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Abstract
Biometric recognition is a widely used technology for user authentication. In the appli-
cation of this technology, biometric security and recognition accuracy are two important
issues that should be considered. In terms of biometric security, cancellable biometrics is
an effective technique for protecting biometric data. Regarding recognition accuracy,
feature representation plays a significant role in the performance and reliability of
cancellable biometric systems. How to design good feature representations for cancellable
biometrics is a challenging topic that has attracted a great deal of attention from the
computer vision community, especially from researchers of cancellable biometrics.
Feature extraction and learning in cancellable biometrics is to find suitable feature rep-
resentations with a view to achieving satisfactory recognition performance, while the
privacy of biometric data is protected. This survey informs the progress, trend and
challenges of feature extraction and learning for cancellable biometrics, thus shedding
light on the latest developments and future research of this area.
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1 | INTRODUCTION

Biometric recognition is a well‐known technology to authen-
ticate the identity of a person using their biological traits [1]
(e.g. face, fingerprint and iris). Biometric recognition systems
are widely used in various applications, such as access control
[2], healthcare [3], Internet of Things [4]. Because biometric
data are unique and permanent for every individual and cannot
be forgotten, lost, or passed on to others, these characteristics
make biometric recognition more advantageous than tradi-
tional authentication systems that are based on knowledge or
possession [5]. A typical biometric recognition system usually
includes two phases—enrolment and verification/identifica-
tion [6]. Specifically, in the enrolment phase, biometric systems
capture, store and process users' biometric data. This typically

involves users presenting a sample of their biometrics (e.g.
fingerprint or face) to the biometric system. The system would
then process the sample and create a biometric template,
namely a digital representation of each user's unique biometric
information. The template is stored in a database together with
other relevant personal information, such as the user's name
and ID number. During the verification or identification phase,
the biometric system handles another biometric input (i.e. a
query's biometric), compares it with the stored template and
determines the outcome of acceptance or rejection.

Despite the benefits associated with the use of biometrics,
the storage of raw biometric data raises privacy and security
concerns, such as data breach [7], privacy invasion and identity
theft [8]. If raw biometric templates are stored without pro-
tection, the original biometric data would be at risk of being
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compromised. Attackers breaking into biometric databases
could acquire the biometric data of registered users and
eventually impersonate them to access the corresponding
authentication system [5]. What is even worse is that biometric
data cannot be changed like passwords. Once compromised,
they are lost forever. There are a number of ways to protect
biometric data through biometric security techniques, among
which cancellable biometrics is a commonly used and effective
technique. In the enrolment phase, the original template data
are intentionally distorted by an irreversible transformation
function. The same irreversible transformation is applied to
query data in the verification or identification phase. The
transformed template and query data are matched in the
transformed domain [9]. In other words, cancellable biometrics
use transformed biometric data rather than the original data for
authentication purposes [10]. If a set of biometric data is found
to be corrupted, they can be revoked and replaced by a new set
of biometric data. The ISO/IEC 24745 standard [11] sets
some key criteria for cancellable biometrics [12, 13]. They are:

� Unlinkability: Distinct templates produced from a user's
biometrics should be specific to an application. No similar
transformed templates can be used in more than one
application.

� Non‐invertibility: To protect the privacy of biometric data, it
should not be computationally feasible to restore the orig-
inal biometric data from transformed templates.

� Revocability (or renewability): As an essential property of
cancellable biometrics, revocability refers to revoking a
compromised biometric template and replacing it with a
new one.

� Performance: Template protection techniques should not
worsen the recognition performance of biometric systems.
That is, recognition accuracy should be comparable before
and after feature transformation for cancellable biometrics.

In this survey paper, we focus on feature extraction and
learning approaches to achieving good recognition perfor-
mance in cancellable biometrics [14], while preserving the
privacy of biometric data. The taxonomy of feature represen-
tation is studied from a number of viewpoints. A compre-
hensive review is conducted on the following three aspects:
types of cancellable transformation functions, feature extrac-
tion and learning approaches and performance comparisons of
cancellable biometric systems that use these feature extraction
and learning approaches.

1.1 | Motivation and contributions of this
work

1.1.1 | Motivation

In order to demonstrate our motivation and in particular,
distinguish this survey from other surveys, we first summarise
relevant existing review articles. Choudhary et al. [15] analysed
various feature extraction methods for iris recognition and

compared the performance of different feature extraction
methods. Pflug and Busch [16] surveyed the algorithms of ear
detection and recognition using both 2D and 3D images. Many
feature extraction methods are introduced and discussed. Fei
et al. [17] reviewed the feature extraction of different types of
palmprint images, and studied the feature representation and
recognition of palmprints. The authors also analysed the
theoretical side of feature extraction and matching methods for
different types of palmprint images. Prabakaran and Shyamala
[18] described and evaluated the performance of many voice
recognition techniques, especially various feature representa-
tions and the extraction of features from digital voice signals.

Zhang et al. [19] gave a thorough review of sparse feature
representations, where existing algorithms are empirically
classified into four categories. The rationale of the algorithms
in each category is analysed and summarised, elucidating the
underlying properties of the sparse feature representation
theory. In addition, an experimental comparative investigation
into these sparse feature representation algorithms is con-
ducted. Sundararajan and Woodard [20] surveyed the impact of
deep learning and feature learning on biometrics. About 100
deep learning approaches to the recognition of individuals
using a range of biometric modalities are examined in this
study. The authors found that the majority of deep learning
studies in biometrics are focused on face and speaker recog-
nition. Wang et al. [21] reviewed cognitive biometrics, covering
most biosignature patterns and applications. The authors first
devised a taxonomy to build the respective knowledge and
steer the investigation, and then provided a unified view of
methodological advances from signal acquisition and pre-
processing to feature learning and pattern recognition.

As shown above, while several existing surveys cover the
feature extraction and learning of specific biometric traits (e.g.
iris [15], palmprint [17] and voice [18]), as well as deep
learning‐based feature learning for biometrics [20], none of
them have specifically investigated feature extraction and
learning for cancellable biometrics. In contrast to the con-
ventional feature extraction and learning approaches, cancel-
lable biometrics‐related feature extraction and learning include
additional constraints, such as performance retain, and irre-
versibility, which makes our survey paper distinctive. In this
context, our survey on feature extraction and learning
regarding cancellable biometrics refers to these special char-
acteristics unless stated otherwise. Hence, this survey will help
fill the gap in the literature.

1.1.2 | Contributions

In this paper, we present an inclusive survey of feature rep-
resentation for cancellable biometrics. The main contributions
of this work are summarised below.

� In‐depth review: This survey provides a comprehensive and
thorough review of feature extraction and learning ap-
proaches, especially targeting cancellable biometrics, which
is not covered by existing survey papers.
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� New taxonomy: Feature representation requirements for
biometrics in general as well as cancellable biometrics are
discussed and summarised. A taxonomy of feature extraction
and learning approaches specifically for cancellable bio-
metrics is proposed.

� Challenges and future directions: Based on the insightful
discussions of state‐of‐the‐art feature extraction and
learning approaches for cancellable biometrics, challenges
and future research directions are presented, shedding light
on the future study of cancellable biometrics.

� Guide for novices: This survey lays a foundation for novice
researchers in computer vision and biometrics to gain a
good understanding of feature extraction and learning for
cancellable biometrics; in particular, readers who are inter-
ested in cancellable biometrics will benefit from this survey
paper. While a number of survey papers (e.g. [1, 6]) on
cancellable biometrics cover feature transformation tech-
niques, in this survey we focus on feature extraction and
learning approaches for cancellable biometrics.

1.2 | Organisation of this work

The rest of this paper is organised into several sections starting
with a discussion about requirements of good feature repre-
sentation and their relationship with cancellable biometric
criteria in Section 2. In Section 3, different types of trans-
formation techniques for generating cancellable biometric
templates are described. Section 4 covers a host of feature
extraction and learning approaches. Performance comparisons
of these approaches are presented in Section 5, followed by
discussions and suggestions about future research directions in
Section 6. The paper is concluded in Section 7.

2 | REQUIREMENTS OF GOOD
FEATURE REPRESENTATION AND
THEIR RELATIONSHIP WITH
CANCELLABLE BIOMETRICS CRITERIA

Biometric feature representation is concerned with encoding
and representing biometric data (e.g. facial features and iris
patterns) that can be used for biometric recognition. Good
feature representations should describe biometric data in a way
that is discriminative, invariant, robust, efficient, secure and
renders satisfactory recognition performance. Good feature
representation should meet the following requirements:

� Discriminativeness: Good feature representation should be
discriminative enough for each individual so that different
users can be effectively distinguished [22].

� Invariance: Good feature representations should be
invariant to changes in the input data, such as rotations and
shifts in fingerprint images [22].

� Robustness: Good feature representation should be tolerant
and resilient to the noise and other disturbances in the input
data [23].

� Efficiency: Good feature representation should be compact,
cost‐effective and user friendly so that it can be stored and
processed efficiently and deployed readily [24].

� Irreversibility: Good feature representation should be secure
so that it cannot be easily be reversed or undone [25].

� Compatibility: One important aspect of cancellable bio-
metrics is that transformed biometric data should be
compatible with existing template protection algorithms and
protocols. This means that data after transformation should
not introduce additional vulnerabilities. Also, transformed
data should be able to be revoked when they are compro-
mised or no longer needed, so that biometric data attack and
misuse can be prevented [26].

Cancellable biometrics consist of two major components:
feature representation and feature transformation, both of
which are closely related to the four criteria (i.e. unlinkability,
non‐invertibility, revocability and performance) for cancellable
biometrics, set by the ISO/IEC 24745 standard [11].
Numerous existing surveys (e.g. [1, 6]) discuss about feature
transformation in cancellable biometrics. In this survey, how-
ever, we explore feature representation and its impact on the
ISO/IEC criteria. As illustrated in Figure 1, the discrim-
inativeness, invariance and robustness of feature representation
are intimately connected to the performance of cancellable
biometric systems. Discriminativeness describes the ability of
feature representation to accurately differentiate individual
entities. A high discriminative power enables the extracted
features to effectively distinguish between different individuals,
leading to enhanced recognition performance. Invariance and
robustness refer to the capability of keeping recognition per-
formance under challenging conditions, such as lighting vari-
ations, pose, noise and other environmental factors that might
affect the quality of feature representation. Consequently, dis-
criminativeness, invariance and robustness are pivotal to the
development of reliable, high‐performing biometric systems.
More discussions about how feature representation impacts the
recognition performance of cancellable biometrics are given in
Section 6.2. Although for cancellable biometrics, non‐
invertibility hinges on the design of non‐invertible transform,
the irreversibility and compatibility of feature representation
can affect the non‐invertibility of cancellable biometric tem-
plates. For example, feature representation should be
compatible with the designed transformation function. The
impact of feature representation on the non‐invertibility of
cancellable biometrics is further elaborated in Section 6.3.

3 | DIFFERENT TYPES OF
CANCELLABLE TRANSFORMATION
FUNCTIONS

Transformation functions play a vital role in cancellable bio-
metrics. They are designed in ways that it should be compu-
tationally infeasible to recover the original biometric data from
transformed templates. There is a variety of transformation
techniques for generating cancellable biometric templates [1].

6 - YANG ET AL.
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Cancellable transformation functions can be broadly divided
into four categories as follows.

(1) Cryptography‐based: This type of transformation function
makes use of cryptography‐based techniques (e.g. bio‐
hashing [27]) to construct cancellable biometric templates.

(2) Transformation‐based: This type of transformation func-
tion applies various transformation techniques (e.g. Car-
tesian transformation [28], polar transformation [29],
random projection [30]) to the design of non‐invertible
transforms such that raw biometric data are transformed
irreversibly.

(3) Filter‐based: This type of transformation function is based
on different convolutional filters, such as bloom filters
[31], guided filters [32], and inverse filters [33].

(4) Hybrid‐based: This type of transformation function uses a
combination of two or more of the above schemes (e.g.
random projection þ hashing [34]) to generate cancellable
biometric templates.

4 | FEATURE EXTRACTION AND
LEARNING APPROACHES

Many feature extraction and learning approaches have been
designed and proposed by researchers. In general, they can
be classified into three types: hand‐engineered feature
extraction approaches, machine/deep learning‐based feature
learning approaches and hybrid feature extraction and
learning approaches, all of which are discussed and analysed
in detail in this section. The taxonomy of feature extraction
and learning approaches for cancellable biometrics is illus-
trated in Figure 2.

(1) Hand‐engineered feature extraction approaches: Hand‐
engineered feature extraction refers to the process of
exploring and manually extracting features from biometric
data for the purpose of identifying or verifying individuals.
For hand‐engineered feature extraction, selecting and
designing appropriate features entail domain expertise and
an understanding of the characteristics of biometric data.
The advantage of hand‐engineered feature extraction is
that it does not require large‐scale datasets for training,
making it suitable for biometric traits such as fingerprint or
palmprint, of which the datasets (e.g. FVC2002) [35]
contain only a relatively small number of samples.

(2) Machine/deep learning‐based feature learning approaches:
Machine/deep learning‐based feature learning uses ma-
chine learning algorithms and/or neural networks to
automatically learn and extract features from biometric
data. Machine/deep learning‐based feature learning ap-
proaches can learn and handle complex patterns and fea-
tures. Also, they often achieve better performance than
hand‐engineered feature extraction, when dealing with
large amounts of data. In addition, deep learning methods
[36], a type of machine learning that utilises deep neural
networks, are particularly effective in learning complex and
complicated patterns and features, yielding optimal per-
formance in many biometric tasks. Machine/deep
learning‐based feature learning approaches require large‐
scale datasets, so they suit biometric traits (e.g. face)
whose datasets (e.g. VGGFace2) [37] contain millions of
samples.

(3) Hybrid feature extraction and learning approaches:
Hybrid feature extraction and learning for cancellable
biometrics involves a combination of multiple feature
extraction and learning approaches, such as a combination

F I GURE 1 Requirements of good feature representation and their correlation with the key criteria for cancellable biometrics.
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of hand‐engineered and machine/deep learning‐based
approaches, so that the strength of each type is exploited.

4.1 | Hand‐engineered feature extraction
approaches

Hand‐engineered feature extraction has been widely used in
biometric applications. One example of hand‐engineered
feature extraction is the construction of local structures us-
ing minutiae in fingerprint images [38], as minutiae are unique
points where the ridges of a fingerprint split or end [39].
Other examples of hand‐engineered features include the
shape and size of irises, the patterns and shapes of facial
features [32], and the unique characteristics of a person's
voice [40]. In this section, cancellable biometrics‐related
hand‐engineered feature extraction approaches for various
biometric traits (e.g. fingerprint, face, iris and voice) are
reviewed.

4.1.1 | Cancellable fingerprint

Fingerprint is one of the oldest known and most common
biometric traits owing to its convenience and recognition ac-
curacy [9]. Fingerprint recognition is non‐trivial, mainly due to
large intra‐class variations resulted from displacement, non‐
linear skin distortion etc. To alleviate intra‐class variations,
many hand‐engineered feature extraction approaches for
cancellable fingerprints have been proposed (see Table 1). As
shown in Figure 3, some of these feature extraction approaches
are detailed below.

Ratha et al. [39] directly took minutiae as features, repre-
sented by (x, y) coordinates and ridge directions. After minu-
tiae extraction, a many‐to‐one mapping‐based non‐invertible
transform is used to protect the original minutiae set and
generate the cancellable template. Since wavelets offer a multi‐
resolution representation of multi‐level decomposition for
interpretive image information, Jin et al. [27] applied a 2D
wavelet transform to fingerprint images. Because the majority
of the energy content in signals is centred in low‐frequency
regions, this study chose the low‐frequency components in
the vertical and horizontal directions of the original fingerprint
image as features. Farooq et al. [41] designed a set of triangles
(formed by three minutiae) and represented such triangle fea-
tures as binary data. Lee et al. [10] constructed features by
extracting translation‐ and rotation‐invariant values from
orientation data within the neighbourhood of each minutia.
Then a user‐specific random vector is used to build cancellable
fingerprints from the constructed features. To avoid global
alignment, Tulyakov et al. [42] formed two vectors as features.
The first vector is a triplet of localised minutiae points (e.g.
angles between minutiae), while the second vector is produced
from the Euclidean distance and orientation difference be-
tween a centre minutia and its two nearest neighbours.

Lee and Kim [38] mapped minutiae into a 3D array. If a cell
in the 3D array includes more than one minutia, it is assigned
binary 1; otherwise, the cell is given the value of binary 0. A
binary string is finally obtained as features by ordering 0 and 1s
in the cells of the 3D array. Ahmad et al. [29] used pair‐polar
coordinate vectors containing positional information between
two neighbouring minutiae (e.g. radial distance and angle) as
features, representing the relative relationship between adjacent
minutiae in a polar coordinate system. Wang and Hu [43]
developed a densely infinite‐to‐one mapping (DITOM) model

F I GURE 2 The taxonomy of feature extraction and learning approaches. Existing feature extraction and learning approaches are generally classified into
three types: hand‐engineered feature extraction approaches, machine/deep learning‐based feature learning approaches, and hybrid feature extraction and learning
approaches.

8 - YANG ET AL.
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to achieve non‐invertibility in the design of cancellable
fingerprint templates. The DITOM model is applied to
minutiae pairs to extract features (i.e. the distance between two
minutiae and the angles between the line connecting two
minutiae and the orientation of each minutiae). Subsequent

works (e.g. [29, 51, 52]) also adopt the same feature extraction
approach despite different feature transformation designs. Jin
et al. [44] proposed minutiae vicinity decomposition (MVD)
features, in which a reference minutia with three nearest
minutiae forms a minutiae vicinity that is further used to derive

TABLE 1 Descriptions of hand‐engineered feature extraction approaches for cancellable fingerprint.

Approach Publication year Trait Brief description of feature extraction

Ratha et al. [39] 2001 Fingerprint Minutiae‐related feature extraction based on the location of ridge ending and ridge bifurcation

Jin et al. [27] 2004 Fingerprint Invariant features built from the wavelet and Fourier–Mellin transform

Farooq et al. [41] 2007 Fingerprint Formation of triangles consisting of three minutiae

Lee et al. [10] 2007 Fingerprint Features acquired from orientation data within the neighbourhood of each minutia

Tulyakov et al. [42] 2007 Fingerprint A triplet of localised minutiae points

Lee and Kim [38] 2010 Fingerprint Features in the form of binary data produced from binarised cell values in a 3D array

Ahmad et al. [29] 2011 Fingerprint Pair‐polar coordinate vectors capturing the positional information between two neighbouring
minutiae

Wang and Hu [43] 2012 Fingerprint Distance and angles of minutiae pairs

Jin et al. [44] 2013 Fingerprint Sides and angles of triangles in a minutiae vicinity stricture

Zhang et al. [45] 2013 Fingerprint Spatial and orientation information based on the MCC

Jin et al. [46] 2017 Fingerprint A fixed‐length vector derived from MCC

Bedari et al. [47] 2022 Fingerprint MCC‐based feature representation

Sun et al. [48] 2023 Fingerprint A framework for converting points to strings produces binary strings of a consistent length

Djebli et al. [49] 2023 Fingerprint SIFT characteristics from the positions of fingerprint minutiae

Abbreviations: MCC, minutia cylinder‐code; SIFT, scale invariant feature transform.

F I GURE 3 Examples of hand‐engineered feature extraction approaches for cancellable fingerprints (sourced from: (a) [44], (b) [10], (c) [38], (d) [29],
(e) [43], (f) [50]).
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local features (e.g. sides and angles of triangles). Cancellable
fingerprint templates are obtained from MVD‐based random
projection.

Zhang et al. [45] utilised the minutia cylinder‐code (MCC)
[53] as features in the design of cancellable fingerprint tem-
plates, because MCC is one of the most advanced local
minutia descriptors with a proven record of high recognition
accuracy. Jin et al. [46] proposed two‐factor cancellable bio-
metrics using ranking‐based position‐sensitive hashing, called
index of maximum (IoM) hashing. In the IoM hashing
method, a fixed‐length vector as features is acquired from
MCC. There are other cancellable fingerprint templates that
also use MCC (e.g. [47, 54–56]). Kho et al. [57] defined
features with a partial local structure (PLS), which is one of
the six equal‐area sectors with Π/3 internal angles, divided
from a disc centred on a minutia of radius r. A binary
cancellable fingerprint template is then built using the PLS.
Sun et al. [48] proposed employing a point‐to‐string con-
version framework that generates fixed‐length binary strings.
This approach is similar to the one proposed by Jin et al.
[58]. Additionally, Djebli et al. [49] presented a unique and
adaptable fingerprint cancelation method that relies on
extracting scale invariant feature transform (SIFT) character-
istics from the positions of fingerprint minutiae.

4.1.2 | Cancellable face

Nowadays face‐based biometric systems are used extensively.
Since sensitive information is contained in a person's facial
image (e.g. age and health status), it is vital to preserve the
privacy of face data [59]. Designing cancellable face templates
is to transform or intentionally distort the original face data in
an irreversible manner such that a transformed/distorted
version of the original face data can be used for face recog-
nition, whereas the original data cannot be retrieved from the
transformed/distorted data, thus enhancing data security. A
number of feature extraction approaches for cancellable face
are reviewed below and summarised in Table 2.

In the work of Savvides et al. [32], the captured training
face images are convolved with a random convolution kernel,
produced by a ‘seed’ (e.g. PIN) of a random number generator.
The convolved training images are in turn employed to
generate a single biometric filter. Oh et al. [30] directly
extracted local random features from partial face image
matrices. The random features extracted Intrinsically include
compressed horizontal and vertical facial information derived
from the structural projection of the original face image. The
extracted features are then transformed and averaged at the
feature level in each direction to generate a cancellable face
template. Faragallah et al. [60] designed numerous encrypted
biometric templates that are created and recreated by
employing a variety of convolution kernels produced by the
chaotic Baker mapping of domains. The encrypted cancellable
biometric system mapped from the domain after the discrete
wavelet transform (DWT) exhibits the best performance
among all implementations.

Xu et al. [59] fully utilised a quaternion feature represen-
tation with the structural information consisting of local
variance and gradient. The quaternion‐based two‐dimensional
principal component analysis (PCA) is used to extract fea-
tures, allowing the extreme learning machine to be trained and
employed for face recognition. To enable revocability and
redistribution capabilities, the authors took a random permu-
tation strategy with the binary matrix. Alhumyani et al. [61]
proposed a cancellable face recognition scheme based on
quantum image Hilbert permutation. The flexible quantum
image representation (FRQI) allows for face image represen-
tation on a quantum computer in a natural pattern. FRQI traps
and converts face image data into normalised quantum states
according to the colour and position to better manage the
image information. SP and Thomas [62] partitioned biometric
images into Voronoi patches, derived from a rotating and
scaling invariant seed point generation solution. The log‐Gabor
feature vector of every patch is warped by binding it with other
patches' feature vectors.

4.1.3 | Cancellable iris

The iris is a biometric trait with high recognition performance
both in theory and in practice. The technique of iris recogni-
tion utilises pattern identification with high‐resolution iris
images obtained from a person's eye [15, 63]. Most feature
extraction methods use the normalised iris images with tech-
niques such as wavelet encoding, Gabor filters and log‐Gabor
filters [64]. Some feature extraction approaches for cancellable
iris are reviewed below and summarised in Table 3.

Uhl et al. [66] performed a transformation in the image
domain before extracting features from iris images. The au-
thors applied a wavelet‐based method to obtain bit codes from
the texture. The texture is split into N tracks to yield N one‐
dimensional signals, each averaged over the pixels of M
neighbouring rows. Jenisch and Uhl [67] deduced the circular
iris shaped as a rectangular iris texture with 512 � 64 pixels.
The normalised iris image is factorised to distinct parts with
varying resolutions by the use of filterbanks in the wavelet
transform. The resultant signal is then converted to an alter-
nating series of 0 and 1s.

Log‐Gabor filters are useful for acquiring feature compo-
nents of normalised iris images. An example of using Log‐
Gabor filters in the design of cancellable iris templates is
given by Zuo et al. [65] with the application of an encoding
technique plus a self‐developed segmentation algorithm.
Rathgeb et al. [68] applied feature extraction to normalised iris
textures that are split into bands in order to obtain 10 one‐
dimensional signals, with each signal averaged from five
adjacent rows of pixels. Log‐Gabor filters are used in the
convolution with texture pixels row by row. The phase of the
complex number generated by each pixel is discretised into two
bits, leading to a binary code of 10,240 bits. Similar methods of
generating iriscode can also be found in refs. [70–73]. Since
normalised iris images have a unique texture pattern, Umer
et al. [69] made use of statistical methods to extract texture
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features from the normalised iris pattern. Local features of
normalised iris images are acquired through the dense SIFT
descriptors and then organised into a global representation of
the iris pattern.

4.1.4 | Cancellable voice

Voice recognition relies on the unique characteristics of in-
dividuals' voices to identify them [40]. It entails analysis of a
person's voice patterns, including the pitch, tone and frequency
of their voice, to produce a vocal pattern or template that can
be used to verify identity. Cancellable voice recognition is a
technique that protects the privacy of individuals by modifying
or distorting the original voice pattern in a irreversible manner.
A selection of cancellable voice‐related feature extraction ap-
proaches are reviewed below and summarised in Table 4.

El‐wahab et al. [40] proposed a cancellable speech recog-
nition system, in which features are derived from the encrypted
speech signal, obtained by the DWT, in the time domain based
on Cepstral analysis. The derived features are then used for
classification by applying them to an artificial neural network.
Elsayed et al. [33] used the DWT to factorise the speech signal
into low‐frequency and high‐frequency components at various
resolutions. The extracted features are masked by the linear
minimum mean square error technique and an inverse phase
filter to keep the original feature data safe. Abdelwahab et al.
[74] implemented a watermarking algorithm in the design of
cancellable speaker recognition. Watermark strength co-
efficients are employed to manage the expected level of

distortion generated in the speech signal. In this work, a Haar
wavelet‐based DWT decomposition of the input audio signal is
performed to generate feature data.

El‐Gazar et al. [75] presented a cancellable speaker
recognition system in which the feature data are encrypted
through two cascading optical encryption algorithms, namely
optical scanning holography and random phase masking. In
this system, the feature data are obtained by converting the
speech signal into a spectrogram image to which the Fourier
transform is applied. El‐Wahab et al. [76] proposed cancellable
speaker identification suitable for remote access applications.
The original feature data are secured by two efficient encryp-
tion systems based on chaotic graphs and a single key empirical
mode decomposition. In this work, cepstral feature data is
extracted from the encrypted speech signal. Specifically, the
cepstral analysis is performed on the speech signal, and then
the inverse fast Fourier transform is conducted to obtain the
cepstral representation of the speech signal.

4.1.5 | Cancellable ECG

Captured by electrodes located on the surface of a person's
body, the electrocardiogram (ECG) depicts the electrical ac-
tivity of the heart during a certain time period [77]. ECG
signals are distinctive because they are related to the physio-
logical structure of the heart and dictated by DNA. Moreover,
ECG signals are resistant to falsification. Thus, besides medical
diagnosis, the unique characteristics of the ECG make it a
good candidate for biometric authentication [78]. In this

TABLE 2 Descriptions of hand‐engineered feature extraction approaches for cancellable face.

Approach Publication year Trait Brief description of feature extraction

Savvides et al. [32] 2004 Face The Fourier transform of the training images produces a diagonal matrix comprising the average
power spectrum of all training images along the diagonals

Oh et al. [30] 2012 Face The compressed horizontal and vertical facial information derived from the structural projection
of the original face image

Faragallah et al. [60] 2021 Face A variety of convolution kernels produced by the chaotic Baker mapping of different domains

Xu et al. [59] 2021 Face A two‐dimensional principal component analysis based on quaternions

Alhumyani et al. [61] 2022 Face Feature representation on a quantum computer in the manner of a natural pattern

S P and Thomas [62] 2022 Face The log Gabor feature vector of Voronoi patches from the face image

TABLE 3 Descriptions of hand‐engineered feature extraction approaches for cancellable iris.

Approach Publication year Trait Brief description of feature extraction

Zuo et al. [65] 2008 Iris An encoding technique based on a one‐dimensional Log‐Gabor filter

Uhl et al. [66] 2009 Iris A wavelet‐based method for generating bit codes from texture

Jenisch and Uhl [67] 2011 Iris 10 signal bands are chained together in a specific order and transformed using quadratic spline
wavelets. The resultant signal is converted to an alternating series of 0 and 1s

Rathgeb et al. [68] 2013 Iris Convolution on texture pixels row by row with Log‐Gabor filters

Umer et al. [69] 2017 Iris Use of dense SIFT descriptors to obtain local features of normalised iris images, formed into a
global representation of the iris pattern

Abbreviation: SIFY, scale invariant feature transform.
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section, several feature extraction approaches for cancellable
ECG are introduced below and summarised in Table 5.

To address security and privacy issues in the event of an
ECG data breach, Wu et al. [79] took advantage of the concept
‘signal subspace collapsing’ to build cancellable ECG tem-
plates. The authors also used fiducial feature‐based algorithms,
a popular feature extraction method for ECG biometrics. The
construction of the marker features depends on the charac-
teristic points in the heartbeat (i.e. points P, Q, R, S and T).
Hammad et al. [80] designed cancellable ECG templates with a
modified biohash method and matrix operations. In this work,
the Pan‐Tompkins algorithm is used to discover and retrieve
ECG feature data (e.g. P‐P and T‐T intervals).

To enable revocability and without sacrificing perfor-
mance, Kim and Chun [81] proposed a compressive measure
of the ECG and permutation‐based cancelation. The permu-
tation procedure is purely random, relying on no user‐specific
information. In this work, the R‐peak detection is carried out
using methods like the Pan‐Tompkins algorithm, thus allowing
the extraction of R‐peak‐aligned ECG pulses to be feature
data. Eldesouky et al. [82] transformed ECG signals into
spectrograms, whose pixel values constitute the ECG feature
data. The authors built a cancellable ECG recognition system
using the 3D chaotic logic map. The proposed chaotic
encryption process has efficient stochastic properties with
confusion and diffusion characteristics.

4.1.6 | Others

In this section, the feature extraction approaches of cancellable
biometric systems using other biometric traits (e.g. finger vein,
electroencephalography [EEG], palmprint and signature) are
reviewed below and summarised in Table 6.

Cancellable finger vein
With block remapping, image warping and the Bloom filter,
Kauba et al. [84] proposed cancellable finger vein templates in
the binary format with geometric information pertaining to the
shape or topology of the observed vein pattern. In this study,
feature extraction is carried out through feature extraction

algorithms, such as the Gabor filter, isotropic undecided
wavelet transform and maximum curvature. Yang et al. [83]
developed cancellable finger vein templates using binary de-
cision diagrams and the Multilayer Extreme Learning Machine.
For feature extraction, Gabor filters and linear discriminant
analysis (LDA) are employed for finger vein texture feature
extraction and feature dimensionality reduction.

Cancellable EEG
Wang et al. [85] proposed a cancellable EEG system, named
PolyCosGraph, based on polynomial transformation
embedded cosine functions with graphical features of EEG
signals. PolyCosGraph can protect EEG features and system
security from multiple attacks. In this system, beta‐band (i.e.
13–30 Hz) signals are extracted from the EEG with band‐pass
filters, and functional connectivity between channels is esti-
mated according to the Shannon entropy. The authors
designed a fully collected network, where each node stands for
an EEG channel and each edge represents the degree of phase
synchronisation of the signals from two respective channels. A
number of graph features (e.g. pagerank centrality, transitivity
and modularity) are extracted from the designed network.

Cancellable palmprint
Leng and Zhang [86] developed a two‐key binding cancellable
palmprint cryptosystem. The two‐dimensional palmprint pha-
sor template is perturbed by a scrambling operation based on a
chaotic sequence, generated jointly by the user's token/key and
a strong key derived from the palmprint. For feature extraction,
PalmCode is extracted as palmprint texture features in the
form of a texture feature matrix of size 32 � 64, which is
further transformed to produce the cancellable palmprint.

Cancellable signature
Maiorana et al. [87] proposed a cancellable online signature
recognition method, called BioConvolving, which ensures the
security and updatability of online signatures. As for feature
extraction, from each online signature, pressure signals and
horizontal and vertical position traces are obtained, from
which discrete time series are derived, giving rise to sequence‐
based features.

TABLE 4 Descriptions of hand‐engineered feature extraction approaches for cancellable voice.

Approach Publication year Trait Brief description of feature extraction

El‐wahab et al. [40] 2018 Voice Features are derived from the encrypted speech signal in the time domain using Cepstral analysis,
in combination with the DWT performed on the encrypted speech signal

Elsayed et al. [33] 2019 Voice The DWT is carried out to factorise the speech signal into low‐frequency and high‐frequency
components at various resolutions

Abdelwahab et al. [74] 2022 Voice A Haar wavelet‐based DWT decomposition of the input audio signal is performed to generate
feature data

El‐Gazar et al. [75] 2022 Voice The feature data is obtained by converting the speech signal to a spectrogram image to which the
Fourier transform is applied

El‐Wahab et al. [76] 2022 Voice The cepstral analysis is performed on the speech signal, and then the IFFT is conducted to
obtain the cepstral representation of the speech signal

Abbreviations: DWT, discrete wavelet transform; IFFT, inverse fast Fourier transform.
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4.2 | Machine/deep learning‐based feature
learning approaches

Machine/deep learning‐based feature learning provides a good
direction in terms of improving the performance and reliability
of cancellable biometric systems [36]. In the design of cancellable
biometrics, there are two types of machine/deep learning ap-
proaches available for feature learning—supervised and unsu-
pervised learning, both of which are discussed in this section.
The main difference between the two types is that supervised
feature learning makes use of labelled data to aid outcome pre-
diction, whereas unsupervised feature learning does not.

4.2.1 | Supervised machine/deep learning
approaches

Supervised learning is a machine/deep learning method
defined by the use of labelled datasets. These datasets are
designed to train or ‘supervise’ algorithms to classify data or
accurately predict outcomes. With labelled inputs and outputs,
the supervised machine/deep learning model can measure its
accuracy and build learning over time.

A neural network is a kind of artificial intelligence that is
inspired by the structure and function of the human brain. It is
composed of a large number of interconnected processing
units (called ‘neurons’) that are arranged into layers. Each
neuron takes input from other neurons, processes the input
using an activation function, and transmits the output to other

neurons or output layers. Neural networks are capable of
learning and recognising complex patterns and data features
and can therefore be used effectively in biometric tasks. Neural
networks, such as convolutional neural networks (CNNs) [88],
and recurrent neural networks (RNNs) [89], are common su-
pervised machine/deep learning models; see below.

Convolutional neural networks
CNNs are designed to process data with a grid‐like topology
(e.g. images). CNNs include convolutional layers, which apply a
set of filters to input data to extract features, and pooling
layers, which reduce the data size and extract the most
important features [36]. CNNs comprise general CNN and
specific CNN architectures. Below is a brief description of
general CNN architectures and some specific CNN architec-
tures (e.g. VGG‐16, MobileNetV1 and ResNet‐50).

General CNNs. Jang and Cho [88] put forward a deep hash‐
based (DTH) framework to encode CNN‐based features into
binary codes using the index of a hash table. The authors did
noise embedding and internal normalisation to warp the face
data, resulting in increased irreversibility. In addition, a hash
table‐based binary encoding method uses segmented clustering
loss to learn tables and paired Hamming loss to fulfil unlink-
ability and reusability, while maintaining good matching per-
formance. Abdellatef et al. [31] proposed a cancellable multi‐
biometric face recognition system that extracts deep features
from different facial regions using multiple CNNs. The pro-
posed method uses a region‐based technique to detect face,

TABLE 5 Descriptions of hand‐engineered feature extraction approaches for cancellable ECG.

Approach Publication year Trait Brief description of feature extraction

Wu et al. [79] 2018 ECG Fiducial feature‐based algorithms are used in ECG feature extraction. The construction of the
marker features depends on the characteristic points in the heartbeat

Hammad et al. [80] 2019 ECG The Pan‐Tompkins algorithm is used to discover and retrieve ECG feature data

Kim and Chun [81] 2019 ECG The R‐peak detection is carried out using methods like the Pan‐Tompkins algorithm, thus
allowing the extraction of R‐peak‐aligned ECG pulses to be feature data

Eldesouky et al. [82] 2022 ECG The pixel values of the spectrogram are used as the ECG feature data

Abbreviation: ECG, electrocardiogram.

TABLE 6 Descriptions of hand‐engineered feature extraction approaches for other biometric traits (e.g. finger vein, EEG, palmprint and signature).

Approach Publication year Trait Brief description of feature extraction

Yang et al. [83] 2019 Finger vein Gabor filters and LDA are used for finger vein texture feature extraction and feature
dimensionality reduction

Kauba et al. [84] 2022 Finger vein Binary feature vectors are produced via different feature extraction algorithms, such as the Gabor
filter, isotropic undecided wavelet transform and maximum curvature

Wang et al. [85] 2022 EEG A number of graph features (e.g. pagerank centrality, transitivity, and modularity) are extracted
from the fully connected network

Leng and Zhang [86] 2011 Palmprint PalmCode is extracted as palmprint texture features in the form of a texture feature matrix of size
32 � 64

Maiorana et al. [87] 2010 Signature Discrete time series are derived from the horizontal and vertical position trajectories to generate
sequence‐based features

Abbreviations: EEG, electroencephalography; LDA, linear discriminant analysis.
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eye, nose and mouth regions from the original face image.
Multiple CNNs are utilised to derive deep features from each
region, followed by a fusion network. The final facial de-
scriptors are bio‐convolutionally encrypted to provide user
privacy and defend against spoofing attacks.

Abdellatef et al. [90] introduced a face and iris cancellable
biometric recognition system based on a CNN model. Face
and iris images are fed into the CNN model for feature
extraction. The bio‐convolution is performed on the original
feature data to transform them into another version non‐
invertibly. Sandhya et al. [91] proposed a multi‐instance
cancellable iris system using a CNN trained with triple loss
for feature extraction. Both random projection and random
cross‐folding are employed to achieve irreversibility. To address
the security and privacy issues of biometric templates gener-
ated through deep networks, Singh et al. [34] devised a light-
weight CNN‐based cancellable biometric authentication
method. In this method, biometric templates are cast onto a
random subspace with an n‐bit unique code retrieved by a
deep biometric feature extraction network that is robustly
trained. The authors also integrated a phase‐wise incremental
learning paradigm into the proposed cancellable iris authenti-
cation system.

VGG‐16. VGG‐16 [92] is a CNN architecture developed by
the Visual Geometry Group from the University of Oxford.
VGG‐16 is composed of 16 layers, namely 13 convolutional
layers and three fully connected (FC) layers. Sakr et al. [93]
proposed a cancellable ECG method to protect ECG features
used for human authentication. The authors first applied image
processing techniques to pre‐process the input ECG signal,
and then used the VGG‐16 pre‐training model‐based deep
learning approach as a feature extraction tool to extract
informative and powerful ECG features.

MobileNetV1. Designed to be computationally efficient and
consume less resource (e.g. storage and battery) than other
deep learning models, MobileNetV1 [94] is a deep CNN ar-
chitecture developed by Google for effective image classifica-
tion and object detection on mobile devices. Ma et al. [95]
proposed a MobileNetV1‐based deep neural network for
cancellable face templates. Firstly, after image pre‐processing,
feature vectors are derived through MobileNetV1. With three
FC layers, the extracted feature vectors are converted into a
256‐dimensional sequence of real values, and mapped to
random binary codes via a mapping network, thus enhancing
the security and recognisability of face templates. Secondly, a
hash network is utilised to acquire high‐entropy templates,
improving authentication accuracy and privacy. Finally, a
token‐based random projection is used to implement revoca-
bility of the resultant templates without retraining the deep
neural network model.

ResNet‐50. ResNet‐50 [96] is a deep CNN architecture devel-
oped by Microsoft Research for image classification and object
detection. It is a variation of the ResNet architecture, which
stands for ‘Residual Network’. ResNet‐50 has 50 layers,
including three types of layers, namely convolutional layers,

activation layers and batch normalisation layers. Kim et al. [97]
investigated an end‐to‐end multimodal cancellable biometric
scheme using a deep learning model called CSMoFN (cancel-
lable SoftmaxOut fusion network). CSMoFN comprises three
modules: a feature extraction and fusion module, an enveloping
SoftmaxOut transform module, and a multiplicative diagonal
compression module. The proposed method uses ResNet‐50 as
the backbone, consisting of 49 convolutional layers and a lin-
early activated FC layer with p neurons, producing a p‐
dimensional feature vector for each face and periocular im-
age. The two feature vectors from the face and periocular
regions are fused at the feature level by conjunction. Built on
time‐varying keys obtained from the One‐Time Biometrics via
morphing (OTB‐morph) random face data, the method pro-
posed by Ghafourian et al. [98] was executed on a pre‐trained
Resnet‐50 for general image recognition tasks. When applied to
face images, OTB‐morph can produce artificial faces so that
users do not have to expose their real faces, thus improving
biometric recognition performance and security.

Linear discriminant analysis
LDA is an important dimension reduction technique in ma-
chine learning. It is a supervised learning method and labelled
data are used for training. Punithavathi and Geetha [99] pro-
posed a method called Random Projection Linear Discrimi-
nant Analysis (RPLDA), in which features are extracted from
intermediate templates to generate cancellable templates. In the
proposed RPLDA, users are identified only when both the
cancellable template and the key issued to the user are valid.

Recurrent neural networks
RNNs [89] are a type of single‐ or multi‐layer neural network
structure made up of recurrent connections. RNNs are typi-
cally used to learn time‐series data, such as character strings,
video, and speech. RNNs are featured by memorising previous
instances of information and applying them to the current
input data. While, to the best of our knowledge, no cancellable
biometric research using RNNs can be found in the literature,
RNNs will potentially be employed for feature learning for
cancellable biometrics as they have been used for non‐
cancellable biometrics. For example, Kim and Pyun [89]
designed a bidirectional deep recurrent neural network via late‐
fusion to exploit a real‐time system for ECG‐based biometrics.
The input ECG signal is divided into a discrete sequence of
equidistant data points, where each data point is a vector of
individual ECG signals. These samples are passed to an RNN
for feature learning and classification after segmentation.

4.2.2 | Unsupervised machine/deep learning
approaches

Unsupervised learning uses machine learning algorithms to
analyse and cluster unlabelled data sets. These algorithms un-
cover the hidden patterns in the data with no human interac-
tion. Therefore, they are called unsupervised. A number of
unsupervised machine/deep learning approaches are reviewed
below.
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Generative adversarial networks
GANs [100] are an emerging technique for both semi‐
supervised and unsupervised learning, used to generate new
synthetic data. GANs consist of two neural networks: a
generator and a discriminator. Tarek et al. [101] developed a
GAN‐based multi‐instance cancellable biometric system,
where a pre‐transformation feature‐level fusion is performed
to connect the binary features of multiple instances. GAN‐
based keyless biometric salting is applied as feature
transformation.

Principal component analysis
PCA [102] is a popular unsupervised learning technique for
reducing the dimensionality of data. Kumar et al. [103] pro-
posed two simple yet robust methods for cancellable bio-
metrics: (a) random permutation PCA; and (b) random
permutation two‐dimensional PCA (RP‐2DPCA). In this work,
PCA [102] and 2D‐PCA [104] are taken to extract features
from a given training image. Cancellable templates are gener-
ated through random permutations guided by randomly
created PIN codes.

K‐means clustering
K‐means clustering [105] is an unsupervised machine learning
algorithm for dividing a set of data points into ‘k’ clusters,
where ‘k’ is a user‐specified number. This algorithm operates
by first initialising the ‘k’ centroids, that is, the points repre-
senting the centre of each cluster. The data points are then
assigned to clusters whose centroids are closest. Sardar et al.
[106] proposed a cancellable palmprint recognition system with
good performance and enhanced template protection. In this
system, a 200 � 200 palm region is first extracted from the
input image in a pre‐processing process. Palmprint features are
then extracted from small patches of size 25 � 25. Each patch
is converted into a normalised feature vector, to which a K‐
means clustering algorithm is applied to obtain local features,
which are concatenated to form a global feature representation.
The extracted features are analysed using an information
encoding scheme to compute user‐specific tokens.

Convolutional autoencoders
Convolutional autoencoders (CAEs) [107] are unsupervised
dimensionality reduction modules consisting of convolutional
layers capable of creating compressed image representations.
Bamoriya et al. [108] used a CAE, a rank‐based partitioning
network and a randnet network to build secure cancellable
biometric templates. Specifically, the CAE has two networks (i.e.
an encoder and a decoder) trained on a biometric dataset (e.g. a
face dataset) to extract features. The rank‐based partitioning
network partitions the extracted features. These feature parti-
tions are input to the randnet network and the encoder for
further processing. Siddhad et al. [109] utilised random noise
and random convolution to generate cancellable templates from
features extracted from palm vein, wrist vein and palm print
images. The CAEs are employed to extract features, which are
subsequently salted and convolved with a random kernel of
dimension 7 � 7 generated from a uniform distribution.

4.3 | Hybrid feature extraction/learning
approaches

Hybrid feature extraction/learning approaches have the po-
tential to improve the performance and reliability of biometric
systems, because they combine the flexibility and interpret-
ability of hand‐engineered feature extraction approaches and
the intelligence of machine/deep learning approaches to learn
complex patterns and features. Some hybrid feature extraction
and learning approaches for cancellable biometrics are
reviewed below.

An example of hybrid feature extraction/learning ap-
proaches was given by Abdellatef et al. [110]. In this study, the
cancellable fusion‐based face recognition methods use CNNs
to extract deep features, from which a discriminative facial
descriptor is obtained via a fusion network. In region‐based
methods, deep features are derived from various facial re-
gions. The multi‐biometric methods use different biometric
traits to train multiple CNNs. Hybrid feature methods combine
the advantages of deep learning features and hand‐crafted
features to obtain a more representative output. Abdellatef
et al. [111] proposed an integrative biometric system to jointly
identify face, iris, palmprint, fingerprint and ear biometrics. In
the proposed system, the CNN‐based model is responsible for
extracting deep features, which are fused with the hand‐crafted
features (e.g. the oriented rotation sketch, the histogram of
oriented gradients and local binary patterns).

4.4 | Feature extraction/learning in multi‐
modal cancellable biometrics

While significant progress has been made in single modalities,
such as face, fingerprint and speech, many problems in
cancellable biometrics involve more than one input modality.
Therefore, the study of multi‐modal modelling and training is
gathering broad interest [112].

With voice and iris data used in a multi‐biometric context,
Canuto et al. [113] investigated a variety of fusion methods for
different biometric modalities. A feature extraction/learning
model named Gaussian mixture model‐universal background
model is employed to generate fixed‐size feature vectors. Chin
et al. [12] fused multiple biometric modalities (fingerprint and
palmprint) at the feature level to obtain an integrated template,
which is secured with a mixed template protection method. For
feature extraction/learning, the authors utilised a set of Gabor
filters with eight different angles to filter the approximate
subbands generated by the two‐dimensional discrete wavelet
transform (2D‐DWT). Standard fractional normalisation is
then used to transform the filtered images. The normalised
subbands are combined to form a fused feature vector. Dwi-
vedi and Dey [114] fused iris and fingerprint data at the score
level based on the mean‐closure weighting and at the decision
level according to the Dempster‐Shafer theory. Regarding
feature extraction for iris, IrisCode in the form of a binary
matrix is extracted from pre‐processed iris images using a
logarithmic Gabor filter with phase quantisation. For
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fingerprint feature extraction, the nearest‐neighbour structure
around each minutia is constructed and ridge features are
derived from thinned fingerprint images and minutiae
information.

Gupta et al. [115] proposed a cancellable multimodal bio-
metric system that combines multiple features (iris and
fingerprint) through a projection‐based approach. The
cancellable features are generated by projecting feature points
onto a random plane controlled by a user‐specific key. The
projected points are converted to cylindrical coordinates,
where combined features are obtained. A minutiae‐based
method is used for fingerprint feature extraction, while iris
feature extraction is conducted on pre‐processed iris images by
having them quantified using the Local Binary Pattern histo-
gram. Chang et al. [116] introduced a cancellable biometric
template protection method which fuses fingerprint and iris
features at the feature level. Histogram equalisation and the
FFT are used for fingerprint image enhancement and feature
extraction. Iris images are smoothed with a Gaussian filter and
a Sobel operator is employed to calculate the orientation and
intensity of the edges. After pixel values are extracted from
fingerprint and iris images, with the PCA and concatenation
fusion and through bio‐hashing, feature data are converted to a
binary bit string, subsequently processed by random index
scrambling, the wavelet and discrete Fourier transforms. The
cancellable biometric templates are generated by the partial
Hadamard transform.

5 | PERFORMANCE COMPARISON

In this section, the performance of cancellable biometric sys-
tems, of which different feature extraction and learning ap-
proaches are applied, is analysed and compared on available
datasets, according to metrics such as the equal error rate
(EER) and the recognition rate (RR). Performance compari-
sons of cancellable biometric systems can help to determine
the suitability of biometric traits and feature extraction and
learning approaches for specific applications or user cases, thus
identifying the strengths and limitations of the feature extrac-
tion and learning approaches. The benefit of understanding the
relative performance of different biometric traits is twofold.

First, it can assist the development of more effective cancel-
lable biometric systems. Second, it can guide researchers to-
wards selecting suitable feature extraction and learning
approaches in the cancellable biometrics design. It is worth
noting that the performance of cancellable biometric systems
depends on feature extraction and learning approaches as well
as template protection methods [54], which means that the
same feature extraction or learning approach used in two
cancellable biometric systems may lead to different perfor-
mance, because of different feature protection methods (e.g.
feature transformation functions).

5.1 | Fingerprint datasets and performance
comparison of cancellable fingerprint systems

There are two major fingerprint databases—FVC2002 and
FVC2004, introduced below and summarised in Table 7.

� FVC2002 [35]: FVC stands for fingerprint verification
competition, which aimed to establish a common bench-
mark that would allow companies and academic institutions
to unambiguously compete the performance of their
fingerprint recognition algorithms and track improvements.
Made up of four databases, FVC2002 was the second in-
ternational competition held in 2002.

� FVC2004 [117]: FVC2004 was the third international FVC
competition held in 2004. FVC2004 contains four databases.

The performance of various cancellable fingerprint systems
is listed and compared in Table 8, from which we can see that
most systems use hand‐engineered feature extraction. This is
because minutiae‐based features, obtained by hand‐engineered
feature extraction approaches, tend to be robust and reliable
[119]. By using minutiae as the basis for feature representation,
fingerprints can be accurately identified and matched even with
some uncertainties or variations in fingerprint images. Hand‐
engineered feature extraction is particularly useful in the case
of poor‐quality fingerprint images, as minutiae may still be
present and detected when other features are not clear, making
machine/deep learning‐based approaches less effective. It is
clear from Table 8 that based on the MCC features, which

TABLE 7 Information about different fingerprint datasets (adapted from Refs [35, 117]).

Dataset Sensor type Image size Resolution Number of images

FVC2002 DB1 Optical (Identix TouchView II) 388 � 374 500 dpi 100 � 8

FVC2002 DB2 Optical (Biometricka FX2000) 296 � 560 569 dpi 100 � 8

FVC2002 DB3 Capacitive (Precise Biometrics 100SC) 300 � 300 500 dpi 100 � 8

FVC2002 DB4 Synthetic (SFinGe v2.51) 288 � 384 500 dpi 100 � 8

FVC2004 DB1 Optical (CrossMatch V300) 640 � 480 500 dpi 100 � 8

FVC2004 DB2 Optical (Digital Persona U.are.U 4000) 328 � 364 500 dpi 100 � 8

FVC2004 DB3 Thermal (Atmel FingerChip) 300 � 480 512 dpi 100 � 8

FVC2004 DB4 Synthetic (SFinGe v3.0) 288 � 384 500 dpi 100 � 8
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come from hand‐engineered feature extraction, the cancellable
fingerprint system proposed by Bedari et al. [47] achieved the
best EER on most of the databases, except FVC2002 DB2 and
FVC2004 DB1.

5.2 | Face datasets and performance
comparison of cancellable face systems

There are many face databases, with information like the
number of users, poses and lighting conditions, available for
cancellable face research. Some of the most well‐known face
databases [120] include:

� The Aberdeen dataset [121]: This dataset comprises 377
colour facial images of 29 individuals. Each individual has 13
frontal images captured under different lighting conditions
and variations in expression.

� The Georgia Tech dataset [122]: This dataset contains 750
colour face images from 50 identities, each containing 15
colour images, either frontal views or tilted to various de-
grees and with different illumination and expressions.

� The Visible light dataset [123]: This dataset has 400 colour
frontal face images of 100 identities under different lighting
conditions. Some of the face images with glasses are
obscured.

� The YMU dataset [124]: This dataset was collected from
makeup courses in YouTube videos. It has 151 users' four
frontal view face images with different degrees of makeup
and slight expression and posture changes.

� CMU PIE dataset [125]: This database contains more than
41,000 face images of 68 people, captured under 13 different
poses and lighting conditions.

� The ORL database [126]: This database has face images of
40 individuals, each captured in 10 different poses and under
different lighting conditions.

� The FERET database [127]: This database contains face
images of 35 individuals, each captured in 4 different poses
and under different lighting conditions.

� Labeled Faces in the Wild (LFW) [128]: This database
consists of more than 13,000 face images, with each image
labelled with the name of the person depicted. The images
are collected from the internet and vary in terms of lighting,
pose and background.

� The Yale database [129]: This database contains face images
of 15 individuals, each captured in 11 different poses and
under different lighting conditions.

� YouTube Faces [130]: This database has an average of 181.3
frames of 3425 videos contributed by 1595 users.

� VGGFace2 [37]: This dataset contains 3.31 million face
images from 9131 subjects, with an average of about 362
images per subject. Images are downloaded from Google
Image Search and vary widely in terms of pose, age, lighting,
race, and occupation.

Performance of cancellable face systems with either hand‐
engineered feature extraction or machine/deep learning‐based
feature learning is compared in Table 9. The performance is
measured by the EER or RR. It is shown in Table 9 that ORL
[126] is the most commonly used face database, on which a

TABLE 8 Performance comparison of cancellable fingerprint systems.

Method
Type of feature
extraction/learning

Transformation
function Trait Database Performance (EER)

Farooq
et al. [41]

Hand‐engineered Hybrid‐based Fingerprint Unknown 1.59%

Tulyakov
et al. [42]

Hand‐engineered Cryptography‐
based

Fingerprint FVC2002 DB1 3.0%

Lee and
Kim [38]

Hand‐engineered Transformation‐
based

Fingerprint FVC2004 DB1, DB2 and DB3 10.3%, 9.5%, and 6.8%

Ahmad
et al. [29]

Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1, DB2 and DB3 9%, 6% and 27%

Wang and
Hu [43]

Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1, DB2 and DB3 3.5%, 5% and 7.5%

Jin et al. [44] Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1 and DB2 3.07% and 1.02%

Jin et al. [46] Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1, DB2, DB3, FVC2004
DB1, DB2, DB3

0.22%, 0.47%, 3.07%, 4.74%,
4.10%, 3.99%

Li et al. [118] Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1, DB2, DB3, FVC2004
DB1, DB2, DB3

0.19%, 0.51%, 3.44%, 1.49%,
3.80%, 4.15%

Bedari
et al. [47]

Hand‐engineered Transformation‐
based

Fingerprint FVC2002 DB1, DB2, DB3, FVC2004
DB1, DB2, DB3

0.04%, 0.50%, 0.99%, 2.77%,
3.28%, 1.75%

Abbreviation: EER, equal error rate.
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number of cancellable face systems are tested and the system
of Bamoriya et al. [108] achieves the best performance with
EER = 0%. On another database FERET [127], the system
designed by Faragallah et al. [60] obtains the best EER of
0.014976%.

5.3 | Iris datasets and performance
comparison of cancellable iris systems

The following iris databases have been widely used in the
research and development of cancellable iris systems:

� CASIA‐v1 interval iris database [131]: This database con-
tains a total of 756 eye images with 108 distinctive eyes and
7 images of each distinctive eye.

� CASIA‐v3 interval iris database [70, 132]: This dataset has
2639 iris images from 396 different classes (eyes).

� MMU1 database [133, 134]: This database is made up of 450
iris images from 45 individuals.

� IIT Delhi (IITD) database [72, 135]: This database is
composed of 1120 iris images in the bitmap format obtained
from 224 users (i.e. 176 males and 48 females).

� UBIRIS [136]: This database has 1877 iris images of 241
individuals collected in September 2004 in two sessions.

Table 10 shows the performance comparison of
cancellable iris systems, measured by the EER. Tested on
databases CASIA‐v3 and IITD, the system of Umer et al.
[69] exhibits the best EER of 0.0001% and 0.0008%,
respectively.

5.4 | Performance comparison of cancellable
voice systems

Table 11 compares the performance of cancellable voice sys-
tems tested on private databases, measured by the EER or RR.

5.5 | ECG datasets and performance
comparison of cancellable ECG systems

A ECG dataset is a collection of ECG measurements taken
from individuals. Below are some commonly used ECG
datasets for cancellable ECG systems. Performance of
cancellable ECG systems is compared in Table 12. The metric
used for evaluation is the EER.

� Physikalisch Technische Bundesanstalt Database [79]: This
database contains 549 records from 290 subjects (each
subject may have 1–5 records). Each record includes a
Frank‐lead vectorcardiogram and a standard 12‐lead ECG,
sampled at 1000 Hz with 16‐bit resolution over a range of
�16.384 mV.

� MIT‐BIH arrhythmia dataset [137]: This database contains
48 ECG records from 47 subjects (i.e. 25 men aged between
32 and 89 and 22 women aged between 23 and 89). The
recordings were digitised at 360 samples every second per
channel with 11‐bit resolution over a 10‐mV range.

� ECG‐ID [138]: This database contains 310 ECG recordings
obtained from 90 individuals. These ECG signals record
both normal and abnormal rhythms, as well as signals from
patients with various cardiac conditions.

TABLE 9 Performance comparison of cancellable face systems.

Method
Type of feature extraction/
learning

Transformation
function Trait Database Performance (EER or RR)

Savvides et al. [32] Hand‐engineered Filter‐based Face CMU PIE RR = 100%

Oh et al. [30] Hand‐engineered Transformation‐based Face ORL, FERET EER = 1%, 1%

Faragallah et al. [60] Hand‐engineered Transformation‐based Face FERET, YALE EER = 0.014976%, 0%

Xu et al. [59] Hand‐engineered Transformation‐based Face Aberdeen, GT,
VIS, YMU

RR = 98.85%, 98.67%, 99.00%,
92.72%

Alhumyani et al. [61] Hand‐engineered Transformation‐based Face LFW, FERET, ORL RR = 99.63%, 99.92%, 98.97%

Jang and Cho [88] CNN Cryptography‐based Face YouTube Faces RR = 99.34%

Abdellatef et al. [31] CNN Filter‐based Face FERET, LFW RR = 97.14%, 97.94%

Ma et al. [95] MobileNetV1 Transformation‐based Face ORL, LFW EER = 0.2%, 0.2%

Ghafourian et al. [98] ResNet‐50 Cryptography‐based Face VGGFace2 EER = 2.25%

Punithavathi and
Geetha [99]

LDA Transformation‐based Face ORL EER = 4.21%

Kumar et al. [103] PCA Transformation‐based Face ORL RR = 90%

Bamoriya et al. [108] CAE Transformation‐based Face ORL EER = 0%

Abbreviations: EER, equal error rate; RR, recognition rate.
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5.6 | Other biometric datasets and
performance comparison of cancellable
biometric systems using other traits

In this section, databases of other biometric traits (e.g. fin-
gervein, palmprint and EEG) are introduced. Performance
comparison of cancellable biometric systems using those traits
is reported in Table 13. The performance measures include the
EER, false accept rate, false rejection rate and RR.

� University of Twente Finger Vascular Pattern Database
(UTFVP) [139]: This dataset includes a total of 1440 images
captured from 60 subjects in two recording sessions, each
with six fingers (index, middle and ring fingers) and 4 images
for each finger. The resolution of these finger vein images is
672 � 380 pixels.

� Motor Movement/Imagery Database [137]: This database
has EEG signals of 109 healthy individuals in resting states
and motor imagery tasks.

� CASIA‐Palmprint [140]: This dataset contains 5502 palm-
print images from 312 individuals, collected from both left
and right palms of each subject. The collected palmprint
images are 8‐bit grey‐level JPEG files.

� PolyU Palmprint [86]: This database includes 7752 gray‐scale
images acquired from 386 palms of individuals with different
ages and genders. There are approximately 20 images of size
384 � 284 per palm, acquired in two sessions (10 images per
session) with an interval of approximately 2 months.

� MCYT Online Signature Corpus [141]: This database
contains signatures from 330 subjects, each with 25 real
signatures and 25 forged signatures. The genuine signatures
are divided into five sets, allowing for some breaks between
collection sets.

6 | DISCUSSION

6.1 | Hand‐engineered feature extraction
versus machine/deep learning‐based feature
learning

In cancellable biometrics research, hand‐engineered feature
extraction approaches extract and represent biometric features
using manually designed algorithms or techniques. These ap-
proaches involve the manual selection and design of features,

TABLE 10 Performance comparison of cancellable iris systems.

Method Type of feature extraction/learning Transformation function Trait Database Performance (EER)

Uhl et al. [66] Hand‐engineered Transformation‐based Iris CASIA‐v3 1.2%

Jenisch and Uhl [67] Hand‐engineered Transformation‐based Iris CASIA‐v3 1.244%

Rathgeb et al. [68] Hand‐engineered Filter‐based Iris CASIA‐v3 E1.63%

Umer et al. [69] Hand‐engineered Cryptography‐based Iris CASIA‐v3, MMU1, IITD 0.0001%, 0%, 0.0008%

Sandhya et al. [91] CNN Transformation‐based Iris IITD, MMU1 0.05%, 0.03%

Singh et al. [34] CNN Hybrid‐based Iris IITD 0.22%

Punithavathi and Geetha [99] LDA Transformation‐based Iris UBIRIS 5.43%

Abbreviation: EER, equal error rate.

TABLE 11 Performance comparison of cancellable voice systems.

Method
Type of feature
extraction/learning

Transformation
function Trait Database Performance (EER or RR)

Elsayed et al. [33] Hand‐engineered Filter‐based Voice Private dataset with 20 speech signals EER = 0.11%

Abdelwahab et al. [74] Hand‐engineered Transformation‐based Voice Private dataset RR = 98.45%

El‐Wahab et al. [76] Hand‐engineered Hybrid‐based Voice Private database containing 15 speakers RR = 100%

Abbreviations: EER, equal error rate; RR, recognition rate.

TABLE 12 Performance comparison of cancellable ECG systems.

Method Type of feature extraction/learning Transformation function Trait Database Performance (EER)

Wu et al. [79] Hand‐engineered Transformation‐based ECG PTB 0.038%

Hammad et al. [80] Hand‐engineered Cryptography‐based ECG MIT‐BIH, PTB, CYBHi 6%, 14%, 9%

Kim and Chun [81] Hand‐engineered Hybrid‐based ECG ECG‐ID 4.8%

Sakr et al. [93] VGG‐16 Transformation‐based ECG PTB, ECG‐ID 0.4%, 0.44%

Abbreviations: ECG, electrocardiogram; EER, equal error rate.

YANG ET AL. - 19

 24682322, 2024, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12283 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [26/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



based on their specific characteristics and/or analysis out-
comes [142]. In contrast, machine/deep learning‐based feature
learning approaches automatically learn and extract biometric
features from biometric data itself using machine/deep
learning algorithms [36]. Biometric features are learned
through training a machine learning model on a biometric
dataset, and then that model is used to extract relevant features
to achieve desired results.

There are some key differences between hand‐engineered
feature extraction and machine/deep learning‐based feature
learning approaches. These differences include: (a) Expertise
required: To select and extract appropriate features, cancellable
biometrics researchers need to have domain knowledge and a
good understanding of the characteristics of biometric data
when using hand‐engineered feature extraction. For example,
the extraction of minutiae‐based fingerprint features requires
specific knowledge and information about minutiae and local
structures formed by minutiae [143]. Machine/deep learning‐
based feature learning approaches, on the other hand, can be
employed without specific domain knowledge, because ma-
chine learning models are able to automatically learn relevant
features from biometric data. (b) Scalability: Hand‐engineered
feature extraction is usually less scalable than machine/deep
learning‐based feature learning, because manually selecting and
designing features can be time‐consuming and unsuitable for
large and complex datasets. On the other hand, machine/deep
learning‐based feature learning is applicable to large and
complicated datasets with minimum extra effort [143].

6.2 | Impact of feature representation on the
recognition performance of cancellable
biometrics

Preserving recognition performance is an essential requirement
for cancellable biometrics. According to the ISO/IEC 24745
standard [11], any template protection design should not
degrade recognition performance. While for cancellable bio-
metrics, the extent of performance decline depends on specific
transformation functions, the overall recognition performance
of cancellable biometric systems fundamentally relies on the

extracted or learned biometric features. Therefore, it is crucial
to develop effective feature extraction and learning approaches
that can output both discriminative and robust features from
raw biometric data (e.g. biometric images), because good
feature representation produces strong recognition perfor-
mance in cancellable biometrics.

The quality of the features selected and designed by hand‐
engineered feature extraction approaches impacts on recogni-
tion performance. If features are not representative of the
characteristics of biometric data, recognition performance may
suffer [144]. Take cancellable fingerprints as an example.
Biometric uncertainty arises from variables such as users'
interaction with fingerprint readers (e.g. placement position
and applied pressure) and the condition of the finger (e.g. dry
or wet) [145]. These factors can have a detrimental effect on
the recognition accuracy of cancellable biometric systems. To
address this challenge, researchers have developed a range of
feature extraction techniques over time, from early approaches
like registration‐based feature representation [28], stable local
structure‐based features (e.g. features extracted from Delauney
triangles) [146], to the well‐known MCC‐based feature repre-
sentation [147]. These diverse techniques are innovative,
designed to alleviate the adverse effect of biometric uncer-
tainty, resulting in improved recognition accuracy.

Since machine/deep learning‐based feature learning ap-
proaches can automatically extract the most relevant features
from biometric data, they in turn strengthen recognition per-
formance, particularly for large‐scale datasets. Although
fingerprint recognition is accessible to relatively small datasets,
face recognition benefits significantly from its access to large
datasets, such as the CMU PIE dataset [125] and the LFW
dataset [128]. Capitalising on these extensive datasets, ma-
chine/deep learning models (e.g. CNNs) can capture intricate
and subtle patterns inherent in facial images. These intricate
patterns, often challenging to discern with hand‐engineered
feature extraction approaches, are successfully detected by
machine/deep learning models, ultimately leading to substan-
tial improvement in recognition performance. It is worth
noting that machine/deep learning‐based feature learning has
its own issues [36], such as potential overfitting. Moreover, it
requires large amounts of labelled data for training, so when

TABLE 13 Performance comparison of cancellable biometric systems using other traits (e.g. finger vein, EEG, palmprint and signature).

Method
Type of feature extraction/
learning

Transformation
function Trait Database

Performance (EER, FAR, FRR
or RR)

Kauba et al. [84] Hand‐engineered Filter‐based Finger
vein

UTFVP EER = 0.36%

Yang et al. [83] Hand‐engineered Cryptography‐based Finger
vein

UTFVP RR = 98.61%

Wang et al. [85] Hand‐engineered Transformation‐based EEG MMIDB EER = 0.68%

Sardar et al. [106] K‐means clustering Cryptography‐based Palmprint PolyU Palmprint FAR = 0.0297% and FRR = 0.6%

Leng and
Zhang [86]

Hand‐engineered Transformation‐based Palmprint CASIA‐
Palmprint

EER = 0.67%

Maiorana [87] Hand‐engineered Transformation‐based Signature MCYT EER = 7.95%

Abbreviations: EEG, electroencephalography; EER, equal error rate; FAR, false accept rate; FRR, false rejection rate; RR, recognition rate.
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labelled data is limited (e.g. small fingerprint datasets), hand‐
engineered feature extraction is likely more practical.

6.3 | Impact of feature representation on the
non‐invertibility of cancellable biometrics

Non‐invertibility is core for cancellable biometrics. Research
shows that both hand‐engineered feature representation [148]
and machine/deep learning‐based feature representation [149]
can be inverted to reconstruct raw biometric data (e.g. images).
It is common knowledge that the non‐invertibility of cancel-
lable biometrics relies on transformation functions designed,
which are usually applied to the extracted or learned features to
produce transformed templates. If the features themselves
exhibit good irreversibility, it makes it harder for attackers to
obtain raw biometric data (e.g. images), thereby heightening the
overall security of cancellable biometric systems.

The irreversibility of hand‐engineered feature representa-
tion and machine/deep learning‐based feature representation
differs. It is not easy to determine which type of feature rep-
resentation has better irreversibility. Only one study [25] makes
a comparison between them on fingerprints. In this work,
Wijewardena et al. [25] demonstrated that deep learning‐based
feature representation is more resistant to reconstruction at-
tacks than hand‐engineered feature representation (e.g. minu-
tiae). We cannot find similar research on the irreversibility
comparison for biometric traits other than fingerprint, so it
would be hard to conclude whether hand‐engineered or ma-
chine/deep learning‐based feature representation possesses
better irreversibility. Nevertheless, we believe that cancellable
transformation functions should take primary responsibility for
the non‐invertibility of cancellable biometric systems.

6.4 | Potential research directions of deep
learning‐based feature learning for cancellable
biometrics

Deep learning is a type of machine learning. The objective of
deep learning‐based feature learning for cancellable biometrics
is to explore deep learning algorithms that can learn robust and
distinctive features from biometric data. The features learned
can then be utilised for authentication but should not be easily
inverted. Compared to hand‐engineered feature extraction,
which has been studied for decades, deep learning‐based
feature learning is relatively new and still requires more
effort and attention from researchers to further develop it. We
summarise several research directions in this area as follows.

� Deep learning‐based feature representation: One potential
direction is to derive deep learning‐based feature learning
methods which are capable of extracting discriminative
features but also ensure that the learned features do not
expose raw biometric data. This is a valuable capability for
deep learning architectures (e.g. CNNs). Research (e.g. [149])
shows that features learned by deep learning algorithms, if

unprotected, can be reversed to retrieve raw biometric data
(e.g. face images). Almost all the deep learning‐based feature
learning approaches discussed in Section 4 follow a two‐step
process: an initial step involving feature extraction through
deep learning algorithms, followed by another step of
feature transformation. Hence, it would be most desirable if
the features learned are inherently non‐invertible so that it is
unnecessary to have an additional layer of protection.

� Deep learning‐based feature fusion: Another potential di-
rection is to use deep learning techniques to fuse or learn
features from multiple biometric modalities [150]. How to
design effective and efficient fusion strategies in a multi‐
modal context is worth investigating.

� Deep learning‐based privacy protection: An additional po-
tential direction is to make use of deep learning techniques
to simultaneously learn and transform the features extracted,
thus preserving them and making it difficult for attackers to
reverse the transformation or use the transformed data to
retrieve the original data. In this way, the privacy of the
original biometric data is protected. Regarding the topic of
privacy preservation with cancellable biometrics, we suggest
researchers exploring modified deep learning architectures
(e.g. [151, 152]).

6.5 | Reflections on hybrid feature extraction
and learning for cancellable biometrics

Hybrid feature extraction and learning has been introduced in
Section 4. There are several ways to implement hybrid feature
extraction and learning for cancellable biometrics, including
combining resultant features learned in a hybrid feature
learning setting, integrating hand‐engineered feature extraction
and machine/deep learning‐based feature learning in a unified
framework, and using machine/deep learning techniques to
select or refine hand‐engineered features [153]. Hybrid feature
learning can be especially beneficial when it is applied on
complex or noisy data, or when there are only limited training
data available. However, the limits and drawbacks of hybrid
feature learning need to be considered. For example, hybrid
feature learning might be more difficult to carry out and
explain than the non‐hybrid feature learning. Inappropriately
integrating various components of a hybrid feature learning
approach could cause low efficiency.

7 | CONCLUSION

This survey paper provided an overview of feature represen-
tation and learning approaches used in the field of cancellable
biometrics. We discussed the requirements of good feature
representation and different data types of biometric feature
representation. We also reviewed both hand‐engineered feature
extraction and machine/deep learning‐based feature learning
approaches, and compared their performance over various
databases. Overall, it is clear that both hand‐engineered feature
extraction and machine/deep learning‐based feature learning
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have their own strengths and limitations, and choosing suitable
feature extraction and learning approaches depends on the
requirements and constraints of specific applications. While
hand‐engineered feature extraction is mature enough, deep
learning‐based feature learning has progressed rapidly in the
study of cancellable biometrics in recent years. More research is
needed to continue improving the performance and reliability
of feature extraction and learning approaches for cancellable
biometrics. This survey paper has served the purpose of
reviewing the latest developments and outlining future research
of feature extraction and learning for cancellable biometrics.
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