasible in terms of time and cost. However, FEA models 

can surmount this obstacle because they can extract tens of thousands of 

distributed data points by simply modifying model parameters such as 

loading rates, boundary conditions, loading conditions, and loads. In this 

investigation, a finite element model was created and analysed to extract 

distributed strain data concerning load variations. 

The strain changes resulting from an increase in load were simulated 

using FEA for the surface and rebar of B1. These simulations were 

conducted in 20 steps, but for clarity, the strain changes are presented in 

ten steps in Table 5.1. The dilation angles for B1 were maintained at a 

constant 42° throughout the simulations. Figures 5.6 and 5.7 depict the 

strain variations observed in the surface and rebar, respectively. 
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Table 5.1: Load with respect to step 

Step 1 2 3 4 5 6 7 8 9 10 

Load 

(kN) 

0.5 2 5.5 8.5 10 10.5 12.5 13.5 14.5 16 

Maximum 

surface 

strain 

(µε) 

3 14 38 61 70 681 735 914 1019 1196 

Maximum 

rebar 

strain 

(µε) 

3 13 34 54 62 499 515 554 630 686 

 

 

Figure 5.6: Surface strain against sensor length obtained from simulation 

under increasing load – Beam B1 
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Figure 5.7: Rebar strain against sensor length obtained from simulation 

under increasing load – Beam B1 

 

 

Figure 5.8: Surface strain against sensor length obtained from simulation 

for varying dilation angles – Beam B1 
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Figure 5.9: Rebar strain against sensor length obtained from simulation 

for varying dilation angles – Beam B1 

 

According to Figures 5.6 and 5.7, the strain of the surface and the 

rebar increased with the step increment of the simulation. Nevertheless, 

there was a considerable difference between Step 5 and Step 6 since crack 

initiation occurred after Step 5. The relative loads for the fifth and sixth 

steps are 10 kN and 10.5 kN, respectively. Figures 5.8 and 5.9 shows how 

the dilation angle affects the strain variation along the concrete surface and 

rebar. Although 15 dilation angles were studied from 31° to 45°, the results 

presented here only for four angles to maintain the clarity. Considering both 

figures, the strain values over the length of the sensor vary significantly as 

the dilation angle increases. The cracked length is longer for lesser dilation 

angles and shorter for higher ones. Larger values of the dilation angle result 

in a stiffer material, whilst smaller values result in a more brittle material. 

Hence, it is reasonable for both figures to exhibit significant strain peaks 

along the sensor length for lower dilation angles. 

Each step and angle of dilation had its unique strain pattern according 

to the load. Therefore, changing the number of steps and dilation angles 
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could be a potential technique to construct a strain dataset. A strain dataset 

was generated using this method to train a DL model. Therefore, the 

proposed experimental and modelling methodologies based on CDP can 

create a strain dataset by considering variations in beam geometry, 

concrete grades, reinforcements, and loading conditions.  

 

5.3. Experimental and simulation results for long-span RC beams 

This section details the strain pattern investigation of six concrete 

beams measuring 4000 mm x 200 mm x 400 mm, specifically R12C30, 

R16C30, R20C30, R12C60, R16C60, and R20C60, that underwent four-

point bending under flexural loading. Experimental and simulation strain 

data were studied to determine the strain behaviour of the concrete surface 

and rebar for the R20C30 beam. The other beams were experimentally 

studied and kept for the prediction stage.  

The primary objective of this study was to extract and analyse the 

strain measurements along the sensor lengths under flexural loading for all 

beams. Furthermore, the study aimed to utilise this strain data as a test 

set to evaluate the performance of a DL model in predicting the beams’ 

structural health. 

 

5.3.1. Effect of SSQ on DOFS readings  

According to the manufacturer of the data acquisition system (OBR 

4600), the SSQ is a measure of the correlation between the reflected 

spectra obtained from the measured data and the reference data [255]. 

The SSQ values can be determined using the following formula (5.1): 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑆ℎ𝑖𝑓𝑡 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑆𝑆𝑄) =
𝑀𝐴𝑋𝐼𝑀𝑈𝑀(𝑈𝑗(𝑣) ⋆ 𝑈𝑗(𝑣 − 𝑣𝑗))

∑ 𝑈𝑗(𝑣)2
 

(5.1) 

Where,  

𝑈𝑗(𝑣)  = Baseline spectrum for a given data segment 
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𝑈𝑗(𝑣 − 𝑣𝑗)  = The spectrum measured during a strain or temperature       

    change 

⋆  = The symbol stands for the cross-correlation operator. 

 

In theory, the SSQ should fall within the 0 to 1 range. Here, a value 

of 1 represents ‘perfect correlation’, and 0 represents ‘no correlation’. The 

manufacturer recommends disregarding any data with an SSQ of 0.15 or 

lower since it is highly likely that the strain or temperature variation 

exceeds the measurable range after reaching this threshold. Consequently, 

any measurements with an SSQ value of 0.15 or lower were excluded from 

the analysis.  

The following study analysed the effect of SSQ on DOFS readings of 

the R20C30 beam by considering the rebar attached sensor and bottom 

surface attached sensor.   

The sensor readings were taken at 10 kN intervals, but to clarify the 

results, they were presented at 20 kN intervals. Figure 5.10 shows the raw 

strain data, strain data with values below the 0.15 SSQ threshold removed, 

SSQ variation, and the 0.15 SSQ threshold for the rebar DOFS at 120 kN, 

140 kN, and 160 kN. The strain data for 120 kN indicates that data were 

not impacted, and the SSQ variation along the rebar was above the 0.15 

SSQ threshold. However, the 140 and 160 kN graphs reveal that the SSQ 

variation was below the threshold at several locations. This provides clear 

evidence of the significant impact on the measured data.  
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Figure 5.10: Raw strain data, after removing raw strain data below 0.15 

SSQ threshold, SSQ and 0.15 SSQ threshold for rebar DOFS at different 

loadings 
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Figure 5.11: Raw strain data, after removing raw strain data below 0.15 

SSQ threshold, SSQ and 0.15 SSQ threshold for bottom surface DOFS at 

different loadings 
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Figure 5.10 shows a clear trend where an increased applied load leads 

to decreased SSQ values, indicating many data points that fall outside the 

measurable range of DOFS. This was due to propagating cracks in the 

concrete cross-section, which resulted in higher strain transfer to the rebars 

that exceeded the measurable range of the DOFS sensors. Consequently, 

the raw data that fell below the threshold were deemed inaccurate and 

unreliable. They were removed based on the manufacturer’s 

recommendations.  

The DOFS sensor used in this application only withstands loads up to 

120 kN and is limited to 75% of the failure load. However, the experimental 

results revealed a maximum strain measurement exceeding 80% of the 

rebar’s yield strain. As such, it is recommended to utilise rebar-attached 

DOFS sensors in RC structures. 

Figure 5.11 displays the analysis results of the strain data obtained 

from the bottom surface DOFS at different loadings, starting from 40 kN. 

The figure presents raw strain data, raw strain data after removing the data 

less than or equal to 0.15 SSQ threshold, SSQ variation, and 0.15 SSQ 

threshold. The strain data at 40 kN load is unaffected, and the SSQ 

variation along the DOFS was not below the 0.15 SSQ threshold. However, 

for the 60 kN and 80 kN loadings, the SSQ variation graph is below the 

threshold level at multiple locations.  

Consequently, affected data were removed per the manufacturer’s 

suggestions. The strain variation of the 60 kN and 80 kN graphs clearly 

illustrates how the data were affected. The SSQ levels decreased with 

increasing loads, and the number of affected data increased accordingly. It 

is worth noting that the surface-attached DOFS sensor can only withstand 

up to 40 kN load and 25% of the failure load. The concrete surface-attached 

DOFS was significantly affected by low SSQ values when compared with the 

rebar-attached DOFS. This is because the initiation of cracks and increasing 

crack widths on the concrete surface due to the increasing loads led to 

exceeding the measurable range of the DOFS-attached surface sensor. 
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Therefore, caution is advised when employing surface-attached DOFS 

sensors in RC structures, especially under high loads. 

The experimental findings revealed that the bottom surface sensor 

was the first to reach the 0.15 SSQ threshold, followed by the side sensor 

for all six beams under investigation. Table 5.2 presents the Effect of SSQ 

on long-span RC beams.  

  

Table 5.2: Effect of SSQ on beams 

Load 

(kN) 

R12C30 R16C30 R20C30 

Bottom 

sensor 

Side 

sensor 

Bottom 

sensor 

Side 

sensor 

Bottom 

sensor 

Side 

sensor 

10 
SSQ > 0.15 SSQ > 

0.15 
SSQ > 

0.15 

SSQ > 

0.15 SSQ > 

0.15 

20 

30 

SSQ ≤ 0.15 

40 

SSQ ≤ 

0.15 

50 

SSQ ≤ 

0.15 

SSQ ≤ 

0.15 

60 

70 SSQ ≤ 

0.15 

Load 

(kN) 

R12C60 R16C60 R20C60 

Bottom 

sensor 

Side 

sensor 

Bottom 

sensor 

Side 

sensor 

Bottom 

sensor 

Side 

sensor 

5 

SSQ > 0.15 SSQ > 

0.15 
SSQ > 

0.15 

SSQ > 

0.15 
SSQ > 

0.15 

10 

15 

20 

25 

SSQ ≤ 0.15 

30 

SSQ ≤ 

0.15 

35 
SSQ ≤ 

0.15 

SSQ ≤ 

0.15 
40 SSQ ≤ 

0.15 

 

According to the manufacturer’s instructions, measurements equal to 

or less than 0.15 SSQ were disregarded. Despite this, inconsistencies in the 

strain readings, also reported by other researchers [253, 256], were still 
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present in the data. Anomalous data points were identified and eliminated 

from the dataset to address this issue. Data presented in this section are 

exclusively based on the maximum load the side surface sensors could 

reach for the beams before falling below the 0.15 SSQ limit.  

 

5.3.2. Rebar and surface strain – R20C30 

Figure 5.12 depicts strain measurements obtained from the 

experiment and simulation for the rebar in beam R20C30 for two different 

load scenarios, namely 40 kN and 60 kN. Both the experimental and 

simulated strain patterns exhibited a high degree of correlation. When the 

load was at 60 kN, the maximum strain observed in the experiment for the 

rebar was 992 µε.  

The strain peaks observed in the rebar exhibit a wave-like behaviour 

in all measurements, which becomes more pronounced with increasing 

load. The cause is the propagation of cracks along the concrete. Figure 5.13 

provides a detailed explanation of this trend. It shows fluctuation in strain 

results for the bottom surface sensor and the rebar sensor under a 10 kN 

load for the beam R20C30. The graph shows that the spikes in the rebar 

strain correspond to the surface strain peaks. Typically, the appearance of 

strain peaks indicates the occurrence of tension-induced cracks in that 

area, while strain valleys imply less strain on the concrete. Since surface 

strain spikes result from crack formation, so do the spikes in rebar strain. 

Therefore, it can be concluded that the rebar strain peaks result from 

concrete cracks extending beyond the rebars. 
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Figure 5.12: Experimental vs simulation rebar strain for beam R20C30 

 

At 60 kN load, a difference of 128 µε existed between the maximum 

experimental and simulation strains. The highest simulated rebar strain was 

864 µε. This was because the wave-like behaviour was much more 

pronounced in the experimental strain data than in the simulation results 

for all measurements. 

 

 

Figure 5.13: Strain variation of rebar and bottom surface sensor at 10 kN 

load for beam R20C30 
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Figure 5.14 presents the strain measurements collected from both 

the experiment and simulation for the R20C30 beam’s bottom surface 

sensor at 40 kN. The maximum experimental strain was measured as 3557 

µε, while the peak strain recorded from the simulation was 2811 µε. 

 

 

Figure 5.14: Experimental vs simulation bottom surface strain for beam 

R20C30 at 40kN 

 

Figure 5.15 depicts the strain variation along the side surface of beam 

R20C30, as measured through experimentation and simulation, under two 

load conditions: 40 kN and 60 kN. At 60 kN load, the maximum 

experimental strain recorded was 5614 µε, while the maximum strain 

registered in simulations was 4753 µε. It should be noted that the surface 

sensor used for this measurement was positioned 25 mm above the bottom 

surface of the concrete beam wall. 
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(a) 

 

(b) 

Figure 5.15: Experimental vs simulation side surface strain for beam 

R20C30 (a) at 40kN; (b) at 60kN 

 

Figure 5.15 demonstrates an increase in the amplitude and frequency 

of strain peaks as the load increased, attributed to the initiation, and 

widening of cracks in the concrete material. Both the bottom and side 

surfaces of the beam exhibited significant cracking under the presented 

loads, and strain peaks were observable throughout the sensor length. 
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default CDP model’s isotropic nature may limit its capacity to predict 

complex anisotropic cracking patterns accurately. 

Despite these factors, the experimental and simulated data agreed 

on the number of peak strains and the overall strain pattern. Figure 5.14 

indicated 14 instances of peak strain values in the experimental data and 

13 instances in the FEA data. Figure 5.15 (a) showed 15 peak strains in the 

experimental data and 13 in the FEA data, while Figure 5.15 (b) 

demonstrated 17 instances of peak strains in the experimental and FEA 

analyses. 

Therefore, the strain distribution (overall strain pattern) allows 

validation of the FEA model. The strain data were generated to train a DL 

model using CDP-based FEA data. 

 

5.3.3. Rebar and surface strain – R16C30 

The beam R16C30 was loaded in three different loading stages: the 

first and the second stages involve loading up to 25 kN, and the third stage 

involves loading up to 40 kN. Notably, the data presented in these figures 

are based on a threshold of 0.15 SSQ. Figure 5.16 provides data for 

variation in the rebar strain during different loading stages.  

Figures 5.17 and 5.18 present data for variation in the bottom and 

side surface strain during different stages of loading, respectively. Insights 

can be gained into the behaviour of the bottom and side surface of the 

beam under different loading conditions by analysing the data presented in 

Figures 5.17 and 5.18. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.16: The experimental rebar strain variation for R16C30  

(a) 0-25kN; (b) 0-25kN; (c) 0-40kN 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.17: The experimental bottom surface strain variation for R16C30 

(a) 0-25kN; (b) 0-25kN; (c) 0-30kN 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.18: The experimental side surface strain variation for R16C30 (a) 

0-25kN; (b) 0-25kN; (c) 0-40kN 
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Upon analysing Figure 5.16, the main observation is the presence of 

a residual rebar strain in Figures 5.16 (b) and (c), despite the beam being 

relaxed for 10 minutes. A slight increase in rebar strain was noted during 

the second loading phase [see Figures 5.16 (a) and (b)]. One potential 

explanation for the slight increase in rebar strain could be attributed to 

cracks within the concrete. In contrast, Figure 5.16 (a) shows no residual 

rebar strain. Additionally, the figures showed strain peaks and valleys like 

those observed in beam R20C30. 

Analysing Figures 5.17 and 5.18 reveals that the strain increases as 

the load is applied (which is expected). However, it should also be noted 

that a residual surface strain is present in Figures 5.17 (b), (c), and Figures 

5.18 (b) and (c), like the residual rebar strain observed in Figures 5.16 (b) 

and (c). Even though the 25 kN limit was intended to ensure the beam 

remained within its elastic range according to the hand calculation, strain 

peaks were already evident and concrete surface cracking had occurred 

before reaching this limit.  

 

5.3.4. Rebar and surface strain – R12C30 

The rebar strain changes at different stages of loading for beam 

R12C30 are illustrated in Figure 5.19. This beam was loaded in three 

stages. The first and second stages involved loading up to 15 kN each, and 

the third stage involved loading up to 30 kN. It is important to note that 

the data depicted in these figures were obtained using a 0.15 SSQ 

threshold. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.19: The experimental rebar strain variation for R12C30  

(a) 0-15kN; (b) 0-15kN; (c) 0-20kN 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.20: The experimental bottom surface strain variation for R12C30 

(a) 0-15kN; (b) 0-15kN; (c) 0-20kN 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 5.21: The experimental side surface strain variation for R12C30 

(a) 0-15kN; (b) 0-15kN; (c) 0-20kN 
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The key finding of examining Figure 5.19 is that residual rebar strain 

noted in Figure 5.19 (b) and (c), even after the beam was allowed to relax 

for 10 minutes (the same observation as in R16C30). Furthermore, a slight 

rise in rebar strain was observed during the second loading phase. In 

contrast, Figure 5.19 (a) exhibits no residual rebar strain. Based on an 

analysis of Figures 5.20 and 5.21, there is a presence of residual surface 

strain in certain stages, specifically in Figures 5.20 (b) and (c) and Figure 

5.21 (b) and (c). This is similar to the residual rebar strain in Figure 5.19 

(b) and (c). Surface cracking of the concrete continued though the loading 

limit was 15 kN. Due to loading and reloading, the crack may not close due 

to aggregate interlocking and remain open to some extent, making it report 

some strain (residual) after unloading.   

 

5.3.5. The behaviour of residual strain 

This section describes the assessment of the residual rebar strain in 

R12C30 and R16C30 beams after the initial and subsequent loading stages. 

Figures 5.22 and 5.23 compare the residual strain after each loading stage. 

The figures demonstrate a slight increase in the residual strain during the 

second loading stage compared to the first stage for both beams. 

When an RC beam is subjected to a load, both the concrete and rebar 

undergo deformation, increasing their strain. However, after unloading, the 

concrete and rebar may not return to their original positions, which results 

in residual strain. One of the main reasons for residual strain is the presence 

of cracks in the concrete, which can cause the rebar to experience 

additional strain. This additional strain can contribute to the residual strain 

after unloading.  

In this case, the residual strain was slightly increased during the 

second pass of loading when compared to the first pass. This increase in 

residual strain can be attributed to cracks in the concrete during the first 

stage, which may have weakened the structure (stiffness reduction after 

cracking) and made it more vulnerable to further damage during the second 

stage of loading.  
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Figure 5.22: Comparison of residual rebar strain after the first stage of 

loading and second stage of loading for beam R12C30 

 

 

Figure 5.23: Comparison of residual rebar strain after the first stage of 

loading and second stage of loading for beam R16C30 
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schematic diagram of the rebar with the attached DOFS, and Figure 5.25 

presents the experimental setup. 

 

 

Figure 5.24: Schematic diagram of rebar with attached DOFS  

 

 

Figure 5.25: Experimental setup of rebar testing 
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(a) 

 

 

(b) 

Figure 5.26: Rebar strain variation at loading and unloading 

(a) 12 mm diameter; (b) 16 mm diameter 

 

Figure 5.26 (a) and (b) show the strain variations of rebar size 12 

mm and 16 mm during loading and unloading. The rebars were strained up 

to a maximum of 2500 µε, but the results indicate that the residual strain 
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on the rebars is insignificant. This concludes that the impact of adhesive on 

residual strain is negligible.  

 

5.3.6. Rebar and surface strain – R20C60 

Figure 5.27 illustrates the experimental rebar strain detected across 

the sensor length, with a maximum strain of 790 µε recorded. The strain 

peaks were confined to the 1.0 to 3.0 m range. This is because the loading 

arrangement in the experiment had a relatively short-span of 600 mm, 

meaning that the applied load was concentrated within that small area. As 

a result, the strain readings were also concentrated within that sensor area. 

 

 

Figure 5.27: The experimental rebar strain variation for beam R20C60 

 

Figures 5.28 and 5.29 illustrate experimental data on strain 

measured on the concrete specimen’s bottom and side surfaces, 

respectively. Only a limited number of strain peaks were noted in both 
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sensor at this load level was 3354 µε and 4010 µε at 35 kN for the side 

sensor.  

Figure 5.29 displays the experimental data on strain measured on the 

side surface of the concrete beam. As the load increased, new strain peaks 
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and 35 kN. Interestingly, the peak strain positions of the side sensor at 35 

kN are well aligned with the peak strain positions of the rebar at 35 kN, 

which can be identified in Figure 5.27. This alignment of peak strains 

indicates damage in the concrete near the reinforcing bar. 

 

 

Figure 5.28: The experimental bottom surface strain variation for beam 

R20C60 

 

 

Figure 5.29: The experimental side surface strain variation for beam 

R20C60 

 

5.3.7. Rebar and surface strain – R16C60 
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a structure. When a structure is subjected to asymmetric loading, the 

resulting stresses and strains can be distributed unevenly. Therefore, 

testing the effects of asymmetric loading on the proposed DL model is 

crucial for robust SHM predictions.  

The beam was asymmetrically loaded, and the variation in rebar 

strain along the beam under experimental conditions is displayed in Figure 

5.30, resulting in two distinct strain peaks of 725 µε and 730 µε under a 

load of 30 kN. The graph shows that the load-affected area is less than 1 

meter along the beam length. 

 

 

Figure 5.30: The experimental rebar strain variation for beam R16C60 

 

Figures 5.31 and 5.32 present the surface strain variation along the 

bottom and side sensors. Both graphs display two separate strain peaks 

closely aligned, particularly when considering their position along the 

sensor. This concludes that only two cracks occurred during the loading 

process. The maximum strain recorded for the bottom sensors was 1929 

µε at a 25 kN load, while the side sensor recorded a maximum strain of 

3759 µε.  
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Figure 5.31: The experimental bottom surface strain variation for beam 

R16C60 

 

 

Figure 5.32: The experimental side surface strain variation for beam 

R16C60 

 

5.3.8. Rebar and surface strain – R12C60 

Figure 5.33 illustrates the experimental rebar strain for beam 

R12C60. While two peaks of strain are visible, one peak is more prominent 

than the other, indicating a maximum strain of 649 µε. This suggests that 

the corresponding crack is larger in size compared to the other one. The 

difference between the values of the two strain peaks is 462 µε.  
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Figure 5.33: The experimental rebar strain variation for beam R12C60 

 

 Figures 5.34 and 5.35 depict the surface strain variation along the 

bottom and side sensors, respectively. The cracked length observed in both 

graphs is less than 1m. Two peaks of strain are visible, and one peak is 

more pronounced than the other, consistent with the findings described in 

Figure 5.33.  

 

 

Figure 5.34: The experimental bottom surface strain variation for beam 

R12C60 
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Figure 5.35: The experimental side surface strain variation for beam 

R12C60 

 

5.4. DL model training and testing with experimental data  

Within this section, the DL model developed in Chapter 3 underwent 

training using strain data extracted through FEA, followed by testing the DL 

model by experimental strain data acquired by DOFS. The optimal number 

of neurons was determined to achieve the highest training accuracy 

through a trial-and-error approach during the training process. This 

approach was preferred due to its flexibility and ability to provide faster 

initial results.  

The task involved using strain data obtained from a surface sensor 

path in an FEA model as input to determine the rebar status (i.e., whether 

the present rebar strain had exceeded/or not) as output. An ANN was 

proposed to achieve this, with the output layer consisting of an output node. 

The output node was assigned a value of “1” (if the limit was exceeded) or 

“0” (if the limit was not exceeded) based on the rebar yield limit of 2500 

µε. The initial training of the ANN was conducted using a dataset of short-

span RC beams. 

  

5.4.1. Short-span RC beams 

The ANN suggested in this investigation consisted of 25 input 

neurons, with 15 neurons in the first hidden layer, 10 neurons in the second 

0

1000

2000

3000

4000

0.0 1.0 2.0 3.0

S
tr

a
in

 (
µ
ε
)

Sensor length (m)

5kN

10kN

15kN

20kN



 

170 
 

hidden layer, and a single output neuron. The DL model was trained to 

predict the rebar tension status by 20% for this study. 

The model’s training accuracy was 99.91%, while its validation 

accuracy was 99.85%. Recall and precision were 0.9975 and 0.9972, 

respectively. Figures 5.36 and 5.37 display the proposed ANN for short-

span RC beams and model accuracy plots, respectively. Five experimental 

data sets under multiple load regimes were inserted to evaluate the DL 

model, and Table 5.3 presents the outcomes.  

 

 

Figure 5.36: Proposed ANN for short-span RC beams 
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Figure 5.37: DL model accuracy vs number of epochs 

 

Table 5.3: Comparison of experimental outcome vs predicted outcome of 

the DL model 

Experimental 

surface strain 

dataset (s) 

DOFS 

measured 

maximum 

rebar 

strain (µε) 

Prediction of the DL model 

0 - 500 µε limit not exceeded in the 

rebar 

1 - 500 µε limit exceeded in the 

rebar (20% limit) 

15  59 0 

30  411 0 

45  513 1 

60 660 1 

75 766 1 

 

The study findings reveal that the DL model developed could 

accurately categorise rebar strain by using experimental strain data for 

short-span RC beams. However, the created DL model should be capable 
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of predicting the structural health of long-span RC beams in concrete 

structures. More information is provided under the following heading.  

 

5.4.2. Long-span RC beams 

The DL model was trained using the R20C30 dataset containing 

75,000 data points. The ANN employed in this study comprised 101 input 

neurons, 10 neurons in the first hidden layer, 8 neurons in the second 

hidden layer, and 1 output neuron. The model was trained to predict the 

rebar tension statuses at 10% increments from 10% to 90%, with the yield 

strain of steel as 2500 µε. To evaluate the model performance, accuracy, 

precision, and recall were used for each case. Figure 5.38 shows the 

proposed ANN for long-span RC beams. 

 

 

Figure 5.38: Proposed ANN for long-span RC beams 

 

After training, the DL model was used to predict the rebar tension 

state for experimental data obtained using DOFS. Table 5.4 presents the 
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assigned classes for each rebar tension state, while Table 5.5 provides 

guidance for prediction. Table 5.6 shows the results of the DL model’s 

predictions for the experimental data obtained from the bottom sensor and 

side sensor for beams R12C30, R16C30, and R20C30, respectively. 

 

Table 5.4: Assigned classes 

Class Rebar tension state 

Class 0 Rebar is strained within 0 µε - 250 µε 

Class 1 Rebar is strained within 251 µε - 500 µε 

Class 2 Rebar is strained within 501 µε - 750 µε 

Class 3 Rebar is strained within 751 µε - 1000 µε 

Class 4 Rebar is strained within 1001 µε - 1250 µε 

Class 5 Rebar is strained within 1251 µε – 1500 µε 

Class 6 Rebar is strained within 1501 µε - 1750 µε 

Class 7 Rebar is strained within 1751 µε - 2000 µε 

Class 8 Rebar is strained within 2001 µε - 2250 µε 

 

Table 5.5: Guide for predictions 

Colour Description 

 Correct prediction 

 Incorrect prediction 

 

Table 5.6: DL model predictions for R20C30, R16C30, and R12C30 

Beam, loading 

and sensor 

description 

Load 

(kN) 

Maximum 

experimental rebar 

strain (µε) in the 

input data set 

Rebar tension 

state 

prediction 

R20C30 bottom 

sensor 

10 71 Class 0 

20 185 Class 0 

30 438 Class 1 

40 638 Class 2 
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R20C30 side 

sensor 

10 71 Class 0 

20 185 Class 0 

30 438 Class 1 

40 638 Class 1 

50 823 Class 2 

60 992 Class 3 

R16C30 bottom 

sensor - first 

stage up to 25 kN 

5 25 Class 0 

10 74 Class 0 

15 127 Class 0 

20 266 Class 0 

25 434 Class 0 

R16C30 side 

sensor - first 

stage up to 25 kN 

5 25 Class 0 

10 74 Class 0 

15 127 Class 0 

20 266 Class 0 

25 434 Class 0 

R16C30 bottom 

sensor – second 

stage up to 25 kN 

5 232 Class 0 

10 287 Class 0 

15 346 Class 0 

20 408 Class 0 

25 469 Class 0 

R16C30 side 

sensor – second 

stage up to 25 kN 

5 232 Class 1 

10 287 Class 1 

15 346 Class 1 

20 408 Class 0 

25 469 Class 0 

R16C30 bottom 

sensor – third 

stage up to 30 kN 

5 247 Class 0 

10 309 Class 0 

15 370 Class 0 

20 439 Class 0 

25 494 Class 0 
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30 645 Class 1 

R16C30 side 

sensor – third 

stage up to 40 kN 

5 247 Class 1 

10 309 Class 1 

15 370 Class 0 

20 439 Class 0 

25 494 Class 0 

30  645 Class 1 

35  826 Class 2 

40  993 Class 2 

R12C30 bottom 

sensor – first 

stage up to 15 kN 

5  18 Class 0 

10  80 Class 0 

15  492 Class 1 

R12C30 side 

sensor – first 

stage up to 15 kN 

5 18 Class 0 

10  80 Class 0 

15  492 Class 1 

R12C30 bottom 

sensor – second 

stage up to 15 kN 

5  391 Class 1 

10  471 Class 1 

15  586 Class 1 

R12C30 side 

sensor – second 

stage up to 15 kN 

5  391 Class 1 

10  471 Class 1 

15  586 Class 1 

R12C30 bottom 

sensor – third 

stage up to 20 kN 

5  344 Class 1 

10  414 Class 1 

15  498 Class 1 

20  776 Class 3 

R12C30 side 

sensor – third 

stage up to 20 kN 

5  344 Class 1 

10  414 Class 1 

15  498 Class 1 

20  776 Class 1 
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Despite achieving high scores for training accuracy, validation 

accuracy, precision, and recall (all above 99%), the model’s class prediction 

accuracy was only 56% for experimental data, correctly predicting 36 out 

of 64 cases. The accuracy of predicting beam R20C30 was 80% because 

the DL model was trained using the R20C30 dataset, resulting in higher 

prediction accuracy for that particular beam. However, other beams had 

lower prediction accuracy. This indicates that the model is unreliable for 

making accurate predictions and requires further improvements.  

Instead of using raw distributed R20C30 FEA strain data as inputs to 

the DL model, a study was conducted to train the DL model by basic 

statistical parameters such as maximum, minimum, average, and standard 

deviation, which were calculated for each row data in the R20C30 strain 

dataset. After optimising the model using these parameters, the DL model 

performed well using only maximum, minimum, and average strains as 

input training parameters. As a result, the proposed ANN will use these 

parameters as inputs for future studies. Figure 5.39 presents the proposed 

ANN with new input parameters. 

On the basis of this foundational knowledge, a deeper delve into the 

parametric analysis reveals more nuanced details. To improve the 

performance of the DL model and streamline its input parameters, a 

comprehensive sensitivity analysis was conducted. This investigation 

investigated the accuracy of predictions derived from various statistical 

parameters and their combinations as summarises in Table 5.7. Individual 

reliance on the Minimum parameter resulted in an accuracy of 4.16%. 

However, the Maximum and Average parameters, when used separately, 

exhibited significantly superior accuracy, with values of 60.45% and 

53.12%, respectively. Notable is the observation regarding combined 

parameters: while a pairing of Minimum and Maximum obtained a 64.58% 

accuracy rate, the combination of Minimum and Average significantly 

outperformed other sets, achieving an impressive 77.08% accuracy rate. 

Surprisingly, combining Maximum and Average produced an accuracy of 

53.12%, identical to that of the Average parameter alone. This nuanced 
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investigation not only validates the crucial roles of the Maximum and 

Average parameters, but also highlights the combined effectiveness of the 

Minimum and Average parameters in the predictive model. Such 

discoveries have significant ramifications for future DL model 

configurations, highlighting the importance of judicious parameter selection 

for optimal performance. 

 

Table 5.7: Sensitivity analysis of input parameters 

 Input Parameter Prediction Accuracy (%) 

1 Minimum 4.16 

2 Maximum 60.41 

3 Average 53.12 

4 Minimum and Maximum 64.58 

5 Minimum and Average 77.08 

6 Maximum and Average 53.12 

 

Table 5.8 summarises the performance indicators of the DL model 

after training with stat parameters, which include the maximum training 

accuracy, validation accuracy, precision, and recall for each rebar strain 

limit. Table 5.8 presents the DL model predictions for R20C30, R16C30, 

R12C30, R20C30, R16C30, and R12C30. 
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Figure 5.39: Proposed ANN with new input parameters 

 

Table 5.8: DL Model performance indicators – Training with stat parameters  

Model training 

(Rebar strain 

limits) 

Model performance 

Training 

accuracy 

(%) 

Validation 

accuracy 

(%) 

Precision Recall 

10% 99.80 99.75 0.9995 0.9961 

20% 99.41 99.45 0.9944 0.9933 

30% 99.45 99.37 0.9944 0.9950 

40% 98.92 98.99 0.9919 0.9888 

50% 99.24 99.20 0.9918 0.9929 

60% 99.21 99.28 0.9909 0.9932 

70% 98.96 98.98 0.9874 0.9892 

80% 98.96 98.88 0.9873 0.9930 

90% 98.64 98.51 0.9831 0.9899 
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Table 5.9: The DL model predictions for R20C30, R16C30, R12C30, 

R20C30, R16C30, and R12C30 

Beam, loading and 

sensor description 

Load 

(kN) 

Maximum 

experimental 

rebar strain 

(µε) in the 

input data set 

Rebar tension 

state 

prediction 

R20C30 bottom 

sensor 

10  71 Class 0 

20  185 Class 1 

30  438 Class 1 

40  638 Class 2 

R20C30 side sensor 10  71 Class 0 

20  185 Class 1 

30  438 Class 1 

40  638 Class 2 

50  823 Class 3 

60  992 Class 3 

R16C30 bottom 

sensor - first stage up 

to 25 kN 

5  25 Class 0 

10  74 Class 0 

15  127 Class 0 

20  266 Class 1 

25  434 Class 1 

R16C30 side sensor - 

first stage up to 25 kN 

5  25 Class 0 

10  74 Class 0 

15  127 Class 0 

20  266 Class 1 

25  434 Class 1 

R16C30 bottom 

sensor – second stage 

up to 25 kN 

5  232 Class 0 

10  287 Class 1 

15  346 Class 1 

20  408 Class 1 
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25  469 Class 1 

R16C30 side sensor – 

second stage up to 25 

kN 

5  232 Class 1 

10  287 Class 1 

15  346 Class 1 

20  408 Class 1 

25  469 Class 1 

R16C30 bottom 

sensor – third stage 

up to 30 kN 

5  247 Class 1 

10  309 Class 1 

15  370 Class 1 

20  439 Class 1 

25  494 Class 1 

30  645 Class 1 

R16C30 side sensor – 

third stage up to 40 

kN 

5  247 Class 1 

10  309 Class 1 

15  370 Class 1 

20  439 Class 1 

25  494 Class 1 

30  645 Class 1 

35  826 Class 2 

40  993 Class 2 

R12C30 bottom 

sensor – first stage up 

to 15 kN 

5  18 Class 0 

10  80 Class 0 

15  492 Class 1 

R12C30 side sensor – 

first stage up to 15 kN 

5  18 Class 0 

10  80 Class 0 

15  492 Class 1 

R12C30 bottom 

sensor – second stage 

up to 15 kN 

5  391 Class 1 

10  471 Class 1 

15  586 Class 1 

5  391 Class 1 

10  471 Class 1 
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R12C30 side sensor – 

second stage up to 15 

kN 

15  586 Class 1 

R12C30 bottom 

sensor – third stage 

up to 20 kN 

5  344 Class 1 

10  414 Class 1 

15  498 Class 1 

20  776 Class 1 

R12C30 side sensor – 

third stage up to 20 

kN 

5  344 Class 1 

10  414 Class 1 

15  498 Class 1 

20  776 Class 2 

R20C60 bottom 

sensor 

5  17 Class 0 

10  31 Class 0 

15  85 Class 0 

20  258 Class 1 

25  476 Class 1 

30  659 Class 1 

R20C60 side sensor 5  17 Class 0 

10  31 Class 0 

15  85 Class 0 

20  258 Class 0 

25  476 Class 1 

30  659 Class 1 

35  790 Class 2 

R16C60 bottom 

sensor 

5  18 Class 0 

10  32 Class 0 

15  57 Class 0 

20  188 Class 0 

25  493 Class 1 

R16C60 side sensor 5  18 Class 0 

10  32 Class 0 
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15  57 Class 0 

20  188 Class 0 

25  493 Class 1 

30  730 Class 2 

R12C60 bottom 

sensor 

5  9 Class 0 

10  20 Class 0 

15  35 Class 0 

20  614 Class 1 

R12C60 side sensor 5  9 Class 0 

10  20 Class 0 

15  35 Class 0 

20  614 Class 1 

 

According to Table 5.9, the DL model’s class prediction accuracy was 

deemed acceptable, achieving a success rate of 81.25% (76 out of 96). The 

incorrect predictions can be separated into two categories. Firstly, incorrect 

predictions are possible if the actual rebar strain is extremely close to the 

limit that defines the classes. Secondly, as previously discussed in Section 

5.3.3, the experimental rebar strain exhibited a “wavy behaviour” as 

loading increased, compared to the simulated rebar strain, which resulted 

in inaccurate predictions. Despite these limitations, the model’s accuracy 

remains satisfactory as the DL model provided reliable predictions for both 

symmetric and asymmetric loading conditions. Hence, it can be utilised as 

the most suitable model to assess the structural health of RC beams.  

It is recommended to analyse the results based on individual sensors. 

The attached bottom sensor was analysed initially, achieving an 84.45% 

accuracy rate by correctly predicting 38 out of 45 observations. The side 

sensor had a 78.43% accuracy rate, with 40 out of 51 observations 

predicted correctly. Since the accuracy of both sensors exceeded 78%, the 

suggested SHM system’s usefulness can be improved by using either sensor 

as a substitute if one fails, thereby eliminating dependence on a single 



 

183 
 

sensor. However, the bottom sensor was significantly affected by low SSQ 

values (< 0.15) under increasing loads, despite its 84.45% accuracy. As a 

result, the author recommends using side sensors instead of bottom 

sensors for increasing loads.  

 

5.4.3. DL model sensitivity analysis 

Sensitivity analysis is a vital tool for assessing how the output of a 

DL model changes when the input parameters are varied. In the context of 

SHM prediction, sensitivity analysis is crucial for evaluating how changes in 

input parameters can affect the accuracy and reliability of SHM algorithms 

in detecting and predicting structural damage. The DL model’s performance 

with limited information can be evaluated by limiting the input data. 

Therefore, to assess model robustness, the performance of the statistical 

parameter-based DL model with limited strain input data was evaluated. 

The DL model inputs, maximum, minimum, and average strain, were 

calculated considering this limited data input. This was conducted in two 

phases.  

During the initial stage of the model assessment, strain data were 

obtained, as illustrated in Figure 5.40. Specifically, 25% of the sensor data 

was chosen for each segment, and the entire experimental dataset, 

consisting of 96 data points from the Experimental stage of long-span beam 

size, was evaluated. Table 5.10 presents the sensitivity analysis results 

using the proposed method during the first phase. 

 

 

Figure 5.40: Strain data extracting segments for phase 1 
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Table 5.10: Sensitivity analysis for Phase 1 

Segment Prediction accuracy (%) 

A 54 

B 69 

C 79 

D 54 

 

The information in Table 5.9 indicates that the accuracy obtained 

using strain data from Segment A and Segment D is the lowest at 54%. On 

the other hand, Segment B yields an accuracy of 69%, while Segment C 

provides the highest accuracy of 79%.  

Segment C achieved the highest accuracy level because the 

asymmetric loading was applied above this segment, which positively 

impacted the increase in accuracy. The underlying reasons for higher 

accuracies obtained in segments C and D could be that these sections 

exhibit more strain variation than other sections. Consequently, data will 

be selected from the central region of the sensor to conduct phase 2 of the 

sensitivity analysis. 

Figure 5.41 indicates that the sensitivity analysis for Phase 2 involved 

introducing strain data from the centre of the beam, beginning at 10% and 

increasing in 10% (0.3 m) increments up to 100%. Meanwhile, Figure 5.42 

illustrates how the prediction accuracy varies concerning the percentage of 

input data. 

As per Figure 5.42, the accuracy of prediction increases with the 

percentage of input data, but the rate of increase gradually diminishes. The 

data indicate that prediction accuracy begins at 52% when there is 10% 

input data and rises steadily to 81% when there is 100% input data. 

However, the rate of increase in accuracy decreases as the percentage of 

input data increases. For instance, there is a 22%-point increase in 

accuracy when the input data increases from 10 to 20%, but only a one per 

cent point increase in accuracy when the input data increases from 80 to 

90%.  
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Figure 5.41: Strain data extracting segments for phase 2 

 

 

Figure 5.42: Variation of prediction accuracy for phase 2 

  

During the DL model’s testing phase, the substantial increase (22%) 

in predictive accuracy from 10% to 20% of the input data may be 

attributable to two critical factors.  
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First, the variation and range of the three parameters maximum 

strain, minimum strain, and average strain within the first 10% of the test 

data may make it difficult for the model to make accurate predictions, 

resulting in a reduced accuracy level. As the model is exposed to the 

remaining 10% of the test data, the distribution of the parameters may 

become more closely aligned with the training data, significantly improving 

predictive performance.  

Second, the impact of each parameter on the model’s prediction can 

vary. If, for example, maximum strain is a highly influential parameter and 

the initial 10% of test data exhibited atypical values for this parameter, the 

accuracy could be compromised. As the model is evaluated on the 

remaining 10% of the data, its accuracy will likely increase if these values 

lie within a more typical range. Even with 20% of the input data, it is 

evident that an acceptable accuracy level of 74% can be achieved. 

Therefore, the author recommends using at least 20% of input data with 

this DL model. 

In the field of SHM for RC beams, established techniques such as AE 

monitoring, vibration-based monitoring, and ultrasonic testing have 

traditionally set the benchmark. The research introduces a novel framework 

that employs concrete surface strain as the primary input to a DL model, 

with the objective of predicting rebar strain classifications. To the best of 

author’s knowledge, this framework for SHM in concrete beams has not 

been adopted, resulting in a lack of direct benchmarks for this technique. 

While broader SHM techniques offer well-established benchmarks in 

terms of precision and adaptability, this framework's methodology stands 

out due to its uniqueness. The developed DL model displays a remarkable 

accuracy of 81.25 percent. Moreover, a sensitivity analysis reveals an 

accuracy of 74% when only 20% of the input data are utilized, highlighting 

its robustness. Recognized are the challenges posed by the absence of 

direct benchmarks for this specific method within the framework. However, 

it is anticipated that the research will set the groundwork for future studies 

in this pioneering field. The emergence of benchmarks is anticipated to 
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facilitate comparisons between studies with comparable objectives as the 

method gains widespread acceptance. 

The primary contribution of this study is the development of a novel 

and versatile SHM framework that incorporates the capabilities of FOS, FEA, 

and DL. The primary goal was to develop a method that is adaptable and 

generalizable across a variety of structural applications. To validate and 

demonstrate the capability of this framework, RC beams were chosen as 

the first test subject since these beams could be parts of bigger 

infrastructure, like bridges, or smaller, simpler constructions in the real 

world. While the study did concentrate extensively on these beams, it is 

important to note that the SHM framework's principles are not limited to 

this specific application. In essence, other researchers and practitioners can 

adapt the framework to other structural forms, materials, and conditions 

with relative ease. The primary objective is to provide the community with 

a structured method that, while tested on RC beams, has the foundational 

scope to be extrapolated to diverse real-world situations. 

Therefore, it provides a foundational model for those who wish to 

extend this research or employ the framework in various contexts, 

potentially leading to additional advancements and applications in the 

broader field of structural health monitoring. 

 

5.5. Summary 

The chapter presented the study's results on predicting the structural 

health of concrete beams using DL techniques to aid in maintaining and 

inspecting civil infrastructure. The chapter covered experimental and 

simulation results, the model training process, and predictions for 

symmetric and asymmetric flexural loading.  

The strain behaviours of RC beams under flexural loading were 

investigated using a combination of empirical data and simulations to 

generate a robust dataset required for model development in an intensive 

and detailed two-tiered experimental process. The strain pattern and peak 

strain locations on the beam’s concrete and rebar surface correlated with 
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FEA results, validating the effectiveness of CDP-based FEA for in-depth 

strain data mining. As a consequence of this preliminary phase, six long-

span RC beams (R12C30, R16C30, R20C30, R12C60, R16C60, and 

R20C60) measuring 4000 mm × 200 mm × 400 mm were subjected to 

four-point bending tests. A benchmark was established for the predictive 

simulations of the remaining beams by experimentally validating the strain 

behaviour of the concrete surface and reinforcing rods of the R20C30 beam. 

These beams were subjected to both symmetric and asymmetric loading 

conditions, and strain measurements along sensor lengths were 

meticulously recorded under varying loading conditions to generate a 

comprehensive dataset. This data-driven, holistic comprehension of 

structural integrity is exemplified by using this robust and comprehensive 

strain data as a test set to evaluate the performance of a DL model in 

predicting the structural health of RC beams. 

The DL model underwent training using the R20C30 dataset, which 

included 75,000 data points. Of this, 64% was allocated for training, 16% 

for validation, and 20% for testing. The model was designed to predict 

rebar tension statuses at 10% increments ranging from 10% to 90%. A 

study was conducted to incorporate basic statistical parameters such as 

maximum, minimum, average, and standard deviation instead of using 

solely distributed strain data as inputs. Optimising the model with these 

parameters revealed that the model performs well when utilising only 

maximum, minimum, and average as inputs. The model’s class prediction 

accuracy was acceptable, achieving a success rate of 81.25% (76 out of 

96). 

Sensitivity analysis assessed the accuracy of DL model predictions. 

Two phases of sensitivity analysis were conducted using strain data from 

different sensor segments. The central region of the sensor was selected 

for Phase 2 after considering Phase 1 results. Notably, the prediction 

accuracy increases as the percentage of input data increases. Still, the rate 

of increase slows down, and with only 20% of input data, a reasonable 

accuracy of 74% can be achieved. 
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This extensive study anticipates that the experimental results 

validate the efficacy of CDP-based FEA for strain data mining, thereby 

reinforcing the foundational integrity of the proposed framework. The 

presence of a rigorous validation and testing phase within the framework 

not only ensures its accuracy but also emphasises its dependability. The 

model’s ability to predict structural health is supported by an impressive 

class prediction accuracy of 81.25% (76 out of 96). The sensitivity analysis 

demonstrates a remarkable 74% accuracy with only 20% of the input data, 

indicating its efficacy and practical applicability despite limited data input. 

The inherent flexibility of the framework, designed to estimate rebar 

tension statuses in 10% increments, accommodates varying levels of 

analysis granularity and permits customisation to meet specific needs. In 

addition, incorporating fundamental statistical parameters such as 

maximum, minimum, and average as inputs makes the framework more 

user-friendly and accessible. The robustness of the proposed framework 

and its potential to pave the way for an innovative, data-driven approach 

to predicting and comprehending structural integrity is thus reaffirmed.
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CHAPTER 6: CONCLUSIONS AND FUTURE 

RESEARCH 

6.1. Overview of the research work 

Chapter Six provides a comprehensive overview of the research 

conducted for this thesis. This chapter reviews the main research findings 

and their implications for the field, summarises the research contributions 

presented in this doctoral thesis, and discusses their prospective impact on 

the field. Finally, it suggests potential areas for future research.  

This study’s primary outcome was a framework for monitoring the 

structural health of RC beams using distributed sensor networks, FEA, and 

DL. The research objectives were identifying critical components for sensor 

network installation, generating a strain dataset from a validated FEA 

model for DL model training, designing, and developing sensor attachment 

methods, and developing a DL model for structural health prediction in RC 

beams. 

This study incorporated a literature review, experimental work, FEA 

modelling, and developing a DL model to form a framework. The research 

contributed to a better understanding of SHM in RC beams. It demonstrated 

the potential of distributed sensor networks, FEA modelling, and DL 

techniques to improve the safety of these structures. 

 

6.2. Summary of the key findings 

This research has introduced a new SHM method for RC beams that 

utilises DOFS, FEA, and DL to anticipate the rebar tension state of a 

structure while it is subjected to service loads. Key findings from each stage 

of the research are as follows: 

1. The literature review highlighted the significance of identifying critical 

components in RC beams, choosing appropriate sensors, and the most 

suitable techniques of FE modelling and DL for SHM. Due to its significant 

role in flexural failure and its influence on structural health prediction, 

the rebar was chosen as the most critical component in RC beams in this 
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study. DOFS were selected because of their sensitivity and precision in 

measuring strain along the beam’s surface, outperforming conventional 

strain sensors in this application. A CDP-based FEA model was chosen 

to accurately simulate the behaviour of concrete beams and bridge the 

distance between experimental data and predictive modelling. In 

addition, a DL model based on ANN was selected for structural health 

prediction. 

2. This study has successfully created a CDP-based FEA model for SHM 

applications to comprehend how a detailed FEA model for RC beams can 

be developed and correlated with experimental data from the DOFS 

sensor network. It revealed that the CDP-based FEA model correlates 

well with experimental stain data gathered by the DOFS network, which 

includes rebar sensors, side surface sensors, and bottom sensors. This 

admissible correlation demonstrates the model’s precision and 

dependability. The model was validated in two distinct phases to ensure 

its robustness: the first phase focused on short-span RC beams, and the 

second phase investigated long-span RC beams. This study 

demonstrates the credibility of the CDP-based FEA model in accurately 

anticipating the behaviour and integrity of RC structures by analysing 

the performance of the FEA model under flexural loading. 

3. The most efficient method for creating a strain dataset from the FEA 

model for training the DL model was to generate a comprehensive and 

diverse dataset by strategically varying the dilation angle and the 

number of steps in the FEA model. This methodology ensures that the 

dataset encompasses a wide variety of strain scenarios. A 

comprehensive and diverse dataset is necessary for training a DL model 

because it enables the model to generalise well to new, unexplored data, 

thereby enhancing the model’s overall performance. A reinforced 

concrete element has a unique dilation angle. However, the goal is to 

train how the DL model adapts to variations in the dilation angle, even 

though these variations may not occur in isolation in practice. A variety 

of strain patterns ranging from brittle to stiffer conditions were 
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introduced into the dataset by modifying the dilation angle in the FEA 

model. Concrete is a complex and heterogeneous material with inherent 

uncertainties and variations in its characteristics. It was expected that 

considering various dilation angles would help the SHM prediction model 

to enhance robustness and uncertainty quantification. Changing the 

number of FEA model steps is an additional essential aspect of the 

method. This parameter controls the granularity and resolution of the 

generated strain data, allowing the dataset to contain a range of levels 

of detail.  

4. In the SHM context, it can be difficult to secure optimally and position 

sensors on the concrete surface and rebars of RC beams. The sensor 

attachment method and installation procedures devised in this study 

effectively addressed these obstacles. As the attachment method, two 

varieties of adhesive bonding using a two-component epoxy glue were 

chosen due to their numerous benefits, including ease of installation, 

durability, and minimal interference with the RC beam’s structural 

integrity. The installation procedures were meticulously designed, 

considering variables such as surface preparation, curing time, and 

environmental conditions to ensure accurate sensor positioning – a 

crucial aspect for accurate strain measurements. The secure and optimal 

positioning of sensors enabled precise strain monitoring on the RC 

beams, resulting in accurate measurements for the DL model’s input. By 

implementing these methods and procedures, the study accomplished a 

high level of reliability and precision in measuring the surface and rebar 

strain of RC beams, with potential applications in real-world structures. 

5. The DL model was created to predict the structural health of RC beams 

using data obtained by the DOFS sensor network. This network is 

comprised of two types of concrete surface sensors: attached to the 

bottom surface and side surface, which monitor the structural health 

under several loading conditions, such as symmetric and asymmetric 

loads. The DL model’s performance and its applicability for evaluating 

the structural health of concrete beams were assessed based on the 
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accuracy of its predictions. The outcomes demonstrate that the DL 

model performs well, attaining an overall accuracy of 81.25% 

(predicting 76 out of 96 instances correctly) for symmetric and 

asymmetric loading conditions. Each sensor’s accuracy was analysed 

under section 5.4.2 to better understand the model’s efficacy. The 

bottom sensor’s accuracy rate was 84.45%, while the side sensor’s 

accuracy rate was 78.43%. The comparably high levels of accuracy of 

both sensors enable their potential interchangeability or replacement. 

Due to its comparable accuracy in measurement, the alternative sensor 

could preserve the integrity of data collection in the event of sensor 

failure or unavailability. This interchangeability ensures data integrity 

and provides operational continuity during critical situations, thereby 

enhancing the system’s overall robustness and resilience. In addition, 

this strategy offers practical and cost-effective benefits, as it eliminates 

the need for specific alternatives for each sensor type. This adaptability 

increases the robustness of the proposed SHM system by reducing its 

reliance on a single sensor type and assuring continued operation. The 

sensitivity analysis indicates that 74% accuracy can be achieved with 

just 20% of input data. This suggests that the model can make accurate 

predictions with a limited amount of data. 

 

6.3. Summary of the contributions  

 This doctoral thesis has significantly contributed to the field of SHM 

of the RC beams through the research presented. Following is a summary 

of key contributions: 

1. A Comprehensive SHM Framework for RC Beams: This study presents 

an innovative framework for SHM in RC beams, including identifying 

critical components, the design of sensor attachment methods, 

generation of a strain dataset from a validated FEA model, and the 

development of a DL model for structural health prediction. This 

exhaustive framework will serve as a guide for future research in the 

sector and enhance the potential for SHM applications in RC structures. 
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2. CDP-Based FEA Model: The development and validation of a CDP-based 

FEA model for SHM applications in RC beams is a notable contribution of 

this study. This model precisely simulates the behaviour of RC beams 

under various loading conditions and provides a dependable method for 

generating strain datasets for DL model training. In addition, the 

validation of the model on both short and long-span RC beams by using 

strain data demonstrates its versatility and applicability across a wide 

range of structural dimensions. 

3. Strain Dataset Generation Methodology: The research has developed a 

method for generating an exhaustive and diverse strain dataset from 

the FEA model. The proposed method, which entails varying the dilation 

angle and number of steps in the FEA model, ensures that the dataset 

contains a wide variety of strain scenarios, thereby augmenting the 

overall performance of the DL model. 

4. Sensor Attachment Method and Installation Procedures: The research 

has produced reliable methods and procedures for installing sensors on 

RC beams. These protocols guarantee the optimal placement of sensors, 

resulting in accurate strain measurements that improve the 

dependability of SHM. This contribution is significant because it 

addresses a critical problem in SHM and thus offers a potential solution 

for accurate strain measurement in real world RC structures. 

5. DL Model for Structural Health Prediction: The development of a DL 

model capable of accurately predicting the structural health of RC beams 

is a substantial contribution to SHM. The model’s high accuracy and 

sensitivity analysis demonstrated its dependability and suitability for 

SHM in RC beams, which indicates the potential for accurate predictions 

with limited data. In addition, analysing the precision of various sensors 

under varying loading conditions provides potential strategies for 

ensuring data integrity and operational continuity in emergencies. 

 This thesis contributes substantially to the existing knowledge in SHM 

of RC beams. The exhaustive SHM framework, the methods for sensor 

installation, the validated FEA model, the novel strain dataset generation 
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methodology, and the reliable DL model all offer potential solutions to the 

challenges associated with SHM of RC beams. In addition, these 

contributions pave the way for future research and development in this vital 

field. 

 

6.4. Generalisation of the SHM framework 

The SHM framework proposed in this study is for RC beams. Figure 

6.1 presents the flowchart for the generalisation of the framework. The 

following stages explained in the text can generalise the framework for a 

variety of structures and conditions: 

 

Figure 6.1: Flowchart for generalisation of the framework 

 

1. Identify critical components: As per this study, a new analysis is 

necessary to identify the most crucial structural components for the type 

of structure under investigation. These components may differ 

depending on the structure type. This initial stage is essential for 

establishing the SHM framework’s focus. 

2. Choose appropriate sensors: The selection of sensors must be 

reconsidered in light of the structure’s type, and the identified critical 

components. For instance, if the structure is made of a distinct material, 

more sensitive sensors to that material may be necessary. 
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3. Reconfigure the FEA modelling: Depending on the complexity and 

characteristics of the new structure, it may be necessary to reconfigure 

the existing FEA model. This may involve selecting a different FEA model 

or modifying the current model’s parameters. 

4. Modify the method of sensor attachment and installation procedures: 

Depending on the material and geometry of the new structure, a new 

method for securing and positioning sensors may be required. 

5. Adapt the data generation methodology: Depending on FEA and DL 

models, the data generation methodology may need to be modified. The 

dilation angle and number of steps may vary in the FEA model, if the 

structure is concrete. 

6. Reconfigure the DL techniques: Depending on the complexity and 

characteristics of the new structure, reconfiguring the existing DL model 

may be necessary. The model may have to modify to accommodate 

various input data types or generate several predictions. 

The framework introduced in this study can be generalised to other 

structures and conditions by following these procedures. Remembering that 

each new framework application may need modifications and adaptations 

to fit the particular context is necessary. Nonetheless, the study’s overall 

methodology and lessons learned can serve as a valuable guide. 

 

6.5. Suggestions for future research 

Considering the advancements in SHM and the growing reliance on such 

systems for the safety of infrastructure, the following directions can provide 

valuable insights for future research: 

1. Sensor Exploration: To optimise SHM systems, a comprehensive 

analysis of various DOFS sensors is required. To determine the optimal 

sensor for specific applications, its precision, sensitivity, durability, and 

price must be evaluated. In addition, exploring multi-sensor fusion 

techniques may provide a means to improve accuracy and guarantee 

redundant data acquisition in SHM scenarios. 
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2. Sensor Longevity: As sensors serve as the eyes and hearing of SHM 

systems, their durability and environmental stability are essential. Their 

operational life and dependability can be determined through rigorous 

testing in varying temperatures, humidity levels, and physical stressors. 

Such evaluations provide a greater comprehension of the sensor's 

performance over extended time periods and under varying conditions. 

3. Framework Extension: Expanding the scope of the current SHM 

framework can cast light on its applicability to diverse RC structures 

including slabs, columns, and even expansive structures such as bridges 

and multi-story buildings. Incorporating additional non-destructive 

evaluation methods can enhance the framework and ensure an all-

encompassing monitoring strategy. 

4. FEA Models: A greater demand exists for sophisticated CDP based FEA 

models that can accurately depict the various types of damage, 

deterioration processes, and detailed non-linear behaviours that 

concrete exhibits under various loads.  

5. Comparative Studies: A comparative study of various methodologies 

applied to similar RC structures can be useful for maximising the efficacy 

of SHM systems. This would highlight their respective benefits, 

limitations, and ideal applications. In addition, a combination of 

traditional monitoring systems and emerging DL models could provide 

an advanced SHM strategy that combines the best of both realms. 
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