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A B S T R A C T   

While climate information services are widely available, translating climate information into actionable solutions 
to reduce climate risk, which are readily taken up by producers, remains a critical challenge. Here, we apply a 
bio-economic approach to assess the potential economic value of seasonal climate forecasts (SCFs) as a basis for 
climate services for use in agricultural decision-making. We use a case study approach, quantifying the impacts of 
seasonal precipitation on rice cropping, a dominant farming system in the Greater Mekong Region (GMR) in 
Southeast Asia. We demonstrate values of seasonal precipitation forecasts for a range of forecast skill levels from 
low to perfect skill for three seasonal precipitation conditions (wet, normal and dry), as well as extreme con
ditions (extreme wet and extreme dry). Based on our integrated bio-economic assessment and seasonal variation 
in precipitation, we identify an optimal rice sowing window, which potentially results in improved yield and 
economic benefits compared with the currently applied sowing window. Applying this approach using common 
rice varieties grown by farmers – specifically, the medium growth duration Jasmine rice and the short duration 
Vietnamese long grain white rice variety OM 5451 – we find significant value in using seasonal precipitation 
forecasts to identify optimal sowing windows, ranging from an average of $135 ha− 1 for precipitation forecasts at 
the current level (70% accuracy) of forecast skill to $220 ha− 1 for perfect (100% accurate) precipitation 
forecasts. 

We propose that such a framework can be used to examine the value of using seasonal climate forecasts, even 
at current skill levels, in farm adaptive operational decision-making. We envisage that demonstration of the value 
of using seasonal forecasts in crop production system decisions will build user confidence and help in upscaling 
the use of climate information in the region and more broadly.   

Practical implications  

Increasing climate variability and extreme climatic events driven 
by climate change have negatively affected agricultural produc
tion in many regions of the world. While climate forecasts for the 
coming seasons and years are currently widely available and ex
pected to be useful for the adaptation of agriculture to climate 
variability and change, a range of factors may limit the uptake of 
the forecasts in farm decision making. Factors such as forecast 
reliability (uncertainty), a lack of targeted forecasts that are fit for 
purpose, and farmers’ perceptions are creating barriers between 

the adoption and application of forecast information in agricul
tural decision making. Kusunose and Mahmood (2016) identify 
the need to explicitly and realistically incorporate forecast un
certainty into forecast use frameworks as an essential step toward 
overcoming such barriers and as best practice for climate service 
development supporting adaptation decisions in agriculture. In 
the present work, we aim to provide an example of that best 
practice – specifically for sowing decisions in rice production 
systems in the Vietnamese Mekong Delta (VMD), one of the 
climate change hot spots of the world. 

Adjusting the sowing date has been identified as an adaptive 
strategy to reduce the impacts of climate variability and climate 
change, and to enhance sustainable crop production (Lobell et al., 
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2015). Optimising sowing times enables the targeting of rice crop 
growth within a period of suitable climatic conditions (Zheng 
et al., 2012; Radanielson et al., 2019), mitigating the yield and 
economic impacts of adverse climatic events (Mushtaq et al., 
2017; An-Vo et al., 2018). For rice-based cropping systems in the 
VMD, adjusting sowing dates has been highlighted as an imme
diate adaptation option (Bong et al., 2018). During the wet season 
cropping window, selecting the date for sowing is critical for rain- 
fed rice farmers due to seasonal climate variability associated with 
the onset of the 6-month rainy season and associated increase in 
temperature and change in solar irradiance. Time of sowing is an 
important decision for a good cultivation outcome – if farmers sow 
too early, then there is a risk of low rainfall at the start of the 
crop’s growth, while sowing too late might mean that the crop 
experiences reduced solar irradiance and increased temperature at 
the end of the growing season, potentially leading to crop yield 
decline. 

This study develops a novel framework for using seasonal fore
casts, which provides a method or tool that takes into account the 
forecast uncertainty of growing season precipitation in adaptive 
sowing decisions. We also investigate the potential value of using 
climate forecast information in decision making to enhance the 
resilience to climatic risk of rice production systems in the case 
study region. We anticipate that the framework for valuing 
climate services developed in this work can not only improve the 
adoption of seasonal climate forecasts for the adaptation of rice 
production to climate change in the Great Mekong Region, but 
also provide a pathway for enhanced use of seasonal forecasts to 
support decisions in rainfed agricultural production systems more 
broadly. 

Specifically, the present valuation supports the need for targeted 
climate services in rice growing countries that are vulnerable to 
impacts from climate variability and climate change. It has the 
advantage of providing a reference baseline that is often lacking in 
climate service impact studies (Tall et al., 2018). Applying this 
framework in other rice growing areas that are vulnerable to 
climate variability (e.g. the greater Mekong delta and across Asia 
and Africa) would be very beneficial in facilitating the commu
nication of climate information to farmers and supporting initia
tives in climate adaptation, particularly where there are large 
uncertainties associated with climate forecasts (Tall et al., 2018). 
While case studies such as this are needed to establish the baseline 

information required to effectively communicate the value of 
climate information and enhance climate variability and climate 
change adaptation for more sustainable and resilient agri-food 
systems, the present valuation can also support decisions at gov
ernment level to invest in improved regional and national weather 
station observation networks as well as research, development and 
extension programs. In addition, improvements in the skill of 
seasonal forecasts are still needed to increase forecast quality and 
thus achieve better economic and societal benefits of the forecasts 
locally and globally.   

Introduction 

The Greater Mekong Region (GMR) is home to more than 300 million 
people in Southeast Asia, many of whom are smallholder farmers. The 
region’s predominantly small-scale agricultural systems are charac
terised by low crop production (Kijne et al., 2009). The majority of these 
small-holder agricultural systems are constrained by problems of soil 
erosion, poor soil fertility and climate variability (Schiller et al., 2001). 
A significant challenge in the GMR over coming decades will be to in
crease food security in the face of climate change and an associated 
declining productivity of land and water resources (UN ESCAP, 2009). 

The Vietnamese Mekong Delta (VMD or the Delta; Fig. 1) is espe
cially important for rice cropping, accounting for more than half of the 
domestic rice production and approximately 90% of annual rice exports 
from Vietnam, a leading rice exporter. Nevertheless, due to climate 
change (and associated changes in seasonal climate, increasing climate 
variability and adverse climate conditions, sea level rise and salinity 
intrusion) and upstream hydropower development (resulting in up
stream water retention), rice farming in this region faces increasing 
levels of environmental stress and water related constraints. This is 
particularly the case for rain-fed rice production, which depends on 
seasonal rainfall. As a result, there has been increasing demand for 
sustainable ‘soft’ measures (Smajgl et al., 2015) such as new technolo
gies, adaptive decision-making and improved crop management prac
tices for rice farming in the region (Phan et al., 2018; Clauss et al., 2018; 
Paik et al., 2020). However, there remains very limited development 
and awareness of climate services for sustainable rice farming in the 
Delta; that is, the provision of climate information designed to assist in 

Fig. 1. Map of the southern Vietnam region showing the position of Can Tho province within the Vietnamese Mekong Delta.  
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on-farm decision-making (Buontempo and Hewitt, 2018). 
Rice cropping is highly susceptible to changes in climate because of 

its high water requirements and there are a number of studies examining 
the impacts of climate variability on rice production. Sakamoto et al. 
(2006) investigated the relationship between seasonal change in the 
flow regime of the Mekong River, the spatio-temporal distribution of 
cropping systems and rice phenology. Koide et al. (2013) developed 
regression models for national rice production in the Philippines using 
various climate variables as predictors; the added value of using General 
Circulation Model (GCM) forecasts in crop yield forecasting was also 
estimated relative to purely empirical models. Chung et al. (2015) 
studied the impacts of seasonal climate variability on rice production in 
the Central Highlands of Vietnam. In addition, relationships between 
rice agronomy and climate are well documented (e.g. Lansigan et al., 
2000; Naylor et al., 2001; Selvaraju, 2003; Lansigan, 2005; Dawe et al., 
2006; Roberts et al., 2009). 

For rice-based cropping systems in the VMD, Bong et al. (2018) 
assessed a number of adaptation options and highlighted adjusting 
sowing dates as an immediate measure. During the wet season cropping 
window, selecting the date for sowing is critical for rain-fed rice farmers 
due to seasonal climate variability associated with the onset of the 6- 
month rainy season and associated increase in temperature and 
change in solar irradiance (Fig. 2). Time of sowing is an important de
cision for a good cultivation outcome – if farmers sow early, there is a 
risk of low growing seasonal rainfall (in-crop seasonal rainfall) while, 
with late sowing, the crop might experience a reduction in solar irra
diance and increase of temperature at the end of the growing season 
(Fig. 2) potentially leading to crop yield decline. 

Seasonal climate conditions are significant drivers of agricultural 
production especially for rain-fed farming systems (Hansen, 2005; 
Cooper et al., 2008; Nidumolu et al., 2015). Information from seasonal 
climate forecasts (SCFs) can thus support timely decision making on 
farms to reduce climate risk and improve farm productivity and profit
ability (Hammer et al., 2000). However, lack of evidence on the eco
nomic value of using SCFs and lack of guidance and demonstration of 
how to use forecast information have limited the use of SCFs in climate 
risk management decision-making on farms worldwide (Klemm and 

McPherson, 2017; An-Vo et al., 2019a). Although available climate 
forecasts have less than perfect predictive ability (Klemm and McPher
son, 2017), they may still have potential value in informing decisions 
such as the optimal timing of sowing dates and choice of crop 
sequencing. This is particularly the case in climatically variable regions 
such as the VMD and for farming systems, such as rice cropping, where 
production is sensitive to extreme weather conditions such as heavy 
rainfall and lack of precipitation. Timing of rice crop establishment can 
determine the system productivity in terms of yield and water use 
among others (Balwinder-Singh et al., 2015; Ding et al., 2020). Late 
onset of the wet season generally delays crop establishment and thus 
extends the crop growth period, increasing the risk of terminal (end of 
growing season) drought, which is becoming more frequent with the 
influence of El Niño seasonality (Naylor et al., 2001). A delay in the wet 
season can also lead to later sowing of the next crop and may, in some 
areas, preclude the sowing of a subsequent dry season crop (Ahmed 
et al., 2014; Naylor et al., 2001, 2007), putting at risk overall crop 
production at the farm level with potential larger scale impacts on local 
and regional food security. 

‘When to sow’ is a key decision made to reduce climate risk in rain- 
fed rice cropping systems. While seasonal precipitation forecasts are 
among the most available climate services to farmers, often the focus is 
on the likelihood of a dry or wet cropping season and of associated 
extreme events such as drought or flood (Hammer et al., 1996). This 
information is often considered as binary (i.e. happening versus not 
happening) by farmers and frequently used to explain the outcomes of a 
season, such as crop failure and good or poor yield (Roudier et al., 
2014), rather than as a tool to enable adaptive decision-making in light 
of the information provided by the forecasts. Forecast accuracy has been 
among the key factors limiting the use of SCFs in decision-making by 
farmers. SCFs with far from perfect skill (and poor understanding of 
uncertainty) have had a detrimental effect on farmers’ trust in climate 
information and thus climate services. Existing efforts in the extension of 
seasonal climate information focus on building the capacity of farmers 
and extension agents to better understand and apply the data presented 
with SCFs, but lack a robust framework by which potential gain in using 
these in farm decision making, even at current levels of forecast 

Fig. 2. Observed data of climate variables representative of the climatic environment in Can Tho Province over the last 32 years. The dashed lines represent long- 
term smoothed average values. 
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accuracy, can be assessed. 
In the present work, we have developed a first of its kind framework 

that will enable these evaluations by establishing the economic benefit 
of applying SCF information in sowing decisions in rice cropping for 
different levels of SCF skill. In addition to other adaptive management 
strategies, accounting for SCFs in rice crop sowing decisions has po
tential to reduce risks due to climate variability and change in rain-fed 
systems and ensure higher yields. Here, we demonstrate the usefulness 
of SCFs in rain-fed rice production systems in the Delta for a case study 
located in Can Tho Province, Vietnam (Fig. 1), accounting for the 
inherent uncertainty in the forecast system, and provide evidence to 
support better communication of climate services benefit. We first 
analyse seasonal climate (rainfall) data and its impact on seasonal rice 
yield variability and profitability. An integrated seasonal forecasting 
framework is then developed, which includes a novel parameterisation 
for the errors of less than perfect (i.e. < 100% accurate or ‘imperfect’) 
dynamic forecasting systems; calibrated rice cropping model simulation; 
and a proposed economic value assessment with decision analytic. The 
proposed end-to-end seasonal forecasting framework – the processing of 
available SCFs (one end) to identify an optimal sowing date (decision 
analytic, another end) for improving the economic return – shows 
considerable economic benefits of using seasonal climate forecasts. 

Sowing decisions in wet season rice cropping 

Rainfall regimes in the southern region of Vietnam including the 
Mekong Delta are mainly controlled by summer monsoons and tropical 
disturbances, as well as local conditions such as topography (Phan-Van 
et al., 2018). The annual rainfall regime of the region is divided into two 
distinct seasons: the rainy or wet season (from May to October) and the 
dry season (from November to April of the next year). Rainfall during the 
rainy season normally accounts for about 80% of the total annual 
rainfall (Nguyen et al., 2014) and the region is thus suitable for rain-fed 
rice cropping. However, there is also significant seasonal variation in the 
amount and timing of rainfall through time, largely driven by a strong 
association in seasonal rainfall in Vietnam with the El Niño Southern 
Oscillation (ENSO) and other large-scale dynamic oceanic-atmospheric 
processes (Gobin et al., 2016; Nguyen et al., 2019). For example, drier 
conditions occur when average sea surface temperatures (SSTs) over the 
Central Pacific Niño-3.4 region are warmer, and vice versa (wetter when 
average Niño-3.4 region SSTs are colder) (Nguyen et al., 2019). 

In the VMD, wet season rice cropping generally runs from March to 
August. The start of the cropping season is largely determined by the 
feasibility of land preparation, which is a function of the timing of the 
previous crop harvest, the onset of the monsoon and the leaching of 
salinity caused by salt intrusion from the ground water table during the 
dry season (Wassmann et al., 2019). Following land preparation, the 
optimum sowing date is determined by climatic conditions. The rainfall 
pattern before sowing governs soil moisture at sowing, influencing crop 
establishment, following which dry spells or heavy rainfall can be 
detrimental, especially during the early growth stage of the crop. 
Farmers will benefit where a sowing window can be defined that min
imizes such risks as well as exposure to end of season drought and heat 
stress. In addition, a growing period that has higher radiation, sufficient 
rainfall, and optimum temperature conditions will favour higher yield, 
increasing revenue (Evans and De Datta, 1979; Deng et al., 2015). 

Methodology 

In this work, we investigate whether seasonal climate data analysis 
can be used to identify a sowing window that can reduce the risk of crop 
production losses and deliver greater benefit to rice farmers in the VMD. 
We focus on growing season precipitation (GSP), which we define as the 
total accumulated precipitation from the sowing date to harvesting date. 
For each potential sowing date, we also define different seasonal climate 
conditions for crop growth based on the historical GSP variability, 

including climatological, extreme and moderate conditions. The clima
tological condition or ‘climatology’ indicates the average of the histor
ical GSP over the selected period. Seasonally extreme conditions are 
defined, with an ‘extreme wet’ condition indicating the top 10% of the 
historical GSP while an ‘extreme dry’ condition indicates the bottom 
10% of the historical GSP. The middle 80% between the extreme wet 
and extreme dry conditions indicates a non-extreme condition. For 
seasonally moderate conditions, a ‘moderate wet’ condition indicates 
the top 33% of the historical GSP while a ‘moderate dry’ condition in
dicates the bottom 33% of the historical GSP. The middle 33% between 
the moderate wet and moderate dry conditions indicates a ‘normal’ 
condition. Our aim is to then economically evaluate the use, in rice 
sowing decisions, of seasonal precipitation forecasts of both moderate 
(Table 1) and extreme (Table 2) conditions. Rice crop performance 
based on average climatological conditions was employed as a baseline, 
effectively representing the case with no added knowledge from a 
forecast of how the climatic conditions might vary from average. 

Rice yields for early wet season cropping under the defined seasonal 
climatic conditions were simulated for each sowing date in the current 
sowing window (from March to May) using the calibrated rice crop 
model ORYZA v3 (Li et al., 2017). We then employed an expected profit 
approach to determine the optimal sowing date achieving the highest 
profit under each of the considered climatic conditions. Potential eco
nomic values of using imperfect SCFs in rice crop decision making 
(specifically, sowing date decisions), taking into account forecast un
certainty for each moderate or extreme condition, were quantified by a 
value assessment framework, providing different optimal sowing date 
decisions associated with the different forecasts relative to that of 
climatology (i.e. decision-making without forecasts); the optimal date in 
each case was identified as the date with the maximum simulated ex
pected gross margin for the crop. 

Forecast quality parameterisation for dynamic forecasting systems 

Given the uncertainty inherent in seasonal climate forecasts (Klemm 
and McPherson, 2017) we also assessed the value of using <100% ac
curate (i.e. imperfect) seasonal precipitation forecasts in selecting 
optimal sowing dates for each category of forecast. To do this, we first 
assessed the quality or skill of the seasonal forecast system to determine 
the probability that it will be in agreement with (i.e. predict) the 
eventually observed seasonal conditions for a growing period. We then 
used the quality of the forecasts to parameterise the (imperfect) struc
ture of available seasonal precipitation forecasts, thereby accounting for 
forecast uncertainties. 

Forecast quality has been typically evaluated for a study site using 
hindcast data (Kusunose and Mahmood, 2016; An-Vo et al., 2019b). The 
possibility or probability of the growing season precipitation condition 
can be represented by the forecast quality parameters (An-Vo et al., 
2019a, 2019b) which, for dynamic forecasting systems, vary according 
to the issuing date of a seasonal precipitation forecast. It should be noted 
that the capacity of available dynamic forecast systems (e.g. ECMWF – 
seasonal forecast system 5; NCEP – Climate Forecasting System version 
2; UK Met Office – GloSea5; JAMSTEC – SINTEX-F) to provide seasonal 

Table 1 
Moderate forecast system – forecast quality structure for imperfect forecasts of 
growing season precipitation tercile issued on date I, including moderate wet 
(W), normal (N) and moderate dry (D) seasonal conditions.  

Forecast issuing date Forecast Outcome 

W N D 

I W q1(s) 2
3
[1 − q1(s) ]

1
3
[1 − q1(s) ]

N 1
2
[1 − q2(s) ]

q2(s) 1
2
[1 − q2(s) ]

D 1
3
[1 − q3(s) ]

2
3
[1 − q3(s) ]

q3(s)
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climate forecasts that are updated regularly throughout a season is 
increasing. The structure of a seasonal precipitation forecast, including 
its error distribution, can also be derived for each issuing date (I) (Ta
bles 1, 2). In this study, we distinguished forecasts from outcomes, 
whereby a forecast indicates the growing season precipitation that we 
wanted to predict before or at the sowing date (i.e. the predicted pre
cipitation of the growing season before the season started), while an 
outcome indicates the growing season precipitation realized at the end 
of the season (i.e. the actual precipitation recorded over the season). 
Forecast quality parameters – q1, q2, q3 – represent post agreement rates 
of forecasts issued on a date I in predicting moderate or extreme wet, 
normal or non-extreme, and moderate or extreme dry growing seasonal 
precipitation, respectively (Tables 1, 2). Post agreement rates are rates 
of correct forecasts similar to those for statistical forecasts (An-Vo et al., 
2019a, 2019b); in the present work, these are transient functions of both 
the forecast issuing date I and sowing date s (Tables 1, 2). 

For a moderate forecasting system (Table 1), error distribution was 
typically assumed to be uniform among the failed outcomes (e.g. 
Kusunose and Mahmood, 2016). An-Vo et al. (2019b), however, point 
out that for precipitation tercile forecasts such an assumption is only 
acceptable for a normal (N) forecast (second row) and not for a moderate 
wet (W) or a moderate dry (D) forecast. Our analysis of recorded long- 
term precipitation data at stations shows that error distribution of a 
seasonal forecast system varies spatially. Error distributions of the 
moderate (extreme) wet and moderate (extreme) dry forecasts, respec
tively, such as those in the first and third rows of Table 1 (Table 2), 
respectively, are more sensible based on our analysis for recorded long- 
term precipitation data at stations in the studied region. 

Integrated bio-economic modelling with historical climate data 

Climate data 
Gridded daily climate data for the case study site were used (NASA, 

2019). These data include maximum and minimum temperatures (oC), 
solar radiation (MJ m− 2 d–1), wind speed (m s− 1), and relative humidity 
(%) covering the 32-year period from 1985 to 2016. Correlation analysis 
was performed between these data and the observed daily climate data 
of the period, 1998 to 2016. Correction coefficients were then defined to 
minimise deviation of the gridded data from the observed data for 
temperature and radiation at the case study site (supplementary Fig. S1, 
relative root mean square error (RMSEn) < 10%) to generate the data 
covering the period from 1985 to 1998. For precipitation, data from the 
gridded precipitation database developed by Nguyen-Xuan et al. (2016) 
was used from the period 1985 to 1998. 

Rice yield simulation 
The rice crop model ORYZA v3 (Li et al., 2017) was used to simulate 

rain-fed rice yield under different seasonal climatic scenarios. This is an 
established validated model used in simulating rice crop growth and 
yield, particularly under the rice production environment of Vietnam 
(Tuong et al., 2013; Li et al., 2017; Stuart et al., 2016). It is an 
ecophysiological model using a daily time step representation of rice 
crop development, growth and yield in interaction with environmental 

and crop management conditions. Crop development is simulated daily, 
considering its responses to temperature and photoperiod. Similarly, 
daily crop biomass is simulated as a result of radiation interception and 
CO2 assimilation, which also respond to climate conditions and soil 
water and nitrogen availability (Bouman et al., 2001; Bouman and van 
Laar, 2006; Li et al., 2017). Rice yield is simulated from biomass accu
mulation during crop growth allocated to the grain from the panicle 
initiation stage to maturity. 

The model was calibrated and validated using on farm data, as re
ported by Stuart et al. (2016); Stuart et al. (2018). Relative root mean 
square error between the observed and simulated yield was lower than 
10% (RMSE = 652 kg ha− 1, RMSEn = 9.05%) and within the range of 
standard deviation of reported yield measurements in experimental 
fields. This level of uncertainty is typical in yield estimates using rice 
models (Li et al., 2015; Gaydon et al., 2017; Radanielson et al., 2019). 

In this study, the model was run to simulate rice cropping with op
timum application of fertilizer following the best management practices 
recommended for the study area and with pest and disease control 
minimising yield losses. A daily sowing date interval was then consid
ered for scenario simulations, covering the period from 1985 to 2016, 
for two varieties commonly grown by farmers in the study site: a me
dium duration variety (c.v. Jasmine) and a short duration variety (c.v. 
OM5451). Both varieties are among the most used varieties by farmers 
in VMD (Devkota et al., 2019; Stuart et al., 2018). The medium duration 
(105–115 days) variety is mostly grown in the dry season and sown 
between November to December, when climatic yield potential is higher 
and climatic risk is reduced. Medium duration varieties may be used in 
the wet season in areas where double cropping is practiced (i.e. two rice 
crops are produced in a year). The short duration (95–100 days) variety 
is mostly grown in the wet season with a sowing window from March to 
May, allowing establishment of a third crop as a late wet season crop. 
Use of short duration varieties is among the recommended adaptation 
strategies to climate variability in rainfed system as it allows flexibility 
in terms of the cropping window and potential to escape periods of high 
risk for temperature stress and extreme rainfall conditions (both heavy 
rainfall and moisture deficit). In the present study, crop model param
eters characterizing these two varieties were calibrated and validated 
for southern Vietnam, as in Stuart et al. (2016). We ran 50,000 simu
lations to simulate rice crop yield for the two varieties under rain-fed 
conditions for the 32-year period from 1985 to 2016. 

Integrated bio-economic assessment 
We then employed a bio-economic model which integrates the grain 

yield simulated by the rice crop model ORYZA (v3) with profit functions 
to derive gross margin versus yield relationships by systematically 
varying sowing dates under the different seasonal climate forecast cat
egories. The profit function of the rice crop represents the net return 
after subtracting production costs from income under different climatic 
conditions, as given by 

Π(s) = p × Y(s) − C (1) 

where Π(s) is the profit function and Y(s) the associated yield pro
duction function, which are themselves functions of the decision on 
sowing date s under the defined seasonal climate conditions; p is the sale 
price of paddy rice grain and C is the production cost including the costs 
of seed, nursery, fertiliser, herbicide, pesticide, land preparation, crop 
establishment, harvesting, threshing, cleaning and drying (estimated at 
$461 ha− 1 for rain-fed rice cultivation in Can Tho (Devkota et al., 
2019)). The sale prices of paddy rice are average monthly prices for 
twelve months in 2019 collected from AGROINFO (www.agro.gov.vn, 
accessed 10/01/2020); these were $225 t− 1 and $220 t− 1, respectively, 
for medium (Jasmine) and short (OM 5451) growth duration rice 
varieties. 

Table 2 
Extreme forecast system – forecast quality structure for imperfect forecasts, is
sued on date I, of extreme growing seasonal precipitation including extreme wet 
(EW), non-extreme (NE) and extreme dry (ED) seasonal conditions.  

Forecast issuing date Forecast Outcome 

EW NE ED 

I EW q1(s) 8
9
[1 − q1(s) ]

1
9
[1 − q1(s) ]

NE 1
2
[1 − q2(s) ]

q2(s) 1
2
[1 − q2(s) ]

ED 1
9
[1 − q3(s) ]

8
9
[1 − q3(s) ]

q3(s)
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Decision analytic and value assessment 

The sowing window considered in the present study is from 1st of 
March to 31th of May – the currently applied sowing window for early 
wet season rice cropping in the VMD. We consider a forecast f for the 
period starting from the 1st of March, issued earlier or at the 1st of March; 
hence, the forecast issuing date I (Tables 1 & 2) is the 1st of March or 
earlier. Our aim here is to determine the optimal sowing date in the 
sowing window given the issued forecast by the following proposed 
decision analytic. This proposed decision analytic can be implemented 
in a similar manner for forecasts issued on any day within the sowing 
window for the period following that day. 

We also assume that the farmer is risk neutral – a commonly assumed 
risk preference in forecast use analysis (Mjelde et al., 1993; Meza et al., 
2008; Moeller et al., 2008; Kusunose and Mahmood, 2016); i.e. he/she 
would choose the decision that results in the highest expected profit, 
conditional on the forecast. Literature related to rice growers in Asia risk 
attitude, generally, points towards a risk-averse attitude (see Lucas and 
Pabuayon, 2011; Pham and Waibel, 2018); they thus likely implement 
strategies based on highly skilful seasonal climate forecasts. For the 
forecast f , the expected profit of any one sowing decision on a date 
swithin the sowing window is given by 

E[profit|f = i, s] =
∑

j
prob(o = j|f = i)

1
Tj

∑Tj

k=1
Πk(s, j) (2)  

where i ∈ {W, N, D} or {EW, NE, ED} is the forecast set 
andj ∈ {W, N, D} or {EW, NE, ED} is the corresponding outcome set, 
o denotes one of the outcomes, Tjis the number of historical climate 
years having an outcome j, and Πk(s, j) is the economic return in year k as 
a function of the decision in each of the outcome categories. The eco
nomic return in each year is a gross margin estimate based on the yield 
simulated by the ORYZA model. We consider the optimal decision 
recommendation as follows. 

Given the crop variety and an issued imperfect forecast i, the farmer 
might want to know which sowing date would result in the best expected 
profit. The farmer’s best sowing date selection s*

i given the i forecast is 

s*
i = max

s∈S
E[profit|f = i, s] (3)  

where S is the considered sowing window. For an imperfect moderate 
forecast system, as presented in Table 1, using the imperfect moderate 
wet forecast as an example, we can expand Eq. (2) to find the expected 
profit for a sowing date s: 

E[profit|f = W, s ] = q1(s)
1

TW

∑TW

k=1
Πk(s,W) +

2
3
[1 − q1(s)]

1
TN

∑TN

k=1
Πk(s,N)+

+
1
3
[1 − q1(s)]

1
TD

∑TD

k=1
Πk(s,D)

(4) 

Similarly, we can estimate expected profits for the sowing date s 
given the other imperfect forecasts or for other sowing dates within the 
given forecast set. For an extreme wet forecast or an extreme dry fore
cast, Table 2 can be similarly employed in Eq. (2). 

The value of imperfect forecasts (and therefore also the value of any 
future increases in forecast quality) is the difference in profit achieved 
from the farmer’s optimal responses in the presence of forecasts (or 
‘better’ forecasts) relative to the profit achieved from the farmer’s 
optimal responses to the climatological condition (or a reference fore
cast). We acknowledge that a farmer’s perception of the upcoming 
seasonal climate based on recent past experience is typically better than 
the climatological condition. In this case, the baseline profit estimation 
based on the climatological condition in the present work might be 
smaller than what would be expected in practice, resulting in slightly 

higher estimation of forecast values (An-Vo et al., 2019b). To determine 
the farmer’s optimal response to the climatological condition (clima

tology), we assume that the farmer would have chosen a sowing date s
⌢* 

that solves the following problem: 

s⌢
*
= max

s⌢∈S
E[profit| s

⌢
] (5)  

where 

E[profit| s
⌢
] =

∑

j
prob(o = j)

1
Tj

∑Tj

k=1
Πk( s⌢, j) (6) 

The values of various imperfect forecasts are the differences in ex
pected profits between the optimal dynamic strategies employing the 
forecasts (i.e. changing with the forecasts) and the optimal static strat
egy in response to the climatology (i.e. not changing with the forecasts). 
For a forecast i and a sowing date s, we have forecast value FV(i, s) given 
as 

FV(i, s) = |E[profit|f = i, s*
i] − E[profit|f = i, s⌢

*
] | (7) 

It can be seen from Eq. (4) that FV(i, s) also depends on the forecast 
quality of the imperfect forecasts. We can estimate the values of the 
various forecasts for the sowing decision across a range of forecast 
qualities from no skill to a perfect forecast (with 100% skill) to quantify 
the values of increasing (i.e. improvements in) forecast quality. 

Results 

In-crop seasonal precipitation increased almost linearly from the 
start of the sowing window (early March), stabilising around the third 
and fourth weeks of April (Julian date 110 and 120), respectively, for 
both medium and short growth duration varieties (Jasmine and OM 
5451) and with remarkable impacts on simulated crop yields (Fig. 3). 
Strong correlations were evident between in-crop seasonal precipitation 
and crop yields (0.95 for climatological condition) for both varieties 
(Table 3), indicating that seasonal precipitation is a major yield driver of 
productivity for rain-fed rice. It is noteworthy, however, that the cor
relations were considerably weaker for extreme conditions (Table 3). 
Weaker correlations in extreme conditions here – especially the extreme 
wet condition – might be due to uneven rainfall distribution throughout 
the crop growth season such as the dry spells occurring after 15 days 
from sowing (Fig. S2). 

Identifying better sowing dates offer remarkable yield benefits 

Due to the critical seasonal climate variability of the early wet rice 
cropping season, sowing date was found to have a significant impact on 
in-crop seasonal rainfall and variability, and especially the rice yield 
outcomes in terms of expected (average) yields and associated yield 
variabilities (Fig. 3). For instance, for crops sowed in early March, ex
pected yields of around 3 and 2 t ha− 1, respectively, were achieved for 
the medium (Jasmine) and short (OM 5451) duration varieties, while 
expected yields more than doubled (to more than 6 and 4 t ha− 1, 
respectively) when these varieties were sowed in April. On this basis of 
simulated expected (average) yields for each sowing date, a recom
mendation to farmers in the case study region to implement a sowing 
window from the first week of April to mid-May (Julian dates 100 to 
140) is indicated. This recommended sowing window is narrower than 
the current sowing window (from March to May) implemented by 
farmers in the case study region. Notable yield variability could also be 
seen for each sowing date ranging from 3 to 6 t ha− 1 for the medium 
(Jasmine) and from 2 to 4 t ha− 1 for short (OM 5451) duration varieties 
(Fig. 3a & b, respectively). Depending on particular seasonal climate 
condition, high yields (up to 8 and 6 t ha− 1, respectively, for the medium 
and short duration varieties) could also be achieved by sowing in March. 
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These results suggest that, if seasonal climate information/data can be 
effectively analysed and used to support farmers making toward optimal 
sowing decisions, rice crop productivity and profitability can be signif
icantly improved. We demonstrate below the best sowing date deter
mination based on the expected profit approach given imperfect 
seasonal precipitation forecasts. Maximising profit is considered more 
important for farmers than solely maximising yield per se, even though 
the results only differ when costs vary (An-Vo et al., 2018). 

Significant economic values of seasonal precipitation forecast 

Significant seasonal precipitation variability in the case study region 
can also be represented by the differences in its mean and variability 

within each moderate seasonal precipitation condition (Fig. 4). Here, it 
can be seen that the average in-crop seasonal rainfall (and its variability) 
for each sowing date differs significantly between moderate wet (W), 
normal (N), and moderate dry (D) cropping seasons. For the medium 
duration rice variety (Jasmine), between 150 and 300 mm additional 
seasonal precipitation is received under normal and moderate wet 
conditions, respectively, relative to the moderate dry condition for the 
current sowing window. For the short duration rice variety (OM 5451), 
these figures are 100 and 200 mm, respectively. Such differences in in- 
crop seasonal precipitation can potentially drive significant differences 
in crop yield and economic outcomes for the three climatic conditions. 

Expected gross margins also differ between the moderate seasonal 
precipitation forecasts for both medium duration and short duration rice 
varieties, depending on forecast quality (Fig. 5). Using the current 
sowing window from 1st March to 31th May, relatively little difference 
was found in the gross margin of more skilful forecasts of normal con
ditions (Fig. 5c & d); however, our analysis indicates distinct gross 
margin benefits for both wet and dry forecasts (Fig. 5a, b, e & f) 
compared to that of the climatological condition (i.e. no forecast). Ex
pected gross margins of moderate wet forecasts also generally increase 
with improving forecast quality, from 50% accuracy to a perfect (i.e. 
100% accurate) forecast, while those of dry forecasts decrease. In cases 
of perfect forecasts (q1 = q3 = 1), expected gross margins for both 
moderate wet and moderate dry forecasts may differ by more than $500 

Fig. 3. Crop yield simulation results for (a) the medium growth duration (Jasmine) and (b) the short growth duration (OM 5451) rice varieties, including mean crop 
yields and their variability (1 standard deviation intervals) for the current sowing window from 1st March to 31th May. Corresponding mean in-crop seasonal 
precipitations and their variability (1 standard deviation intervals) are also presented (c & d). 

Table 3 
Correlations between in-crop seasonal precipitation and crop yield for the cur
rent sowing window under different seasonal climatic conditions. * indicates 
statistical significance with p < 0.001.  

Variety Extreme 
wet 

Moderate 
wet 

Climatological 
condition 

Moderate 
dry 

Extreme 
dry 

Jasmine  0.51*  0.97*  0.95*  0.92*  0.79* 
OM 

5451  
0.49*  0.92*  0.95*  0.93*  0.92*  
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ha− 1 compared to those of the seasonal climatological condition based 
on early sowing dates for both medium and short duration rice varieties. 
These trends were found to be even more significant for extreme fore
casts (Fig. 6), where a perfect extreme wet forecast might result in an 
increase in the expected gross margin for the medium growth duration 
Jasmine rice of more than $1000 ha− 1 compared to those of the 
climatological condition for the same early sowing dates (Fig. 6a). 

Figs. 5 and 6 also, importantly, indicate that the seasonal precipi
tation forecasts tested here can identify optimal sowing dates for each 
variety; in most cases these differ substantially from those of the 
climatological condition. For moderate wet (moderate dry) forecasts, 
optimal sowing dates are later (earlier) than those selected based on 
average climatological conditions (i.e. an equal chance of wet, normal or 
dry conditions). Increasing forecast skill levels provide further evidence 
of value in using seasonal climate forecasts to inform management de
cisions, even where this information is imperfect (Fig. 7; also see Fig. S3 
for seasonal extreme precipitation forecasts). 

By identifying different optimal sowing dates for the different fore
casts, which may be perfect or imperfect, we can now quantify the 
economic values of the forecasts accordingly – which are the differences 
between the maximal expected gross margin of a forecast and the ex
pected gross margin of that forecast at optimal sowing date of the 
climatology (without the forecast) (equation (7)). Using seasonal pre
cipitation forecasts of moderate conditions for a rice production system 
with a medium growth duration variety such as Jasmine, significant 
average values of $87 ha− 1 and $80 ha− 1 can be achieved with the 
perfect moderate wet forecast (Fig. 8a) and the perfect moderate dry 
forecast (Fig. 8c), respectively. At current levels of forecast quality 
(around 70% accuracy), these values are, on average, $25 ha− 1 and $35 
ha− 1 for the imperfect moderate wet forecast (Fig. 8a) and the imperfect 
moderate dry forecast (Fig. 8c), respectively. Forecast values for sea
sonal extreme precipitation forecasts (Fig. 9) are larger. For instance, the 
value of a perfect extreme dry seasonal forecast is $100 ha− 1 (Fig. 9c). 

Using seasonal precipitation forecasts of moderate conditions for the 
rice production system for the short duration variety OM 5451, we find 
that significant values of $63 ha− 1 and $100 ha− 1 can be achieved with 
the perfect moderate wet forecast (Fig. 8a) and the perfect normal 
forecast (Fig. 8b), respectively. With current levels of forecast quality 

(around 70% accuracy), these values are $30 ha− 1 and $50 ha− 1, 
respectively, for the moderate wet (Fig. 8a) and normal (Fig. 8b) fore
cast. The finding that economic values of the imperfect and perfect 
moderate dry forecasts are relatively small is because the optimal gross 
margins achieved for the forecasts do not deviate much from those 
achieved at the optimal sowing date based on climatological informa
tion (Fig. 5f). However, forecast values of extreme seasonal precipitation 
forecasts (Fig. 9) are much greater, with values of $220 ha− 1 and $155 
ha− 1, respectively, for the perfect extreme wet (Fig. 9b) and perfect 
extreme dry (Fig. 9d) seasonal forecasts. 

Discussion 

The adoption of new technologies aimed at supporting decision 
making in farming systems depends on clear evidence of relevance to the 
decision-making processes of farmers and its ready availability and 
accessibility in an immediately usable format (Antle et al., 2017). We 
have developed here a novel approach that translates seasonal climate 
forecasts into actionable information for farmers to facilitate adaptation 
to climate variability and change. The climate services valuation 
framework developed in this work provides a pathway for enhanced use 
of seasonal forecasts in key climate sensitive cropping decisions. 

Seasonal climate forecast and rice crop optimum sowing date 

Climate variability and extreme climatic events are expected to in
crease in the Vietnamese Mekong Delta region, with significant negative 
impacts on farming systems dominated by rice production (Lacombe 
et al., 2012; Mainuddin et al., 2010; Kontgis et al., 2019). Adjusting the 
sowing time has been identified as an adaptive strategy to reduce the 
impacts of climate change and enhance sustainable crop production 
(Lobell et al., 2015). Optimal sowing time enables the targeting of rice 
crop growth within a period of suitable climatic conditions (Zheng et al., 
2012; Radanielson et al., 2019), mitigating the yield and economic 
impacts of adverse climatic events (Mushtaq et al., 2017; An-Vo et al., 
2018). Wet season rice crops in the Mekong delta are generally sowed in 
mid-March, but sowing dates vary amongst farmers and can range from 
early March to May (Stuart et al., 2018). 

Fig. 4. Moderate in-crop seasonal precipitation conditions for (a) a medium growth duration (Jasmine) and (b) a short duration (OM 5451) rice variety in the current 
sowing window, including means and corresponding variabilities (±1 standard deviation). Note that OM 5451 is a shorter duration crop variety and thus its cu
mulative in-crop seasonal precipitation values are less than those of for the medium duration Jasmine variety. 
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Here, we have demonstrated that rice crop yields in wet years are 
generally higher than those in normal and dry years, and also that 
average yield simulated over a period of 32 years is not representative of 
the yields achieved in extreme dry and extreme wet years. We also 
demonstrate that, while the onset of the sowing window used to achieve 
maximum yield under different classes of years was the same and relies 
generally on the onset of rainfall, the duration of the optimum sowing 
window to achieve maximum yield differs in wet and dry years. Dif
ferences in the optimal sowing window were observed among various 
seasonal climatic conditions between the two rice varieties included in 
this study. We have demonstrated that sowing windows for optimum 
productivity were wider with better seasonal precipitation (from < 10 
days in dry years to up to 30 days in wet years). In dry years, late crop 
establishment beyond the optimum sowing window led to yield losses, 
likely associated with insufficient water availability to meet crop water 
demand (Tuong and Bouman, 2003; Wang et al., 2014). In wet years, 
late sowing can be recommended; however, year to year yield variability 
in wet years was relatively large, potentially due to the additive effect of 
high temperature stress during flowering stages which may induce 
spikelet sterility thus reduce yield (Peng et al., 2008; Wassmann et al., 
2009; Butler and Huybers, 2013) and differences in solar irradiation 
(Evans and De Datta, 1979; Yang et al., 2008; Deng et al., 2015). We 
have also demonstrated here that, even with < 100% accurate seasonal 
forecasts, using the sowing window optimised for dry years potentially 

resulted in higher productivity than a sowing window informed by 
average climatological conditions. Selecting sowing dates based on 
available imperfect and perfect seasonal forecasts resulted in increased 
yields, thus also farmer revenue. This was found to be more significant 
for a cropping system using the medium duration rice variety; however, 
our results also confirm the value in using short duration varieties as an 
adaptative option when a dry year is forecast, and in drought prone 
areas as suggested by Atlin et al. (2017) and Radanielson et al. (2019). 

We have demonstrated that, even with the current level of accuracy 
of existing seasonal forecasts (around 70%), the expected economic 
value for wet season forecasts is at least $30 ha− 1 and that this may 
increase to $220 ha− 1for perfect forecasts in extremely wet years. This 
assessment framework has demonstrated, for the first time for the study 
site and the GMR, the value of seasonal forecasts in informing better rice 
cropping decisions. It also shows that the uncertainty associated with 
less than perfect (i.e. < 100% accurate or ‘imperfect’) seasonal forecasts 
should not limit their use in formulating recommendations for climate 
sensitive decisions such as suitable sowing windows, particularly when 
there is a risk of extreme wet or dry conditions compared to the average 
long term climatic conditions of the region. 

Baseline for climate services valuation 

The present evaluation provides evidence supporting and reiterating 
the value of SCFs in supporting climate smart adaptation for farming 
systems. The developed framework is a robust and objective approach 
for translating SCFs into actionable solutions for farmers and is expected 
to be an important practice in enhancing adoption of climates services 
for decision making in farming systems (Antle et al., 2017). Using the 
VMD as a case study, we have demonstrated that even imperfect SCFs of 
extreme conditions may be especially valuable and can be confidently 
communicated to inform sowing decisions in rice cropping systems. 

The present valuation also supports the need for targeted climate 
services in rice growing countries that are vulnerable to climate vari
ability and climate change impacts. It has the advantage of providing a 
reference baseline that is often lacking in climate services impact studies 
(Tall et al., 2018). Long-term data sets of weather and crop yield used 
here provide a valuable baseline for the evaluation of SCFs and the 
impact of changes in decision making (i.e. adaptation). Applying this 
framework in other rice growing areas that are vulnerable to climate 
variability (e.g. the greater Mekong delta and across Asia and Africa) 
would be very beneficial in facilitating the communication of climate 
information to farmers and supporting initiatives in climate adaptation, 
particularly where there are large uncertainties associated with climate 
forecasts (Tall et al., 2018). However, the framework relies heavily on 
data intensive approaches such as modelling and long-term climate data 
analysis that may be not always available in developing countries where 
food and nutrition security is most vulnerable to climatic risk. While 
modelling studies, including calibrated model parameters, are available 
for most rice growing areas (Gaydon et al., 2017; Li et al., 2017), long 
term weather data are often less accessible. While case studies such as 
this are needed to establish the baseline information required to effec
tively communicate the value of climate information and enhance 
climate variability and climate change adaptation for more sustainable 
and resilient agri-food systems, the present valuation can also support 
decisions at government level to invest in improved regional and na
tional weather station observation networks as well as research, devel
opment and extension programs. In addition, improvements in the skill 
of seasonal forecasts are still needed to increase forecast quality and thus 
achieve better economic and societal benefits of the forecasts locally and 
globally. 

Improved climate information for upscaling 

Increased climatic variability and associated challenges to rice pro
duction system in the Greater Mekong Region of Vietnam, and to 

Fig. 5. Expected gross margins for different sowing dates for medium growth 
duration (Jasmine, left) and short growth duration (OM 5451, right) rice va
rieties for moderate wet (a & b, respectively), normal (c & d, respectively) and 
moderate dry (e & f, respectively) forecasts at three levels of forecast quality (i. 
e. skill). Climatological results (continuous lines) are presented for reference. 
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agricultural systems globally, highlight the need for improved climate 
services. While climate information services are widespread, a number 
of factors are often cited as limiting the uptake and use of seasonal 
climate forecasts (Hewitt et al., 2020), including current levels of fore
cast reliability, the need for targeted ‘fit for purpose’ forecasts, and 
farmers’ perceptions and confidence (An-Vo et al., 2019a). In addition, 
Pope et al. (2019) have highlighted the need to more clearly establish 
the benefits and limitations of climate forecasts. Indeed, perceptions of 
forecast uncertainty are often identified as an impediment to the use of 
climate information, especially where users find probability forecasts 
hard to understand and therefore apply in their decision making. Ac
cording to Kusunose and Mahmood (2016), unless forecast uncertainty 
is explicitly and realistically incorporated into forecast use frameworks 
such as the one developed in the present work, and limitations 
explained, the gap between expected use of forecast information and 
actual adoption will likely continue. Our findings show that guidelines 
for sowing dates can be formulated using SCFs. Although the benefit and 
value of SCFs within climate services, established in the present study, is 
site-specific, the framework can be easily scaled for different sites and 
systems, as well as other climate adaptation management strategies such 
crop variety selection (Haefele et al., 2016). 

While farmers and advisers argue the need to improve seasonal 
climate forecasts (An-Vo et al., 2019a), it is obvious from this study that 
there is already significant unrealised potential in presently available 
climate information and climate services in general, which, properly 
interpreted, offers considerable economic value. Using the example of a 
climate-sensitive sowing decision related to the rice sowing window, 
this study shows how climate information, though imperfect, may be of 
significant potential value in helping rice farmers develop better stra
tegies to improve their productivity and profitability and build resilience 

in the face of increasing climate variability. It also demonstrates the 
importance of increasing the skill of seasonal climate forecasts, allowing 
farmers to make better decisions, with confidence, to manage climate 
risk and enhance production. With higher resolution of SCFs, this 
framework can provide farm specific valuation for farmers, increasing 
its usefulness for adaptation strategies on farms. Though the skill of SCFs 
has significantly increased during the last decade, further research is still 
required to improve downscaling approaches for SCFs at farm level 
(Hayashi et al., 2018). Similarly, further investment to establish the data 
environment for regional and local application is needed to scale the 
present approach to a range of climate services. There is, therefore, a key 
challenge for the global climate centers to continue to improve the skill 
of climate forecasts at a range of scales and to improve communication 
and thereby the capacity of decision makers such as farmers for 
improved decision making (Hewitt et al., 2021). 

Limitations 

The recommended optimal sowing date based on imperfect seasonal 
precipitation forecast achieved in the present work is in an expected 
economic sense rather than event-based. We acknowledge that the 
recommended sowing date migh be sub-optimal for some specific sea
sons. For example, some wet seasons may have a lot of rain early on with 
premature cessation of the monsoon; some dry seasons may have a 
delayed onset. In such dry seasons, the crop may not receive enough 
water in the critical early development stages to thrive if sown too early. 
Likewise, if sown too late in such wet seasons, the crop may not be able 
to benefit from the early season rains and may still be exposed to heat 
stress and excess evapotranspiration at the end of the season. These 
seasonal situations confirm the importance of being able to predict the 

Fig. 6. Expected gross margins for different sowing 
dates for medium growth duration (Jasmine, left) 
and short growth duration (OM 5451, right) rice 
varieties for extreme wet (a & b, respectively) and 
extreme dry (c & d, respectively) forecasts at three 
levels of forecast quality (i.e. skill). Climatological 
results (continuous lines) are presented for reference. 
For both the varieties, gross margins of imperfect and 
perfect extreme wet forecasts are relatively dimin
ished when the sowing dates range from Julian date 
80 (end March) to 100 (early April) as the risk period 
of dry spells occurring after 15 days of sowing were 
the highest among the wet years. The dry spell risk 
period also falls within the period of increasing high 
temperature stress factor and a reduced total sea
sonal radiation as the season progresses (see Fig. S2), 
reducing potential yields.   
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onset of the wet season as well as the total cumulative rainfall over a 
growing season, both of which are key factors in rain-fed rice cropping 
systems (Lacombe et al., 2012). However, the recommended sowing 
date achieved in the present work would be optimal in long-term 
average sense for the studied seasonal precipitation forecasts. 

The results of this study indicate that skilful seasonal climate fore
casts can potentially assist farmers in making seasonal climate sensitive 
decisions such as sowing date selection. However, it should be noted that 
this study has investigated just two rice varieties at one location and that 
outcomes may be sensitive to differences in location, soil type and 
pricing structure (Hammer et al., 1996); hence, further work is required 
to investigate the applicability of these findings in other locations and 
rice cropping systems. In the present study, we have only considered 
crop variety duration in the valuation of seasonal forecast in supporting 
sowing decision in wet season cropping. We have shown that use of a 
medium duration rice variety (e.g. Jasmine) might achieve higher 
returns when sown at the adaptive sowing date in dry and wet years 
compared to shorter duration varieties (e.g. OM5451) often used in wet 
season rice production systems. This finding suggests that the general 
recommendation for use of short duration varieties in climate smart 
cropping can be improved, particularly for seasons for which extreme 
conditions are forecast, with a combination of information about opti
mum sowing dates and variety choice for maximum profitability. 
Additional consideration of varieties with characteristics such as 

tolerance to drought, flash flood and waterlogging were not included in 
the present study due to limitations in the ability of the crop model to 
represent these stresses and the availability of data to quantify the level 
of tolerance of and difference between varieties. These factors are 
important determinants of the productivity of rainfed rice systems and 
are certainly relevant for further investigation. We have also explored 
the value of seasonal climate (precipitation) forecast information for just 
one decision, the sowing date. Farming involves multiple decisions, all 
of which may influence yield and profitability, and further study is 
needed to explore value in a more integrated decision-making context. 

The potential benefit of using SCFs in rice crop sowing date selection 
was estimated for the case study site and is indicative only. Estimates of 
absolute values using the framework at farm level have limitations due 
to uncertainties associated to the source of data used to inform the 
model, as well as the ability of the model to account for spatial vari
ability within the rice field. Simulations of crop yield using gridded 
weather data are also uncertain. In all instances, we have tried to reduce 
these uncertainties by using a well calibrated and validated model, 
rainfall data from the local weather station and gridded weather data 
including solar radiation and temperature from the NASA-POWER 
database, which has reportedly good agreement with local station data 
(Van Wart et al., 2013). Further application of the valuation framework 
presented here will benefit from access to local specific weather data and 
by leveraging existing modelling studies in addition to up to date 

Fig. 7. Optimal sowing dates indicated by seasonal precipitation forecasts of 
moderate conditions for medium growth duration (Jasmine) and short growth 
duration (OM 5451) rice varieties as a function of forecast quality (ranging 
from uninformed (33%) to perfect (100%) skill) for (a) moderate wet, (b) 
normal and (c) moderate dry forecasts. 

Fig. 8. Economic values of seasonal precipitation forecasts of moderate con
ditions for medium (Jasmine) and short (OM 5451) growth duration rice va
rieties by forecast quality for (a) moderate wet, (b) normal; and (c) moderate 
dry forecasts. 
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cropping systems surveys and monitoring. Improved downscaling and 
increased skill of seasonal forecasts will also help to reduce these un
certainties for farm scale and site-specific applications. 

Conclusion 

Economic valuation of climate services provides an improved tool to 
communicate and translate climate knowledge, by facilitating its 
dissemination and adoption, into actionable solutions to reduce climate 
risk. We analysed seasonal precipitation and associated rice crop yield 
responses to demonstrate the significance of seasonal rainfall variability 
and its impacts on rice crop production in the Vietnamese Mekong Delta, 
representative of the climatic conditions in the Greater Mekong Region. 
We examined rice crop yield variability in relation to the current sowing 
window of the early wet season, a critical period of regional climate 
variability, and the decision on when to sow the crop to achieve optimal 
benefits. We developed an end-to-end (integrated) seasonal forecasting 
framework to demonstrate the usefulness, and to quantify the economic 
values, of seasonal precipitation forecasts of moderate and extreme 
conditions. This is the first time such climate information has been 
developed and its value demonstrated for rice crop production in the 
region. 

Seasonal rainfall variability was found to be significant with large 
impacts on rice production (up to 3 t ha− 1) and profit (up to $1000 ha− 1) 
in the case study site. Our results indicate that the value of seasonal 
precipitation forecasts when making sowing decisions may be up to 
$220 ha− 1. A better and narrower sowing window can be recommended 
for the case study site and potentially for the region, with significant 
potential yield benefits. We demonstrated that seasonal precipitation 

forecasts provide useful information for rice farmers in selecting the best 
sowing date. The developed seasonal forecasting framework, however, 
is general – able to be applied to other climate sensitive decisions in crop 
production provided validated crop models. If a validated crop model is 
not available, the framework can also be employed with recorded data 
of yields and profits for decision making at farm. Application of the 
present approach for different climate services will facilitate commu
nication and enhance adoption of climate services by farmers and larger 
communities that are increasingly vulnerable to climate risk. We thus 
anticipate that the seasonal forecasting framework developed in this 
work has potential to improve the value and adoption of climate services 
for rice production not only in the Great Mekong Region but for rainfed 
rice growing areas globally and agricultural production systems more 
broadly. 
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