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The arbuscular mycorrhizal (AM) fungi form symbiotic associ-
ations with the majority of terrestrial plants in a relationship 
estimated to be at least 470 million years old [1]. This symbio-
sis supported the terrestrialization of plants by facilitating their 
access to belowground nutrients, such as phosphorus. Today, 
AM fungi associate with most land plants where, as obligate 
symbionts, they rely entirely on their hosts for access to carbon 
as carbohydrates and lipids [2]. Yet the AM symbiosis does not 
exist in isolation. Simultaneous to AM fungal colonization, almost 
all plant hosts are subject to foliar damage from herbivores and 
pathogens. These antagonistic relationships are as ubiquitous as 
the AM symbiosis itself and have had significant impacts on 
the evolution and diversification of vegetation [3, 4]. Thus, this 
complex interplay among AM fungi, plants, and their herbivorous 
and pathogenic antagonists serves as a key driver in the ecological 
and evolutionary dynamics not only of the individual partners but 
also of global ecosystems. 

A fundamental goal in ecology is to understand the under-
lying mechanisms of the assembly of communities. One of the 
most studied drivers of community assembly in ecology, particu-
larly for plants and animals, is variation in resource availability 
[5]. In this context, community assembly is driven by distinct 
niches reflecting differences among species in either their pre-
ferred type of resources, their resource requirements, or how they 
acquire resources in time and space [6]. The principles that govern 
resource allocation and utilization in plant communities are, log-
ically, considered applicable to AM fungi as well, underlining the 
universal relevance of resource availability in shaping ecological 
communities. Thus, it is not surprising that resource availability is 
one of the predominant mechanisms invoked to understand the 
assembly of AM fungi in plant roots from a local species pool. 
Dispersal factors, along with AM fungal preferences for certain 
soil characteristics and certain plant hosts, are all important in 
shaping the local species pool of AM fungi [7, 8], and ultimately 
the assembly of AM fungi in plant roots [9]. What is surprising, 
however, is the limited attention given to understanding how 
antagonistic interactions, such as herbivory or pathogen infection, 

determine the outcome of resource availability on AM fungal 
community assembly. 

Resource availability and arbuscular 
mycorrhizal fungi: carbon-for-nutrient 
exchange paradigm 
As AM fungi are obligate biotrophs, carbon is their primary 
resource, and variation in its availability occurs when host plants 
alter the amount of carbon allocated to the fungi. Pioneering 
studies have observed that the carbon availability can be directly 
related to the amount of nutrients offered by the fungus to 
the plant [10, 11]. In this context, plants are often thought to 
‘reward’ the most beneficial fungal symbionts, with the potential 
for adjustments of trade in resources depending on supply and 
demand from either partner [12]. Thus, for a particular host, the 
fungal taxa that are better at providing nutrients will be given 
access to more carbon. Evidence suggests that the ability of 
different fungal taxa to provide phosphorus to their host varies 
with environmental factors, including the physical, chemical, and 
biological characteristics of a soil [13]. Consequently, the most 
beneficial fungal symbiont that receives carbon from its plant 
host is highly context-dependent, allowing for diverse taxa to be 
favoured by the same host species under different environmental 
conditions. 

There are instances where a host plant may limit carbon being 
delivered to the colonizing fungi, such as when soil fertility is 
high, or when photosynthesis is constrained. In these cases, we 
expect AM fungal taxa that have evolved the ability to thrive in low 
carbon settings to become dominant, regardless of their contribu-
tion to host plant nutrient uptake. Such conditions would arise 
when carbon fixation by the host plant is restricted by factors 
not directly related to the AM symbiosis, such as suboptimal light 
conditions or CO2. In those scenarios, the ability for these fungi 
to be successful may be related to their conservative production 
of mycelial biomass and spores, or they may use what carbon
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is available more efficiently when producing biomass, and thus 
represent a comparatively smaller carbon sink. 

Beyond carbon-for-nutrients: a role for 
plant defence in arbuscular mycorrhizal 
fungal community assembly 
Although much discussion around the topic of AM fungal com-
munity assembly in roots is centred on the carbon for nutrient 
exchange, it is widely accepted that AM fungi provide their host 
plants with more services than simply nutrient acquisition. One 
key function that has garnered much attention is the ability for 
the AM symbiosis to enhance plant defences against insect herbi-
vores and pathogens [14, 15]. Indeed, AM fungi have been shown 
to enhance a number of different defence mechanisms across 
a range of plant taxa [16, 17], often in ways that are unrelated 
to the nutrient outcomes for the host [18]. There is abundant 
evidence of the variation in the ability of AM fungal species 
to enhance plant defences [19, 20]. The variation in pathogen 
protection is assumed to be phylogenetically conserved among 
AM fungi [21-23], whereas less explicit consideration has been 
given to whether this is also the case for AM fungal-mediated 
protection from insect herbivores. 

The diversity in the capacity for AM fungi to enhance plant 
defence raises the hypothesis that, during the evolution of AM 
fungi, host plants would preferentially reward species based on 
their ability to enhance plant defence, not just the ability to 
acquire physical resources for the host plant. This suggests there 
is evolutionary pressure for the fungi to retain these traits. Con-
sequently, we would expect the assembly of AM fungi in the 
roots of plants that are challenged with pathogens or herbivory to 
preferentially be inclusive of fungi that can enhance their defence 
outcomes, and not just nutrient acquisition. 

To our knowledge, the inclusion of carbon-for-defence has not 
formally been hypothesized as a major driver behind AM fungal 
community assembly in plant roots [24]. We understand the con-
tributions of insect herbivores and pathogens to plant evolution 
and community assembly [4]. Although numerous studies have 
endeavoured to understand the drivers of AM fungal community 
assembly in plant roots, there is a dearth of research on pathogen 
or herbivory effects on AM fungal community assembly [25-27]. 
Here, we aim to stimulate discussion around these processes and 
their proximate and ultimate causes. 

Alternative mechanisms driving arbuscular 
mycorrhizal fungal community assembly: 
carbon constrained vs. defence directed 
We propose two alternate mechanistic hypotheses behind AM 
fungal community assembly in roots of plants faced with 
aboveground herbivores or pathogens (Fig. 1). Both herbivory 
and pathogen infection put strain on the carbon budget of 
plants, which is expected to limit the carbon available to AM 
fungal symbionts [28]. Until recently, the data supporting this 
assumption have been equivocal. However, there is now growing 
evidence demonstrating that insect herbivory causes a reduction 
in the allocation of carbon to AM fungi [29, 30], although this 
has only been shown for single AM fungal species. For foliar 
pathogens, we expect a similar effect on carbon transfer from 
host to AM fungi. Although this has not yet been empirically 
demonstrated, to our knowledge, the fact that the same outcome 
has been observed with other biotic stressors (e.g. plant parasitic 

nematodes [31]) suggests that reduced C allocated to AM fungi 
in response to plant antagonistic interactions is likely to be a 
widespread phenomenon. 

The carbon constrained hypothesis posits that the AM fun-
gal community assembly is driven by the reduction in carbon 
availability as a result of antagonistic interactions. Competition 
among AM fungi would result in communities dominated by taxa 
that require less carbon or are stronger competitors. Such taxa 
may also provide nutrients (such as P) required by the host plant 
for growth or reproduction in response to antagonists. In this 
scenario, a plant may keep allocating carbon to a fungus it has 
previously invested in (which likely has already developed an 
extensive mycelium), to sustain nutrient uptake necessary for 
reproduction or compensatory growth [32]. 

On the other hand, our defence-directed hypothesis posits 
that when plant hosts are subjected to insect herbivory or 
pathogen attack, AM fungal communities would assemble in 
ways not attributable to changes in carbon dynamics alone. 
Instead assembly could be mediated by defence pathways being 
upregulated [33]. Here, the biochemical pathways associated 
with plant defence and mycorrhizal establishment are not 
independent. Expanding on this hypothesis further, certain fungi 
may even be preferentially selected by the host based on their 
ability to enhance plant defence, in a way that is analogous 
to mechanisms associated with rewards for fungi providing 
nutrients [10]. This version of our defence-directed hypothesis, 
based on reciprocal rewards during symbiosis, assumes the ability 
for a host plant to discriminate AM fungal taxa that elicit a 
stronger defence response than others in the species pool. 

Certain AM fungal taxa elicit a stronger upregulation of phy-
tohormonal defence pathways (e.g. jasmonic acid pathway) than 
others [34]. Thus, it is possible that hosts select based on their 
perception of signals generally known to play important roles 
in mycorrhiza establishment, such as defence-related molecules 
and phytohormones [35]. This mechanism would likely require 
plants to also perceive the physical location in the root system 
where those fungi are located so that carbon could be directed 
there [36], but see Verbruggen et al. [37]. For example, via fungal 
effector proteins that can be released and translocated into the 
plant nucleus in a temporal or spatial manner. Such effectors 
can initiate cascades leading to changes in hormone signalling, 
such as salicylic acid, which is important for long-distance sig-
nalling within plants [38]. Plants have developed mechanisms 
to recognize and respond to these effectors [39]. Indeed, recent 
research has identified several AM fungal-specific effectors, and 
it is predicted that more will be identified in the future [40, 41]. 

Given a hypothetical common pool of AM fungal taxa (i.e. 
that all individual host plants have equal access to the same 
AM fungal taxa), the carbon constrained hypothesis predicts that 
plants experiencing various forms of carbon limitation—such 
as shading, low CO2, or herbivory/pathogen-associated loss of 
photosynthetically active leaf area—would assemble compara-
tively similar AM fungal communities. This similarity would be 
driven exclusively (if not predominantly) by the reduction in car-
bon availability (Fig. 2), where differences in the carbon resource 
dynamics (i.e. amount and/or duration of reduced carbon etc.) 
would dictate community differences [42]. Consequently, height-
ened competition for this limited carbon resource would favour 
the emergence of fungal communities consisting of members with 
minimal carbon requirements or are highly competitive in this 
context. 

However, under the defence-directed hypothesis, regardless 
of whether it is driven by specific selection for those fungi
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Figure 1. Conceptual figure illustrating the impact of insect herbivory and/or foliar pathogens on the assembly of root-colonizing arbuscular 
mycorrhizal (AM) fungal communities; the carbon constrained hypothesis proposes that reduced carbon (C) supply prompts competition among AM 
fungi, favouring those with lower carbon demands and/or strong carbon source competitiveness, this shift is likely to alter the overall phosphorus (P) 
uptake; the defence-directed hypothesis proposes that stressed plants selectively recruit AM fungi from the local pool of taxa with traits that enhance 
their defence mechanisms against herbivores and/or pathogens. 

offering protection, or due to the complex biochemistry of 
attacked plants and the effects that has on symbiotic establish-
ment, the identity of the trigger (insect herbivory, foliar pathogen, 
mechanical damage, shading, low CO2) would have strong impacts 
on the resultant AM fungal community composition ( Fig. 2). 
Evidence suggests that contrasting molecular triggers among 
insects and non-specific mechanical wounding elicit different 
defence responses in plants [43, 44]. Additionally, even responses 
to true herbivory differ in their nature and/or strength depending 
on the feeding guild of the insect, e.g. piercing/sucking insects 
or chewing insects, and if there are single or multiple stimuli 
[43]. For plant pathogen responses, there is similar specificity, 
where changes in plant hormonal pathways can depend on 
pathogen identity. For example, both biotrophic pathogens and 
piercing/sucking insects are understood to activate salicylic acid-
based defence responses in plants [45]. In contrast, necrotrophic 
pathogens and chewing insect herbivores mainly trigger jasmonic 
acid-associated defence responses [46]. Thus, it may be expected 
that mechanical tissue loss would result in community shifts 
that are more similar to chewing herbivory and necrotrophy 
infection than to, for example, shading or low CO2 availability, 
as these latter two would not be linked to plant defence and 

physical damage, but would still restrict the plant carbon budget. 
At its extreme (if different AM fungi can differentially alter 
plant defences against specific insect feeding guilds or pathogen 
lifestyles), AM fungal communities would differ depending on 
the type of insect herbivore (i.e. chewing, piercing) or pathogen 
lifestyle (i.e. necrotrophy, biotroph). 

The processes outlined by the carbon constrained hypothesis 
and the defence-directed hypothesis may also operate concur-
rently where both carbon availability and the need for enhanced 
defence simultaneously influence fungal community assembly. 
For instance, a plant experiencing foliar damage from herbivory 
may prioritize the association with AM fungi that confer increased 
resistance; however, should the plant’s carbon resources become 
severely limited, the competitive dynamics among the fungal taxa 
would intensify. As a result, even a fungus that offers a defensive 
advantage could ultimately be excluded if it cannot sustain itself 
with reduced carbon or compete effectively with other fungi 
under these constraints. Host plants also simultaneously contend 
with herbivore or pathogen pressure in a carbon-limiting environ-
ment. For example, a plant subject to herbivory and shading may 
filter for fungi that enhance defence. Yet, as the plant’s photo-
synthetic capacity remains limited, this defence-oriented fungal
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Figure 2. Plants face various factors which would be expected to reduce their carbon budget and limit carbon allocation to arbuscular mycorrhizal 
(AM) fungal symbionts in plant roots; given a hypothetical scenario where conspecific plants have the same available local pool of AM fungal taxa but 
are subjected to different factors that all reduce carbon availability, we would expect different AM fungal communities to be assembled depending on 
which hypothesis best explains the community assembly; if the defence-directed hypothesis best explains mechanisms of community assembly it 
would be expected that factors such as insect herbivory and pathogen attack would assemble communities distinct from those assembled when 
plants are subject to other carbon-reducing factors such as shade or low CO2; if the carbon constrained hypothesis best explains AM fungal 
community assembly, then the composition of communities in roots would be more similar to each other as they all are driven by carbon availability 
and competitive interactions; hypothetical AM fungal relative abundance stacked barplots are shown for each hypothesis and each scenario, where 
total barplot height refers to total AM fungal abundance and colour indicates more defence-enhancing taxa or taxa with low carbon requirements; 
hypothetical ordination plots are also shown to illustrate how the different communities might differ under each scenario depending on which 
hypothesis best explains assembly; each point on the ordination represents a community of AM fungi, the ellipses represent a 95% confidence 
interval; the colour of points and ellipses matches the scenarios under which those communities assemble and the black points and ellipses represent 
the controls, where plants are not subject to herbivores/pathogens or carbon limitation. 

community might reshuffle. Fungi with low carbon demands 
or those that can aggressively acquire the scarce carbon may 
come to dominate, potentially excluding even beneficial defence-
enhancing fungi. This dynamic reflects the complex nature of 
AM fungal communities, where multiple factors such as carbon 
allocation and the necessity for defence coalesce, dictating the 
composition of the symbiotic partnerships. 

Implications and conclusions 
Most microbial ecologists would agree that we are still a long way 
from having a complete understanding of microbial community 
assembly. This understanding comprises fundamental commu-
nity ecology but is also essential for forecasting how commu-
nities will behave under different environmental scenarios. The 
AM symbiosis is important to plant productivity, plant commu-
nity assembly, and has important roles in nutrient and carbon 
cycling, ultimately impacting ecosystem function. Although it is 

widely accepted that AM fungi are functionally diverse beyond 
nutrient uptake, the ecology and evolution of functions related 
to antagonistic interactions have received comparatively little 
attention [21]. For example, how conserved or variable functions 
are among AM fungal taxa, and how important this function is 
in their assembly, remains ambiguous. As the composition of the 
AM fungal communities which inhabit the root determines the 
outcome of the symbiosis for plants, it is important for us to know 
the drivers of and mechanisms behind the assembly processes. 
Until now, the role of defence on the assembly of AM fungi has 
been overlooked, despite clear importance of this function of the 
AM symbiosis. 

There is ongoing interest and research in managing AM fungi 
for desired environmental outcomes, such as restoring degraded 
habitats, supporting ecosystem conservation, and promoting sus-
tainable agriculture. Particularly within agricultural contexts, AM 
fungi are promoted not just for their nutrient acquisition func-
tions but also for their plant defence capabilities. Often these
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endeavours can include an inoculation approach, whether with 
manipulated or ‘synthetic’ communities—typically comprising 
single or few taxa—or with native AM fungal communities that 
are translocated [47]. Expecting such efforts to be successful, 
particularly in the field, is naïve considering they are based on 
our currently incomplete understanding of how communities of 
AM fungi assemble in roots. 

Box 1. Outstanding questions 

• Is the fungal interspecific variation in AM-enhanced 
plant defence the results of selection or drift? 

• Is the ability of AM fungi to enhance plant defence 
against insect herbivores phylogenetically conserved? 

• How do benefits from AM fungal-mediated defences 
against herbivores and pathogens manifest in plant pop-
ulations? For example, via improved growth and repro-
ductive fitness of defended individuals compared to 
those under attack, or via other demographic patterns 
such as improved recruitment and reduced mortality? 

• Is defence promotion associated with particular AM fun-
gal traits, such as spore size, morphology of mycelium, 
biomass allocation, or metabolite expression? 

• How much control do host plants have over carbon 
delivery to specific AM fungi all occupying the same root 
system with different effects on antagonistic interac-
tions? 

• To what extent do AM fungal species specialize in 
enhancing plant defences against different types of 
insect attacks, e.g. chewing versus piercing/sucking 
insects or necrotrophic versus biotrophic pathogens? 

• What are the trade-offs between enhancing plant 
defences to other AM fungal functional (e.g. nutrient 
acquisition) and life history traits (size, growth rate, 
sporulation)? For example, does the ability to enhance 
host defences come at a cost of an ability to effectively 
forage and/or deliver resources (e.g. phosphorus) to a 
host? 

• How would these potential trade-offs affect commu-
nity assembly of AM fungi when hosts are faced with 
pathogen and/or herbivore pressure in an environment 
which is already carbon limiting for the host? 

• What are the carbon demands of AM fungal species that 
specialize at enhancing defence mechanisms? 

• In a carbon-for-defence market, would the economic 
dynamics be similar to those observed in a carbon-
for-nutrient market? Specifically, would AM fungal taxa 
that are more effective at enhancing defence receive 
greater carbon allocations? Moreover, would the amount 
of carbon allocated fluctuate based on the intensity or 
nature of herbivore pressure? 

• How variable is the reduction in carbon allocation to AM 
fungi in response to factors such as mechanical foliar 
damage or shading, and how does this variability impact 
AM fungal assembly? 
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