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Resonance properties of forced oscillations of particles and gaseous
bubbles in a viscous fluid at small Reynolds numbers
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We consider small oscillations of micro-particles and gaseous bubbles in a viscous fluid around
equilibrium states under the action of a sinusoidal external force. Exact solutions to the governing
integro-differential equations containing both Stokes and memory-integral drag forces are obtained.
The main aim of this study is to clarify the influence of the memory-integral drag force on the
resonance characteristics of oscillating particles or gaseous bubbles in a viscous fluid at small Reynolds
numbers. The resonant curves (the amplitude versus the frequency of an external force) and phase-
frequency dependences are obtained for both these objects and compared with the corresponding
dependences of the traditional oscillator with the Stokes drag force only. Published by AIP Publishing.
https://doi.org/10.1063/1.5002152

As is well known,1 a small fluid drop moving in a viscous
fluid at a small Reynolds number experiences the influence
of at least two drag forces: one of them is the traditional
Stokes drag (SD) force and another is the memory-integral
drag (MID) force [the latter is also known as the Boussinesq–
Basset drag (BBD) force in the case when the drop reduces
to a solid particle]. In the past decade, a vast number of
papers devoted to the role of the MID force in the dynamics of
solid particles, gaseous bubbles, and other liquid drops in vis-
cous fluids were published (see, e.g., Refs. 2–9 and references
therein). The growing interest in this problem in recent years
is associated with the development of a new field of microflu-
ids and the technology of using micro- and nano-particles.
Such technology is already used in medicine (for diagnostics,
drug delivery to specific organs), biology, food quality con-
trol, chemistry, etc. (see the review Ref. 10 and references
therein).

In many cases, nanoparticles can experience an oscillatory
motion around quasi-stationary positions under the action of
external forces, for example, acoustic radiative forces.6,7,9,10

In such cases, it is important to know the resonance properties
of nanoparticles, e.g., the shape of the resonance curve (the
dependence of amplitude of oscillation on the frequency of an
external sinusoidal force), width and amplitude of a resonance
curve, and the quality of the effective oscillator. All these char-
acteristics are well known for the usual linear oscillator (see,
e.g., Refs. 11 and 12) which is equivalent to the nanoparticle
oscillator under the influence of the Stokes drag force only.
However, to the best of our knowledge, the influence of the
MID force on the resonant property of an oscillator has not
been studied yet. Here we fill this gap for two limiting cases:
when the oscillating drop is (i) a solid particle and (ii) a gaseous
bubble.
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Consider first small oscillations of a solid spherical parti-
cle of density ρp and radius a in a viscous fluid. Particle motion
is caused by the influence of an external harmonic force having
the amplitude Ã and frequency ω̃. A corresponding equation
of motion in a one-dimensional case in the creeping flow
regime is1,5,13
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where z is the particle coordinate, r ≡ ρp/ρf is the ratio of
particle to fluid density, µ is the dynamic viscosity of a fluid,
and ω̃0 is the frequency of free oscillations of a particle in
the absence of dissipation (ν = 0). In this equation, the sec-
ond term in the left-hand side describes the quasi-stationary
Stokes drag (SD) force, while the integral term describes
the well-known BBD force.1,14 The added mass effect for
a spherical particle is accounted for through the coefficient
1/2 within the bracket in the left-hand side of the equation.14

We assume that a particle being at rest commences with an
instantaneous motion at t = 0 with the initial velocity V0, i.e.,
its velocity experiences a sudden jump from zero to V0 and
then varies in accordance with the equation of motion (1).
Thus, the particle velocity, including the initial jump, can be
expressed through the unit Heaviside function H(t):(dz/dt)tot =
H(t)(dz/dt)pos, where (dz/dt)tot is the velocity at any instant
of time, whereas (dz/dt)pos relates to the velocity at positive
times only. Correspondingly, the acceleration is (d2z/dt2)tot =
δ(t)(dz/dt)pos + H(t)(d2z/dt2)pos, where δ(t) ≡ d H(t)/dt is the

Dirac delta-function. Taking into consideration the effect of
the Dirac delta-function under the integral, Eq. (1) for t > 0
can be presented in the form (the index “pos” has been
omitted),
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The equation of motion can be expressed in the dimension-
less form by introducing the following normalised variables:
ζ = z/a, θ = 9µt/a2ρf , and υ0 = V0aρf /9µ. Equation (2) after
that reduces to5,13
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where α = 1/(1 + 2r), β = 1/(1 + 2r), ω0 =

ω̃0

√
2a3ρ2

f /81µ2 (2r + 1), ω = ω̃a2ρf /9µ, and A =

2Ãa3ρ2
f /81µ2 (2r + 1). Although the coefficients α and β

are equal, we denote them by different letters; this allows
us to switch off either the SD force setting α = 0 or the
BBD force setting β = 0. We assume further that the vis-
cosity of an ambient fluid is relatively small so that the
frequency of free oscillations ω0 � α, β (however, the
Reynolds number Re = aVρf /µ � 1 is still very small; this
can be achieved, for example, by the smallness of particle
radius a).

As this is a linear equation with respect to ζ , its gen-
eral solution consists of two parts: the general solution of
a homogeneous equation and a particular solution of a non-
homogeneous equation. The general solution of a homoge-
neous equation with A = 0 can be readily obtained with the
help of the Laplace transform subject to the initial condi-
tions ζ(0) = ζ0 and ζ̇ (0) = υ0 (here the dot on the top of
a letter stands for a derivative with respect to θ); this has
been done in Refs. 5 and 13. We do not reproduce here the
lengthy solution from those papers; it has been analyzed there
in detail and represents slowly decaying oscillations (pro-
vided that the decay coefficients α and β are small compared
to ω0).

The most important issue to us is the solution of the forced
equation (3) with A,0. To construct such a solution, we choose
a trial solution in the form ζ(θ) = B cosωθ + C sinωθ and
assume for simplicity that the particle is at rest at the initial
instant of time so that ζ0 = υ0 = 0. With the trial solution cho-
sen above, the integral term in Eq. (3) can be readily evaluated
(see also Ref. 6),
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Substituting then the trial solution into Eq. (3) and using
Eq. (4), we obtain after some manipulations
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Let us present now the forced solution in the equivalent
form

ζ (θ) = B cosωθ + C sinωθ = Amp (ω0,ω) sin (ωθ + ϕ) ,

(7)

where the amplitude of forced oscillations is

Amp (ω0,ω)

=
√

B2 + C2

=
A√(

ω2
0 −ω

2 −
√

2βω5/2
)2

+ 1
9ω

2
(
α + 3

√
2βω3/2

)2
(8)

and the phase ϕ is determined from the equation
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These expressions can be presented in the traditional
dimensionless forms if we normalise the frequency ν = ω/ω0

and introduce the quality factors Qα =ω0/α and Qβ = 8ω0/β2.
The quality factor Qα is well known in the theory of oscilla-
tions (see, e.g., Ref. 12), whereas another quality factor Qβ

is new. Taking into account our definitions of coefficients α
and β [see after Eq. (3)], we can express the quality factors
in terms of frequency ω0 and relative particle density r: Qα

= ω0(1 + 2r) and Qβ = 8ω0(1 + 2r)2. Normalising then the
amplitude of particle oscillation An = ω0

2Amp/A, we finally
present the amplitude-frequency dependence (8) in the form
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And the phase-frequency dependence (9) in the dimen-
sionless form reads
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If the BBD force is neglected (Qβ → ∞), then the
dependences (10) and (11) naturally reduce to the classic
ones,11,12
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FIG. 1. The amplitude-frequency dependence (a) and phase-frequency dependence (b) for the oscillating solid particle in a viscous fluid under the influence of
only the Stokes drag force (lines 1) and both Stokes and BBD drag forces (lines 2). Function An for line 2 in (a) was multiplied by the factor 4.5.

Graphics of dependences of An(ν, Qα, Qβ) and ϕ(ν, Qα,
Qβ) as functions of normalised frequency ν are shown in
Figs. 1(a) and 1(b), respectively. Lines 1 pertain to the case
when only the Stokes drag force is taken into account and the
BBD force is ignored. The parameter Qα = 700 was chosen
which corresponds toω0 = 100 and r = 3 in Eq. (3). Lines 2 per-
tain to the case when both Stokes and BBD forces are taken
into account with the same parameters ω0 and r (this gives
Qβ = 39 200).

Thus, from this analysis, one can see that under the influ-
ence of the BBD force, the maximum of the resonance curve
becomes about 4.5 times smaller and correspondingly 4.5
times wider. It is also shifted to the left from ν = 1 [see
Fig. 1(a)].

Consider now small oscillations of a gaseous spherical
bubble of a density ρb and a radius a in a viscous fluid. The
bubble sphericity can be maintained by a surface tension which
is very important for small-radius bubbles. The basic equation
of motion in the dimensionless variables is similar to Eq. (3)
but contains different coefficients of viscous terms and the
different kernel of the MID force (the same dimensionless
variables can be used in this case too). Now instead of the
Stokes drag force, the corresponding term proportional to the
first derivative dζ /dθ is known as the Hadamard–Rybczynski
drag (HRD) force (see, e.g., Refs. 14 and 5), and the basic
equation reads (its derivation is similar to that presented above
for a solid particle)
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Here erfc(x) = 1 – erf(x) is the complimentary error func-
tion,15 and α = β = 1, because the ratio of the bubble
density to the fluid density is negligible, r = ρb/ρf ≈ 0.
However, we will keep again the parameters α and β as arbi-
trary to follow up the influence of the HRD and MID forces
separately.

Assuming again the zero initial conditions and focussing
on the steady oscillations of a bubble after a transient pro-
cess, we choose a trial solution in the form ζ(θ) = B cosωθ +
C sinωθ. Evaluate first the integral term in Eq. (13) with the

trial solution
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To evaluate this integral, consider its Laplace transform
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This expression can be further presented in terms of a sum
of simplest ratios,
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The inverse Laplace transform then gives
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The first term in the curly brackets eθ [1 – erf(
√
θ)] quickly

vanishes when t → ∞. All other terms after simplification
reduce to

I (θ) = −ω(B sinωθ − C cosωθ) . (18)
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FIG. 2. The amplitude-frequency dependence (a) and phase-frequency dependence (b) for the oscillating bubble in a viscous fluid under the influence of only
the HRD force (lines 1) and both HRD and MID forces (lines 2). Function An for line 2 in (a) was multiplied by the factor 3. The plots were generated for
Qα = 150 and Qβ = 75.

Substituting then the trial solution into Eq. (13) and using
Eq. (18), we obtain after simple manipulations

B = −
2A
9
ω

α + 6β(
ω2 − ω2

0

)2
+ 4(α + 6β)2ω2

/
81

,

C = −A
ω2 − ω2

0(
ω2 − ω2

0

)2
+ 4(α + 6β)2ω2

/
81

. (19)

Present now the forced solution in the equivalent form

ζ (θ) = B cosωθ + C sinωθ = Amp (ω0,ω) sin (ωθ + ϕ) ,
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where the amplitude of forced oscillations is
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These expressions can be presented in the traditional
dimensionless forms if we normalise the frequency ν = ω/ω0

and introduce the quality factors, Qα = 3ω0/2α and Qβ =
3ω0/4β. Normalising then the amplitude of particle oscillation
An = ω0

2Amp/A, we finally present the amplitude-frequency
dependence (21) in the form
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And the phase-frequency dependence (22) in the dimen-
sionless form reads
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The maximum of the resonance curve occurs at νm =√
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These expressions reduce to the classic ones,11,12 when Qβ
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FIG. 3. The amplitude-frequency dependences of a solid particle of negligible small density (a) and gaseous bubble (b) oscillating in a viscous fluid when the
MID force is ignored (lines 1) and when it is taken into consideration (lines 2).
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The ratio of maxima is
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Forω0 = 100, we obtain Qα = 150 and Qβ = 75; therefore,
the maxima ratio as per Eq. (26) is 3. Graphics of depen-
dences of An(ν, Qα, Qβ) and ϕ(ν, Qα, Qβ) as functions of
the normalised frequency ν are shown in Figs. 2(a) and 2(b),
respectively. Lines 1 pertain to the case when only the HRD
force is taken into account, and the MID force is ignored.

Thus, from this analysis, one can see that under the influ-
ence of the MID force, the resonance curve of an oscillating
bubble becomes three times smaller in amplitude and corre-
spondingly three times wider; the curve maximum is slightly
shifted to the left in comparison to the case of the HRD force
only.

It is of interest to compare the resonant curves of a solid
particle of negligible density in comparison with the density of
an ambient fluid and a gaseous bubble. At a first glance, these
two objects become equivalent, but due to different boundary
conditions at the solid-liquid and gas-liquid interfaces, the flow
around these objects is different. As a result of that, the dissipa-
tion coefficients are also different; these reflect, in particular, in
the different coefficients of Stokes and Hadamard–Rybczynski
drag forces [cf. Eqs. (3) and (13)] (see, e.g., Ref. 14). In Fig. 3,
we present in the same scale a comparison of the resonant
characteristics of a solid particle with r = 0 (a) and a gaseous
bubble (b). Lines 1 pertain to the cases when the MID forces
are ignored, and lines 2 pertain to the cases when these forces
are taken into account. As one can see, the resonant curves of
a bubble are taller and a bit narrower. In the both cases, the
influence of MID forces leads to a three-four times reduction
of the resonance curves.

Summarising the outcome of this paper, we can conclude
that the influence of a MID force on the resonance character-
istics of oscillating solid particles and gaseous bubbles in a
viscous fluid under the action of an external sinusoidal force
is significant. The MID force leads to the widening of reso-
nance curves and the reduction of resonance peaks which is
equivalent, to a certain extent, to the reduction of the quality

factor Qα of the corresponding classical linear oscillator. The
results obtained in this study can be helpful in applied prob-
lems of micro- and nano-particles and bubble control by the
acoustic or electromagnetic fields and, possibly, by other exter-
nal forces (see, e.g., the recent review Ref. 10 and references
therein).
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