
Research Article
Hidden Geometry of Bidirectional Grid-Constrained
Stochastic Processes

Aldo Taranto and Shahjahan Khan

School of Sciences, University of Southern Queensland Toowoomba, Toowoomba, QLD 4350, Australia

Correspondence should be addressed to Aldo Taranto; aldo.taranto@usq.edu.au

Received 24 March 2021; Revised 18 April 2021; Accepted 4 May 2021; Published 25 May 2021

Academic Editor: Marek T. Malinowski

Copyright © 2021 Aldo Taranto and Shahjahan Khan. *is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Bidirectional Grid Constrained (BGC) stochastic processes (BGCSPs) are constrained Itô diffusions with the property that the
further they drift away from the origin, the more the resistance to movement in that direction they undergo. *e underlying
characteristics of the BGC parameter Ψ(Xt, t) are investigated by examining its geometric properties. *e most appropriate
convex form forΨ, that is, the parabolic cylinder is identified after extensive simulation of various possible forms.*e formula for
the resulting hidden reflective barrier(s) is determined by comparing it with the simpler Ornstein–Uhlenbeck process (OUP).
Applications of BGCSP arise when a series of semipermeable barriers are present, such as regulating interest rates and chemical
reactions under concentration gradients, which gives rise to two hidden reflective barriers.

1. Introduction

In the work of Taranto et al. [1], the concept of Bidirectional
Grid Constrained (BGC) stochastic processes (BGCSPs) was
described as a general Itô diffusion, in which the further it drifts
away from the origin, the more constrained the Itô diffusion(s)
becomes. In this paper, we extend that research by geometrically
examining various potential forms of Ψ(Xt, t) and showing
that the parabolic cylinder is the ideal form for BGCSP.All other
researches on BGCSPs examine the application of BGSCPs to
algorithmic trading, so this paper extends the probability theory
aspects of BGCSP. We note that, for an arbitrary stochastic
function h, the following notations are equivalent:

h(X(t)) � h(X, t) � h Xt(  � h Xt, t( , (1)

and the last of these is adopted here.We will also interchange
between

Ψ Xt, t(  � Ψ(x, t) � Ψ(x), (2)

depending on the specific context. *e stochastic differential
equation (SDE) of BGC stochastic processes was defined as
follows.

Definition 1 (Definition I of BGC Stochastic Processes). For
a complete filtered probability space (Ω,F, F{ }t≥0,P) and a
BGC function Ψ(x): R⟶ R, ∀x ∈ R, the corresponding
BGC Itô diffusion is expressed as

dXt � f Xt, t(  −sgn Xt Ψ Xt, t( 
√√√√√√√√√√√√√√

BGC

⎛⎝ ⎞⎠dt + g Xt, t( dWt,

(3)

where sgn[x] is the sign function defined in the usual sense,
f(Xt, t) is the drift term, Ψ(Xt, t) is the constraining term,
g(Xt, t) is the diffusion term, and f(Xt, t), Ψ(Xt, t), and
g(Xt, t) are convex functions.

To visualize the impact of BGC stochastic processes,
1000 Itô diffusions were simulated both with and without
BGC, with unit diffusion coefficient σ(Xt, t) for negative,
zero, and positive drift μ(Xt, t) coefficients. Figure 1 shows
this when μ(Xt, t) � 0, σ(Xt, t) � 1, and Ψ(Xt, t) is the
parabolic cylinder, so that one can see the hidden upper
barrierBU and hidden lower barrierBL emergemore clearly
than is the case when using other coefficients.

Hindawi
Journal of Probability and Statistics
Volume 2021, Article ID 9944543, 13 pages
https://doi.org/10.1155/2021/9944543

mailto:aldo.taranto@usq.edu.au
https://orcid.org/0000-0001-6763-4997
https://orcid.org/0000-0002-0446-086X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9944543


Remark 1. From Figure 1, we immediately see the signifi-
cance and applications of this research by being able to
constrain stochastic processes within two reflective barriers.
However, unlike the existing research in this established
field, BGCSPs do not specify the barriers upfront, only the
constraining mechanism of Ψ(Xt, t). So, for a rough ex-
ample, rather than central banks constraining their interest
rates directly between two predefined (and sometimes ill-
advised) levels, BGCSPs just require how the constraining is
to occur. *e barriers emerge as the extremes of where the
process can drift towards with increasing resistance.

Remark 2. *e drift f(Xt, t) and diffusion (or volatility)
g(Xt, t) terms reflect the instantaneous mean and standard
deviation, respectively. It must also be noted from Figure 1
that even when a generalized Itô diffusion is reduced to a
single Wiener process by setting f(Xt, t) � 0 and
g(Xt, t) � 1, BGC still impacts the stochastic process.

It is from these observations that an alternative defini-
tion to (3) can be stated as follows.

Definition 2 (Definition II of BGC Stochastic Processes). For
a complete filtered probability space (Ω,F, F{ }t≥0,P) and a
BGC function Ψ(x): R⟶ R, ∀x ∈ R, the corresponding
BGC Itô diffusion can be expressed as

dXt � f Xt, t( dt + g Xt, t(  −sgn Xt Ψ Xt, t( 
√√√√√√√√√√√√√√

BGC

⎛⎝ ⎞⎠dWt,

(4)

where sgn[x] is defined in the usual sense, f(Xt, t) is the
drift term, g(Xt, t) is the diffusion term, Ψ(Xt, t) is the
constraining term, and f(Xt, t), g(Xt, t), and Ψ(Xt, t) are
convex functions. □

Remark 3. In the work of Taranto et al. [1], only 2 decimal
places were used, and some readers may argue that this is a

low level of precision for simulation results to be robust. To
show that the discretization effect present in BGC stochastic
processes is not due to such rounding errors, all our sim-
ulations were rerun to ten times more precision (i.e., to 20
decimal places), and it was found that the discretization or
banding effect of BGC was still present, so it is a real
phenomenon. More shall be discussed about this in the
Results and Discussion section.

*is paper will answer two main objectives:

(1) What are the key properties of Ψ(Xt, t) which are
relevant in BGC stochastic processes?

(2) What is the formula for the hidden reflective lower
barrier BL and the hidden reflective upper barrier
BU in relation to Ψ(Xt, t)?

Before these objectives are addressed in theMethodology
section, the relevant research is examined.

2. Literature Review

Constraining Discrete Random Walks. Constrained sto-
chastic processes have been applied to game theory (Feller
[2]) and conditional Markov chains of this type have also
been applied to biology, branching processes (Ferrari et al.
[3]), molecular physics (Novikov et al. [4]), medicine (Bell
[5]), and queuing theory (Böhm and Gopal [6]) to name a
few. Weesakul [7] discussed the classical problem of random
walks restricted between a reflecting barrier and an ab-
sorbing barrier. Lehner [8] studied 1-dimensional random
walks with a partially reflecting barrier using combinatorial
methods. Gupta [9] introduced the concept of a multiple
function barrier (MFB), where a state can either absorb,
reflect, let through (transmit), or hold for a moment along
with its corresponding probabilities. Dua et al. [10] found
the bivariate generating functions of the probabilities of a
random variable reaching a certain state under different
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Figure 1: Itô diffusions with & without BGC. *e zero drift in (a) is constrained in (b) the more it deviates from the origin, causing the
hidden reflective upper barrier BU and hidden reflective lower barrier BL to emerge, together with horizontal bands to form due to the
discretization effect of BGC.
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conditions. Percus [11] considered asymmetric random
walks, with one or two boundaries, on a 1-dimensional
lattice. El-Shehawey [12] obtained absorption probabilities
at the boundaries for random walks between one or two
partially absorbing boundaries, using conditional
probabilities.

Constraining Continuous Wiener Processes. Dirichlet studied
the first boundary value problem, for the Laplace equation,
proving the uniqueness of the solution and this type of
problem in the theory of partial differential equations
(PDEs). *is was later named the Dirichlet problem after
him (Gowers et al. [13]). Problems expressed within this
framework were studied as early as 1840 by C.F. Gauss and
then by Dirichlet [14]. Kurtz [15] formulated a means for
constraining Markov processes. L’epingle [16] expanded
upon previous research on barriers, which included
boundary behavior of constrained Wiener processes be-
tween reflecting and repellent barriers. Majumdar et al. [17]
derived the time taken to reach the maximum for a variety of
constrained Wiener processes. Ormeci et al. [18] examined
the constraining of Wiener processes via impulse control.
Budhiraja and Dupuis [19] added necessary and sufficient
conditions for the stability of such constrained processes.
*e same authors studied large deviations for various
metrics of reflecting Wiener processes under constraining
(Budhiraja and Dupuis [20]). Kharroubi et al. [21] con-
strained the jumps of Backward SDEs.

Whilst BGCSPs are relatively new, they do have appli-
cations in many areas, the most prominent being mathe-
matical finance, investment algorithms, and quantitative
trading (Taranto and Khan [22–25]). *ese have so far been
defined in terms of 1-dimensional discrete random walks
and continuous Itô diffusions but extend to the n-dimen-
sional spaceRn. *e constraining of such complex processes
under multiple dimensions, variables, features, attributes, or
columns in the context of machine learning (ML) essentially
can be reduced to stochastic optimization. For example,
under ML techniques such as Artificial Neural Networks
(ANN), Deep Learning (DL), and Artificial Intelligence (AI),
which have been extensively used in algorithmic trading,
they essentially boiled down to finding the global maximum
or global minimum of an n-dimensional surface. *e ge-
ometry of such surfaces is thus not just an academic
mathematical exercise but one that can shed light on when
such algorithms can work and also when they can suddenly
become ineffective.

We are now in a position to examine the geometry of the
random variable X as constrained by Ψ(Xt, t) and its
ramifications for BGCSP.

3. Methodology

3.1. Convexity of BGC. From (4), we know that Ψ(Xt, t)

needs to be a convex function and, specifically, centered
about the origin. *is is to ensure that the constraining
applies increasing monotonic resistance to the Itô diffusion
in both directions (i.e., bidirectionally). For example,
Ψ(x, t) � et would not be sufficient because whilst et is

convex (as shown by having a line bisecting any two points
on its curve), et does not increase as t↓ −∞ as it does when
t↑ +∞. *is gives rise to the need for the following clas-
sification of convexity.

Definition 3 (types of convexity). If Ψ(x): R⟶ R and
Ψ(x) ∈ C2, then we can characterize (Zalinescu [26],
Bauschke and Combettes [27]) its convexity as follows:

(1) Ψ(x) is convex if and only if Ψ″(x)≥ 0, ∀x ∈ R
(2) Ψ(x) is strictly convex if and only if Ψ″(x)> 0,
∀x ∈ R

(3) Ψ(x) is strongly convex if and only if Ψ″(x)≥m> 0,
∀x ∈ R.

We will require a new type of (subset) convexity for
BGCSP.

Definition 4 (bidirectional convexity). If Ψ(x): R⟶ R

and Ψ(x) ∈ C2, then we can characterize its convexity as
follows:
Ψ(x) is bidirectionally convex if and only if Ψ″(x)> 0

and Ψ(x) � Ψ(−x), ∀x ∈ R.
To establish some use cases to explore the convex ge-

ometry of potential BGC functions for Ψ(x, t), we plot their
surfaces in Figures 2 and 3 and deduce which specific type of
convexity definition is required for BGCSP.

We examine five main types of bidirectionally convex
functions in R3, as shown in Figures 2 and 3:

(1) Use Case I was not adopted because it constrains the
Itô diffusion evenly and uniformly but not rapidly
enough with the unconstrained Itô diffusions’ iter-
ated logarithm bounds growth rate. *is is to the
point that the before and after BGC plots (see Figure
4(a)) look very similar and do not constitute a
practical and worthwhile BGC process.

(2) Use Case II is definitely the ideal function for BGC
and so we will dedicate much of the Methodology
section and the Results and Discussion section to the
parabolic cylinder.

(3) Use Case III examines how the standard convex ex

will not suffice because Ψ(x, t) needs to be “Bidi-
rectional”; that is, it must be amirror reflection about
the origin X � 0 all the time. Hence, ex + e− x was
used, yet, due to the fast growing nature of the ex-
ponential function, it constrains the Itô process too
much for it to be a useful function for BGC (even
when it is scaled down by a constant ω or many other
possible variations of e±x ), as will be elaborated
further in the Results and Discussion section
(Figure 4(b)).

(4) Use Case IV was also presented here because it is a
transition from no constraining to a gradual para-
bolic cylinder. Such a surface was proposed for
applications in which Itô diffusions not constrained
so much initially and which become increasingly
more constrained over time are required. However,
as will be detailed further in the Results and
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Discussion section (Figure 4(c)), this did not pro-
duce the hidden barriers that bound an Itô diffusion
from both above and below.

(5) Use Case V is the final example that is worth dis-
cussing, as shown in Figure 3.

From Figure 3, we note that y � x2n, ∀n ∈ N, will always
result in a polynomial cylinder as 2n will always be an even
exponent. For odd exponents y � x2n+1, ∀n ∈ N, one can
simply replace this with y � |x|2n+1. In general, y � |x|n will
be a polynomial cylinder that will always be convex and
“Bidirectional,” ∀n ∈ N. As will be elaborated in the Results
and Discussion section in Figure 4(d), the polynomial cyl-
inder was not suitable as a BGC function for general

unconstrained Itô diffusions but can be scaled to suit one’s
specific unconstrained Itô diffusion.

Remark 4. It is clear by now that not any convex function
can be appropriate for BGC. An example of this would be
y � x2 + t2, where it is clearly and bidirectionally convex but
not constant or “cylindrical” over time and does not re-
semble any natural regime to constrain the stochastic
processes uniformly over time. It is thus clear now that BGC
requires the bidirectionally convex definition and, in par-
ticular, bidirectionally convex cylinders.

Having explored the nature of X as determined by
Ψ(x, t) which lies in R3, we notice that our Itô process in X

10

8

6

4

2

0
–10

–5
0

5
10

10

20

Y

0X

T

(a)

10

8

6

4

2

0
–10

–5
0

5
10

10

20

Y

0X

T

(b)

10

8

6

4

2

0
–10

–5
0

5
10

10

20

Y

0X

T

(c)

10

8

6

4

2

0
–10

–5
0

5
10

10

20

Y

0X

T

(d)

Figure 2: Use Cases I–IV: surface plots of potential convex BGC functionΨ(x, t). (a) Use Case I: wedge. (b) Use Case II: parabolic cylinder.
(c) Use Case III: double exponential cylinder. (d) Use Case IV: hybrid of flat plane and parabolic cylinder.
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Figure 3: Technique to generate convex BGC polynomial cylinders (a). Cubic cylinder (b). Use Case V: spliced polynomial cylinder(s). (a)
*e cubic cylinder is concave for negative X values and convex for positive X values. (b) By forcing the negative values to be positive by the
absolute value function, the entire function becomes convex and is Bidirectional of the polynomial cylinder variety (in this case a cubic
cylinder). It is as if the positive part of the cubic cylinder was spliced in to replace the negative part. (a) y � (x3/w1) + w2, w1 � 200, w2 � 5.
(b) y � (|x|3/w1) + w2, w1 � 200, w2 � 5.
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Figure 4: Potential convex candidates forΨ(Xt, t). Blue: without BGC; red: with BGC 10,000 unconstrained and 10,000 BGC Itô diffusions
simulated. All the potential BGC functions Ψ(Xt, t) are not suitable for the standard Itô diffusions of BGCSP, even though they are
bidirectionally convex, except for (c). (a) and (c) were rejected, since they do not constrain Xt to constant hidden barriers. (b) and (d) were
rejected because whilst there is some initial evidence of constant hidden barriers, they become unstable over time and explode to ±∞, faster
than unconstrained Itô diffusions. (a) y � |x|. (b) y � (e∞ + e−∞)/θ, θ � 2000. (c) y � (x2t/θ), θ � 200. (d) y � (|x|3/θ1 + θ2), θ1 � 200.
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is a 1-dimensional stochastic process in R, where when it
propagates over time, it does so in R2. *e way we can see
how the 3DΨ(x, t) constrains the 1D Itô process in 2D is via
the projection of Ψ(x, t) onto theR2 plane via contour plots,
as shown in Figures 5 and 6.

From Figure 5, it is much clearer to see how Ψ(x, t)

constrains the Itô process as Xt propagates over time, where
the lighter the colour, the greater the resistance and hence
the greater the constraining impact due to BGC. *is is also
shown in the contour plots of Figure 6.

From these contour plots, we see how the convexity
forms a series of decreasing semipermeable barriers (i.e.,
increasing reflection) on the Itô process. We now examine
the effect that this has on the actual hidden reflective bar-
riers, BL and BU.

Remark 5. Note that an alternative to the 3D surface in-
ducing the 2D contours is the 3D surface inducing the 3D
and 2D vector fields, as shown in Figure 7.

From Figure 7, we see that the constraining on R2

(specifically R × R+) can also be induced by the parabolic
cylinder of Ψ(Xt, t) and its associated vector field. As the Itô
process propagates through the vector field, the greater the
vector magnitudes, the greater the resistance force of re-
flection back to the origin.

*is novel concept has been researched recently but in
reverse by Simpson and Kuske [28], by modelling a constant
variable into a random vector field to induce a stochastic
process. Specifically, they show how a Flippov system near a
switching manifold (due to the meeting of vector fields)
attracts orbits or constant variables in the absence of ran-
domness to create stochastic flow within the field. □

3.2. Hidden Barriers of BGC Stochastic Processes. Whilst
Figure 1(b) shows that the detailed nature of the hidden
reflective BGC varies, we only plotBL andBU to better help
derive the formulation of the barriers, as shown in Figure 8.

From Figure 8, we see that the BGC hidden reflective
barriers are regulated to one’s desired distance from the
origin by altering the A parameter and are regulated in their
climb rate from the origin to the barrier by altering the θ
parameter.

Remark 6. Note that these barriers are not the traditional
constant reflective barriers such as X � a or X � b because
the BGC Itô diffusions are bounded within these noncon-
stant barriers even as they depart from the origin (i.e., the
unconstrained Itô diffusions exceed these barriers, even near
the origin), hence the initial curvature in the barriers. *is is
generalized in the following theorem.

Theorem 1 (Hidden Barriers of BGC Stochastic
Processes). For a complete filtered probability space
(Ω,F, F{ }t≥0,P) and a BGC function Ψ(x): R⟶ R,
∀x ∈ R, the corresponding BGC Itô diffusion is expressed as

dXt � f Xt, t(  −sgn Xt Ψ Xt, t( 
√√√√√√√√√√√√√√

BGC

√√√√√√√√√√√√√√√√√√√√√√
μ(Xt,t)

⎛⎜⎜⎝ ⎞⎟⎟⎠dt + g Xt, t( 
√√√√√√
σ(Xt,t)

dWt,

(5)

for t ∈ [0, T], where sgn[x] is the sign function defined in the
usual sense, f(Xt, t) is a drift term,Ψ(Xt, t) is the BGC term,
g(Xt, t) is the diffusion term, and f(Xt, t), Ψ(Xt, t), and
g(Xt, t) are bidirectionally convex functions. 8en the hidden
lower barrier BL and hidden upper barrier BU are defined
∀ω ∈ Ω as

BL � 
∞

0
inf
0≤t≤T

Wt(ω) dt,

BU � 
∞

0
sup
0≤t≤T

Wt(ω) dt,

(6)

and they are estimated by

BL ≥ − A 1 − e
− θT

 ,

BU ≤A 1 − e
− θT

 ,
(7)

where A, θ ∈ R are constants, A is the distance from the origin
to the barrier(s), and θ is the rate of growth towards the
barrier(s).

Proof. To some readers, (7) is obvious just by looking at
Figure 8(a) simply because the function must asymptote
horizontally (exponentially) towards the barrier(s). How-
ever, this does not constitute a proof because we have a
stochastic (and not a deterministic) process. Assume for a
moment that the above BGC SDE is a simpler object in
which μ(Xt, t) and σ(Xt, t) are constant, where the drift
function μ(x): R⟶ R and the diffusion function
σ(x): R⟶ R, ∀x ∈ R, in the limit approach the typical
constant expressions for the drift and diffusion coefficients,
limx⟶∞μ(x)⟶ μ, and limx⟶∞σ(x)⟶ σ. We now
start to see the resemblance between our BGC Itô process
and the simpler Ornstein–Uhlenbeck process (OUP):

dXt � κ α − Xt( 
√√√√√√√√

μ(Xt,t)

dt + σdWt,
(8)

where α is the long-term mean and κ is the “attraction rate”
or speed of mean-reversion, both of which are constants, as
depicted in Figure 9.

From Figure 9, we can see that the total number of paths
(as shown in blue and red) is preserved in each of the three
schemes. (4) is (3) repeated for convenience and (4) is
similar to (7), where κ(α − Xt) in OUP is replaced by κ(α −

sgn[Xt]Ψ(Xt, t)) in BGCSP (with κ � 1 and α � f(Xt, t)),
which caters for a much wider set of possible paths than is
possible with OPU and yet BGCSP has sgn[Xt]Ψ(Xt, t)

instead of Xt. Multiplying (7) by eκt and expanding gives
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Figure 5: Contour plots of main use case candidates for BGC. (a) y � |x|. (b) y � (x2/w), w � 10. (c) y � ((e∞ + e−∞)/w), w � 2000. (d)
y � (x2t/w), w � 200. *e Z scale shows the 3D surface’s height as it is mapped ontoR2 and ω is a scaling function. (a) Use Case I: contour
of a wedge. (b) Use Case II: contour of a parabolic cylinder. (c) Use Case III: contour of a double exponential cylinder. (d) Use Case IV:
contour of a hybrid of flat plane and parabolic cylinder.
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Figure 7: Vector fields induced by BGC constraints. Just as in Figure 5(b) for the 2D contour map induced by the 3D parabolic cylinder
surface, here the 3D vector field in (a) also induces a constraining force on the 2D vector plot in (b). (a) BGC vector field in R3. (b) BGC
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e
κtdXt + κe

κt
Xtdt � καe

κtdt + σe
κtdWt,

d e
κt

Xt  � καe
κtdt + σe

κtdWt,


T

0
d e

κt
Xt  � 

T

0
καe

κtdt + 
T

0
σe

κtdWt,

e
κT

XT − e
0
X0 � κα

e
κT

− e
0

κ
+ σ 

T

0
e
κtdWt,

XT � X0e
−κT

+ α 1 − e
− κT

  + σ 
T

0
e

−κ(T− t)dWt.

(9)

Having solved the OUP SDE, we wish to determine
where Xt is most likely to be for t � T. Taking the expec-
tation of both sides,

E XT  � E X0e
−κT

+ α 1 − e
−κT

  + σ
T

0
e

−κ(T− t)dWt  � X0e
− κT

+ α 1 − e
− κT

 , (10)

as e− κ(T− t) is deterministic. Since X0 � 0 for all BGCSPs, we
will set all OUPs to start from the origin, giving

E XT  � α 1 − e
− κT

 . (11)

We now have a stochastic argument that is a basis to
justify (6). Assume that, for greatest generality,

BL � −A 1 − e
− θT

  + C,

BU � A 1 − e
− θT

  + C.
(12)

We know that since Xt is Bidirectional, it is symmetric
about the origin and so C � 0. By comparing (12) with (11),
we can see that

A 1 − e
− θT

  ∼ α 1 − e
− κT

 , A ∼ α, θ ∼ κ, (13)
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Figure 8: BGC hidden reflective barriers identified. Orange: A � ±25, green: A � ±30, purple: A � ±35. (a) BL � −A(1 − e− θT),
BU � A(1 − e− θT), θ � 0.01. (b) *e rate of change of the barriers, that is, (dBL/dt) and (dBU/dt).
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Figure 9: BGC hidden reflective barriers relation to Ornstein-Uhlenbeck process. (a) Idealized BGC process: BGCSP involves Itô processes
that start at an initial position x0 � 0, where the further they drift away from the long run mean X � 0, the slower they will approach the
hidden barriersBL andBU, where x0 >BL and x0 <BU. (b) Idealized hybrid between BGCSP and OUP: via the reflection principle, we can
better see the transition between the other two paradigms. (c) Idealized Ornstein-Uhlenbeck process: OUP involves Itô processes that can
start at any initial position x0 ∈ R and will “gravitate” to the long-term mean α.
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Figure 10: Ideal selection ofΨ(x, t) for BGC. Blue: unconstrained Itô process; red: BGC Itô process. 10,000 unconstrained and 10,000 BGC
Itô diffusions simulated for ω � 100 in Ψ(Xt, t) � (x2/ω). As more and more BGC Itô processes are added to the plot, the ideal hidden
reflective barriers of BGCSP emerge, confirming that BL � −A(1 − e− θT) and BU � A(1 − e− θT), where A controls the position of the
barrier(s) and θ controls the speed at which the BGC Itô process reaches the hidden reflective barrier. In this plot, A � 25 and θ � 0.01, but
these can be altered to suit one’s BGC needs.
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Figure 11: Parabolic cylinder expression of Ψ(Xt, t) for three different values of A for BL and BU. Orange: inner-most barriers; green:
middle barriers; purple: outer-most barriers. 10,000 BGC Itô diffusions simulated for various values of ω in Ψ(Xt, t) � (x2/ω). *e general
formula for a hidden reflective BGC barrier for a parabolic cylinder is further validated asBL � −A(1 − e− θT) andBU � A(1 − e− θT), where
θ � 0.01 and A � 25 for orange, A � 30 for green, and A � 35 for purple. Note that, for Ψ(x, t) � (x2/ω), ω � 80 for orange, ω � 100 for
green, and ω � 120 for purple.
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where ∼ signifies a weak association. Since BGCSPs do not
“force” the Itô diffusion to the long-term mean α, the time
taken to reach α or −α under BGC would be greater than for
OUP. Hence, in terms of distance,

BL ≥ − A 1 − e
−θT

 ,

BU ≤A 1 − e
−θT

 .
(14)

□

Remark 7. A ∼ μ is intuitive because the greater the drift |μ|,
the greater A and hence |B|, that is, BL and BU. We also
notice that the diffusion term σ does not contribute as much
to |B|. We also know by some experimentation that
θ ∈ [0, 1].

To extend [1] further, the BGCSP algorithm (Section 3.2)
is derived and simulated in the Results and Discussion
section, in Figures 4, 10, and 11 (Algorithm 1).

4. Results and Discussion

At this stage, we know that Use Cases I, III, IV, and V are not
valid candidates for the correct type of convexity for general
Ψ(Xt, t), but, for various exotic forms of Itô diffusions, such
as the Cox-Ingersoll-Ross (CIR) process, these use cases that
may be sufficient to BGC the Itô process within two hidden
barriers. We also have a theoretical appreciation of what
other forms of Ψ(Xt, t) are valid and invalid candidates.

On the other hand, we also know that Use Case II, the
parabolic cylinder, is the ideal type of convexity for general
Itô diffusions. To confirm this and further eliminate any
remaining use cases, we simulate them in Figure 4.

From Figure 4, in (b) and (d), we see that a certain
amount of constraining is occurring and that the BGC never
exceeds the original simulation paths. However, we also see
in (d) that whilst there is some BGC initially, after some time
the hidden barriers are unstable.

(1) # Pseudocode based on R.
(2) INPUT:
(3) μ � drift, σ � diffusion, i � simulation index, s � #simulations � 10, 000,

t � time steps � 1001, j � time index, Print Simulations � TRUE
(4) OUTPUT:
(5) ID value⟵matrix(0: 0, nrow � TimeSteps, ncol � Simulations)
(6) CX⟵matrix(0: 0, nrow � TimeSteps, ncol � Simulations)
(6) T 1000⟵matrix(0: 0, nrow � Simulations, ncol � 1)

(8) T⟵matrix(0: 1000, nrow � TimeSteps, ncol � 1)

(9) t � 1
(10) i � 1
(11) for (i � 1: Simulations) do
(12) t � 1
(13) for (t � 1: TimeSteps) do
(14) if (t �� 1) then
(15) CX[t, i]⟵ 0
(16) ID value[t, i]⟵ 0
(17) else
(18) #dt � (t/TimeSteps)
(19) dt � 0
(20) DW � rnorm(n � 1,mean � 0, sd � 1)

(21) dW � DW

(22) t 1 � t − 1
(23) XX⟵ (μ∗dt + σ∗dW)

(24) CX Now⟵CX[t 1, i] + XX

(25) CX[t, i]⟵CX Now
(26) if (CX Now> 0) then
(27) ID value[t, i]⟵ (CX Now − CX Now∗CX (Now/100))

(28) else
(29) ID value[t, i]⟵ (CX Now + CX Now∗CX (Now/100))

(30) end if
(31) end if
(32) end for
(33) if (Print_Simulations��TRUE) then
(34) plot(T, ID value[, i], type�′′l′′, ylim � c(yMax, yMin))

(35) else
(36) lines(T, ID value[, i], type�″l′′, ylim � c(yMax, yMin))

(37) end if
(38) T 1000[i]⟵ sum(ID value[, i])

(39) end for

ALGORITHM 1: Bidirectional Grid Constrained (BGC) stochastic processes.
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In (a) and (c), there is no real effective constraining, since
the BGCSP is now hyperextended from the original simulation
paths and so there are no hidden reflective barriers either.
When Ψ(Xt, t)≫Xt (where Xt is the unconstrained Ito
diffusion and ≫ signifies domination), there will be a point in
time where Xt will flip over the origin and the contribution
from the drift will be eclipsed by the Ψ(Xt, t) term. We thus
have Ψ(Xt, t) becoming the dominant drift term that will
explode the Itô diffusion beyond where the unconstrained Itô
diffusion would reach, away from the origin.

We now examine the parabolic cylinder in far greater
detail, as shown in Figure 10.

From Figure 10, we see that the hidden reflective BGC
barriers can constrain the Itô diffusion(s) indefinitely as it is
“trapped” within the barriers. *is assumes that there are no
sudden jumps (as is the case in jump-diffusion models) or
changes in Xt or inΨ(Xt, t). To examine this in even further
detail, we simulate again for different parameters, as shown
in Figure 11.

From Figure 11, there is a region about the time axis that
not many simulation paths visit, supporting the notion that
as the paths approach the hidden barriers, they end up being
“trapped” near that boundary. Also notice how there is
banding or discretization about various local times which get
compressed the further they are from the origin. *e local
times seem to coincide or line up most near the time axis
regardless of ω.

5. Conclusions

*is paper has extended the available research on BGCSPs
by investigating the hidden geometry of the constraining
BGC function(s). *e parabolic cylinder was found to be the
ideal constraining mechanism for the parameter Ψ(Xt, t),
for the most general unconstrained Itô diffusions. *e
constraining geometry must be convex but not any ordinary
convex function will suffice. *e novel “bidirectionally
convex” definition was defined and adopted. *e formulas
for the lower hidden reflective barrier BL and the upper
hidden reflective barrier BU were derived. *is helps es-
tablish a linkage between Ψ(Xt, t) of the form (x2/ω) and
the resulting BL and BU. By solving the Ornstein-Uhlen-
beck process (OUP), we have been able to show the linkage
between OUP and the Langevin SDE, in relation to BGCSP’s
hidden barriers.

*is research has applications in many fields, such as in
finance where exchange rates can be constrained by “par-
abolic cylinder” monetary policies, such as “keep the AUD/
NZD exchange rate within a range by regulating the amount
of Government debt, the more it approaches the range
boundaries.” Rather than prespecifying the boundaries, one
can now specify just the transitions towards the unknown
boundaries that can be estimated in advance. How the
transition occurs is thus more important than what the final
extremes (barriers) are. Future research in BGC can involve
BGC of other important Itô diffusions from other research
fields and finding estimates for the distribution of the first
passage time (FPT) for when BL and BU are most likely to
be first hit.
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