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ABSTRACT 
Testing the equality of the two intercepts of two parallel regression models is considered when the 
slopes are suspected to be equal. For three different scenarios on the values of the slope 
parameters, namely (i) unknown (unspecified), (ii) known (specified), and (iii) suspected, we 
derive the unrestricted (UT), restricted (RT) and pretest (PTT) tests for testing the intercept 
parameters. The test statistics, their sampling distributions, and power functions of the tests are 
obtained. Comparison of power functions and sizes of the tests are provided.  
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1 Introduction 
Two linear regression lines are parallel if the two slopes are equal. A parallelism problem can be 
described as a special case of two related regression lines on the same dependent and independent 
variables that come from two different categories of the respondents. If the independent data sets 
come from two random samples (p = 2), researchers often wish to model the regression lines for 
lines groups that are parallel (i.e. the slopes of the two regression lines are equal) or whether the 
lines have the same intercept. To test the parallelism of the two regression equations, namely 

1 1 1 1 1 2j 2 2 2 2 and y = ,  1, 2,..., ,j j j j j iy x e x e j nθ β θ β= + + + + =  

for the two data sets: [ ]1 2
′′ ′= ,y y y  and [ ]1 2

′′ ′= ,x x x  where 
11 11 1,..., ny y ′ =  y

22 21 2,..., ny y ′ =  y , 
11 11 1,..., nx x ′ =  x , 

22 21 2,..., nx x ′ =  x . We use an appropriate two-

sample t test for testing 0 1 2:  H β β=  (parallelism). This t statistic is given as  

 
1 11 2 ( )( ) / ,t S β ββ β −= −
 

    

where 1β  and 2β are estimate of the slopes 1 2 and β β  respectively, and 
1 1( )S β β− 

 is estimate of 

the standard error of the estimated difference between slopes (Kleinbaum, 2008, p. 223). The 
parallelism of the two regression equations above can be expressed as a single model of matrix 
form, that is, 
 ,= +y X eΦ   

where [ ] [ ]1 2 1 2 1 2, , , ,  = ,θ θ β β ′ ′= X X XΦ  with [ ]1 11,0, ,0x ′=X  and [ ]2 20,1,0, x ′=X  

and [ ]1 2,e e ′=e . The matrix form of the intercept and slope parameters can be written, 

respectively, as [ ]1 2,θ θ ′=θ  and [ ]1 2,β β ′=β  (cf Khan, 2006). In this model, p independent 
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bivariate samples are considered such that 
2( , ) for 1,...,  and 1,...,ij i i j iy N xi i p j nθ β σ≈ + = = . The parameters 1( ,..., )pθ θ ′=θ  

and 1( ,..., )pβ β ′=β  are the intercept and slope vectors of the p lines. See Khan (2003, 2006, 
2008) for details on parallel regression models and analyses. 
To explain the importance of testing the equality of the intercepts (parallelism) when the equality 
of slopes is uncertain, we consider the general form of the PRM of a set of ( 1)p p >  simple 
regression models as 
 ,  =1,2,...,p, and 1,2,..., ,i i ni i ij ij ii j nθ β= + + =1Y x e                      (1.1) 

where 1( ,..., )
ii i inY Y ′=Y  is a vector of in  observable random variables, (1,...,1)

in =1  is an ni-

tuple of 1  s′ , 1( ,..., )
iij i inx x ′=x  is a vector of ni independent variables, iθ  and iβ  are unknown 

intercept and slope, respectively, and 1( ,..., )
ii i ine e ′=e  is the vector of errors which are mutually 

independent and identically distributed as normal variable, that is, 2( , )
ii nN σ≈ 0e I  where 

inI  
is the identity matrix of order ni. Equation (1.1) represent p linear models with different intercept 
and slope parameters. If 1 ... ,pβ β β= = =  then there are p parallel simple linear models if iθ ′ s 

are different. Here, the parameters 1( ,..., )pθ θ ′=θ  and 1( ,..., )pβ β ′=β  are the intercept and 
slope vectors of the p lines. 
Bancroft (1944) introduced the idea of pretesting NSPI to remove uncertainty.  The outcome of the 
pretesting on the uncertain NSPI is used in the hypothesis testing to improve the performance of 
the statistical test (Khan and Saleh, 2001; Saleh, 2006, p. 55-58; Yunus and Khan, 2011a).  
The suspected value of the slopes may be (i) unknown or unspecified if NSPI is not available, (ii) 
known or specified if the exact value is available from NSPI, and (iii) uncertain if the suspected 
value is unsure. For the three different scenarios, three different of statistical tests, namely the (i) 
unrestricted test (UT), (ii) restricted test (RT) and (iii) pre-test test (PTT) are defined. 
In the area of estimation with NSPI there has been a lot of work, notably Bancroft (1944, 1964), 
Hand and Bancroft (1968), and Judge and Bock (1978) introduced a preliminary test estimation of 
parameters to estimate the parameters of a model with uncertain prior information. Khan (2003, 
2008), Khan and Saleh (1997, 2001, 2005, 2008), Khan et al. (2002), Khan and Hoque (2003), 
Saleh (2006) and Yunus (2010) covered various work in the area of improved estimation using 
NSPI, but there is a very limited number of studies on the testing of parameters in the presence of 
uncertain NSPI. Although Tamura (1965), Saleh and Sen (1978, 1982), Yunus and Khan (2007, 
2011a, 2011b), and Yunus (2010) used the NSPI for testing hypotheses using nonparametric 
methods, the problem has not been addressed in the parametric context. 
 The study tests the equality of the intercepts for 2p ≥  when the equality of slopes is suspected. 

We test the intercept vector 1( ,..., )pθ θ ′=θ  when it is uncertain if the p slope parameters are 
equal (parallel). We then consider the three different scenarios of the slope parameters, and define 
three different tests: 
for the UT, let UTφ  be the test function and UTT  be the test statistic for testing 0 0:H =θ θ  

against 0:aH >θ θ  when 1( ,..., )pβ β ′=β  is unspecified, 

for the RT, let RTφ  be the test function and RTT  be the test statistic for testing 0 0:H =θ θ  

against 0:aH >θ θ  when 0 pβ= 1β  (fixed vector), 

for the PTT, let PTTφ  be the test function and PTTT be the test statistic for testing 0 0:H =θ θ  

against 0:aH >θ θ  following a pre-test (PT) on the slope parameters. For the PT, let PTφ  be the 

test function for testing 0
0

: pH β∗ = 1β  (a suspected constant) against 0: p
a

H β∗ > 1β  (to 
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remove uncertainty). If the 
0

H ∗  is rejected in the PT, then the UT is used to test the intercept, 

otherwise the RT is used to test 0H . Thus, the PTT depends on the PT which is a choice between 
the UT and RT. 
The unrestricted maximum likelihood estimator or least square estimator of intercept and slope 
vectors, 1( ,..., )pθ θ ′=θ  and 1( ,..., )pβ β ′=β , are given as 

   

( )[ ]1( )
 and ,iUT i i i i i in

i in Q
′ ′ ′−

= − =
1 1

θ β β
x y x y

Y T  (1.2) 

where   1( ,..., )pθ θ ′=θ , 1( ,..., )pβ β β ′=   , 1Diag( ,..., ),px x=T  

( )[ ]1
ii i i i i inn Q ′ ′= − 1x x x , and  i i i iY xθ β= − 

 for 1,.., .i p=     

Furthermore, the likelihood ratio (LR) test statistics for testing 0 0:H =θ θ  against 0:aH >θ θ  
is given by 

 
 

1
22

2( 1) e

F
p s

−′ ′
=

−
θ θH D H

, (1.3)  

where 11
22p p pnQ
−′= − 1 1H I D , 1

22 1 1Diag( ,.., ),  p pn Q n Q− =D  
1

,p
i ii

nQ n Q
=

=∑   

21 ( )
ii i i i i inn Q ′ ′= − 1x x x  and 2 1

1
( 2 ) ( ) ( )

i i

p
e i n i i n ii

S n p θ β θ β−
=

′= − − − − −∑ 1 1   Y x Y x  

(Saleh, 2006, p. 14-15). Under 0H , F follows a central F distribution with ( 1, 2 )p n p− −  

degrees of freedom (d.f.), and under aH  it follows a noncentral F distribution with 

( 1, 2 )p n p− − degrees of freedom and noncentrality parameter 2 / 2,∆  where  

 2 0 22 0
2

( ) ( ) =
σ
′− −

∆
Dθ θ θ θ

  (1.4) 

and 1
22 22

−′=D H D H . When the slope ( )β  is equal to 0 pβ 1  (specified), the restricted mle of 
intercept and slope vectors are given as 

 
1

22
i

ˆ ˆ and = k k i
i i i n

βθ θ β β
−′

= +
1 1 

 

DTH
Q

  (1.5) 

The following section provides the proposed tests. Section 3 derives the distribution of the test 
statistics. The power function of the tests are obtained in Section 4. An illustrative example is 
given in Section 5. The comparison of the power of the tests and concluding remarks are provided 
in Sections 6 and 7. 
 

2 The Three Tests 
To test the equality of the intercepts when the equality of slopes is suspected, we consider three 
different scenarios of the slopes. The test statistics of the UT, RT and PTT are then defined as 
follows. 
For β  unspecified, the test statistic of the UT is given by 

 
 

1
22

2 ,
( 1)

UT

e

T
p s

−′ ′
=

−
θ θH D H

  (2.1) 

where 2 1

1
( 2 ) ( ) ( )

i i

n

e i n i i n i
i

s n p θ β θ β−

=

′= − − − − −∑ 1 1   Y x Y x .  
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 The UTT  follows a central F distribution with ( 1, 2 )p n p− −  degrees of freedom. 

Under aH , it follows a noncentral F distribution with ( 1, 2 )p n p− −  degrees of freedom and 

noncentrality parameter 2 / 2.∆  Under normal model we have 

 11 222
2

22 22

     
,  ,

    pN
θ

σ
β

   − −   
≈       −−      

0
0





D TD
TD D

θ

β
  (2.2) 

where 1
11 22 1 and Diag( ,..., ).pn n−= + =βD N TD T N   

When the slope is specified to be 0 pβ= 1β  (fixed vector), the test statistic of the RT  is given by 

 
1 1

22 22
2

ˆ ˆ( ) ( ) ,
( 1)

RT

e

T
p s

θ θ β β− −′ ′′ ′+
=

−

 H D H H D H
  where (2.3) 

2 1
0

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) and 
i i

p

r i n i i n i p
i

s n p θ β θ β β β−

=

′= − − − − − =∑ 1 1 1Y x Y x
  

The RTT   follows a central F distribution with ( 1, 2 )p n p− −  degrees of freedom. Under aH , 

it follows a noncentral F distribution with ( 1, 2 )p n p− −  degrees of freedom and noncentrality 

parameter 2 / 2.∆  Again, note that 

 
* *

*

11 122
2

22
12

    ˆ
,  ,

ˆ        pN
θ

σ
β

   −    ≈       −      
0

D DTH
D D

θ β

β
  (2.4) 

where * *
1 1

11 12
 and .p p

p pnQnQ
−

′
′= + =

βT1 1 T
D N D 1 1 T   

When the value of the slope is suspected to be 0 pβ= 1β  but unsure, a pre-test on the slope is 

required before testing the intercept. For the preliminary test (PT) of 0
0

: pH β∗ = 1β  against 

0: p
a

H β∗ 1β > , the test statistic under the null hypothesis is defined as 

 
1

22
2 ,

( 1)
PT

e

T
p s

β β−′ ′
=

−

 H D H
  (2.5) 

which follows a central F distribution with ( 1, 2 )p n p− −  degrees of freedom. Under aH , it 

follows a noncentral F distribution with ( 1, 2 )p n p− −  degrees of freedom and noncentrality 

parameter 2 / 2.∆  Again, note that 

 
*

0 0 2
2

22

       ( )
,  ,

ˆ                        
p p pp

p

nQ
N

θ β β β
σ

β β

   ′−    −
≈              

1 1 1 01
0







/
HDHβ−

  (2.6) 

where 
1

22* p p
p nQ

β
−′

=
1 1

1
D β

 (Saleh, 2006, p. 273). 

Let us choose a positive number (0 1,  for 1, 2,3)j j jα α< < =  and real value 

1, 2, 3 1 2(  be numerator d.f. and  be denominator d.f.) v v vF v v such that 

 1, 2 , 1 0 1( | ) ,UT
p n pP T F α α− −> = =θ θ   (2.7) 
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 1, 2 , 2 0 2( | ) ,RT
p n pP T F α α− −> = =θ θ   (2.8) 

 1, 2 , 3 0 3( | ) .PT
p n p pP T F α β α− −> = =1β   (2.9) 

Now the test function for testing 0 0:H =θ θ  against 0:aH >θ θ  is defined by 

 
1,  if ( ,  ) or ( ,  );
0,  otherwise,

PT RT PT UT
c b c aT F T F T F T F ≤ > > >

Φ


  (2.10) 

where 1, 1, 2 , 2, 1, 2 3, 1, 2 .  and a p n p b p n p c p n pF F F F F Fα α α− − − − − −= = =  
 

3 Distribution of Test Statistics 
To derive the power function of the UT, RT and PTT, the sampling distribution of the test 
statistics proposed in Section 2 are required. For the power function of the PTT the joint 
distribution of ( , )UT PTT T  and ( , )RT PTT T is essential. Let { }nN  be a sequence of alternative 
hypotheses defined as 

 1 2
0 0: ( , ) , ,n pN

n n
β  = = 

 
1θ − θ β − λ λ

λ   (3.1) 

where λ  is a vector of fixed real numbers and θ  is the true value of the intercept. Under nN the 

value of 0 )(θ − θ  is greater than zero and under 0H  the value of 0 )(θ − θ  is equal zero. 
Following Yunus and Khan (2011b) and equation (2.1), we define the test statistic of the UT when 
β  is unspecified, under nN , as 

 
1

0 22 0
1 2

( ) ( )
( 1)

UT UT

e

T T n
p s

− ′ ′
= −  − 

θ − θ θ − θH D H  . (3.2) 

The 1
UTT  follows a noncentral F distribution with noncentrality parameter which is a function of 

0( )θ − θ  and ( 1, 2 )p n p− −  degrees of freedom, under nN . 

From equation (2.3) under nN , 0( ) 0>θ − θ  and 0 p( ) 0β >1β − , the test statistic of the RT 
becomes 

 
1 1

0 22 0 0 p 22 0 p
2 2

( ) ( ) ( ) ( )
( 1)

RT RT

r

T T n
p s

β β− −′ ′ ′ ′ + = −  −  

1 1θ − θ θ − θ β − β −H D H H D H  

 (3.3) 
The 2

RTT  also follows a noncentral F distribution with a noncentrality parameter which is a 

function of 0( )θ − θ  and ( 1, 2 )p n p− −  degrees of freedom, under nN . Similarly, from the 
equation (2.5) the test statistic of the PT is given by 

 
1

0 p 22 0 p
3 2

( ) ( )
( 1)

PT PT

e

T T n
p s

β β−′ ′  = −  −  

1 1β − β −H D H   (3.4) 

Under aH , the 3
PTT  follows a noncentral F distribution with a noncentrality parameter which is a 

function of 0 p( )β 1β −  and ( 1, 2 )p n p− −  d.f. 

From equations (2.1), (2.3) and (2.5)  the UTT  and PTT  are correlated, and the RTT  and PTT  
are uncorrelated. The joint distribution of the UTT  and PTT , that is, 

 ( ),UT PTT T ′   (3.5) 
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is a correlated bivariate F distribution with ( 1, 2 )p n p− −  degrees of freedom. The probability 
density function (pdf) and cumulative distribution function (cdf) of the correlated bivariate F 
distribution is found in Krishnaiah (1964), Amos and Bulgren (1972) and El-Bassiouny and Jones 
(2009). Later, Johnson et al. (1995, p. 325) described a relationship of the bivariate F distribution 
with the bivariate beta distribution. This is due to the pdf of the bivariate F distribution has a 
similar form with the pdf of beta distribution of the second kind. 
Following El-Bassiouny and Jones (2009), the covariance and correlation between the UTT  and 

PTT  are then given as 

 
1 2

1 3
1 2 2

2( , )
( 2)( 2)( 4)

             

UT PT f fCov T T
f f f

=
− − −   

 
2 2

2

2( 4 4 )     = ,  and
( 2 2) ( 2 4)

n np p
n p n p

− +
− − − −

  (3.6) 

1 3

2 1 2 1

1 1 2 2 2

( 4)       
( 2)( 2)( 4)UT PTT T

d d f
f d f d f

ρ −
=

+ − + − −
 

 
2 2

2

( 2 )( 2 4)= .
(2 3 2) ( 2 4)
n np p n p

n p n p
− + − −
− − − −

  (3.7) 

Note in the above expressions 1 2 1 21 and 2d d p f f n p= = − = = −  are the appropriate 

degrees of freedom for the UTT  and  PTT  respectively. 
 

4 The Power and Size of Tests 
The power function of the UT, RT and PTT are derived below. From equation (2.1) and (3.2), 
(2.3) and (3.3), and (2.5) and (3.4), the power function of the UT, RT and PTT are given, 
respectively, as: 
 
the power of the UT 
 

1 , 1, 2( )  ( | )        UT UT
p n p nP T F Nα − −p = >λ   

 
11 , 1, 2 1 1= 1 ( )UT

p n pP T F kα δ− −− ≤ − ,  (4.1) 

where 2
1

1 1 22 1 1 ( 1)
 and .

ep s
kδ

−
′= =Dλ λ   

 
the power of the RT

 
1

22 22

2

, 1, 2

1 1
1 1 2 2

2 , 1, 2 2

( )  ( | )

( ) ( )
= 1

( 1)

RT RT
n n p n

RT
p n p

r

P T F N

P T F
p s

α

α

− −

− −

− −

p = >

′ ′ ′ ′ +
− ≤ −  − 

λ

λ λ λ λH D H H D H   

 ( )11 , 1, 2 2 1 2 1 ( ) ,RT
p n pP T F kα δ δ− −= − ≤ − +   (4.2) 

where 2
1

2 2 22 2 2 ( 1)
 and .

rp s
kδ

−
′= =Dλ λ   

 
The power function of the PT is 
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3

22

3

, 1, 2

1
2 2

3 , 1, 2 2

( )  ( | )

             = 1
( 1)

PT PT
p n p n

PT
p n p

e

P T F K

P T F
p s

α

α

− −

−

− −

p = >

′ ′ 
− ≤ −  − 

H D H

λ

λ λ   

 
33 , 1, 2 1 2 1 ( ).PT

p n pP T F kα δ− −= − ≤ −   (4.3) 
the power of the PTT 

 
( )

3 2

3 1

, 1, 2 , , 1, 2

, 1, 2 , , 1, 2

( )  ( )

                   +

PTT PT RT
p n p p n p

PT UT
p n p p n p

P T F T F

P T F T F

α α

α α

p − − − −

− − − −

= < >

≥ >

λ
  

 1 (1 ) ( , ),PT RT
rd a b= − p p +   (4.4) 

where 1 ( , )rd a b  is bivariate F probability integrals, and it is defined as 

 1 ( , ) =  ( , )PT UT PT UT
r a b

d a b f F F dF dF
∞ ∞

∫ ∫   

 
0 0

                  = 1 ( , ) ,
a b PT UT PT UTf F F dF dF− ∫ ∫   (4.5) 

in which 

 
3 3

1
2 22 2

, 1, 2 , 1, 2 1 22( 1)p n p p n p
e

a F F k
p sα α δ

−

− − − −

′ ′
= − = −

−
H D Hλ λ

 , and  

1 1

1
0 22 0

, 1, 2 , 1, 2 1 12

( ( .
( 1)p n p p n p

e

b F F k
p sα α δ

−

− − − −

′ ′
= − = −

−
θ − θ θ − θH D H) )

  

The 
0 0

( , )
a b PT UT PT UTf F F dF dF∫ ∫  in equation (4.5) is the cdf of the correlated bivariate 

noncentral F (BNCF) distribution of the UT and PT.  
 
From equation (4.4),  it is clear that the cdf of the BNCF distribution involved in the expression of 
the power function of the PTT. Using equation (4.7), we use it in the calculation of the power 
function of the PTT. R codes are written, and the R package is used for computations of the power 
and size and graphical analysis. 
 
Furthermore, the size of the UT, RT and PTT are given respectively as: 
the size of the UT 

1, 1, 2 0 0 ( | : )UT UT
p n pP T F Hαα − −= > θ − θ   

 
11 , 1, 21 ( ),UT

p n pP T Fα − −= − ≤   (4.8) 

the size of the RT 
2 , 1, 2 0 0 ( | : )     RT RT

p n pP T F Hαα − −= > θ − θ  

22 , 1, 2 2 2 1 ( ),RT
p n pP T F kα δ− −= − ≤ −        (4.9) 

 
The size of the PT is given by  

3 , 1, 2 0( )  ( | )PT PT
p n pP T F Hαα − −= >λ   

 
33 , 1, 2  = 1 ( ).PT

p n pP T Fα − −− ≤   (4.10) 
the size of the PTT 
 

0 0 0
 ( | , | ) ( , | ) PTT PT RT PT UT

H H HP T a T d P T a T hα = ≤ > + > >   

 
3 2, 1, 2 , 1, 1        = (1 ( )) ( ) ( , ),PT RT

p n p p n p rP T F P T F d a hα α− − − −− > > +   (4.11) 

where 
1 , 1, 2 .p n ph Fα − −=
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5 Power Comparison by Simulation 
To compare the tests graphically we conducted simulations using  the R package. For 3p = , each 

of three independent variables ( ,  1, 2,3,  1,..., )ij ix i j n= =  are generated from the uniform 

distribution between 0 and 1. The errors ( ,  1, 2,3)ie i =  are generated from the normal 

distribution with 0µ =  and 2 1.σ =  In each case 100in n= =  random variates were 

generated. The dependent variable ( )ijy  is determined by 

1 01 11 1 1 01 11 for 3 and 2.j jy x eθ β θ β= + + = = Similarly, define 2 02 12 2 2  j jy x eθ β= + +    

02 12for 3.6 and 2;θ β= =  3 03 13 3 3, j jy x eθ β= + + 03for 4θ =  and 13 2,β =  
respectively. For the computation of the power function of the tests (UT, RT and PTT) we set 

1 2 3 0.05.α α α α= = = =  The graphs for the power function of the three tests are produced 
using the formulas in equations (4.1), (4.2) and (4.4). The graphs for the size of the three tests are 
produced using the formulas in equations (4.8), (4.9) and (4.11). The graphs of the power and size 
of the tests are presented in the Figures 1 and 2. 
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6 Comparison and Conclusion 
 
The form of the power curve of the UT in Figure 1 is concave, starting from a very small value of 
near zero (when 1δ  is also near 0), it approaches 1 as 1δ  grows larger. The power of the UT 

increases rapidly as the value of 1δ  becomes larger.  The shape of the power curve of the RT is 

also concave for all values of 1δ  and 2δ . The power of the RT increases as the values of 1δ  

and/or 2δ  increase (see Figures 1(i) and 1(ii), and equation (4.2)).   

The power of the PTT (see Figure 1) increases as the values of 1δ  increase. Moreover, the power 

of the PTT is always larger than that of the UT and RT for the values of 1δ  around 0.7 to 1.5.   

The size of the UT does not depend on 2δ . It is a constant and remains unchanged for all values of 

1δ  and 2δ . The size of the RT increases as the value of 2δ  increases . Moreover, the  size of the 

RT is always larger than that of the UT, but not for PTT for the smaller values of the 1δ  (not far 
from 0).   
The size of the PTT is closer to that of the UT for larger values of 2 2δ = . The difference (or gap) 

between the size of the RT and PTT increases significantly as the value of 2δ  and ρ  increases. 

The size of the UT is 0.05UTα =  for all values of 1δ  and 2δ . For all values of 1δ  and 2δ , the 

size of the RT is larger than that of the UT, RT UTα α> . For all the values of ρ , .PTT RTα α≤    
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Based on the above analyses,  the power of the RT is always higher than that of the UT for all 
values of 1δ  and 2δ . Also, the power of the PTT is always larger than that of the UT for all values 

1δ  (see the curves for interval values of 10.7 1.5),δ< <  2δ  and ρ . The size of the UT is 

smaller than that of the RT and PTT for all 1δ . The power of the PTT is higher than that of the UT 
and tends to be lower than that of the RT. The size of the PTT is less than that of the RT but higher 
than that of the UT.   
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