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Abstract. IoT (Internet of Things) platforms are key enablers for smart city initiatives, 
targeting the improvement of citizens’ quality of life and economic growth. As IoT platforms 
are dynamic, proactive, and heterogeneous socio-technical artefacts, systematic approaches 
are required for their development. Limited surveys have exclusively explored how IoT 
platforms are developed and maintained from the perspective of information system 
development process lifecycle. In this paper, we present a detailed analysis of 63 approaches. 
This is accomplished by proposing an evaluation framework as a cornerstone to highlight the 
characteristics, strengths, and weaknesses of these approaches. The survey results not only 
provide insights of empirical findings, recommendations, and mechanisms for the 
development of quality aware IoT platforms, but also identify important issues and gaps that 
need to be addressed. 

Keywords. IoT platform; Smart city; development process lifecycle; evaluation framework  

1 Introduction  
One of the key enablers of a smart city is the IoT platforms (du Plessis, 2018). An IoT 
platform is a set of technology-enabled entities including physical smart objects (e.g. sensors, 
actuators, cameras, smart tags, and tracking labels) as well as software services and systems 
that are connected and working together. An IoT platform, typically, collects and processes 
massive amount of data generated by smart city entities in a real-time fashion to improve 
city services to citizens (Williamson & Kennan, 2016), (Jin, Gubbi, Marusic, & Palaniswami, 
2014). IoT platforms are a backbone for many smart cities such as those are in Europe 
(Caragliu, Del Bo, & Nijkamp, 2011), China (Liu & Peng, 2013), and United Arab Emirates 
(Janajreh, Su, & Alan, 2013). 

An IoT platform may constitute millions of smart objects and software services that should 
operate in an orchestrated way to provide active sensing, and smart reasoning for citizens. As 
the development of such socio-technical artefacts is a complex and challenging process, the 
need for adopting systematic engineering approaches, i.e. engineering methodologies or 
information system development methods3, to develop IoT platforms is pivotal (Zambonelli, 
2016). Engineering approaches are the core of all well-engineered IT artefacts as they 
provide a means for applying practices, design decisions, and techniques for developing 
information systems (Avison & Fitzgerald, 2003). Analogically, it is evident that an IoT 
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platform development is, after all, essentially a type of information system development 
(Savaglio, 2017), (Diaconescu & Wagner, 2014). Considering this analogy, adopting an 
engineering lifecycle perspective for managing the complexity of IoT platform development 
is acclaimed  as it takes precedence over an ad-hoc use of implementation techniques and 
technologies which are likely to deliver a vulnerable and poor quality platform (Savaglio, 
2017). This has been acknowledged by earlier research suggesting IoT development should 
be conducted from the engineering lifecycle point of view (Wenge, Zhang, Dave, Chao, & 
Hao, 2014). According to the Gartner’s report (Pettey, 2018):  

“…developing and standardizing the process for building IoT solutions and then 
guiding the evolution and improvement of that process is key. This will help make the 
organization’s creation of IoT solutions easier and more reliable because these 
initiatives will follow a process that incorporates the organization’s experience and 
accrued best practices in IoT solution development.” 

Moreover, Fortino et. al., who designed an approach for a smart tourism IoT platform, state 
(Fortino, Guerrieri, Russo, & Savaglio, 2015):  

“…to fully exploit the widely recognized smart objects’ potential in analysing, 
designing and implementing IoT eco-systems, well-defined development 
methodologies are required.” 

Nevertheless, the development processes for IoT has not yet been explored as the hype 
suggests. Practitioners may be arguably referred to traditional engineering lifecycles (e.g. 
SDLC) and software engineering practices to develop an IoT platform. However, as it will be 
discussed in Section 4, an IoT platform development endeavour is distinct from the 
traditional information system development in several ways. Software components, mobile 
applications, and backbone services, that are combined together to offer IoT services, are 
developed and maintained in a typical information systems project. On the other hand, 
hardware components of a platform should be able to communicate with other software 
components, which can be a complete project on its own and thus needs to be developed and 
maintained via a different lifecycle. Apart from technical challenges, an IoT platform 
development may involve multiple domains and thus a diversity of stakeholders and their 
requirements (Slama, Puhlmann, Morrish, & Bhatnagar, 2015). Bringing these different 
lifecycles together implies the need for engineering new engineering approaches or 
augmenting existing ones to incorporate and address the abovementioned issues in the 
course of an IoT platform development.  

There is an on-going proliferation of approaches as reviewed in Section 4. They may often 
give too little or too many details at different levels of abstraction that makes hard perceiving 
and explaining the underlying mainstream of IoT development process. Limited existing 
surveys have exclusively devoted their effort to understand what certain aspects and 
requirements should be taken into account in an IoT development lifecycle or assessing the 
suitability of an existing approach for a specific smart city project. Hence, a review of the 
literature in this field, to identify research gaps in the current landscape and inform future 
research on this topic is timely. We aim to identify what is already known about the 
development process lifecycle of IoT platforms, synthesize the current research evidence, 
and propose an agenda for future studies. This aim is accommodated by means of an 
evaluation framework through which existing approaches are compared and contrasted. 
Accordingly, this paper attempts to answer the following research questions: 

–RQ. What is the current state of existing approaches for developing IoT platforms 
with respect to the proposed evaluation framework introduced in Section 2?  

RQ1. what is the application and type of these approaches? 
RQ2. How is IoT platform development process lifecycle perceived in the 
literature?  
RQ3. what roles are involved in the development of IoT platforms? 
RQ4. what modelling activities and modelling languages are used during IoT 
platform development? 
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We answer these research questions and present the evaluation results of a representative set 
of existing IoT approaches using a proposed evaluation framework. As it will be discussed in 
Section 7, the focus, depth and coverage of our analysis and the survey coverage have not 
been provided by prior research. We, therefore, position this survey as the unprecedented 
reference point contributing to the literature on three aspects.  

— This is the first research that sheds light on the typical development lifecycle of IoT 
platforms by providing a comprehensive review and synthesis of commonly occurring 
activities, quality factors, and recommendations enabling scholars and practitioners (e.g. 
platform providers), to understand challenges and employ techniques to tackle these 
challenges.  

— The proposed evaluation framework comprises a set of features to categorise and 
examine IoT development approaches. The framework characterises different features for 
the incorporation into the development of an IoT platform which are helpful for platform 
providers to compare existing approaches or check if their own in-house approach is 
suitable to implement and maintain an IoT platform. In other words, the survey provides a 
knowledge base that can be helpful for platform providers to design a bespoke IoT 
development approach. A key feature of the framework is its abstraction and being 
independent of specific standards, technologies, and implementations. 

— This survey extends the previous ones by adding the distinguishing development lifecycle 
point of view to the IoT literature. The identified gaps in this domain, open new research 
opportunities for researchers.  

This article is organised as follows: Section 2 presents our evaluation framework designed 
for the purpose of this survey. Section 3 presents the systematic survey used to conduct this 
research. Section 4 discusses how the existing works address the different features of the 
framework and it delineates the recommendations to for effective IoT platform development. 
This is followed by a discussion on the survey findings and remaining challenges pointing to 
further research directions in Section 5. The research threats discussed in Section 6. Section 
7 reviews the previously published surveys that are related to the one we present. Finally, 
this article concludes in Section 8. 

2 Evaluation framework 
We propose our evaluation framework leaning heavily towards assessing engineering 
lifecycle processes to let us classifying, analysing, and characterising existing IoT 
development approaches and thus answer to the research questions. The construction of the 
evaluation framework was conducted in three steps as described in the following 
subsections.   

2.1 Step 1. Defining meta-features  
We sought desirable features that are expected to be satisfied by an ideal evaluation 
framework. Such features, called meta-features, are used to evaluate other features. The 
definition of meta-features may depend on a domain context; however, having a list of them 
to be used during the compilation of a feature set to get a fair framework is essential. We 
used the following meta-features defined by (Karam & Casselman, 1993) and (Taromirad & 
Ramsin, 2008) during compiling the evaluation framework: (i) simplicity, i.e. a feature 
should be clear and easy to understand, (ii) preciseness, i.e. a feature should be detailed, 
unambiguous, and quantifiable to be usable by assessors, (iii) minimum overlapping, i.e. 
features should be distinct and have minimum dependency to each other, (iv) soundness, i.e. 
a feature should be related to and have semantic link to the problem domain, and (v) 
generality, i.e. a feature should be abstract and independent of specific standards, 
technologies, implementations, and other concrete details.   

2.2 Step 2. Derivation of feature set 
The compilation of the framework’s features was inspired by the existing evaluation 
frameworks for system development approaches, but it was specialised for the context of IoT 
platform development. As mentioned in Section 1, an IoT platform development endeavour 
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can be comparatively viewed as a particular class of software system development 
endeavour. To achieve a set of features which adhere to the meta-features (step 2.1), we 
began to identify a few overarching and workable dimensions as an overall frame to group 
the features. The development of the features was conducted in two steps as follows.  

We reviewed the existing traditional evaluation frameworks such as (Karam & Casselman, 
1993), (Ramsin & Paige, 2008), (Sturm & Shehory, 2004), and (Pressman, 2005) and 
synthesised the features suggested by these sources to derive a fair set of features that could 
be sufficiently abstract, application independent, and equally applicable in the context of an 
IoT platform development. The output of this step was a general evaluation framework that 
subsumes the features under the following four aspects that are elaborated throughout 
Section 4:  

— Context characterises the application domain and geographical location for which 
an approach has been designed;  

— Lifecycle coverage ascertains phases performing for an IoT platform development;  
— Roles describe different human entities that are involved during a platform 

development; 
— Modelling captures various models and representational languages used for data 

and work-products in a platform development process. 

The feature of lifecycle coverage in the evaluation framework is inspired by the generic 
software development phases (Pressman, 2005) and it is broken down into initialisation, 
analysis, design, implementation and test, and deployment. We strived to extend this 
feature to more detailed features that were highly related and deemed important for an IoT 
platform development. This resulted in the derivation of the new features under the lifecycle 
coverage in the framework. These features that were deeply influenced by previous works 
such as (da Silva et al., 2013), (Al-Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015) 
and closest research domains to IoT, in particular, the feature set proposed in (Fahmideh, 
Daneshgar, Low, & Beydoun, 2016) are: resource discovery, data management, monitoring, 
service composition, and event processing.  

It should be noted that the derivation of the feature set was conducted in a (i) top-down 
manner, i.e. reviewing introductory papers such as literature surveys highlighting key 
challenges of IoT development and (ii) bottom-up manner by examining different existing 
IoT platforms and development approaches reviewed in Section 4. Furthermore, the feature 
derivation has been iteratively influenced by the presented platforms in Section 4 in the 
sense that reviewing them led us to more in-depth understanding of the identified features 
and thus resulted in further refinements and extensions of the features. The iterations for 
refining the feature were continued until they got to sufficiently stabilised so that further 
iterations did not resulted in new features. We excluded the features that seem to be purely 
technical or platform dependent. For instance, we believed that the feature called wireless 
sensor network management, defined in (Kyriazopoulou, 2015), can be covered by our 
feature resource discovery in the proposed framework and thus it was removed from our 
feature set. Figure 1 shows the resultant evaluation framework that provides a high-level 
frame to compare and classify the existing IoT development approaches.  
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Figure 1. Evaluation framework for analysing IoT platform development approaches 

2.3 Step 3. Evaluation of feature set 
We obtained qualitative feedback from domain experts in the IoT field regarding the 
framework’s adherence to the meta-features defined in Step 1. This gave us an opportunity to 
refine the framework. The following criteria were set to select a domain expert: (i) software 
developers/architects with real world experience in IoT platform development, or (ii) an 
academic with an extensive domain knowledge acknowledged by their publications in IoT 
related journals and conferences venues, and (iii) having good command of English 
language. Two volunteer domain experts, associated to our project which denoted as E1 and 
E2, accepted to independently assess the document of our framework based on the meta-
features. The profile of reviewers who were both from Sydney, Australia, is as follows. The 
first reviewer was a university senior lecturer who published works in IoT related venues and 
had real-world experience in conducting enterprise architecture design. The second reviewer 
was a senior research consultant in IoT industry. The review process was taken between July 
and September 2018. A questionnaire form including questions related to the meta-features 
was given to the domain experts to read and provide their comments. Overall feedback was 
positive confirming that the feature set is sound and have an applicability to assess 
approaches. Some experts’ comments were deemed out of the scope of this research though 
they were valuable for the further extension of the framework. For example, E1 suggested the 
creation of an online version of the framework as well as re-framing the framework’s 
dimension regarding common architectural frameworks such as TOGAF. The framework was 
used to evaluate the existing IoT development approaches as discussed in Section 4.  
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3 Systematic survey  

3.1 Overview 
We conducted a systematic literature review (Figure 2); this followed the procedure for data 
collection and analysis described by (Kitchenham et al., 2009). First, scientific digital 
libraries were searched against the inclusion criteria and proposed search strings derived 
from the research questions. Next, research papers that met the inclusion criteria were 
selected. Third, data from selected papers were extracted and, finally, qualitative analysis 
was performed. The following sections discuss the search strategy and data synthesis. 

 
Figure 2. Systematic literature review conducted for this research 

3.2 Planning review 

Search string 

From an initial screening of the literature, we realized that existing works in literature do not 
necessarily use the same terminologies to refer to engineering lifecycle for implementing IoT 
platforms. In IoT literature, a platform development has been described in different 
abstraction levels, the granularity of concepts/layers, and combined with enabling technical 
platforms. This could lead to identifying too many studies or to miss some important ones. 
Hence, defining search strings was challenging. As a countermeasure, we continually refined 
the search strings to avoid missing any papers. Following guidelines by (Dieste & Padua, 
2007), we first determined the main terms by decomposing the research questions. The main 
terms IoT platform and approach were extended with alternative synonyms. Both were 
combined to define a set of search queries using logical operations AND and OR and to be 
used against the title, abstract and keywords of the studies during the conducting review 
phase. The search queries shown in Table 1. 

 

Table 1. Search strings 
Search Query (SQ) 
SQ1: “IoT”, OR “IoT platform” OR “Platform” OR “Smart city IOT” AND [SQ2] 

SQ2: “Approach” OR “Method” OR “Methodology” OR “Information System Development Method” 
OR “Software Development Methodology” OR “Process” OR “Development Process” OR “Process 
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Model” OR “Process Lifecycle” OR “Lifecycle” OR “Reference Model” OR “Framework” OR 
“Engineering Methodology” OR “Engineering Method” 

Study sources 

The common scientific digital libraries IEEE Explore, ACM Digital Library, SpringerLink, 
ScienceDirect, Wiley InterScience, ISI Web of Knowledge, and Google Scholar were defined 
as sources for the literature search. These libraries maintain the majority of published 
studies in IoT and software engineering lifecycle approaches. We took into account articles 
published in the prestigious IS and SE journals. For this particular study, the proceedings of 
international conferences, symposiums, and workshops related to IoT platform development 
were used and proved to be a very useful source of information. We also took into account 
online non-academic literature, called multi-vocal literature (Ogawa & Malen, 1991), such as 
internet blogs, white papers, and trade journal articles, which could readily propose ideas 
surrounding IoT platform development. 

Selection criteria 

While our survey focused on studies pertaining to the development process of IoT platforms, 
we selected identified studies that meet the following criteria:  

—research questions/objective sufficiently described;  
—findings and conclusions well explained; 
—the development process or architecture design for IoT platforms explained including 
activities and mechanisms; and  
—published between 2008 and May 2019.  

As this survey focused on studies related to the development of IoT platforms, the following 
exclusion criteria were set for: 

—studies in languages other than English; 
—introductory papers to smart city development and IoT architecture; and 

3.2 Conducting review 

Study selection 

To avoid missing any related paper, conducting the literature review was followed by 
performing the reference snowballing technique (Wohlin, 2014) in the sense that studies 
cited in the references and related work section of the paper were feeding into the next run of 
the literature search. Moreover, the studies that cited the current study were identified. This 
phase conducted in several back-and-forths through refining the search strings and the 
literature search (Figure 2). The literature search was not performed merely based on 
automated search, but also included an extensive manual search. We also identified some 
IoT standards that have not been published in the academic literature through the manual 
search in the selected sources. The rationale to include this bunch of standards was to assort 
a representative mix of well-published industrial IoT platforms along with ones proposed by 
academia. We identified 125 papers. However, after removing duplications 63 papers were 
left. We read the abstract, introduction, and conclusion of each paper and evaluated it 
against the inclusion/exclusion criteria. 

data extraction and synthesis 

We used the evaluation framework as a lens to extract key data from 63 identified studies. 
We imported the data into Excel sheets to capture the full details of the studies under review. 
The full text of each study was thoroughly read and corresponding text segments such as 
sentences, phrases, or paragraphs, which were relevant to a feature were extracted along 
with the reference to the study. Apart from that, data items pertaining to the research quality 
were extracted for further assessment as discussed in Section 4.1. We used the criteria 
defined in Critical Appraisal Skills Programme (Greenhalgh & Taylor, 1997) along with those 
suggested for conducting evidence-based software engineering (Kitchenham et al., 2002). 
Full demographic information of the studies including authors, title, acronym, publication 
channel, and source year is presented in Appendix A.  
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4 Results 
Section 4.1 gives an overview of the research quality of the selected approaches. Section 4.2 
summarises the analysis results using the evaluation framework. Sections 4.3, 4.4, 4.5, and 
4.6 describe the analysis of the studies to answer the research questions using each feature of 
the proposed evaluation framework and thus to propose recommendations, lessons learned, 
and mechanisms for IoT platform development. 

4.1 Research quality  
We used eight criteria adopted from (Greenhalgh & Taylor, 1997) and (Kitchenham et al., 
2002) to assess the quality of the research design used. The list of questions presented in 
Appendix B was used to grade the satisfaction of each criterion. The assessment results have 
been described based on five scales completely addressed, considerably addressed, 
moderately addressed, slightly addressed, and not addressed. Figure 3 shows the 
distribution of the criteria satisfaction by the approaches. According to this figure, the 
majority of the approaches have clearly stated a research aim. As far as the criterion research 
design is concerned, only 8 studies [S8], [S17], [S38], [S49], [S57], [S60], [SS62],  and [S63], 
i.e. (13%), have provided either a full or considerable description of the research design to 
conduct their work. As many as 35 of 63 studies did not describe the research design at all. 
Additionally, an overall view of the scores in Figure 3 reveals that a large number of studies 
have not addressed the criteria data collection, data analysis, and reflexivity. To be more 
specific, 36 studies have not described the way data was collected and analysed to validate 
the proposed IoT development approach. From Figure 3 it can be observed that 49 studies, 
i.e. 84%, do not report how researchers have been involved with the environment in which 
the validation of a proposed approach conducted. We believe that the research design to 
propose approaches for IoT platform development has been viewed as a subsidiary task. 

According to Figure 3, 70% of studies explicitly described their contributions to the 
literature. Studies [S15], [S60], and [S63] achieved the best three scores on the quality 
assessment whilst studies [S22], [S23], [S30], and [S61] received the lowest score in this 
review. For the criterion validation, the studies were classified according to the applied 
validation type as shown in Table 2. The majority of approaches applied the case study 
example (33), followed by techniques such as experience report (10), simulation (4), 
theoretical validation (2), and workshop (1). Of 63 studies, 13 (22%) did not present any 
information on the validation. Whilst including studies with a poor validation might be 
counted as a violation from recommended the systematic literature review procedure, we 
tended to cover the entire relevant literature as much as possible. 

 



 

9 
 

Figure 3. quality scores for the identified studies 

Table 2. validation type used in existing approaches 
Study Validation Description Number 

[S1], [S2], [S5], [S7], [S9], [S14], [S15], [S18], [S20], [S21], 
[S23], [S24], [S25], [S26], [S27], [S28], [S37], [S38], [S39], 
[S42], 
[S44],[S47],[S49],[S51],[S52],[S53],[S54],[S55],[S56],[S57], 
[S61], [S62], [S63] 

Case study Case study has 
been used to 
investigate the 
approach 
within real-
life or 
exemplar 
context. 

33 

[S6], [S8], [S12], [S33], [S36], [S41], [S45], [S48], [S50], 
[S59] 

Experience 
report 

The approach 
has been 
developed on 
the basis of 
gained 
experience in 
an industrial 
experience. 

10 

[S3], [S32], [S43], [S60] Simulation A mathematic 
simulation 
used to assess 
the approach 
correctness. 

4 

[S10], [S19] Theoretical 
validation 

The approach 
has been 
validated 
using a set of 
high-level 
criteria. 

2 

[S34] Workshop The approach 
presented to 
domain 
experts and it 
received 
feedback 

1 

[S4], [S11], [S13], [S16], [S17], [S22], [S29], [S30], [S31], 
[S35], [S40], [S46], [S58] 

Not 
validated 

The approach 
did not specify 
any applied 
validation 

13 

4.2 Overview 
Since we realized that the knowledge about the way of developing IoT platforms is spread out 
over the literature where each piece of work provides a different level of sophistication in 
developing IoT platforms varying from very high-level to technical level of details, we used 
the term “approach” as an overarching term to refer to any systematic way of developing IoT 
platforms. Hence, the term of approach includes any of these:  

— Conceptual model is the most basic and high-level presentation of an IoT 
architecture, which is not dependent or bound to a specific domain or technology. 
An approach at this level gives platform providers an overall view of an IoT platform 
architecture components. RASCP [S1], MC-IoT [S7], EADIC [S17], SCRM [S19], 
TMN [S31], RAMI [S33], BSI [45] and standardisation efforts such as SCCM [S40] 
are some examples of this class.  

— Platforms which may focus on either (i) software components including application 
programming interfaces (APIs), services, and tools in order to develop real IoT 
software applications (e.g. VITAL [S2], CiDAP [S3], Cisco [S6], IoT-ARM [S8], 
OpenIoT [S9], FIWARE [S12]) or (ii) hardware and infrastructure components to 
integrate heterogeneous and geographically dispersed smart objects via network and 
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electronic protocols (e.g. Telco USN-Platform [S18], SPITFIRE [S20], and Padova 
[S24]).  

— Method (or engineering methodology) define activities and guidance to implement 
an IoT platform. For instance, TSB [S36], BSI [S45], and ESPRESSO [S48] define 
delivering strategies to transform city services to future IoT based applications. 

Table 3 presents the analysis results of the approaches with respect to the evaluation 

framework. These results have been in tables 3,4, and 5. Symbols √ and × in Table 3 indicate 

if a feature is/is not supported by an approach. This support means that the approach has 

provided mechanisms or techniques in order to address that feature. Note that, in this 

survey, we denote each studied approach using its abbreviation (Appendix A) along with a 

unique identifier starting with ‘S’. These identifiers are used throughout the article.   
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Table 3. Evaluation of the existing approaches against the evaluation framework, note: - √: addressed, ×:not-addressed, C: 
Conceptual model, P:Platform, M:Method 

Study Id Proposal 
acronym/name 
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[S1] RASCP  C × × √ × √ √ √ √ × √ √ √ √ √ √ × × × × 
[S2] VITAL  P × × √ × √ √ √ √ × √ √ √ √ √ × × × √ √ 
[S3] CiDAP P × × × × √ √ √ √ √ × √ √ × × × × × × √ 
[S4] Khan  C × × √ × √ √ √ √ √ √ × × × × × × × × × 
[S5] Gubbi   P × × √ × √ √ √ × × × √ √ × × × × × × × 
[S6] Cisco P × × × × √ √ × × × √ √ √ × √ × × × × × 
[S7] MC-IoT  C × × × × × × × × × × × × × × × × × × × 
[S8] IoT-ARM  P √ √ √ × × × × × × × × × √ × × × × √ √ 
[S9] OpenIoT  P × × √ × √ √ √ √ √ √ √ √ × × × × × √ × 
[S10] Guth  C × × × × × × × × × × × × × × × × × × × 
[S11] Ganchev  C × × × × × × × × × × × × × × × × × × × 
[S12] FIWARE/OASC  P × × × × × × √ √ × × × √ √ √ √ × × × √ 
[S13] Vilajosana  C × × × × × × × × × × × × × × × √ × × √ 
[S14] Scallop4SC  P × × × × × × √ √ × × × × × × × × × × × 
[S15] Khan P × × × × √ √ × × × √ × × √ × × × × × × 
[S16] Catherine  C × × × × × × × × × × × × × × × × × × × 
[S17] EADIC  C × × × × × × × × × × × × × × × × × √ √ 
[S18] Telco USN-Platform  P × × √ × × × × × × × × × × × × × × × × 
[s19] SCRM  C √ × × × × × × × × × × × × × × × × × × 
[S20] SPITFIRE  P × × × × × × × × √ √ × × × × × × × √ × 
[S21] Giang P × × × × × × × × × × × × × × × × × × √ 
[S22] Wenge C × × × × √ × √ × × × √ × × √ × √ × × × 
[S23] WSO2 P × × × × √ × × × × × × × × √ × × × × × 
[S24] Padova P × × × × × √ × × × × × × × × × × × × × 
[S25] GAMBAS P × × √ × √ × √ √ √ × × × × × × × × × × 
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[S26] SmartCityWare P × × × √ × × × × × × × × × × √ × × × × 
[S27] Noise mapping P × × × × × × × × × × × × × × √ × × × √ 
[S28] Vlacheas P × × × × × × × × √ × × × √ × × × × × × 
[S29] MLSC P × × × × √ × × √ × × × × × ×  √ × × × × 
[S30] Yang P × × × × × × × × × × × × × × × × × × × 
[S31] TMN C × × × × × × × × × × × × × × × × × × × 
[S32] RERUM P × √ × × √ × × √ × × × √ × √ √ × × √ √ 
[S33] RAMI C × × √ × × × × × × × × × × × × × × × √ 
[S34] EPIC P × √ × × √ × × × × × × √ × × × × × × √ 
[S35] ClouT P × × × × × × × × × × × × × × × × × × × 
[S36] TSB M × × × × × × × × × × × × × × × √ × × × 
[S37] EdSC P × × × × × × × × × × × × × √ × × × × √ 
[S38] SOFIA P × × × × × √ × × × × × × × × × × × × √ 
[S39] CityPulse P × × × √ √ × × √ √ √ √ √ × √ √ × × × √ 
[S40] SCCM M × × × × × × × × × × × × × × × × × × √ 
[S41] OGC P × × × × × × × × × × √ × × × √ × × √ √ 
[S42] PLAY P × × × × × × × √ √ × × √ × √ × × × √ × 
[S43] Nitti P × × √ × × × × × √ √ × × × × × × × × × 
[S44] BASIS P × × × × √ × √ × × × × √ √ × × × √ × √ 
[S45] BSI S √ √ × × × × × × × × × × × × √ × √ × √ 
[S46] SORASC P × × × × × × × × × × × × × × × × × × √ 
[S47] IBM P √ × × × × × × × × × × × × × × × × √ × 
[S48] ESPRESSO M × × × × × × × × × × × × × × × × √ × √ 
[S49] InterSCity P × × √ × √ × × × × × × × × × × × × × × 
[S50] ICore P × × × × × × × × × × × √ √ × × × × × × 
[S51] Agri-IoT P × × √ × √ × × √ √ × × × × × × × × × × 
[S52] U-City P × × × × × × × × × × × × × × × × × × × 
[S53] DIAT P × × × × × × × × × × × √ √ × × × × × × 
[S54] SmartSantander P × ×  × × × × × × × × × √ × × × × × × × 
[S55] Collins  M √ √  × √  ×  ×  ×  ×  ×  × √  × √  × √ √ × × × 
[S56] Ignite  M × √ × × × × × × × × × × √ × × × × √ √ 
[S57] ACOSO-Meth M × √ × × √ √ √ √ √ × × √ × √ √ √ × √ √ 
[S58] INTER-METH M × √ × × × × × × × × × × √ × √ √ × √ √ 
[S59] ThingSpeak P × × √ √ √ √ √ √ √ × √ √ √ √ × × × × × 
[S60] BET M × × × × × × × × × × × × × × √ √ × × √ 
[S61] Galliot M × × √ × × × √ × × × × × × √ × × × × × 
[S62] Thinger.io P × × √ √ √ √ √ √ √ × √ √ × √ √ √ × × × 
[S63] IoTEP P × × × × √ √ √ √ √ × √ √ × √ √ √ × √ √ 
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4.3 RQ1: what is the application and type of these approaches? 

4.3.1 Context 
The feature of context in the evaluation framework characterises the geographical location 

and an application area for which an approach is offered.  

4.3.1.1 Geographical application  

The feature of geographical application is based on the fact that an IoT platform may 
change the ways city services will operate and coordinate. It is important to examine if an 
approach incorporates the factors related to geographical area in its development process. 
These factors are, for example, stakeholder’s negative attitudes, political background, 
population diversity, regulations and laws, and city infrastructure readiness. They may slow 
down or become impediments in the further phases of the development process as 
mentioned in WSO2 [S23]. We found that the geographical application of approaches, as 
stated in their documents, is limited to a level of international, continental, national, state, 
city, suburb, or region as evidenced in Table 4.  

Table 4 Geographical applicability of the selected approaches 
Platform Geographical applicability 

IoTEP [S63] International  
VITAL  [S2], CiDAP [S3], IoT-ARM [S8], OpenIoT [S9], 
FIWARE/OASC [S12], Vilajosana’s platform [S13], GAMBAS 
[S25], RERUM [S32], EPIC [S34], SOFIA [S38], CityPulse [S39], 
OGC [S41], ESPRESSO [S48], ICore [S50], DIAT [S53], BET [S60] 

Europe 

Padova [S24] Italy 
Noise mapping [S27] Australia 
Yang’s platform [S30] China 
RAMI [S33] German 
ClouT [S35] Europe-Japan 
TSB [S36] UK 
Nitti’s platform [S43] Italy 
BSI [S45] UK 
U-City [S52] Korea 
Galliot [S61] Egypt and North Africa 
RASCP  [S1], Khan’s platform [S4], Gubbi’s platform [S5], Cisco 
[S6], MC-IoT [S7], Guth’s platform [S10], Ganchev’s platform 
[S11], Scallop4SC [S14], Khan’ platform [S15], Catherine’s 
platform [S16], EADIC [S17], Telco USN-Platform [S18], SCRM 
[S19], SPITFIRE [S20], Giang’s platform [S21], Wenge’s platform 
[S22], WSO2 [S23], SmartCityWare [S26], Vlacheas’s platform 
[S28], MLSC [S29], TMN [S31], EdSC [S37], SCCM [S40], PLAY 
[S42], BASIS [S44], SORASC [S46], IBM [S47], InterSCity [S49], 
Agri-IoT [S51], SmartSantander [S54], Collins [S54], Ignite [S56], 
ACOSO-Meth [S57], INTER-METH [S58], ThingSpeak [S59], 
Thinger.io [S62] 

Not stated 

4.3.2.2 Application domain 

As the name implies this feature is to characterise the domain for which an approach and its 
resultant IoT platform is suitable to use. For example, if the purpose of a platform is to 
support mission critical services to citizens, the development process should explicitly 
incorporate additional supportive real-time response mechanisms into the platform 
architecture. Table 5 shows the classification of the approaches based on their application 
domains. As shown, MC-IoT [S7] is an architecture for mission-critical IoT based systems 
where a failure in that system may cause economical and environmental issues. In fact, MC-
IoT [S7] is a model driven development process relies on automated model transformation 
and self-adaptation mechanisms. An application of FIWARE [S12] platform is to implement 
real e-health remote patient monitoring services. RAMI [S33] describes the crucial aspects of 
coordination and automation of IoT based manufacturing systems regarding Industry 4.0. 
OGC [S41] is developed to access and integrate different sources of geospatial information 
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for smart cities. Nitti’s platform [S43] has been developed for the sustainable tourism 
domain in order to optimise the movement of cruise ship tourists in cities regarding factors 
such as transport information and queue waiting times. BASIS [S44] is pertinent to the flight 
itinerary applications where it provides services to search and visualise delay profiles in 
flights of cities due to, for example, weather conditions. Agri-IoT [S51] is a platform 
developed for the smart farming in the food supply chain. Documentation of ThingSpeak 
[S59] shows the platform is developed for more home/private use applications (e.g. 
monitoring the temperature and humidity of an office) rather than organizational.  

Table 5 Application domain of identified approaches 
Platform Application domain 

MC-IoT [S7] Mission-critical systems  
FIWARE/OASC [S12] Retail, healthcare, logistic, agriculture 
Scallop4SC [S14] Large-scale log data processing  
Telco USN-Platform [S18] Automobile  
MLSC [S29] Smart health system 
[S30] Polytrophic power  
RAMI [S33] Manufacturing  
CityPulse [S39] Real-time large-scale data processing  
OGC [S41] Geospatial 
PLAY [S42] Social media 
[S43] Tourism 
BASIS [S44] Airline transport 
Agri-IoT [S51] Agriculture 
ThingSpeak  [S59], BET [S60], IoTEP [S63] Smart energy 
RASCP [S1], VITAL [S2], CiDAP [S3], Khan [S4], Gubbi’s 
platform [S5], Cisco [S6], IoT-ARM [S8], OpenIoT [S9], 
Guth [S10], Ganchev [S11], Vilajosana [S13], Khan [S15], 
Mulligan [S16], EADIC [S17], SCRM [S19], SPITFIRE 
[S20], [S21], [S22], WSO2 [S23], Padova [S24], GAMBAS 
[S25], SmartCityWare [S26], Noise mapping [S27], [S28], 
TMN [S31], RERUM [S32], EPIC [S34], ClouT [S35], TSB 
[S36], EdSC [S37], SOFIA [S38], SCCM [S40], BSI [S45], 
SORASC [S46], IBM [S47], ESPRESSO [S48], InterSCity 
[S49], iCore [S50], U-City [S52], DIAT [S53], 
SmartSantander [S54], Galliot [S61], Thinger.io [S62] 

Not stated 
 

4.4 RQ2: How IoT platform development process lifecycle is 

perceived in the literature? 
Derived from the identified approaches, the relations between IoT development phases is 
shown in Figure 4. It is important to realise that the common software system quality factors 
such as interoperability, security, reusability, configurability, energy efficiency should be 
viewed as crosscutting concerns across different layers and development process of an IoT 
platform. 



 

15 
 

 

Figure 4. An overall process of IoT platform development derived from the approaches. In the design 
phase, identified requirements are used to design logical high-level IoT platform architecture models 
realizing core IoT and domain specific functions. The architecture models are operationalised in the 
implementation and test phase and finally deployed. 

4.4.1 Initialization phase 
The purpose of this phase is to establish a project plan and to analyse the feasibility of the 
IoT technology to operationalise a citizen-centric vision. According to IoT-ARM [S8] and BSI 
[S45], this phase defines a clear and compelling city vision (what good looks like) for the 
platform development in the subsequent phases. Amongst other things, a city vision 
document may explain objectives to achieve critical services that are to offer by the platform 
to citizens. Defining the city vision is an iterative and collaborative task and it needs an active 
participation of all smart city stakeholders. BSI [S45] defines the following 
recommendations when planning an IoT project:   

— establishing common terminologies, i.e. project glossary, to ensure all stakeholders 
have a clear, consistent and common understanding of the key concepts involved in 
the platform development;  

— acquiring right skills and interdisciplinary team arrangement; 
— managing probable organizational/city change;   
— deploying a transparent governance process to monitor platform development.  

Apart from that,  a key concern that should be planned ahead and further elaborated in 
the later phases is to address the interoperability across the IoT platform components. 
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Two approaches SCRM [S19] and BSI [S45] emphasise defining an individual plan 
defining integration strategies and innovative characteristics contributing to a green 
and sustainable city. This helps identifying key barriers and corresponding solutions to 
achieve the interoperability quality factor.  

4.4.2 Analysis phase 
This phase aims at the specifying and prioritizing functional requirements as well as the 
quality factors that should be realized by the target IoT platform. The stakeholders’ 
requirements depend on the target context (i.e. the features of geographical application and 
application domain) chosen to build the platform.  

We found that the existing approaches prescribe using the common requirements 
engineering techniques available in traditional software engineering literature to elicit 
requirements, for example, using object-oriented use-case modelling as suggested in IoT 
ARM [S8] and ACOSO-Meth [S57]. A user interface centric requirement analysis technique 
is proposed  by Ignite [S56] through which a prototype of IoT functions exposing to end 
users including actions and views are generated. An action can be a trigger like a button or 
slider whilst a view is a layout of the system such as tables, diagrams, or textual layers. 
Together views and actions indicate business logic and user permissions to work with IoT 
services. In Collins [S55] there is a stream of requirements analysis entitled as the 
infrastructure analysis. The reason for doing this analysis is to know how new IoT 
applications and services will be deployed and integrated with the existing IoT infrastructure 
components such as hardware, database, and middleware.  

As far as the quality factors are concerned, much effort in the analysis phase is spent on the 
analysis of security and interoperability. Developers should elicit and identify correct 
security requirements for each layer of the platform from the low-level networking 
perspective to end-user level. Identifying security requirements at the early stages of the IoT 
platform development is crucial as smart cities consist of a wide range of heterogeneous 
smart objects and technologies that dynamically join and leave the network. Such ever-
changing environments may raise unforeseen security and privacy risks. EPIC [S34] suggests 
the security requirements can be identified through the following steps: 

— analysing behaviour and communication among smart objects, platform 
components, and humans involved in the smart city context and;  

— determining what/when/how different types of data should be protected. 

Given the heterogeneity of platform components or platforms with together which may be 
integrated with respect to certain goals, interoperability requirements should be identified 
for each layer of the platform. In this regard, INTER-METH [S58] recommends taking the 
following steps for interoperability requirements analysis:  

— identifying integration points across the platform layers; 
— identifying requirements of each integration point; 
— writing objective statements for each integration point to help developers focus 

their efforts during design and implementation phase. 

4.4.3 Design phase 
The feature of design in the evaluation framework examines if an approach addresses the 
core functions of an IoT platforms. Based on the reviewed approaches, these core functions, 
which defined as sub-features in the evaluation framework, are resource discovery, data 
management, monitoring, service composition, and event processing. They provide a 
backbone for an IoT platform to address domain specific user requirements and quality 
factors. The following subsections present the results of the evaluation of the existing 
approaches against these five features.  

 

4.4.3.1. Resource discovery  

In a dynamic environment of a smart city, smart objects can continuously join and leave the 
network. A key expected function in an IoT architecture is that smart objects should be 
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discoverable or connectable to the platform in both automatic and manual ways. In general, 
this needs implementing the following mechanisms in the platform:  

—defining unique identifiers for smart objects;  
—enabling smart objects to announce their presence in the network and register themselves; 
—enabling users to discover, browse, and perform queries over objects in the network span.  

In approaches such as OpenIoT [S9], Telco USN-Platform [S18], GAMBAS [S25], VITAL 
[S2], and FIWARE [S12], it can be seen that publish/subscribe is a common mechanism used 
for the resource discovery function as shown in Figure 5. In this mechanism, a middleware 
component, also called distributed registry, provides necessary APIs and enables smart 
objects to register themselves in the platform network. The registration makes them 
discoverable by other smart objects and software components and enable them to 
upload/post and disseminate data/meta-data to the rest of the network. In addition, the 
middleware’s APIs should allow users running queries over the inserted data in the network 
by smart objects, seeking other subscribed smart objects in the network, browsing the list of 
available services and resources proposed by smart objects deployed by other users 
regarding their locations. In order to explore services offered by smart objects subscribed in 
the network, the semantic service matchmaking mechanism is used. An implementation of 
this mechanism suggested by IoT-ARM [S8] where a lightweight description ontology 
enables users or software components to search IoT services. Similarly, MC-IoT [S7] 
suggests a model-driven transformation mechanism for identifying, specifying, realizing, and 
composing new resources and services. 

The interoperability and security are two important quality factors that should be taken into 
account. As far as the interoperability concerned, smart objects may not be detectable or 
searchable due to incompatibility with other smart objects. In other words, a smart object 
may want to send a signal showing its availability to another smart object but both have 
different interfaces. In addressing this issue, Nitti [S43] suggests using virtual objects (VO) 
mechanism. In this mechanism, VOs are digital counterpart models of physical objects which 
encapsulate information and operations of physical objects. A VO applies the separation of 
concern principle to hide incompatibilities where it makes logical links between the real-
world objects and relevant virtual objects. The platform has a search and discovery engine 
component that receives service requests from users. Requests are compared with virtual 
templates of VOs to discover the most similar and available VO instances. In similar way, 
VITAL [S2] allows users defining an abstraction layer through which a VO handler points to 
physical items which can be discovered, selected, or removed. Alternatively, Thinger.io 
[S62], defines client libraries so that smart objects can connect to the Thinger.io platform, 
use efficient bidirectional communications, and consume from any external application. 

With respect to the security, Nitti [S43] suggests defining three levels of VO discoverability 
as follows: 

— public where a registered object can be discoverable to all users in the network; 
— private where a registered object is discoverable by the object owner; 
— friend where a registered object is discoverable by a private key provided by the 
virtual object. 

An issues related to the resource discovery function is the possibility of having duplicated 
identifiers for different smart objects that connect to the network. It is likely that some 
objects from different platforms have same identifiers with those objects that have already 
been connected to, and setup by, different platforms. To have smart objects with a unique 
identifier, a platform should define a naming mechanism for those joining the network. In 
CiDAP [S3], a uniform resource name (URN) is implemented where some predefined prefix 
such as location, name, and identifier are added to objects. Prefixes should be kept short to 
reduce processing overhead.  
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Figure 5. publish/subscribe mechanism proposed by the existing approaches for resource discovery— 
adapted from OpenIoT [S9], Telco USN-Platform [S18], GAMBAS [S25], VITAL [S2], and FIWARE 

[S12] 

4.4.3.2. Data management 

Data collection. A primary function of an IoT platform is to collect data from various 
sources in the environment as well as across all its layers. The data, which can be classified as 
semi-structured and structured as stated by CiDAP [S3], two approaches RASCP [S1] and 
Scallop4SC [S14] define three sources of data that should be continuously captured and 
stored by a platform:  

— data about physical city entities such as smart objects, citizens, traffic model, sensor 
network model, data model, city maps, and energy distribution model; 

— data about working software components, services, and applications including source 
codes/libraries and associated documents;  

— historical data such as log data, censor states, citizens’ action history. 

In terms of the data type, Thinger.io [S62] defines three classes of data for collection such as 
observational data (i.e. original data about dynamic scenarios as collected from 
heterogeneous objects), contextual data (i.e. data about circumstances of objects), and 
knowledge models (i.e. a priori or inductively learned).  

The designing a data collection function involves with addressing interoperability, security, 
scalability, and configurability as described in the following. An IoT platform needs to collect 
data from heterogeneous smart objects and applications each using different formats to store 
and share data. Hence, as recommended in Khan [S4], an appropriate APIs that either are 
provided by data source providers or the platform provider play an important role for the 
quality of the data acquisition from the data sources. This assists users of the platform to 
perform sophisticated queries to extract data for data processing purpose. A commonly 
software engineering mechanism for the data collection function is using adaptors/wrappers 
as shown in VITAL [S2], CiDAP [S3], and OpenIT [S9]. More exactly, OpenIT [S9] has a 
component called Extended Global Sensor Networks (E-GSN) which collects data via serial 
port communication of sensors, HTTP requests, and JDBC (Java DataBase Connectivity) 
queries. The E-GSN implements wrappers for both data providers and developers to 
implement their own customised data acquisition functions. Similarly, the approach CiDAP 
[S3] suggests defining a unified interface for the data collection including two main 
components named IoT-broker and IoT-agent. An IoT-agent connects to sensors and 
responds to requests from the IoT-broker on behalf of real sensors. The IoT-broker forwards 
requests to IoT-agents and pushes returned results back to data storages.  VITAL [S2] has 
components named Virtualized Unified Access Interfaces (VUAIs). A VUAI implements a 
collection of connectors and drivers to enable communication with other platforms. The 
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connectors use linked data standards such as RDF, JSON-LD, and ontologies to represent 
data format and data access.  

The data collection from the data sources should be performed in a secure way in the sense 
that the data traversing in the network should be encrypted in the sender and decrypted on 
the receiver side via cryptography algorithms. The following basic mechanisms are suggested 
by the GAMBAS [S25]:  

— authentication and authorization for data access; 
— data encryption via cryptographic algorithms through which the traversing data 

are encrypted and decrypted in the receiver side;  
— secure protocols such as TLS/SSL or IPSec at network layer;  
— establishing regulations and rules in favour of citizens’ privacy and security; 
— hardware obfuscation where functional logic of sensors coded to prevent reverse 

engineering attacks; 
— minimising data acquisition from smart objects.  

Regarding the configurability quality factor, the data collection function should be designed 
to address two changeable modes namely real-time or near-time indicating the extent of 
being real-time for the data collection. Such a view, is defined in OpenIoT [S9] which 
provides a publish/subscribe middleware to allow users to set a data acquisition mode.  

In addition, the data accumulation function can be concerned in terms of network traffic and 
performance quality factors. That is, malicious users may connect to the network using smart 
objects (e.g. mobile devices) and send continuous data or service request inquires. OpenIoT 
[S9] implements a mobile broker running on smart objects which prevents potential data 
overload and ensures only relevant data is transferred from objects to the platform.  

As the data collection functions performing on the smart objects are typically battery 
powered, an important quality factor that should be addressed in the infrastructure layer of a 
platform is the energy efficiency. Hence, the data acquisition should be resource efficient as 
suggested by GAMBAS [S25]. For example, Thinger.io [S62] uses a mechanism called 
Protoson for transferring data between smart objects and platform’s servers/software 
components. Unlike HTTP approach for the data transfer, which includes several JSON or 
XML headers and payloads, Protoson uses raw compact binary connections without the 
HTTP overhead. Thinger.io [S62] shows that Protoson mechanism saves bandwidth and 
reduces power consumption in smart objects.  

Data cleaning. This function is to remove anomalies from data prior to storing them into 
databases. The data cleaning function can be considered from the perspective of reliability 
quality factor, i.e. sufficiently completed and error-free data. The data collected from sensors 
might be noisy and abnormal which may affect the reliability of derived data analysis results. 
For example, a sensor may report a temperature which is out of the expected range or may 
stop report. This might be due to several reasons such as a battery run out or unexpected 
broken network repeater. Anomaly detection algorithms should be designed as 
recommended by CiDAP [S3]. In the view of Cisco platform [S6], the data cleaning function 
should include the following generic steps such as: 

— reconciling data formats collected from data sources; 
— ensuring the semantic consistency of data;  
— normalising and de-normalising the data to get faster process.  

In terms of the configurability quality factor, not all generated data in smart city 
environment may be the equal interest of platform’s users. The data cleaning function should 
allow users to store and process a sub set of data that meet their requirements, for example, 
a specific threshold value or comparison measured value. Hence, the platforms such as 
VITAL [S2], OpenIT [S9], CityPulse [S39], and SOFIA [S48] define a context-filtering 
component which continuously monitor environments to automatically select events 
subjected to users’ interests and to create user-specific data filtering patterns. For example, 
VITAL’s [S2] filtering component enables to collect the data which meets requested a data 
interpolation pattern. Moreover, in OpenIT [S9] the component CloUd-based 
publish/subscribe middleware facilitates the filtering of data streams e.g. sensor data in a 
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way that only data that are subjected to the interest of users are collected which also avoids 
potential data overload.  

Data storing. This function is to manage storing collected data in the physical data storages 
of the platform. Due to the variety and large volume of data, the majority of the existing 
approaches suggest two types of data storages:  

— relational databases that are a common option if atomicity, consistency, 
isolation, durability (ACID) constraints and support for complicated queries 
required; 

— No-SQL databases such as Hadoop, CouchDB, CouchBase, MongoDB, and 
HBase databases supporting features such as horizontal scalability, distributed 
index, and dynamically modifying data schema. 

Data processing. This function provides sophisticated data analysis over the collected 
data. The function leverages APIs and data mining techniques for classification, regression, 
and clustering that are supported by data analytics platforms such Apache Storm, Apache 
Spark, and Hadoop MapReduce. The existing approaches include two modes of data 
processing namely real-time stream processing and batch processing. The data processing 
function is concerned for the scalability quality factor to respond to data processing requests 
effectively. Need for addressing the scalability comes into play when the is an increase in 
number of sensors, data volume, communications among objects, processing demands, and 
users connected to the platforms as discussed in PLAY [S42], Nitti [S43], CityPulse [S39], 
and DIAT [S53]. The scalability in the existing approaches leverages enabling technologies 
such as cloud computing, data analytics, and micro-services. For example, Khan [S4] uses 
Hadoop MapReduce to scale the data processing function in its platform. ThingSpeak [S59] 
provides APIs to write and execute code to process data via the proprietary Matlab tool, 
which may impede the popularization of the platform. 

Query processing. A query processor function performs queries over the platform data 
storages. Similar to the resource discovery function, the common mechanism used in the 
approaches for the query processing function is the publish/subscribe. An example of that is 
CityModel API suggested by CiDAP [S3] which is hosted on servers and it allows users to 
subscribe and perform queries. A simple query is to request a real-time snapshot of data over 
all databases or smart objects whilst a complex query is to request aggregated results over 
the historical data collected within a period. To keep users notified of the latest data all the 
time, the CityModel API also defines two types of the subscription mechanisms called 
CacheDataSub (in the database) and DeviceDataSub (in objects) in order to provide different 
expected latency. 

Meta-data generation. The purpose of this function is to improve the classification, 
identification, decision making, and retrieval of the data from the data storages and smart 
objects. For example, in CityPlus [S39] the characteristics of sensors such as its location,  the 
interval of updates for data fetch, and data category are described using sensory meta-data 
which is named SensorDescription. Meta-data can be either generated manually by users 
through the provided platform’s user interfaces or by the platform internally during a data 
collection and processing. Meta-data generation function is in relation to the interoperability 
quality factor. That is, via using the meta-data, smart objects can identify, communicate, and 
exchange data with together by seeking their models, types, and other attributes. In other 
words, the meta-data acts like a guideline that helps smart objects to process the counterpart 
data correctly.  

Data visualisation. In a platform, this function is responsible to provide interactivity and 
user interfaces to enable users to send queries on topic of interests and to get graphical view 
of the data analysis results. This can be in the forms of mobile applications, dashboards, 
reports, message boards, 3D spaces, and 2D maps. For instance, ThingSpeak’s API’s [S59] 
enables users to visualize collected data through using spline charts.  

4.4.3.3. Monitoring  

An IoT platform should ensure the satisfaction of the quality factors for both internal 
environment, i.e. its components, and external environment, i.e. smart city. The monitoring 
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function is realized in an architecture by components and APIs for keeping the track of the 
environment and subsequently performing resource allocation and task scheduling 
algorithms. Scallop4SC [S14], SmartCityWare [S26], and RERUM [S32] define the different 
types of log data that should be analysed to detect anomalies in the environment as follows: 

— system log to capture the history of operations and resource usage of components; 
— energy log to capture the history of energy consumption by smart objects deployed 

in different regions and their battery lifetime; 
— device log to capture the history of their operations, status e.g. changing TV channel, 

and switching on/off light;  
— network log to capture link quality, throughput and delay, transmission queue size, 

the number of collisions, packet error rate and other critical networking statistics; 
— environment log to capture the history of changes in the environment such as 

temperature, humidity, and the number of people 

The CityPulse [S39] suggests defining a component responsible for comparing the collected 
data streams, identifying anomalies, correlations, or similar patterns of divergence and 
generating alerts in the case of occurrence abnormal behaviours in the environment.  

To implement the monitoring function, FIWARE [S12] suggests two approaches: distributed 
and central. In central approach, a set of monitoring components are installed on server and 
gateway collects statistical data from all smart objects in the network, analyses, and 
identifies malfunctions and failures. A disadvantage of this approach is high-energy 
consumption and heavy signalling in the network and data transfer. On the contrary, in the 
distributed monitoring approach, each smart object monitors itself and its neighbour smart 
objects to find issues in the network. The distributed approach although does not create high 
signalling in the network, it causes more energy consumption on smart objects because each 
object should perform complex monitoring algorithms.  

From the reviewed approaches, we found two other quality factors related to the monitoring 
function: interoperability and scalability. Firstly, the monitoring may not be applicable in 
heterogeneous smart city environment as smart objects may use different physical layers and 
networking technologies. To address this issue, FIWARE [S12] suggests providing a set of 
APIs for developers which wrap incompatibilities between platform and smart objects. This 
enables developers to manage aggregated and real-time monitoring data. Secondly, an IoT 
platform should define mechanisms to keep expected performance without negatively 
affecting the quality of existing services in peak time when the number of smart objects 
connecting to the platform is increased. This is related to the scalability quality factor and it 
is supported in Noise mapping [S27] and IBM [S47].  

4.4.3.4. Service composition  

All individual services in an IoT platform that are offered by smart objects or platform 
components can be combined to create large services. These new composite services can be 
deployed and executed on top of the IoT platform. If an IoT platform allow developers for an 
end-to-end cross-platform development of composite services, the cost for building new IoT 
based applications is reduced. The logic for defining a specific service composition  layer in 
some existing approaches such as SCRM [S19], TMN [S31], RERUM [S32], ClouT [Ss35], 
and OGC [S41] is to enable users in creation of new IoT applications via combining existing 
services. The service composition function in Meta Services of VITAL [S2], generic enabler in 
FIWARE [S12], Software-as-a-service (SaaS) in WSO2 [S23], and IoT-ARM [S8] commonly 
rely on the service-oriented architecture (SOA) approach. For example, WSO2 [S23] 
provides the WSO2 Private PaaS (platform as a service) product which is based on Apache 
Stratos project to enable developers in building scalable applications. FIWARE [S12] 
provides a set of pre-built general-purpose functions accessible through APIs, called Generic 
Enablers (GEs), which allow developers to build new applications to run on platform. When 
viewed collectively, a service-oriented approach to define the service composition function in 
a platform should have the following sub-functions:  

— A service orchestration function enabling users to define inputs/outputs and 
business rules (e.g. sensor data entry validation, process sequences, or 
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authorization) in order to create new services by selecting and combining pre-
existing IoT services;  

— A service choreography function offering a broker to handle publish/subscribe 
communication between services. 

To enable service composition function in an IoT platform, the quality factors such as 
interoperability, reusability, security, and energy efficiency are concerned as elaborated in 
the following. 

A mechanism to address the interoperability, as already mentioned for the resource 
discovery function in Section 4.4.3.1 is VO suggested. This mechanism is implemented in 
Vlacheas [S28] and iCore [S50]. VO introduces the composite virtual objects (CVO), a 
cognitive mashup of semantically interoperable virtual objects and their offered services. We 
also identified a set of design principles for addressing the interoperability. For instance, 
SmartCityWare [S26], EdSC [S37], and Nitti [S43] suggest that platform components should 
be loosely coupled so that they can simply be integrated with other components. In addition, 
ESPRESSO [S48] suggests the following recommendations to support the service 
interoperability: 

— implementing small and reusable services (e.g. microservices) and APIs with 
minimum functions instead of large and coarse-grained services;  

— using common standards for data exchange such as IP-v4, IP-v6, IP-Sec; 
— offering data processing services instead of data exchange services (avoiding 

offering data as a service). 

In addition, at the infrastructure layer of a platform including hardware, data centres, 
networks, and devices, the approaches commonly use de-facto standards and protocols, such 
as HTTP, MQTT (Message Queuing Telemetry Transport which is a broker-based 
publishing/subscribing), and AMQP (Advanced Message Queuing Protocol) to address 
interoperability. They are middleware protocols which extensively used for exchanging 
messages across among different objects at the network layer.  

Another quality factor in relation to the service composition is that a platform should provide 
sufficient support for service reusability. In Nitti [S43], the reusability is used for the 
purpose of the data processing function where the data are collected from various sources 
but they are processed and used in a similar way. Therefore, the data processing of the 
platform can be reused with minor modifications for constructing new processing instances. 
The common approach to improve service reusability in the existing approaches such as IoT-
A [S8], SPITFIRE [S20], iCore [31], RERUM [S32], ClouT [S35], TSB [S36], and DIAT [S53] 
is using of the model-driven development in which a base architecture, i.e. reference 
architecture, with minimum core services, and technologies is designed which is extended 
and reused for new service composition. The security should be taken into account when 
creating and using composite services in a way that a composite service should still satisfy 
the expected security requirements with an acceptable accuracy.  
Finally, a composed service may be based on invoking the fine-grained services of smart 
objects that have low or little storage/computational power, middle-end with restricted 
resources, i.e. sensors, to high-end, i.e., smart phones and laptops. Finally, as far as energy 
efficiency concerned, a common advice by the existing approaches is to consider resource 
constraints, e.g. battery, of involved objects when making composite services.  

4.4.3.5. Event processing 

This function in a platform aimed at representation, capturing, and quickly react to 
important events either external environment such as city events, peak-time vehicle speed, 
geographic events as well as internal environment for example component events. An event 
is an observable change in the state of the environment which can be triggered by a stimulus 
e.g. sensors. Event processing should be conducted in a real-time way so that users can 
receive accurate and timely response. According to EdSC [S37], the basic functions to 
support being event-driven in a platform are:  

— signal-to-event to convert signals in the environment to meaningful events which can 
be used by smart objects or human;  
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— knowledge sharing to represent events;  
— action definition to store event condition and perform actions in the case of 

occurrence of event incidence; 
— action-to-signals to convert functions performing in smart objects into signals.  

To address customisability, Galliot [S61] suggests that a platform should enable users to 
write and execute their specific codes once an event occurs. Cisco [S6] adds some other 
functions such as sampling/filtering events, comparing events, and joining events to create 
complex events.  
Exchanging and processing heterogeneous events coming from multiple sources at different 
levels of the platform stack is a challenging issue which should be addressed during an 
architecture design. Our review revealed that the technique to address event interoperability 
in the approaches, such as PLAY [10] and CityPlus [S39], is based on using ontologies, which 
provide a common semantic basis for data and metadata representation and interpretation. 
That is, events that are represented using ontology concepts and annotated via metadata 
enable their correct interpretation by other smart objects or services in the network.  

4.4.4 Implementation and test phase 
This phase focuses on the implementation of the designed architecture in  previous phase. In 
the existing approaches such as Collins [S55], Ignite [S56], ACOSO-Meth [S57], and INTER-
METH [S58], this phase is to implement and test three classes of components, each with 
specific functionalities as described in the following:  

Software layer components to enable users to perform platform’s functions as explained 
in the design phase (Section 4.4.3). These components are, for example, software 
applications, services, ERP (enterprise resource planning), mobile applications, business 
analytics applications/reports, back-end services, and monitoring applications. The 
components in this layer are responsible for: 

— receiving data from smart objects, performing processing algorithms over the data 
and sending the results back to end users and smart objects;  

— providing an end-to-end application development foundation to build new 
applications to be run on top of the platform;  

— providing APIs to extend the platform with new services;  
— orchestrating and managing business processes, services, and applications.   

To implement software components, the approaches use the programming languages such as 
C, C++, Java, and Python and machine-level languages such as C++ and Assembly for low 
power devices. For instance, ThingSpeak’s APIs [S59] provides a development environment 
to write data processing functions via programming languages such Ruby, Python and 
Node.js. 
Data layer components to store and retrieve data from/to physical data storages.  
Infrastructure layer components to provide hardware and resources for data storages, 
computations, and physical interconnectivity among data centres, servers, and networks.  
Smart objects layer components to collect data from the physical environment and 
send/receive the data to/from software components. Coding the smart objects may require 
dozens of line of codes such as managing HTTP requests, adding headers, sending gathered 
data, parsing input/output, commanding, and allocating resources. Thinger.io [S62] 
provides client libraries to simplify coding smart objects. We found that the following 
enabling technologies are used in the existing approaches:  

— cloud computing to provide a scalable and highly unlimited resources to collect and 
store data from devices and to perform data intensive analysis;  

— fog computing to provide low and predictable latency and geographical IoT 
distributed applications;  

— data analytics platforms to manipulate collected data set;  
— restful services to enable coordination and composition of IoT services;  
— VO to integrate IoT sources such as smart objects. 

A key quality factor regarding this phase is the reusability of platform components. There is a 
possibility to develop new platforms or to extend existing ones using pre-existing IoT 
platforms. In this regard, VITAL [S2] provides a set of visual tools and capabilities which 
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allow a rapid development and deployment of new IoT applications and back-end services 
based on NodeRED (nodered.org) open source development tool proposed by IBM platform 
[S47]. OpenIoT [S29] has a visual integrated development environment that accelerates 
building and deploying new IoT applications. The platform reduces programming effort by 
providing options such as visual sensor discovery regarding their locations, types, 
configuring and monitoring sensors, and composing services based on Web 2.0 mashups. 
FIWARE [S12] platform has been built based on SaaS delivery model. Such a foundation 
including a collection of APIs minimises the developing IoT applications. IoTEP [S63] has 
been developed based on FIWARE [S12]. 

Testing is a key development activity to ensure that the implemented platform satisfies the 
expected functionalities in a target environment. For example, via testing, developers can 
estimate workload and identify an upper and lower workload that can be processed by 
different platform deployment configurations. The testing of IoT platforms can be performed 
at three levels: beginning from the lowest level where each platform component is tested, i.e. 
unit testing, verifying if platform components work together well, i.e. integration testing, and 
finally testing the whole platform. Traditional software engineering testing techniques can be 
employed as it can be seen in Collins [S55] and INTER-METH [S58], but there are some 
testing challenges. For example, the dynamicity of the environment where different smart 
objects join and leave the network makes it difficult to conduct all testing scenarios 
completely. Moreover, an IoT platform may constitute many different components at 
software, data, and infrastructure layers which becomes difficult to ensure that the whole 
platform is working effectively.  

4.4.5 Deployment phase 
The deployment phase is complex and it comprises both technical and non-technical 
concerns. From the non-technical point of view, in particular financial, Vilajosana [S13] 
recommends a three-stage deployment strategy as follows: 

— deploying components that not only offer utility but also offer very clear return on 
investment and generate cash flows for new investments;  
— deploying components that may not necessarily produce direct financial benefit but 

longer return on investment; 
— deploying components offering by third party developers to be added on the top of 
existing platform to make it self-sustainable through standardized APIs. 

Technically speaking, the phase is performed to deploy all components related to the 
software, data and infrastructure layers to make continuous and close feedback loop. For the 
software and data components, a concern in this phase is to identify an optimum distribution 
of software platform components on servers, typically cloud and fog servers, by taking into 
account the quality factors such as performance and security. Three types of component 
deployment are suggested by BET approach [S60]:  

— all in cloud: deploy all components including processing and storage on cloud servers; 
— all in fog: deploy all components including processing and storage on local fog nodes to 

reduce latency and traffic network; 
— half in fog: deploy some components on fog to reduce latency and bandwidth utilization 

but also benefits from cloud servers for computational power. 
In addition, Inter-Meth [S58] defines the following configuration tasks in this phase:  

— software component configuration including graphic tools for service orchestration 
and underlying interoperability mechanism;  

— semantics configuration to manages all the processes and mechanisms; 
— user configuration to manage authorized access to the IoT platform’s resources. 

The deployment of infrastructure layer components such as data centres, servers, networks, 
and smart devices are also concerned in this phase. The existing approaches highlight 
different tasks to be performed . These include:  

— identifying areas where Wi-Fi deployment will result in the sufficient improvement of 
the service delivery cost TSE [S36],  
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— an optimum distribution of smart objects to get less traffic congestion and lower 
round trip ACOSO-Meth [S57],  

— generating deployment scripts on smart objects Collins [S55],  
— deploying communication technologies and APIs on smart objects ESPRESSO [S48],  
— gateway and network configuration with a focus on the interoperability of platform 

components and smart objects Inter-Meth [S58]. 

Apart from that, we found the approaches commonly incorporate well-known software 
engineering design principles such as adoption of open standards (Khan [S4]), loose 
coupling (SmartCityWare [S26]), (Nitti [S43]), data minimization (RERUM [S32]), open 
APIs, a-synchronous/synchronous communication, stateless services, and decentralised 
evolution (Nitti [S43]), and modularity (ESPRESSO [S48]).  

4.5 RQ3: What roles are involved in the development of IoT 

platforms?  
So far, our discussion on the lifecycle aspect (Section 4.4) has implicitly referred to various 
roles participating in the IoT development process. As an IoT development process relies on 
a variety of technical expertise, business acuity, and delivery skill set, there is a need to have 
a plan for acquiring development roles. This section explicates roles and their associated 
responsibilities in the view of the existing approaches. According to the Gartner’s report: 
“engagement skills are a fundamental requirement for delivering IoT — and are a critical 
competency for IoT architects” (Pettey, 2018). A managed role engagement and effective 
collaboration programme, as defined in BSI [S45], is an important part of IoT projects. For 
example, an IoT-based city roadmap cannot be effectively produced without an active 
involvement of roles such as IoT architect and citizens. The role engagement ensures that 
they have a clear understanding of the IoT smart city program. In particular, IoT architect is 
responsible for making an engagement between development teams and stakeholders to 
develop clear business objectives for IoT solutions and to ensure they integrate well together.  
We found that, except for a few approaches namely SCRM [S19], BASIS [S44], ESPRESSO 
[S48], and INTER-METH [S58], the majority of the existing IoT approaches do not elaborate 
on the role definitions as a part of their suggested platform development process. We will 
discuss this issue further in Section 5.3. Table 6 shows the identified roles along with their 
corresponding responsibilities.  

Table 6. Roles involved during IoT platform development 

Role Responsibilities Approach 

Project manager Initiating, planning, executing, monitoring, controlling 
IoT project 

All 

IoT architect Identifying and modelling a target IoT architecture which 
meet stakeholders requirements 

Al 

IoT programmer Implementing APIs for providing interoperability, coding, 
configuring smart objects at machine level 

All 

Third party 
programmer 

Implementing and supporting of third party services BASIS [S44] 

Data analyst /data 
scientist 

Designing and implementing data models for the data 
layer of the architecture 

BASIS [S44] 

Non-relational 
data storage 
specialist 

Implementing and managing non-SQL related 
technologies 

BASIS [S44] 

Infrastructure 
administrator 

Procuring, managing, and monitoring physical platform 
infrastructure 

BASIS [S44] 

Security specialist Implementing mechanisms to ensure the platform’s 
privacy, security, and integrity 

BASIS [S44] 

Integrator Identifying integration points and implementing 
integration layers in order to address interoperability 
issues 

INTER-METH 
[S58] 
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City 
leaders/planner 

understanding of smart cities, define a development 
trajectory of a smart city vision towards an IoT platform, 
and monitoring the smart city projects against the critical 
success factors 

SCRM [S19] 

Citizens Sharing data ESPRESSO [S48] 

4.6 RQ4: What modelling activities and modelling languages are defined during 
IoT platform development?  

The evaluation framework defines work-products (artefacts) and modelling language to 

assess if the modelling aspects is supported in an approach. These features are discussed in 

the following subsections.  

4.6.1 Models (work-products/artefacts)  

The development activities of an IoT platform produce a series of implicit/explicit models to 
represent concepts and information. The models help trace how requirements of users are 
realized in the implemented platform. We observed that the approaches specify models that 
are either originated from the traditional software engineering or pertinent to the IoT 
context. We identified a group of models defined by the approaches as presented in Table 7 
and briefly described in the following. 

Some models are the output of the development activities in the initialization and analysis 
phases of the development process. In this regard, BSI [S45] prescribes to generate a smart 
city road map as one of the initial models   in an IoT platform development process. The 
road map model describes city transformation and cover important items including 
stakeholder collaboration work-stream, leadership and governance processes, and strategies 
for procurement, supplier management, and risk management. In addition, a useful 
collection of models related to the early stage of platform development is city models such as 
a traffic model, sensor network model, data model, city maps, city visions, and an energy 
distribution model, 2D or 3D map. All of these models helps to identify smart objects and 
required components in the platform. Moreover, requirement models represent functional 
requirements and quality factors that are expected to be realized by a target platform. 
RERUM [S32] suggests generating the use-case diagrams to represent requirements. Colin’s 
platform [S55] defines a work-product named IoT Canvas which is produced during 
brainstorming sessions conducted by developers and stakeholders in order to identify and 
validate high-level requirements to be addressed by an IoT platform. Figure 6 shows a typical 
IoT Canvas including sections such as smart objects, users, data models, and middleware. 
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Figure 6. IoT Canvas model for identifying high-level requirements— source Colin [S55] 

Some models are produced during the design phase. For example, an IoT domain model, as 
recommend by VITAL [S2], IoT-ARM [S8], RERUM [S32], and IoTEP [S63] shows the 
semantic and ontological overlay of an IoT based environment, e.g. entities forming the 
platform. It represents real or virtual objects, software components, and their relationships 
in an IoT-based solution. Figure 7 shows an example of a domain model representing energy 
sensors to be deployed in target a to collect data.  
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Figure 7. Example of a domain model of an energy aware building— source IoTEP [S63]  

In traditional software engineering, an architectural view/model of a system helps better 
understanding of a software system including its structural or behavioural relationships 
among its components. For example, an architecture models of IoT platform is one the main 
modelling work-products showing the interacting software and physical components.  

Inspired by the 4+1 view model of a system architecture (Kruchten, 1995), IoT-ARM [S8] 
defines the following models: domain model, requirement model, communication model, 
deployment model, data model, data flow, functional model, channel model, event model, 
context model, and road map. We found that, compared to the all the existing platforms, 
IoT-ARM includes the most comprehensive collection of prescribed models. The 
architectural views in IoT-ARM [S8], collectively, show relationships, dependencies, and 
interactions between platform’s components and interfaces to external components, outside 
world, required smart objects and where they are installed, their relationships e.g. directly or 
remote, and what physical objects are monitored by sensors. Such similar models are 
suggested in other approaches. One of the commonly recommended models in the 
approaches VITAL [S2], IoT-ARM [S8], EADIC [S17], Noise mapping [S27], RERUM [S32], 
EPIC [S34], SOFIA [S38], OGC [S41], and BET [S60] is a deployment model. As name 
implies, it represents the topology of platform software components and their connection on 
the physical layer of the platform. Another work-product is the data follow model, defined 
by VITAL [S2], IoT-ARM [S8], FIWARE [S12], Vilajosana [S13], Giang [S21], RERUM [S32], 
BASIS [S44], SORASC [S46], and IoTEP [S63]. This model represents how data processing is 
coordinated among platform components or how data entered to smart objects, processed, 
and then sent out to other smart objects. In addition, the IoT communication model is 
recommended by VITAL [S2], IoT-ARM [S8], FIWARE [S12], Giang [S21], RERUM [S32], 
and SOFIA [S38]. This model shows how the complexity of communication in heterogeneous 
IoT environments are handled. Furthermore, an architectural point of view to an IoT 
platform is the event model, which represents how events are triggered and processed by a 
platform. For example, users interact with the platform by triggering events in devices and 
services. A formal representation of events should be generated to capture 
what/who/where/why/when/how events occur to identify necessary functions in the 
platforms. Developers may model domain entities of the platform. It should be noted that 
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generating models (Table 7) do not happen in a vacuum; instead, a proper understanding of 
the platform development requirements, its domain, and developers’ opinion determine the 
necessity of generating these models during development process. 

Table 7. models prescribed during platform development (Note: - √: addressed, ×:not-addressed) 
Platform Analysis phase  Design phase 
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VITAL [S2] √ × √ × √ √ √ √ √ √ √ √ × 
CiDAP [S3] √ × × × × × × × × × × × × 
IoT-ARM [S8] × √ √ × √ √ √ √ √ √ √ √ √ 
FIWARE [S12] × × × × × √ × × √ × × × × 
Vilajosana[S13] × × × × × × × × √ × × × × 
Scallop4SC [S14] × × × × × × × √ × × × × × 
EADIC [S17] × × × × × × √ × × × × × × 
Giang [S21] × × × × × √ × × √ × × × × 
Noise mapping [S27] × × √ × × × √ × × × × × × 
RERUM [S32] × × √ × √ √ √ √ √ √ × × × 
RAMI [S33] × × × × × × × √ × √ × × × 
EPIC [S34] √ × × × × × √ × × × × × × 
EdSC [S37] × × × × × × × × × × × √ × 
SOFIA [S38] × × × × × √ √ × × × × √ × 
CityPulse [S39] × × × × × × × √ × × × √ × 
SCCM [S40] × × × × × × × √ × × × √ × 
OGC [S41] √ × × × × × √ √ × × × × × 
BASIS [S44] × × × × × × × × √ × × × × 
BSI [S45] √ √ × × × × × × × × × × × 
SORASC [S46] × × × × × × × × √ × × √ × 
ESPRESSO [S48] √ × × × × √ √ √ × × × √ × 
Colin’s platform [S55] × × × × × × √ × × × × × × 
Ignite [56] × × × × √ × × × × × × × × 
BET [60] × × × × × × √ × × × × × × 
IoTEP [S63] × × × × √ × × √ √ × × × √ 

4.6.2 Modelling language 
Using a modelling language in the development process of an IoT platform has dual 
purposes: (i) to represent models during the development time of the platform and (ii) to 
enable users or platform components to interact at the run-time. These are elaborated in the 
following.  

Firstly, a particular notation and semantic rules are needed to represent models/work-
products generated during the platform development activities. A modelling language 
enables developers to precisely model the different aspects of the target IoT platform. 
Moreover, using a modelling language is useful to keep the consistency of communication 
among all stakeholders. The approaches vary in using modelling languages from simple 
block diagrams to semi-formal languages such as Unified modelling language (UML) (UML, 
2004). UML is commonly used in object-oriented software development as suggested by 
IoT-ARM [S8], EADIC [S17], RERUM [S32], Ignite [S56], and IoTEP [S63]. For example, 
Ignite [S56] uses the concepts like use case and deployment diagrams from UML to 
represent requirement models and the logical deployment of platform components, 
respectively. RERUM [S32] also suggests using entity-relationship diagram (ERD) to 
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represent data elements, i.e. entities, of the smart city environment as well as their attributes 
and interrelationships. Our review reveals that other approaches are silent about using or 
suggesting a modelling language. We discuss this issue in Section 5.4. 

Secondly, a modelling language increases the automation and productivity of new IoT 
application development. In this regards, Salihbegovic et. al. call for designing domain-
specific languages (DSML) pertinent to IoT platforms to simplify building new IoT 
applications (Salihbegovic, Eterovic, Kaljic, & Ribic, 2015). Node-RED, proposed by IBM 
[S47], is a language supported with a tool for the visually wiring and configuring of IoT 
devices, APIs, and services together. The language provides a wide range of sensory node 
elements and data flow patterns. Created models using Node-RED language can be deployed 
and executed by the platform’s engine. VITAL [S2] and IBM [47] are two example platforms 
using Node-RED. VITAL [S2] offers Node-RED for a rapid development of new back-end IoT 
services over VITAL [S2]. 

Recall from section 4.4.3.2, the data processing, which is a key function offered by an IoT 
platform, can be conducted via a modelling language. This is why SPARQL (SPARQL 
Protocol and RDF Query Language) is used by SPITFIRE [S20], GAMBAS [S25], and MLSC 
[S29] for performing queries over the data collected and stored in sensors. A further 
extension of SPARQL, called Big Data Processing Language (BDPL), is suggested by PLAY 
[S42] which is used for event processing described in RDF format.   

As mentioned in Section 4.4.3.2, a query processor function is to perform queries over data 
stored in smart objects. Query processors execute queries over data sources. Existing 
platforms offer different query languages in support of this function. The query language, 
which is used in the platforms SPITFIRE [S20], GAMBAS [S25], and MLSC [S29], to 
perform queries over sensors is SPARQL. SPARQL assumes that sensors are represented in a 
resource discovery format (RDF) triples e.g. sensor type, location, or accuracy. As such, 
SPARQL enables the query and retrieval of data in the same format. Table 8 shows the list of 
modelling languages used in the existing approaches.   
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Table 8 Modelling languages adopted by existing approaches 
to represent produced models (Note: - √: addressed, ×:not-

addressed) 
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IoT-ARM [S8] √ × × × × × × × 

EADIC [S17] √ × × × × × × × 

RERUM [S32] √ √ √ × × × × × 

VITAL [S2] × × × √ × × × × 

OpenIoT [S9] × × × × √ × × × 

SPITFIRE [S20] × × × × √ × × × 

RERUM [S32] × × × × × √ × × 

OGC [S41] × × × × × × √ × 

PLAY [S42] × × × × √ × × √ 

IBM [S47]   × × × √ × × × × 

BET [S60] √ × √ × × × × × 

IoTEP [S63] √ × × × × × × × 

5 Findings and the future research directions 
The review of the selected approaches presented in Section 4 not only provides a 
comprehensive and fundamental understanding of development processes of IoT platforms, 
but it also reveals some issues impacting the domain that require further investigation. 
According to the analysis results of the approaches in Section 4 using our evaluation 
framework, the following gaps are identified and should be addressed by future IoT platform 
development approaches.  

5.1 One-size-fits-all assumption is not a practical choice 

It has long been acknowledged that information system development approaches should be 
customised if they are to achieve optimum effect (Fitzgerald, Hartnett, & Conboy, 2006). In 
this regard, it is not practical to find or design an IoT development approach that supports 
all of the features proposed in our evaluation framework. The reason is that an approach may 
merely focus on some features and not be concerned with other features. Hence, one cannot 
claim that one approach is superior over another due to missing some features. This implies 
the fact that the selection of an IoT development approach depends on the requirements and 
context of an IoT project. For example, if an initial early stage analysis of risks and 
considerations for IoT developments is required before performing a detailed architecture 
design and implementation, adopting approaches such as IoT-ARM [S8], SCRM [S19], BSI 
[S45], and IBM [S47] could be selected as they focuses on initialisation and analysis phases. 

On the other hand, developers may wish to address interoperability issues of smart objects at 
the physical network layer of an IoT architecture. In this regard, the majority of the existing 
approaches, except for a few such as Vilajosana [S13], Scallop4SC [S14], SCRM [S19], and 
EPIC [S34] that overlook this feature, would be possible options to accommodate. Similarly, 
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to address the interoperability issue at the software/service layer of an IoT platform, 
developers are referred to approaches such as VITAL [S2], IoT-ARM [S8], FIWARE [S12], 
and GAMBAS [S25].  

The abovementioned comments signify an important research direction. That is, there is a 
need to investigate how to design situation-specific IoT platform development approaches 
which can meet the requirements of a specific project. The need for the situation-specific IoT 
platform development is highlighted by some of the reviewed approaches SCRM [S19] and 
BSI [S45]. As a first promising attempt, Girary et.al. (Giray & Tekinerdogan, 2018) suggest a 
method engineering approach (Harmsen, Brinkkemper, & Oei, 1994) to design customised 
IoT platform development approach but what key method fragments required and how they 
should be composed to create a bespoke platform development approach have not yet been 
addressed in the literature. 

5.2 Requirements analysis is missing 
The initialisation and analysis phases of the IoT platform development in the existing 
approaches are at infancy stage. Developers may arguably suggest using traditional 
requirements engineering (RE) techniques available in software engineering literature. This 
can be plausible to some extent, as such RE techniques are used in the reviewed approaches 
(e.g. IoT ARM [S8]). In contrast, Alqassem (Alqassem, 2014) argues that an IoT 
development may face both technical and non-technical issues such as the increasing 
number of stakeholders at the scale of a city with diverse requirements, responsibility 
distribution, potential legal issues, and the dynamicity of the smart city environment . An 
important issue in relation to the requirements analysis is the identification of key 
stakeholders because IoT projects are typically large in size and involve a variety of 
stakeholder groups with different objectives, requirements, and commitment levels. Our 
review reveals that the existing approaches neglect the role of stakeholders. Among the 
reviewed approaches, we found that only IoT-ARM [S8], SCRM [S19], BSI [S45], and IBM 
[S47] provide a partial support for the analysis phases to get a wider stakeholder acceptance. 
It is important to capture stakeholder requirements in a systematic way and to source them 
to the design phase of the development process. From the above discussion, another research 
direction is to extend existing approaches or to design IoT-specific requirement analysis 
techniques that pays attention to stakeholders identification and engagement.  

5.3 Definition of roles not exploited  

Although the approaches define some roles attuned to IoT platform development process, 
their definitions and responsibilities are not adequately explicated. We believe more research 
is required for the identification of roles that are specific to IoT context. We suggest a role-
driven approach for the IoT development is yet another potential future research. Such an 
approach has positive contributions to IoT development such as (i) making clear the 
responsibilities of each stakeholder in the course of an IoT platform development process 
and maintenance (ii) defining the priority for responsibilities, (iii) specifying necessary 
interaction and cooperation between the roles, and (iv) enabling more effective IoT project 
management.  

5.4 Modelling traceability not explicated 
As pointed out in Section 4.6.1, producing a chain of related models plays a key role in an IoT 
development process. As it can be seen in Table 7, the existing approaches defined a variety 
of models to be generated as a means to represent different aspects of an IoT architecture. 
Interestingly, the most recommended models in that table are related to the deployment 
model and data model. An observable issue is a clear lack of traceability between models 
during development phases . In other words, there is no clue about how different models are 
defined and transformed to each other to build the platform. Developers may find different 
suggested models in the existing approaches but they may need to know how such models 
are sequentially connected or combined together in the course of the development. A 
potential future work is based on the fact that since the ultimate goals of a systematic 
approach is to produce a quality IoT platform, a model-driven approach can be helpful in 
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describing the traceability and seamless transformation of intermediate models that are 
necessary to reach such a final product.  

5.5 Testing is not sufficiently supported 
An observation from the reviewed approaches is that only Collins [S55] and INTER-METH 
[S58] provide support for testing activities. This indicates a clear lack of support in the 
existing approaches when developers need to know techniques to test IoT platforms. A 
further research direction is to design testing techniques specific to IoT platform 
development that can be individually adopted or incorporated into the existing approaches. 

6 Limitations 
There are some limitations in the survey presented in this paper in terms of internal and 
external validity threats. Internal validity is related to factors that a researcher has not been 
aware of and may have affected the research outcome i.e. the evaluation framework and 
reported analysis results (Wohlin et al., 2012). External validity threats are to check the 
extent to which research outcomes can be generalised (Wohlin et al., 2012). 

In terms of internal validity, two issues are notable. Firstly, we focused on analysing works 
aiming at proposing approaches to build IoT platforms, which yielded in 63 identified 
papers. Like any other literature review surveys, we cannot guarantee that we have covered 
all works related to the research questions. The reason is that in an emerging domain like 
IoT, the literature is full of variety of concepts and viewpoints which are not necessarily 
consistent. We found that it is hardly any two papers that use the same definition of IoT 
platform development. An example of this issue is the possible number of layers of IoT 
architecture that are defined by different papers (e.g. a seven-layer architecture in TSB [S36] 
and a three-based layer in EdSC [S37]). To alleviate missing any papers, our literature review 
was not conducted in a linear and mechanical fashion. Instead, we initially started with 
reading some review papers to get immersed to the field and organise our review. Our 
literature review was itself a process of understanding the IoT platform development in the 
sense that we adopted literature review in the early critical reading of the literature, and fine-
tuning search strings, inclusion and exclusion criteria, and conducting the review as an 
understanding of the IoT domain.  

Secondly, the reliability of analysis results (Section 4) may have been subjected to the 
accuracy of the written documents of these approaches. We frequently found that the 
research conducted in the existing studies including validation techniques, contextual 
information, and data analysis had not been properly reported. This may have weakened the 
internal validity of our reported results. As a countermeasure, we tried to find any 
supplementary documents related to each approach, if required, to ensure the quality of the 
data extraction. 

In terms of external validity, we do not claim that the proposed evaluation framework is 
complete to include an exhaustive analysis of all approaches to develop IoT platforms. There 
might be some important features that should have been considered when assessing 
approaches. At this stage, there is no assertion regarding the generalisability of the 
evaluation framework beyond 63 identified approaches in this survey. The iterative and 
gradual refinement of the framework was a technique to minimise any possible feature 
omission. However, the framework can be extended with new features if it is used to appraise 
more upcoming IoT platform development approaches that will be introduced in future. 

7 Related surveys 
To the best of our knowledge, no previous survey has undertaken to explore the aspect of 
engineering lifecycle process of IoT platforms. In the following, we compare and contrast our 
work in this article and the most related published surveys. This comparison is summarised 
in Table 9.  

We discarded surveys aiming at demystifying the notion of the IoT-based smart cities and 
discussing prevailing challenges in embarking IoT as they do not narrow down into the 
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aspect of platform development process. Some of the example surveys in this group were 
trends in the IoT development (Cocchia, 2014), conceptualising and terminology analysis 
(Macadar, Porto, & Luciano, 2016), sustainable IoT smart city architecture (Trindade et al., 
2017), and the governing IoT smart city (Meijer & Bolívar, 2016). Despite their usefulness to 
get an initial draft of our proposed framework, this class of surveys falls outside the scope 
and focus of our survey.  

Al-Fuqaha et al. give an overview of technical details related to IoT enabling technologies, 
protocols, and applications to give a view of different communication protocols between 
heterogeneous existing things such as vehicles, phones, appliances, and goods (Al-Fuqaha et 
al., 2015). Moreover, we identified the work by Kyriazopoulou who presented a few 
perspectives in an IoT architecture implementation namely layer-based, service-oriented, 
event-driven, IoT, and combined architectures from which a set of basic architectural 
functional and quality factors related to the architecture design are suggested 
(Kyriazopoulou, 2015). Talari et al. provide a broad overview of applications, practical 
evidence, and challenges, in particular, security and heterogeneity of smart cities (Talari et 
al., 2017). The work presented by da Silva et al. highlights the main quality factors such as 
mobility, sustainability, availability, privacy, and flexibility/extensibility to be fulfilled when 
implementing an IoT platform (da Silva et al., 2013). Asghari et. al. presents a review and 
classification of IoT applications including their domain, context, and evaluation factors 
(Asghari, Rahmani, & Javadi, 2019).  

Perhaps, the closest surveys to the proposed dimensions in our framework, but less extensive 
and centred to the IoT development process, are by (Santana, Chaves, Gerosa, Kon, & 
Milojicic, 2017) and (Raaijen & Daneva, 2017). Santana et al. have presented a classification 
of 23 smart city platforms regarding the features such as most enabler technologies (e.g. 
cyber-physical systems, IoT, big data, and cloud computing). They also compare a selected 
set of exiting platforms with respect to functional requirements and quality factors that are 
expected to be addressed by an IoT platform. Similarly, Raaijen et. al. (Raaijen & Daneva, 
2017) has identified a set of technical and non-technical challenges in an IoT development. 
They have reviewed 29 studies and conducted a field study through which a framework of 
influential factors is derived which is useful for policy-makers in order to assess the viability 
of an IoT architecture. Whilst our framework has been inspired by the ideas presented in the 
aforementioned surveys, we extended them with new important characteristics in the 
following ways: 

— Focus and depth of analysis. Our survey supersedes the existing ones by adding a new 
perspective to the extant material in the literature as it concentrates on the development 
process of IoT platforms. It limits its view to the existing proposals providing either a 
complete or a partial approach for the development of IoT platforms. Thus, it is more to 
the point compared to the related surveys. The proposed evaluation framework 
encompasses four different aspects (Figure 1), which have not been covered by any of the 
existing surveys. In addition, the existing surveys do not provide a comprehensive 
discussion of the quality factors related to the architectural design phase. For example, 
the features presented in the survey by (Santana et al., 2017) cover no more than 7 
features related to the design phase in our framework. Another distinct feature of the 
current survey is to provide a deeper explanation of the quality factors related to the 
design phase.  

— Survey coverage. Due to our comprehensive analytical lens to critique the literature, we 
have covered different and more recent published approaches that are missing by other 
surveys. For example, we found that only 5 out of our 63 reviewed works in the current 
survey have been evaluated by (Santana et al., 2017). Therefore, this survey is a 
complementary to the related surveys. 

 

Table 9. Comparison of our survey and the related surveys  

Survey Focus and depth of analysis Number of papers 
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(Santana et al., 
2017) 

Functional and quality factors of IoT platforms  23 

(Raaijen & 
Daneva, 2017) 

Technical and non-technical challenges of IoT smart 
city development 

29 

(Al-Fuqaha et al., 
2015) 

Enabling technologies, protocols, and applications of 
IoT platforms 

14 

(Kyriazopoulou, 
2015) 

Analysing six architectural perspectives, e.g. SOA and 
layering, to IoT design  
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(Talari et al., 
2017) 

Technologies, barriers to implementation, and 
applications of IoT platforms  

Not stated 

(da Silva et al., 
2013) 

Quality factors of IoT platforms  18 

(Asghari et al., 
2019) 

IoT application domains 72 

Our survey IoT platform development process 63 

8 Conclusion  
IoT platforms are complex and multifaceted IT artefacts. Using systematic approaches are 
acclaimed to aid developers to manage the complexity of development and maintenance of 
IoT platforms in more cohesive and disciplined manner. An ad-hoc approach may result in 
poor and costly platform maintenance. In this spirit, we presented a detailed review of 63 
extant approaches for the development of IoT platforms and highlighted their key 
characteristics in the view of our proposed framework. A specific advantage of our 
framework is its usefulness as a tool to select approaches as to satisfy specific requirements 
of a given IoT platform development scenario. 

Our review also revealed important gaps in the existing literature that call for further 
investigations. Firstly, few works exist on providing a foundation for situation-specific IoT 
platform development. The rationale for this argument is that each smart city projects may 
entail different requirements such as city culture, heterogeneity of smart objects, and 
geographic distribution. To fill this gap, we suggested employing a situational method 
engineering approach as a research agenda for designing bespoke IoT architecture 
development approaches. In addition, the current survey also calls for developing new IoT 
specific requirement engineering techniques that can address the complexity of large scale 
IoT architectures as early as possible in a platform development endeavour. Furthermore, we 
found a lack of clarification of roles that participate in IoT development activities. Another 
identified area for more exploration is that the existing approaches suffer from defining a 
chain of model traceability and transformation. IoT developers may need to know the key 
behavioural and structural models that should be generated and mapping together toward 
developing a target platform. We suggested adopting model-driven approach to alleviate this 
issue.  

As the final note, our survey provides a solid content of important features, 
recommendations, mechanism, and quality factors that are commonly incorporated into the 
development process of IoT platforms in one place. Such a comprehensive inventory, which 
sheds light into the essence of IoT platform development process and can be used by both 
platform providers and academia, is a significant contribution of this survey. Our second 
contribution is the proposed evaluation framework. It supports well informed decision 
making on the analysing and selecting of IoT platform development approaches. Finally, 
another important utility of our work is that this survey is helpful for novice practitioners 
and researchers who are interested in understanding how an IoT platform should be 
developed.  
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Appendix A 
List of the reviewed approaches 

ID Authors and title Acronym Channel Source Year 
[S1] Eduardo Santana, Zambom Felipe, et al., “Software platforms for smart cities: 

Concepts, requirements, challenges, and a unified reference architecture” 
RASCP Journal ACM Computing 

Surveys 
2017 

[S2] Riccardo Petrolo, Valeria Loscri, et al., “Towards a Smart City based on Cloud of 
Things, a survey on the smart city vision and paradigms” 

VITAL Conference IEEE 2014 

[S3] Bin Cheng, Salvatore Longo, et al. , “Building a Big Data Platform for Smart 
Cities: Experience and Lessons from Santander” 

CiDAP International 
Congress 

IEEE 2015 

[S4] Zaheer Khan, Ashiq Anjum, et al., “Cloud Based Big Data Analytics for Smart 
Future Cities” 

- Conference  IEEE/ACM 2013 

[S5] Jayavardhana Gubbi, Rajkumar Buyya, et al., “Internet of Things (IoT): A Vision, 
Architectural Elements, and Future Directions” 

- Journal Elsevier  2013 

[S6] Cisco, “The Internet of Things Reference Model” Cisco White paper Cisco 2014 
[S7] Federico Ciccozzi, Crnkovic Ivica, “Model-driven engineering for mission-critical 

IoT systems” 
MC-IoT Journal IEEE 2017 

[S8] Sebastian Lange, Andreas Nettsträter, et al., “Introduction to the architectural 
reference model for the Internet of Things” 

IoT-ARM White paper IoT-A 2013 

[S9] John Soldatos, Nikos Kefalakis, “OpenIoT: Open source Internet-of-Things in the 
cloud” 

OpenIoT Workshop Springer 2015 

[S10] Jasmin Guth, Uwe Breitenbucher, et al., “Comparison of IoT Platform 
Architectures: A Field Study based on a Reference Architecture” 

- Conference IEEE 2016 

[S11] Ivan Ganchev, Zhanlin Ji, et al., “A Generic IoT Architecture for Smart Cities” - Conference IEEE 2014 
[S12] “FIWARE (also called Open & Agile Smart Cities (OASC))” FIWARE/OASC Technical report FIWARE Community 2014 
[S13] Ignasi Vilajosana, Jordi Llosa, et al., “Bootstrapping smart cities through a self-

sustainable model based on big data flows” 
- Magazine IEEE 2013 

[S14] Kohei Takahashi, Shintaro Yamamoto, et al., “Design and implementation of 
service API for large-scale house log in smart city cloud” 

Scallop4SC Conference IEEE 2012 

[S15] Zaheer Khan, Ashiq Anjum, et al., “Towards cloud based big data analytics for 
smart future cities” 

- Journal Springer Open Journal 2015 

[S16] Catherine E. A. Mulligan, Magnus Olsson, “Architectural Implications of Smart 
City Business Models: An Evolutionary Perspective” 

- Magazine IEEE  2013 

[S17] George Kakarontzas, Leonidas Anthopoulos, et al. “A Conceptual Enterprise 
Architecture Framework for Smart Cities, A Survey Based Approach” 

EADIC Conference IEEE  2014 

[S18] David Díaz Pardo de Vera, Álvaro Sigüenza Izquierdo, et al. “A Ubiquitous sensor 
network platform for integrating smart devices into the semantic sensor web” 

Telco USN-
Platform 

Journal Sensors 2014 

[S19] Sotiris Zygiaris, “Smart City Reference Model: Assisting Planners to Conceptualize SCRM Journal Springer  2012 
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the Building of Smart City Innovation Ecosystems” 
[S20] Dennis Pfisterer, Kay Romer, “SPITFIRE: Towards a Semantic Web of Things” SPITFIRE Magazine IEEE 2011 
[S21] Nam K Giang, Rodger Lea, et al., "On Building Smart City IoT Applications: a 

Coordination-based Perspective" 
- Workshop  ACM 2016 

[S22] Rong Wenge, Xiong Zhang, et al., "Smart City Architecture: A Technology Guide 
for Implementation and Design Challenges" 

- Journal IEEE 2014 

[S23] Paul Fremantle, “A reference architecture for the internet of things” WSO2 Technical report  WSO2 2015 
[S24] Andrea Zanella, Senior Member, “Internet of Things for Smart Cities” Padova Journal IEEE 2014 
[S25] Wolfgang Apolinarski, Umer Iqbal, et. al., “The GAMBAS Middleware and SDK for 

Smart City Applications” 
GAMBAS Workshop IEEE 2014 

[S26] Nader Mohamed, Jameela Al-Jardoodi, “SmartCityWare: A Service-Oriented 
Middleware for Cloud and Fog Enabled Smart City Services” 

SmartCityWare Conference IEEE 2017 

[S27] Jiong Jin, Jayavardhana Gubbi, “An information framework for creating a smart 
city through internet of things” 

Noise mapping Conference IEEE 2013 

[S28] Panagiotis Vlacheas, Vera Stavroulaki, et al., “Enabling Smart Cities through a 
Cognitive Management Framework for the Internet of Things” 

- Magazine IEEE 2013 

[S29] Aditya Gaura, Bryan Scotneya, et. al., “Smart City Architecture and its 
Applications based on IoT” 

MLSC Symposium Elsevier  2015 

[S30] Zhihong Yang, Yufeng Peng, et al., “Study and Application on the Architecture and 
Key Technologies for IOT” 

- Conference IEEE 2011 

[S31] Miao Wu, Ting-lie Lu, et al. “Research on the architecture of Internet of things” TMN Conference IEEE 2010 
[S32] Henrich C. Pohls, Vangelis Angelakis, “RERUM: Building a Reliable IoT upon 

Privacy- and Security- enabled Smart Objects" 
RERUM Workshop  IEEE 2014 

[S33] ZAEI, “Reference Architecture Model Industry 4.0 (RAMI 4.0)” RAMI White Paper ZAEI 2015 
[S34] Pieter Ballon, Julia Glidden, “EPIC Platform and Technology Solution” EPIC White Paper EPIC 2013 
[S35] Kenji Tei, Levent G¨urgen, “ClouT : Cloud of Things for Empowering the Citizen 

Clout in Smart Cities” 
ClouT Conference IEEE 2014 

[S36] Arup, “Solutions for Cities: An analysis of the feasibility studies from the Future 
Cities Demonstrator Programme” 

TSB White Paper Smart City Strategies A 
Global Review - ARUP 

2013 

[S37] Liviu-Gabriel Cretu, Alexandru Ioan, “Smart Cities Design using Event-driven 
Paradigm and Semantic Web” 

EdSC Journal Inforec Association 2012 

[S38] Luca Filipponi, Andrea Vitaletti, “Smart City: An Event Driven Architecture for 
Monitoring Public Spaces with Heterogeneous Sensors” 

SOFIA Conference IEEE 2010 

[S39] Dan Puiu, Payam Barnaghi, et. al., “CityPulse: Large Scale Data Analytics 
Framework for Smart Cities” 

CityPulse Journal IEEE 2016 

[S40] ISO, “ISO/IEC 30182: Smart city concept model — Guidance for establishing a 
model for data interoperability” 

SCCM Technical report ISO (International 
Organization for 
Standardization) 

2017 
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[S41] Open Geospatial Consortium, “OGC Smart Cities Spatial Information Framework” OGC White paper Open Geospatial 
Consortium 

2015 

[S42] Roland Stühmer, Yiannis Verginadis, “PLAY: Semantics-Based Event 
Marketplace” 

PLAY Conference Springer 2013 

[S43] M. Nitti, “IoT Architecture for a Sustainable Tourism Application in a Smart City 
Environment” 

- Journal  Hindawi 2017 

[S44] Carlos Costa, Maribel Yasmina Santos, “BASIS: A Big Data Architecture for Smart 
Cities” 

BASIS Conference IEEE 2016 

[S45] BSI, “Smart city framework – Guide to establishing strategies for smart cities and 
communities” 

BSI Technical report British Standards 
Institution 

2014 

[S46] S. J. Clement, D. W. McKee, “Service-Oriented Reference Architecture for Smart 
Cities” 

SORASC Conference IEEE 2017 

[S47] Arundhati Bhowmick, Eduardo Francellino, et. al., “IBM Intelligent Operations 
Center for Smarter Cities Administration Guide” 

- Book IBM 2012 

[S48] Andy Cox, Peter Parslow, et. al., “ESPRESSO (systEmic Standardisation apPRoach 
to Empower Smart citieS and cOmmunities)” 

ESPRESSO White paper ESPRESSO community 2016 

[S49] Arthur de M. Del Esposte , Fabio Kon, “InterSCity: A Scalable Microservice-based 
Open Source Platform for Smart Cities” 

InterSCity Conference Scitepress digital library 2017 

[S50] Raffaele Giaffreda, “iCore: a cognitive management framework for the internet of 
things” 

iCore Conference Springer 2013 

[S51] Andreas Kamilaris, Feng Gao, “Agri-IoT: A Semantic Framework for Internet of 
Things-enabled Smart Farming Applications” 

Agri-IoT Conference IEEE 2016 

[S52] Yong Woo Lee, Seungwoo Rho, “U-City Portal for Smart Ubiquitous Middleware” U-City Conference IEEE 2010 
[S53] Chayan Sarkar,Akshay Uttama Nambi S. N., “DIAT: A Scalable Distributed 

Architecture for IoT” 
DIAT Journal IEEE 2015 

[S54] Gilles Privat, et. al. “Towards a Shared Software Infrastructure for Smart Homes, 
Smart Buildings and Smart Cities” 

SmartSantander Workshop - 2014 

[S55] Tom Collins, “A Methodology for Building the IoT” Collins - - 2014 
[S56] Frank Puhlmann, Dirk Slama, “An IoT Solution Methodology” Ignite - - Not stated 
[S57] C. Savaglio, “A Methodology for the Development of Autonomic and Cognitive 

Internet of Things Ecosystems” 
ACOSO-Meth Thesis - 2017 

[S58] G. Fortino, R. Gravina, et. al., “A Methodology for Integrating Internet of Things 
Platforms” 

INTER-METH Conference IEEE 2018 

[S59] Marcello A. Gómez Maureira, Daan Oldenhof, et al., “ThingSpeak–an API and Web 
Service for the Internet of Things” 

ThingSpeak Conference World Wide Web 2011 

[S60] Venticinque Salvatore, Alba Amato, “A methodology for deployment of IoT 
application in fog” 

BET Journal  Springer 2019 

[S61] Amany Sarhan, “Cloud-based IoT Platform: Challenges and Applied Solutions” Galliot Journal  IGI Global 2019 
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[S62] Alvaro Luis Bustamante , Miguel A. Patricio, “Thinger.io: An Open Source 
Platform for Deploying Data Fusion Applications in IoT Environments” 

Thinger.io Journal Sensor 2019 

[S63] Fernando Terroso-Saenz, Aurora González, et. al. , “An open IoT platform for the 
management and analysis of energy data” 

IoTEP Journal  Elsevier 2019 
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Appendix B 
Research quality criteria adapted from (Greenhalgh & Taylor, 1997) and (Kitchenham et al., 2002) 

Criteria Type Evaluation question(s) Possible values 
Research 
aim 

Scale (i) Is there a clear statement of research objective? 
(ii) Is there an explanation of research rationale?  
 
 

 Completely described.   

 Considerably described. 

Moderately described. 

 Slightly described. 

 Not at all. 

Research 
design 

Scale (i) Is there any description of the research techniques to conduct the research? 
(ii) Is there any description of type of the research in terms of being empirical, qualitative, or design science, or mixed 
method, etc.?   

 Completely described.   

 Considerably described. 

 Moderately described. 

 Slightly described. 

 Not at all. 

Data 
collection 

Scale (i) Is there any clear description of data collection method (e.g. recruitment strategy) appropriate to the research? 
(ii) Is there any description of measurement used to collect data? 
(iii) Is there a deception of mechanism to collect data e.g. interview, survey, domain expert review? 
(iv) Is there a way through which data are recorded e.g. tape recording, video material, note etc.?  

 Completely described.   

 Considerably described. 

 Moderately described. 

 Slightly described. 

 Not at all. 

Data 
analysis 

Scale (i) Is there a clear and rigors description of data analysis? 
(ii) Is there a clear description of the tool used to analysis data? If data analysis was performed manual, is there a 
clear description of the way used for data analysis?  
 

 Completely described.   

 Considerably described. 

 Moderately described. 

 Slightly described. 

 Not at all. 

Reflexivity Scale (i) Is there an appropriate description of the relationship between researcher and participants defined to conduct 
research? 
(ii) Is there any clarification of potential bias and influence of researcher or external factors on data collection, 
analysis, and report?  

 Completely described.   

 Considerably described. 

Moderately described. 
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 Slightly described. 

 Not at all. 

Value Scale (i) Is there a clear description of contributions to research and practice? 
(ii) Is there a clear description of research justification and significance?  

 Completely described.   

 Considerably described. 

Moderately described. 

 Slightly described. 

 Not at all. 

Findings Scale (i) Is there a clear description of research findings/outcomes? 
(ii) Is there any justification, discussion, or evidence of research findings? 
 

 Completely described.   

 Considerably described. 

Moderately described. 

 Slightly described. 

 Not at all. 

Validation  Multiple Has the architecture been validated in real world scenario?  Case study, exemplar 
scenario, domain expert 
review, survey, and 
simulation, no validation 
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