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Abstract 

Early identification of damages in tubular structures is crucial for their long-term safety and 
functionality, as they are essential in various modern life applications. Experimental and 
numerical modal data may slightly differ due to unknown structural characteristics and 
uncertainties, which are typically addressed using finite element (FE) model updating 
procedures. Instead of using the Euler-Bernoulli beam element, this paper utilizes the  
semi-rigidly connected frame element (S-RCFE). By incorporating extra design parameters, 
such as the end fixity factor of all connections, the S-RCFE offers a unique opportunity to 
establish a strong agreement between experimental and numerical models through an 
optimization-based FE model updating procedure. A well-calibrated FE model represents the 
actual behaviour of the structure and leads to achieving accurate results in the damage detection 
step. This paper employs the improved grey wolf optimizer (IGWO) and weIghted meaN oF 
vectOrs (INFO) to minimize 11 objective functions with adjustable coefficients. The statistical 
investigations reveal that the IGWO effectively minimized five out of six objective functions, 
which were defined based on the modified total modal assurance criterion (MTMAC). The rest 
of the objective functions based on the modal assurance criterion (MAC), natural frequency 
vector assurance criterion (NFVAC), differences in natural frequencies, and a combination of 
the MAC and NFVAC could not obtain accurate outcomes for the model updating problem. 
The statistical comparison indicates that the INFO algorithm is unreliable for the FE model 
updating despite achieving at least one successful result in ten independent runs. The INFO 
algorithm and the IGWO algorithm demonstrate comparable performance in damage detection. 
The analysis also shows that the coefficients of MTMAC, alpha and beta, should be adjusted 
to 0.65 and 1, respectively, to achieve the most accurate damage detection result. 
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1. Introduction 

Tubular structures such as offshore jackets, pipes, and circular hollow sections are prone to 

perforation and corrosion under excessively harsh conditions [1-3]. Serious consequences, 

including environmental pollution, financial loss, and combustion, might happen if a leak arises 

in tubular structures [4]. Additionally, considerable marine structures are approaching their 

service life, and undetected defects potentially result in a sudden structural collapse with 

destructive repercussions [1, 5]. Non-destructive evaluation of these tubes is crucial to maintain 

their structural integrity and extend their service life [6]. In addition to traditional visual 

inspections with the challenge of accessibility for pipelines in deep oceans, local damage 

detection methods based on X-rays, ultrasonic and acoustic waves, and eddy current have been 

extensively used [7-9]. Local methods typically need complex instruments, and there are some 

restrictions, such as the requirement to sense the tested case point by point [8]. Therefore, 

researchers applied vibration-based [10] structural damage detection techniques as an efficient 

framework by analyzing the global vibration characteristics such as natural frequencies  [11, 

12], mode shapes [13-16], mode shape curvatures [17, 18], time-domain responses [19, 20], or 

frequency response functions [21-23]. Modal properties are sensitive to changes in physical 

properties, such as stiffness, and structural defects generally appear in stiffness reduction [24]. 

Therefore, the fundamental concept for vibration-based damage detection approaches is 

interpreting discrepancies in modal properties [25]. Vibration-based methods might be 

practical and more beneficial, especially when natural frequencies may be extracted easily 

using a small number of sensors or perhaps only one [10]. Model-based methods and response-

based methods are two categories of vibration-based techniques [25]. Model-based methods 

employ a numerical model in addition to experimental measurements. In opposition, response-

based methods only rely on experimentally measured data [26]. Both damaged elements and 

their severities are detectable when using model-based methods. Nevertheless, response-based 

methods are broadly successful in locating the damaged elements [25]. The model-based 

methods are generally static, and it's not practical to employ them for real-time monitoring 

because of their disability to track the latest alterations of structural conditions [27]. The 

capability of the finite element (FE) model to reproduce the dynamic response of real structures 

is an essential challenge in any model-based damage identification method [28, 29]. Therefore, 

FE model updating procedures attempt to adjust the numerical model using dynamic or static 

measurements [30, 31]. According to the literature, the FE model updating methods can be 

generically divided into two kinds, including iterative methods and non-iterative or direct 
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methods [32]. Direct methods are the most traditional techniques for updating the stiffness and 

mass matrices in a single attempt without any iterative strategies, which enables them to be 

computationally beneficial. The most critical limitation of direct methods is that no direct 

modifications are made to the physical properties of the FE model, and the numerical model 

becomes less significant, or its simulation capacity becomes lessened. The updated stiffness 

and mass matrices might not be positive definite, and symmetric. Therefore, such system 

matrices are challenging to comprehend physically [30, 32]. In the iterative methods, the 

uncertain parameters of the structures in the FE model are iteratively adjusted to ensure 

negligible discrepancies between the calculated and measured dynamic characteristics [33]. 

Optimization algorithms have been widely employed in recent years to minimize the objective 

function during an iterative FE model updating method [34-37]. Ghannadi et al. [38-40] 

comprehensively reviewed the application of three traditional optimizers, including particle 

swarm optimization (PSO), simulated annealing algorithm, and differential evolution 

algorithm, in FE model updating and damage detection. They also have analyzed the utilized 

objective functions and their popularity in recent decades. Various optimizers inspired by 

natural phenomena and known nature-inspired optimization algorithms have been significantly 

developed and involved in engineering processes due to their advantages in dealing with highly 

nonlinear problems and providing satisfactory solutions compared with traditional algorithms 

[41-43]. Ghannadi and Kourehli implemented several nature-inspired optimization techniques, 

including the moth-flame algorithm [44], salp swarm algorithm [45], multiverse optimizer [46], 

and slime mold algorithm [47] for FE model updating and damage identification. The 

researchers have also reported the successful application of the adaptive hybrid evolutionary 

firefly algorithm [48], an improved version of the grey wolf optimizer [49], shrimp and goby 

association search algorithm [50], termite life cycle optimizer [51], and a modified variant of 

artificial bee colony algorithm [52]. 

According to the literature, a few studies have focused on FE model updating in tubular 

structures, most of which are related to offshore wind turbines. El-Borgi et al. [53] conducted 

a model updating strategy in a laboratory-scaled piping system using a nonlinear iterative 

algorithm to determine the uncertain parameters of the numerical model until the discrepancies 

between the measured responses and those calculated from the FE model are minimized. Zhu 

et al. [54] formulated a two-step damage detection approach for underwater pipeline systems 

in the statistical framework and validated its efficiency using experimental and numerical 

examples. The first step quantifies uncertainties of the undamaged numerical model employing 
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the FE model updating procedure. Then, damaged elements and their severities are identified 

according to the calibrated model from the first step. A hybrid objective function based on 

differences in natural frequencies and mode shapes is used in this study. Wang et al. [55] 

presented an Auto Regressive Moving Average Exogenous model updating approach through 

the clonal selection algorithm in the time domain, which is applied to damage detection of 

laboratory-scale pipe laid on the soil. A brief report of attempts to update the experimentally 

tested pipe has been published by Rajbamshi et al. [56]. The iterative methods in FE model 

updating and damage detection are generally time-consuming. Therefore, Seguini et al. [57] 

performed numerical and experimental vibration analyses of intact and cracked pipes. Then, 

they predicted the crack depth using computationally efficient intelligence techniques, 

including optimized artificial neural networks by genetic algorithm and PSO [58, 59]. In 

another study with a similar methodology, Wu et al. [2] identified pipeline damage through an 

optimized back-propagation neural network using the improved whale optimization algorithm.  

As mentioned above, a notable contribution of FE model updating techniques in tubular 

structures has been practiced with offshore wind turbines. Xu et al. [60] investigated the 

structural behavior of offshore wind turbines with the monopile foundation by applying an FE 

model updating technique. In this method, the stiffness of the four horizontal springs, which 

simulate the interaction between the soil and the offshore wind turbine model, is assigned as 

the updating parameters. Then, an evolutionary optimization algorithm called estimation of 

distribution algorithms (EDAs) is employed to minimize two individual objective functions 

relying on changes in natural frequencies and mode shapes. Ren et al. [61] introduced a 

framework for FE model updating of monopile-supported offshore wind turbines with an 

implicit objective function, which considers stiffness and damping of the layered soil as the 

updating parameters. Abdullahi and Wang [62] implemented a digital twin-like model updating 

approach using the reduced-order FE model of the laboratory-scale offshore wind turbine, in 

which EDAs iteratively update the stiffness of the pile-surrounding soil by minimizing two 

individual objective functions, which contains natural frequencies and mode shapes. Research 

conducted by Zhang et al.  [63]  presents a two-step methodology for localizing and quantifying 

damaged towers or blades in offshore wind turbines. Their proposed strategy attempts to find 

the damaged components through a global mathematical model. Then, the second step aims to 

determine the exact location and severity of damaged elements by applying an optimization-

based FE model updating method. In this step, the Levenberg-Marquardt algorithm minimizes 
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an objective function defined through discrepancies in estimated and measured natural 

frequencies, mode shapes, and mode shape curvatures.   

A challenging aspect of model-based methods in structural damage detection is that the FE 

model of structures holds many degrees of freedom (DOFs). However, for real-world problems, 

measuring vibration data is practical with only a limited number of DOFs because of the limited 

number of installed sensors [64]. To address this challenge, the high-dimensional FE model 

must be reduced by model reduction methods [65, 66], or mode shape expansion techniques 

must be employed to expand a sparse set of measurements to a larger one [67]. A few studies 

have been conducted regarding model updating in offshore wind turbines when sparse and 

incomplete measurements are available. For example, the proposed strategies by Nabiyan et al. 

[68] and Cong et al. [69] include a mode shape expansion step. Developing mode shape 

expansion methods is not only related to offshore wind turbines; some efforts have been made 

to extend it to other onshore and offshore systems, such as the electric submersible pump. The 

proposed mode shape expansion method by Gutiérrez et al. [70] could successfully function to 

expand 56 DOFs, which is not measured experimentally in electrical submersible pumps. 

Implementing the introduced technique to model-based damage detection frameworks is 

possible in future works. 

The present paper proposes a robust FE model updating approach for tubular structures, 

calibrating an accurate baseline model for subsequent implementation in the damage detection 

step. This method uses the semi-rigidly connected frame element (S-RCFE) and considers 

rotational stiffness at each node. The S-RCFE was initially generalized to simulate the 

semirigid connections of steel-framed structures and applied to system identification [71]. 

Then, researchers found that S-RCFE enables them to assess joint damage by considering 

rotational stiffness or, generally speaking, the end fixity factor of each connection as design 

parameters (DPs) with the assistance of an optimization procedure [72-75]. In the latest study, 

Ghannadi et al. [76] illustrated that using the FE model updating method through S-RCFE 

instead of the standard Euler-Bernoulli beam element can yield more precise results in beam-

like structures. They found S-RCFE with the end fixity factor of each connection as additional 

design parameters allow us to calibrate the model perfectly. By considering the research of 

Ghannadi et al. [76], the following are the main contributions of this paper: 

I. This work enriches the FE model updating methods in tubular structures, which is a 

relatively unexplored topic in the engineering community. 
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II. This work fills the existing gap between theory and practice by using an experimental 

pipe model with a length of 2.5 m for validation purposes. Several experimental modal 

analysis results are statistically studied to determine the variation in modal 

characteristics and decide how many measured modes should be included in the model 

updating procedure.  

III. The method utilized in this paper is an iterative model updating technique, and the 

performance of optimization algorithms and objective functions have an essential 

impact on procedure success. Thus, the capability of two optimization algorithms, 

including improved grey wolf optimizer (IGWO) and weIghted meaN oF vectOrs 

(INFO), are statistically investigated. Besides, comprehensive comparative studies 

examine the efficiency of different objective functions and analyze the sensitivity of 

objective function's coefficients (alpha and beta) in model updating and damage 

detection accuracy. 

IV. This study compares the convergence curves of the optimization algorithm to explore 

how incorporating S-RCFE in the model updating process results in superior 

convergence rates compared to the Euler-Bernoulli beam element. 

V. To the author's best knowledge, this paper presents a robust optimization-based model 

updating approach in tubular structures for the first time. 

2. Methodology 

This section describes the theoretical basis of structural damage, its definition, and the proposed 

model-based damage detection approach, including a preliminary model updating step to create 

an accurate baseline model. The proposed inverse approach employs novel optimization 

algorithms to minimize the objective functions with adjustable coefficients. This section also 

includes mathematical formulations of objective functions and local matrices to assemble the 

FE model using S-RCFE. The mathematical relations of the optimization algorithms are 

separately presented in Section 3. 

2.1. Damage definition 

Existing structures may be vulnerable to various conditions, including temperature changes, 

wind, earthquakes, corrosion, etc. Therefore,  these deterioration factors might result in 

structural damage and lead to sudden collapse, human disaster, and financial loss [49]. Timely 

identification and repair of possible damages can significantly improve the safety and integrity 

of structures [77]. In this study, the reduction of elemental stiffness represents structural 

damage because the deterioration factors mentioned above appear in the reduction of elemental 
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stiffness. In contrast, the elemental mass remained unchanged before and after the damage [78]. 

The stiffness matrix for the damaged structure can be calculated as follows: 

1
(1 )

N

d e e
e

K SRF k
=

= −∑                       (1) 

where Kd and ke are the damaged stiffness matrix and e-th undamaged elemental stiffness 

matrix, respectively. SRFe is the stiffness reduction factor of the e-th element, where SRFe=1 

represents the fully damaged state of the e-th element, and SRFe=0 indicates that the e-th 

element remains undamaged. The number of elements is shown by N, and SRF is an  

N-dimensional vector with values between 0 and 1 given as follows [78]: 

[ ]1 2, , , NSRF SRF SRF SRF=            (2) 

2.2. Semi-rigidly connected frame element 

Perfectly rigid or ideally pinned connections are usually used in traditional structural analysis 

of frame structures [79].  In contrast to the rigid joints, which restrain rotations, the pinned joints 

allow theme. In practice, most connections have a moment capacity between perfectly rigid 

and ideally pinned conditions. Therefore, modern design codes use semi-rigid joints, which 

define joints based on their actual behavior [71]. The S-RCFE enables us to model joints as 

partially restrained, improving the model's reality [79]. Only the rotational semi-rigid 

characteristic is considered for most kinds of connections since the axial and shearing 

deformations are negligible. The semi-rigid joint is typically modelled using a zero-length 

rotational spring to consider joint flexibility [73]. As shown in Figure 1, kj
1 and kj

2 are the 

rotational stiffness of the springs at the left and right ends, respectively. kj
1 and kj

2 allow rotation 

to certain degrees according to the end fixity factors J1 and J2, respectively.  

As mentioned earlier, a few researchers have studied FE model updating approaches in pipes. 

According to previous studies, the pipe models were generally discretized into several  

Euler-Bernoulli beam elements [80]. In this study, the FE model of an experimental free-free 

pipe is assembled using the S-RCFE. Although our studied pipe model lacks bolted 

connections, we have discretized the pipe into several beam elements with 3-DOFs at each 

node and considered rotational springs between beam elements. In other words, the  

S-RCFE enables us to have additional DPs during the optimization-based FE model updating 

procedure and achieve accurate results because we can consider the end fixity factor of each 

node as an uncertain parameter in addition to Young's modulus. 
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Figure 1. Modeling semi-rigidly connected frame element with rotational springs 

 

In Eq. (3) given below, the stiffness matrix of an arbitrary beam with semi-rigid connections is 

provided [71, 72]. 
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where the following formula determines α1, α2, and α3:  

1
1

1 2

1 2
2

1 2

2
3

1 2

3
4
3

4
3

4

J
J J
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J J
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
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
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− 

           (4) 

where J1 and J2 are the end fixity factors for joints 1 and 2, respectively. 

The standard consistent mass matrix [71] of beam elements with rigid ends has been 

generalized for the existence of semi-rigid connections through the end fixity factors J1 and J2 

as follows: 
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             (5) 

where the values of D, f1, f2, f3, f4, f5, and f6 can be calculated [72] as follows: 

1 2
E, L, I, A, ρk j 1 k j 2
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    (6) 

2.3.  Optimization-based FE model updating and damage detection procedure 

The material and connections between structural elements are subject to many idealizations, 

discretizations, assumptions, and epistemic uncertainties, and numerical models often exhibit 

significant uncertainty. FE model updating methods attempt to minimize the gap between 

experimental and theoretical calculations by adjusting the uncertain parameters [81]. FE model 

updating procedures are often formulated as an optimization framework by minimizing an 

objective function. The differences between numerically calculated dynamic characteristics 

(natural frequencies and mode shapes) and those measured values from the experiment define 

the objective function [82]. Previous research has presented a wide variety of objective 

functions [83]. However, properly selecting an appropriate objective function may significantly 

influence the effectiveness of any model updating procedure [84]. This study conducts a 

detailed comparison to address the significant impact of objective functions on model updating 

of the free-free pipe and find the most sensitive objective functions. In addition to comparing 

the single and hybrid objective functions, this paper investigates the sensitivity of objective 

functions’ coefficients (alpha and beta). 

The modified total modal assurance criterion (MTMAC) is a robust objective function that 

combines the modal assurance criterion (MAC) with natural frequencies to meet the updating 

requirements for both mode shapes and natural frequencies [85]. In the model updating process 

in this study, the end fixity factor for all joints and Young's modulus for all elements are 

considered unknown parameters (X).   Considering n modes, the objective function based on 

MTMAC [86] is formulated as follows: 

( ) ( )
1

1 ( )
n

MTMAC i
i

f X MTMAC X βα
=

 = − 
 
∑         (7) 

where MTMACi (X) can be defined as follows: 

( )
{ } { }( )

( ) ( )
( ) ( )

2 2

2 2

, ( )

( )
1

( )

m c
i i i

i
m c
i i

m c
i i

MAC X
MTMAC X

X

X

φ φ

ω ω

ω ω

=
−

+
+

        (8) 
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where m
iω and ( )c

i Xω are the i-th measured and calculated natural frequencies, respectively. 

The MAC function returns a value of one if the compared mode shapes are correlated and zero 

if they are uncorrelated [87].  MAC values between the i-th calculated and measured mode 

shapes, ( )c
i Xφ and m

iφ , are obtained as follows: 

( )
{ } { }

{ } { }( ) { } { }( )

2

( )

( ) ( )

Tm c
i i

i T Tc c m m
i i i i

X
MAC X

X X

φ φ

φ φ φ φ
=        (9) 

The utilized dynamic characteristics (natural frequencies and mode shapes) in Eqs. (8 and 9) 

can be calculated [88] by solving the following eigenvalue equation: 
2

i i iK Mφ ω φ= ,  i=1, 2,… ,n                  (10) 

where M and K are the mass and stiffness matrices, respectively. Additionally, n displays the 

number of DOFs. 

The presented objective functions in Eqs. (11 and 12) are only relying on natural frequencies 

[47, 76]. 

( ) ( ) ( )( )2 2

1
( ) /

n
m c m
i i i

i
frequencyf X X

β

α ω ω ω
=

 = − 
 
∑                      (11) 

( ) ( )
1

1 ( )
n

NFVAC i
i

f X NFVAC X βα
=

 = − 
 
∑                                  (12) 

where NFVAC (X) can be computed [89] as follows: 

( )
{ } { }

{ } { }( ) { } { }( )

2

( )

( ) ( )

Tm c

T Tc c m m

F F X
NFVAC X

F X F X F F
=                           (13) 

where Fc(X) the calculated natural frequency vector and Fm is the measured natural frequency 

vector. The natural frequency vector assurance criterion (NFVAC) states that when the 

calculated values are close to one, it indicates a strong correlation between two arbitrary natural 

frequency vectors. The following equation can also be used to establish the natural frequency 

vector: 

1

1n n

F
ω

ω
×

 
 =  
 
 

                                          (14) 

Mode shapes are widely used characteristics to formulate objective functions, and the MAC 

function is typically utilized to evaluate the correlation between the measured and calculated 

mode shapes. The objective function based on MAC [90] is expressed as follows: 
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( ) ( )
1

1 ( )
n

MAC i
i

f X MAC X βα
=

 = − 
 
∑                                   (15) 

Eq.(16) gives a hybrid objective function combining natural frequency and mode shape terms. 

Certain engineering problems may be solved efficiently through multi-objective optimization 

and minimizing multiple objectives simultaneously. The weighted sum technique integrates all 

the multi-objective functions into a single scalar and creates a weighted composite objective 

function [91].  In Eq. (16), the coefficients α and β may be essential in achieving optimal model 

updating results. However, It can be challenging to determine the appropriate coefficients 

before running the optimization algorithm and analyzing initial results. A typical approach to 

address this difficulty is to weigh all terms equally, while this approach may cause sub-optimal 

identification results [90]. Therefore, trials and errors are needed to find optimal values of α 

and β. 

( ) ( ) ( )
1 1

1 ( ) 1 ( )
n n

MAC NFVAC i i
i i

f X MAC X NFVAC Xα β−
= =

   = − + −   
   
∑ ∑                 (16) 

The optimization algorithms minimize the above-mentioned objective functions while 

exploring the optimal properties of the dynamic system. As a result, the obtained optimal 

solution perfectly reflects the modal characteristics and can be contributed to establishing the 

baseline model, which represents a structure's actual behaviors. The baseline model can be 

compared with the target structure in different damaged scenarios by minimizing objective 

functions and identifying the damage locations and their severities [92]. In this regard, two 

objective functions based on MTMAC and natural frequencies are defined as follows: 

( ) ( )
1

1 ( )
n

MTMAC i
i

f SRF MTMAC SRF βα
=

 = − 
 
∑ ,           0 1SRF≤ ≤                 (17)

( ) ( ) ( )( )2 2

1
( ) /

n
m c m
i i i

i
frequencyf SRF SRF

β

α ω ω ω
=

 = − 
 
∑ ,      0 1SRF≤ ≤                 (18) 

Natural frequencies are comparatively easy to measure, and frequency-based objective 

functions benefit from being practical in real-world applications. However, frequency change 

methods have at least two drawbacks in detecting structural damage. First, severe damage 

might result in minimal changes to natural frequencies, especially for large-scale structures, 

and these modifications may be undetectable due to measurement errors. Second, temperature 

variations might cause uncertainty in the measured frequencies [93]. Unlike natural frequency 

changes, variations in mode shapes are considerably sensitive to local damage. However, 

involving mode shapes has certain disadvantages as well. First, damages are local phenomena 
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and may not substantially affect the lower mode shapes, which are often measured by field 

vibration tests. Second, environmental noise, erroneous sensor placements, or ambient loads 

may affect the extracted mode shapes. Third, the accuracy of the damage detection process 

may be significantly impacted by the number and arrangement of installed sensors [94]. Figure 

2 illustrates the flowchart of the damage detection strategy. 
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Figure 2. Flowchart of the damage detection strategy (experimental model courtesy of 

Obukho E. Esu) 

3. Optimization algorithms 

Two optimization algorithms, including improved grey wolf optimizer (IGWO) and weIghted 
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meaN oF vectOrs (INFO), are employed to minimize the objective functions during FE model 

updating and damage detection procedures. This section briefly describes utilized optimizers 

and their mathematical relations to minimize objective functions. 

3.1. weIghted meaN oF vectOrs (INFO) 

Ahmadianfar et al. [95] introduced the INFO technique as an efficient optimization algorithm 

in 2022. INFO is a modified weight mean approach that uses three key operations to update 

the positions of the vectors, which can contribute to creating a potent framework. Through a 

series of iterative generations, the INFO algorithm finds the optimal solution. In each 

generation, the following three operators update the positions of the vectors: 

• Step1: Updating rule 

• Step2: Vector combining 

• Step3: Local search 

INFO is a population-based optimization technique that determines the weighted mean for a 

group of vectors in the search space. The INFO algorithm involves a population of n vectors 

within a search space of D dimensions [95]. According to Eq. (19), this algorithm uses a random 

generation method [96] to produce the initial population: 

( ) ( )min max min0,1 .nX X rand X X= + −                     (19) 

where Xn represents the n-th vector, rand (0, 1) denotes a random number in the range [0, 1], 

and each problem's solution domain has upper and lower bounds, Xmax and Xmin.  

The updating rule operator in the INFO algorithm expands the population's broadness 

throughout the search procedure. This operator employs the weighted mean of the vectors to 

generate new vectors. The following scheme [96] defines the updating rule in the INFO 

algorithm: 

( )
( ) ( )( )
( )

( ) ( )( )

( )
( ) ( )( )

1

1

1

1 2

2 3

2 3

0.5

1
1

2
1

1
1

iter
bs aiter iter

l l iter
bs a

iter iter
a biter

l bs iter iter
a a

iter iter
a aiter iter

l a iter iter
a a

rand

x x
z x MeanRule randn

f x f x

x x
z x MeanRule randn

f x f x

x x
z x MeanRule randn

f x f x

σ

σ

σ

<

−
= + × + ×

− +

−
= + × + ×

− +

−
= + × + ×

− +

if

else

( )
( ) ( )( )

1 2

1 2

2
1

iter iter
a aiter

i bt iter iter
a a

x x
z x MeanRule randn

f x f x
σ

−
= + × + ×

− +

end

                 (20) 



15 
 

where the new vectors in the g-th generation are shown by 1iter
lz  and 2iter

lz ; σ defines the 

scaling rate of a vector according to Eq. (21): 

2 randσ α α= × −                        (21) 

where alpha is determined relying on the exponential function defined by Ahmadianfar et al. 

[95].  

In the INFO algorithm, two computed vectors by updating rule ( 1iter
lz and 2iter

lz ) are integrated 

with vector iter
lx  to increase the population's diversity. In other words, the main concept behind 

the vector combining step is to upgrade the local search capability and generate a new effective 

vector [95, 96]: 

0.5
0.5

1 . 1 2

2 . 1 2

iter iter iter iter
l l l l

iter iter iter iter
l l l l

iter iter
l l

rand
rand

u z z z

u z z z

u x

µ
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<
<

= + −

= + −

=

if
if

else

end
else

end

                      (22) 

where iter
lu is the g-th generated vector using the vector combining, and μ equals 0.05×randn. 

The local search step attempts to prevent the INFO algorithm from entrapping into locally 

optimal solutions [95]. The local operator considers the global position ( g
bestx ) and the mean-

based rule to enhance the search and exploitation abilities along with convergence to global 

optima [95, 96]. Therefore, a new vector is generated around ( g
bestx ) using this  operator, as 

given in Eq. (23): 

( )( )
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1 2

0.5
0.5

1 1
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φ φ φ φ

<
<

= + × + × −
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= × + − × × + − ×

+ +
=

if
if

else

end
end

                                                                      (23) 

where φ generates a random number between 0 and 1; and xrnd produces a new solution by 
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randomly combining the components of the solutions based on xavg, xbt, and xbs. This makes the 

INFO algorithm's randomization aspect more pronounced for improved solution space 

searching [95]. In Eq.(23), v1 and v2 are two random numbers, which generates as follows: 

1

2 0.5
1

rand if
otherwise

ρ
υ

× >
= 


                      (24)

2

0.5
1
rand if

otherwise
ρ

υ
<

= 


                      (25) 

where ρ  represents a random number between 0 and 1. 

3.2. Improved grey wolf optimizer (IGWO) 

The grey wolf optimizer (GWO) algorithm is inspired by grey wolves' hunting strategies and 

social leadership, which are observed in their natural habitat. The GWO employs α, β, and δ to 

lead ω wolves to thoroughly explore spaces with promising possibilities and discover the most 

optimal solution [97]. However, this process may lead to a potential drawback and cause a 

possibility of becoming trapped in local optima. Additionally, the algorithm's tendency to 

reduce population variety may converge to local optima rather than exploring a more 

comprehensive range of solutions. Nadimi-Shahraki et al. [98] proposed the improved grey 

wolf optimizer (IGWO) to tackle these limitations according to the following three phases: 

Initialization phase: The distribution of N wolves in the search space between [li, uj] is 

determined randomly [98] using the following equation: 

[ ] ( ) [ ] [ ]0,1 , 1, , 1,ij j j j jX l rand u l i N j D= + × − ∈ ∈                           (26) 

A vector of real values Xi (t) = {xi1, xi2, ..., xiD} represents the position of the i-th wolf in the  

t-th iteration, where D corresponds to the problem's dimensionality. 

Movement phase: Grey wolves are not only known for their group hunting skills but also for 

their remarkable ability to engage in individual hunting. This unique behaviour contributes to 

enhancing and refining the basic GWO. The IGWO has an advanced movement strategy 

incorporating the dimension learning-based hunting (DLH) search method alongside the 

canonical GWO search strategy. When using the DLH search method, every wolf is learned by 

its neighbouring wolves as a potential candidate for a new position. The following equation 

[98] calculates the dimension of the wolf's new position: 

( ) ( ) ( ) ( )( ), , , ,1i DLH d i d n d r dX t X t rand X t X t− + = + × −                           (27) 

where the d-th dimension of X i-DLH, d (t+1) is determined based on the d-th dimension of a 
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randomly selected neighboring variable X n, d (t) and a randomly selected wolf X r, d (t) from a 

population. Additional information has been presented by Nadimi-Shahraki et al. [98]. 

Selecting and updating phase: In this phase, the superior candidate is initially identified by 

comparison of the fitness values of candidates ( )1i GWOX t− +  and ( )1i DLHX t− + , as calculated 

using Eq. (28). If the selected candidate's fitness value is less than Xi (t), Xi (t) is updated by 

the selected candidate to determine the new position of  Xi (t + 1). However, if the fitness value 

is greater or equal to Xi (t), Xi (t) remains unchanged [98]. 

( ) ( ) ( )
( )

1 ,
( 1)

1
i GWO i GWO i DLH

i DLH

X t if f X f X
X

oth w
t

X t er ise
− − −

−

 + <+ =  +
                   (28) 

Where ( )1i GWOX t− +  is the first candidate [98] for the new position of wolf Xi (t) and can be 

determined from the canonical GWO search strategy presented by Mirjalili et al. [97]. 

4. Experimental example 

The experimental example is a free-free aluminium pipe with geometrical and material 

properties listed in Table 1. The modal analysis has been performed on intact and damaged 

conditions at the Structural Engineering Laboratory of the University of Surrey, Guildford, UK 

[99]. A photograph and schematic of the experiment procedure are illustrated in Figures 3 and 

4, respectively. The experimental pipe model has been suspended by two tension springs at 40 

mm from the left and right ends to simulate free-free boundary conditions, as schematically 

illustrated in Figure 4. Six uniaxial accelerometers have been attached to the pipe at locations 

2.5, 430, 980, 1525, 2080, and 2497.5 mm from the left end to measure accelerations and 

perform modal analysis (see Figure 4). The opposite end of each accelerometer has also been 

wired to a channel of data acquisition chassis. One channel in the chassis has been exclusively 

considered for connecting the modal hammer. In the modal tests, test specimens must be 

excited to induce vibration. The modal hammer is a widely used method to implement this 

excitation. Details of the modal testing setup and data acquisition system are presented in 

Figure 5. The sensitivity of modal properties to different hammer impacts has been analyzed 

to investigate the repeatability of the extracted characteristics from modal analysis. According 

to Figure 4, six hammer impact locations on the experimental pipe have been considered, and 

data measurements have been conducted three times per impact location. The direction of the 

hammer impacts (90˚ –270˚) is shown in Figure 4. A dataset of 18 independent measurements 

collected for the undamaged pipe is listed in Table 2. It can be observed from Figure 6 that the 

standard deviations for the first four natural frequencies are extremely close to zero. 
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Consequently, the extracted natural frequencies from the modal test are repeatable for 18 

independent measurements of undamaged cases.  

A section of pipe has been removed through cutting to cause a damaged scenario artificially, as 

shown in Figure 3. Achieving cuts with precisely right angles is not feasible, necessitating a 

tolerance of a 2 mm radius during the cutting process to account for the rounding of sharp 

edges. Figure 4 shows a 200 mm removed section between 837.5 mm and 1037.5 mm from the 

left end.  Similar to the undamaged condition, the sensitivity of modal properties to hammer 

impact locations and sensor arrangements has been analyzed. Table 2 lists four independent 

measurements for the damaged scenario. According to Figure 6, it is clear that the natural 

frequencies are repeatable for the first five modes with minor standard deviations. 

The FE model consists of 13 frame elements that are semi-rigidly connected, and each of these 

elements is restricted by two rotational springs (kj
1, kj

2). The coordinates of rotational springs 

(Ckj1, Ckj2) for each element are presented in Table 3. Table 3 also presents the location of 

damage, which exists between 837.5 mm and 1037.5 mm from the left end and includes the 

fifth and sixth elements. 
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Figure 3. A photograph of modal testing on the experimental pipe with free-free boundary 

conditions [99]

 
Figure 4. A schematic of modal testing on the experimental pipe with free-free boundary 

conditions 
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Figure 5. Details of modal testing setup on the experimental pipe with free-free boundary 

conditions [99] 
 
 
 
 
 

Table 1. Geometrical and material properties of experimental pipe 

Properties Value 

Elasticity modulus (MPa) 72000 

Outside diameter (mm) 76.2 

Wall thickness (mm) 3.25 

Poisson's ratio 0.3 

Density (kg/m3) 2700 

Length (mm) 2500 

Cross-sectional area (m2) 7.448×10-4 

Second moment of area (m4) 4.965×10-7 

 
 
 
 

Accelerometer - Endevco Model 256-100

Modal Hammer - Endevco Model 2304

Data Acquisition Chassis – NI Model cDAQ-9178

Laptop Computer - Dell Precision 5520 
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Table 2. The extracted natural frequencies (Hz) from different measurement cases 
 

 
Figure 6.  The mean values and standard deviations of extracted natural frequencies from 

different measurements (error bars were scaled up by a factor of 100 and displayed 
exaggeratedly on the plot)
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Measurement Case 
Mode 

1 2 3 4 5 6 

Undamaged #1 75 204 394 636 1053 1260 

Undamaged #2 75 204 394 636 928 1257 

Undamaged #3 75 204 394 636 1031 1267 

Undamaged #4 75 204 394 636 927 1256 

Undamaged #5 75 204 394 636 928 1257 

Undamaged #6 75 204 394 636 928 1255 

Undamaged #7 75 204 394 636 928 1256 

Undamaged #8 75 204 394 636 927 1257 

Undamaged #9 75 204 394 636 927 1257 

Undamaged #10 75 204 394 636 928 1258 

Undamaged #11 75 204 394 636 927 1260 

Undamaged #12 75 204 394 636 928 1254 

Undamaged #13 75 204 394 636 928 1250 

Undamaged #14 75 204 394 636 928 1257 

Undamaged #15 75 204 394 636 927 1260 

Undamaged #16 75 204 394 636 928 1259 

Undamaged #17 75 204 394 636 928 1258 

Undamaged #18 75 204 394 636 928 1258 

Damaged #1 72 201 392 625 917 1255 

Damaged #2 72 201 392 624 917 1262 

Damaged #3 72 201 392 625 917 1257 

Damaged #4 72 201 392 625 917 1256 
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Table 3. The coordinates of rotational springs for each element and the damaged location on 
the experimental pipe 

 
5. Results and discussion 

This section presents the statistical results (mean values and standard deviations of 10 

independent runs) to investigate the performance of optimization algorithms (IGWO and 

INFO) in FE model updating and structural damage identification. The maximum number of 

iterations and search agents are important parameters during optimization and may affect the 

solutions. Therefore, this paper considers two sets of values for the maximum number of 

iterations and search agents. Table 4 presents the optimization algorithms' settings; LB and UB 

represent the lower and upper bounds, restricting search space. For example, optimization 

algorithms attempt to find solution vector X includes ±30% of initial DPs (Young’s modulus 

and the end fixity factor of semi-rigidly connected beam elements). Regarding the damage 

detection step, SRF is a vector with components ranging between 0 and 1, representing each 

element's damage severity. 

This paper uses statistical comparisons to find the efficient objective function and optimal 

coefficients (alpha and beta) for adjusting the objective function's best performance. Tables 5 

to 10 comprehensively compare the statistical results regarding employed optimization 

algorithms, objective functions, and their coefficients for FE model updating. The sensitivity 

of objective functions' coefficients and optimization algorithms' settings for damage detection 

are also in Figures 8 to 11. The following are comprehensive discussions on the provided results 

in Tables 6 to 11 and Figures 8 to 11. 

Table 4. The IGWO and INFO algorithms' settings 
 
 

FE model updating 

Search agent = 70  
LB ≤ DPs×(1-X) ≤ UB 

LB = - 0.3 
UB = 0.3 

Maximum iteration = 500 
Search agent = 102 

Maximum iteration = 103 

 
 

Damage detection 

Search agent = 70  
LB ≤ SRF ≤ UB 

LB = 0 
UB = 1 

Maximum iteration = 500 
Search agent = 102 

Maximum iteration = 103 

2.5 Length of 
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[0.98, 
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[0.77, 
0.98] 

[0.63, 
0.77] 

[0.43, 
0.63] 
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[0, 
0.2] 
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Table 5 provides the statistical comparison of FE model updating when employing IGWO as 

an optimization algorithm (search agent=70 and maximum iteration=500) and defining 

different objective functions with adjustable coefficients (f MTMAC (X),  f frequency (X), f MAC (X),  

f NFVAC (X), f MAC-NFVAC (X)). It's worth emphasizing that the poor results are indicated in bold. 

In the FE model updating problems, it is essential to calibrate the numerical model to obtain 

minor differences between calculated and experimental natural frequencies. At the same time, 

the calculated MAC values between experimental and numerical mode shapes must also 

indicate a strong correlation. When defining objective functions based on MTMAC, updated 

FE models could produce natural frequencies with negligible differences compared to 

experimental natural frequencies. Additionally, strong correlations have been reported between 

experimental and updated mode shapes, as shown in Table 5. The results revealed that the 

accuracy of model updating is not sensitive to objective functions' coefficients. However, a 

relatively minor error can be seen in the fourth mode when adopting 5 and 1 for alpha and beta, 

respectively. 

When forming objective functions based on changes in natural frequencies (f frequency (X)), 

updated models could only provide accurate natural frequencies, and mode shape correlation 

is unsatisfactory. The mode shape correlation could not be increased even with the alpha and 

beta changes. 

The results of FE model updating by minimizing an objective function based on MAC indicate 

the complete agreement between updated and experimental mode shapes due to the MAC 

values equal to 1.0000 for the first four modes. Notably, considerable differences 

(minimum=1.6643E+01% and maximum=1.8575E+01%) exist between the experimental 

natural frequencies and the updated ones. 

The FE model updating results demonstrate that defining objective function based on NFVAC 

could not provide a strong agreement between experimental and updated models. There are 

relatively large errors with major standard deviations in updated natural frequencies. Besides, 

calculated MAC values between experimental and updated mode shapes are unfavourable 

(minimum MAC=0.9613 at the first mode and maximum MAC= 0.9970 at the fourth mode). 

The latest section of Table 5 shows that combining two objective functions, f MAC (X) and 

 f NFVAC (X), could not reduce differences between experimental and updated natural 

frequencies, and there are still significant errors (minimum= 1.5155E+01% and maximum= 

1.6362E+01%) for all four modes. Although a strong correlation is observed between updated 

and experimental mode shapes (minimum MAC= 0.9999 and maximum MAC=1.0000), that 

is only sufficient if the accuracy of natural frequencies improves. 
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Table 5. Statistical results of FE model updating - IGWO (search agent=70 and maximum iteration=500) 

 4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
636.0064 393.9974 203.9999 74.9995 mean f (Hz)  

(X) MTMACf  
1, 1α β= = 

1.7753E-02 4.6923E-03 5.1386E-03 1.3525E-03 std f 
1.0026E-03 6.4925E-04 2.6883E-05 6.4422E-04 error f (%) 

0.9999 0.9998 0.9996 0.9997 mean MAC 
8.6910E-05 7.2010E-05 8.3717E-05 1.2521E-04 std MAC 
636.0015 394.0003 203.9957 75.0004 mean f (Hz)  

(X)MTMAC f  
1, 0.5α β= = 

9.2709E-03 7.0495E-03 4.4655E-03 1.2736E-03 std f 
2.3433E-04 6.7608E-05 2.0855E-03 5.2562E-04 error f   (%)  

0.9999 0.9998 0.9997 0.9997 mean MAC 
7.2018E-05 1.5493E-04 1.5164E-04 1.1832E-04 std MAC 
635.9957 394.0020 203.9993 75.0001 mean f (Hz)  

(X)MTMAC f  
1, 2α β= = 

3.3711E-02 8.6056E-03 1.3065E-03 1.1052E-03 std f 
6.7682E-04 5.0025E-04 3.4274E-04 1.5860E-04 error f   (%)  

0.9998 0.9997 0.9996 0.9997 mean MAC 
1.0992E-04 8.4485E-05 7.9826E-05 8.3262E-05 std MAC 
635.9994 394.0050 204.0014 75.0005 mean f (Hz)  

(X)MTMAC f  
0.5, 1α β= =  

2.9850E-03 4.5859E-03 5.6345E-03 3.3515E-03 std f 
1.0196E-04 1.2570E-03 6.7929E-04 6.2354E-04 error f   (%)  

1.0000 0.9998 0.9995 0.9994 mean MAC 
3.5016E-05 1.1536E-04 2.6992E-04 1.4381E-04 std MAC 
636.0136 394.0016 204.0010 75.0000 mean f (Hz)  

(X)MTMAC f  
2, 1α β= =  

4.9888E-02 2.2954E-02 2.0824E-03 5.9638E-04 std f 
2.1310E-03 3.9391E-04 4.7076E-04 6.3371E-05 error f   (%)  

0.9996 0.9997 0.9997 0.9997 mean MAC 
2.9359E-04 1.7273E-04 9.9673E-05 5.3663E-05 std MAC 
637.3264 394.0316 203.9986 74.9999 mean f (Hz)  

(X)MTMAC f  
5, 1α β= =  

1.0299E+01 1.5545E-01 6.0896E-03 3.5734E-04 std f 
2.0855E-01 8.0199E-03 7.0925E-04 7.1009E-05 error f   (%)  

0.9980 0.9994 0.9996 0.9998 mean MAC 
2.2993E-03 4.1178E-04 1.7195E-04 6.9150E-05 std MAC 
636.0069 393.9977 204.0023 74.9994 mean f (Hz)  

f frequency (X) 
1, 2α β= =  

1.1147E-02 1.3460E-02 5.8506E-03 2.0087E-03 std f 
1.0863E-03 5.7972E-04 1.1517E-03 8.2656E-04 error f (%) 

0.9920 0.9731 0.9926 0.9538 mean MAC 
6.8604E-03 2.5482E-02 6.8696E-03 6.0305E-02 std MAC 
636.0118 394.0015 204.0001 75.0002 mean f (Hz)  

f frequency (X) 
2, 2α β= =  

2.7960E-02 6.3711E-03 3.1083E-03 1.0353E-03 std f 
1.8500E-03 3.9163E-04 5.1976E-05 2.2355E-04 error f (%) 

0.9980 0.9867 0.9942 0.9395 mean MAC 
1.3986E-03 1.4877E-02 9.5603E-03 1.1144E-01 std MAC 
521.1297 328.4266 166.1064 61.9876 mean f (Hz)  

f MAC (X) 
1, 2α β= =  

1.0923E+02 6.4983E+01 3.1600E+01 1.2026E+01 std f 
1.8061E+01 1.6643E+01 1.8575E+01 1.7350E+01 error f (%) 

1.0000 1.0000 1.0000 1.0000 mean MAC 
6.9137E-06 4.3434E-06 2.9676E-06 1.0027E-05 std MAC 
642.4422 397.9975 206.0694 75.7581 mean f (Hz)  

f NFVAC (X) 
1, 1α β= =  

5.3417E+01 3.3101E+01 1.7138E+01 6.2996E+00 std f 
1.0129E+00 1.0146E+00 1.0144E+00 1.0108E+00 error f (%) 

0.9970 0.9853 0.9949 0.9613 mean MAC 
3.8361E-03 1.1965E-02 3.0739E-03 4.2671E-02 std MAC 
537.1051 334.2887 170.6213 63.2046 mean f (Hz)  

f MAC-NFVAC (X) 
1, 1α β= =  

3.1152E+01 1.9103E+01 9.8855E+00 3.6061E+00 std f 
1.5550E+01 1.5155E+01 1.6362E+01 1.5727E+01 error f (%) 

1.0000 1.0000 0.9999 0.9999 mean MAC 
1.5362E-06 4.7509E-06 4.4228E-06 1.3222E-05 std MAC 
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Table 6 presents a statistical investigation of the effectiveness of FE model updating using 

IGWO (search agent=102 and maximum iteration=103) as an optimization algorithm. This table 

includes the outcomes of various objective functions featuring adjustable coefficients similar 

to those arrangements presented in Table 5. 

According to Table 5, we recently found that the results of FE model updating based on 

minimizing MTMAC are highly accurate, and outcomes are almost insensitive to varying 

coefficients. However, there is only an opportunity to improve the MAC values (0.9980) and 

decrease the standard deviation (1.0299E+01) for the fourth mode when using MTMAC 

(alpha=5 and beta=1) as the objective function. As Table 6 shows, increasing the search agent 

to 102 and the maximum number of iterations to 103 could improve the MAC value (0.9990) 

and decrease the standard deviation to 1.5245E+00. However, the error on natural frequencies 

(1.7580E-01) is still remarkable. 

We previously found from Table 5 that the minimizing objective function relying on  

f frequency (X) could only provide good agreements regarding natural frequencies. The paper 

examines whether changing algorithms' settings can enhance the Mac values. However, based 

on the analysis presented in Table 6, it can be concluded that there was no significant 

improvement in MAC values despite increasing the maximum number of iterations and the 

search agent. Additionally, after adjusting alpha and beta to 2, there were substantial 

inaccuracies in the natural frequencies. The extremely large standard deviations and a large 

percentage of errors indicate changing algorithms' settings has disrupted the FE model updating 

process. As per Table 6, the mean MAC and std MAC have been reported as not a number 

(NaN). This could be due to at least one out-of-range run among the 10 independent runs, which 

impacted mean values and standard deviations. 

According to Table 6, errors on natural frequencies have been extensively extended by 

minimizing f MAC (X) as the objective function. Therefore, increasing the search agent and 

maximum iterations could not decrease the discrepancies between the experimental and 

updated natural frequencies.  

The reported results for f NFVAC (X) demonstrate that increasing the search agent and maximum 

number of iterations have slightly raised the correlation between experimental and updated 

mode shapes, as shown in Table 6.  However, errors on natural frequencies have been expanded 

and almost doubled compared to the presented results based on the initial algorithms' settings 

in Table 5. 

Comparing Tables 5 and 6 reveals that defining a combined objective function with MAC and 

NFVAC terms could only reduce discrepancies between experimental and updated natural 

frequencies. It is important to note that using both algorithms' settings in Tables 5 and 6 has 

resulted in large standard deviations being reported. 
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Table 6. Statistical results of FE model updating - IGWO (search agent=102 and maximum iteration=103) 
4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
635.9997 394.0002 204.0001 75.0002 mean f (Hz)  

(X)MTMAC f  
1, 1α β= = 

5.4034E-03 1.2020E-03 1.3921E-03 4.6807E-04 std f 
4.4825E-05 4.8967E-05 4.5962E-05 2.4385E-04 error f (%) 

0.9999 0.9998 0.9997 0.9996 mean MAC 
6.4678E-05 7.7271E-05 7.9311E-05 1.2070E-04 std MAC 
635.9990 394.0004 204.0000 75.0000 mean f (Hz)  

(X)MTMAC f  
1, 0.5α β= = 

4.9290E-03 1.2858E-03 1.6206E-03 6.2225E-04 std f 
1.6088E-04 9.6364E-05 4.2483E-06 1.8190E-05 error f   (%)  

0.9999 0.9999 0.9995 0.9997 mean MAC 
8.3193E-05 3.4103E-05 2.0841E-04 1.8497E-04 std MAC 
635.9994 394.0015 204.0004 75.0001 mean f (Hz)  

(X)MTMAC f  
1, 2α β= = 

6.6254E-03 3.2735E-03 1.3020E-03 6.3843E-04 std f 
9.6911E-05 3.7402E-04 1.9738E-04 1.7755E-04 error f   (%)  

0.9999 0.9998 0.9997 0.9997 mean MAC 
5.1168E-05 6.2601E-05 6.1990E-05 7.5283E-05 std MAC 
635.9990 393.9989 204.0001 74.9993 mean f (Hz)  

(X)MTMAC f  
0.5, 1α β= =  

1.4817E-03 2.2270E-03 1.1847E-03 1.5871E-03 std f 
1.5219E-04 2.8022E-04 4.3998E-05 8.8555E-04 error f   (%)  

1.0000 0.9999 0.9996 0.9996 mean MAC 
1.3229E-05 4.4788E-05 8.9530E-05 1.7648E-04 std MAC 
636.0003 394.0031 204.0001 75.0000 mean f (Hz)  

(X)MTMAC f  
2, 1α β= =  

1.1644E-02 7.8134E-03 9.0376E-04 4.0483E-04 std f 
4.0240E-05 7.8092E-04 3.7645E-05 1.5383E-05 error f   (%)  

0.9996 0.9997 0.9997 0.9998 mean MAC 
2.9044E-04 1.4513E-04 8.9985E-05 5.1299E-05 std MAC 
634.8819 393.9994 203.9987 74.9999 mean f (Hz)  

(X)MTMAC f  
5, 1α β= =  

1.5245E+00 2.5598E-02 2.7639E-03 1.2821E-04 std f 
1.7580E-01 1.5048E-04 6.4526E-04 6.9104E-05 error f   (%)  

0.9990 0.9994 0.9997 0.9998 mean MAC 
9.5795E-04 2.7398E-04 1.0359E-04 4.9760E-05 std MAC 
635.8790 393.9928 203.9840 75.0192 mean f (Hz)  

f frequency (X) 
1, 2α β= =  

3.6571E-01 1.2240E-01 6.4459E-02 5.0357E-02 std f 
1.9023E-02 1.8233E-03 7.8615E-03 2.5637E-02 error f (%) 

0.9952 0.9489 0.9760 0.9371 mean MAC 
4.7472E-03 6.3654E-02 3.1080E-02 1.3138E-01 std MAC 
1365.5724 1289.3611 1275.5279 1296.2891 mean f (Hz)  

f frequency (X) 
2, 2α β= =  

2.3067E+03 2.8315E+03 3.3885E+03 3.8621E+03 std f 
1.1471E+02 2.2725E+02 5.2526E+02 1.6284E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

389.1929 251.0826 127.4464 47.4772 mean f (Hz)  
f MAC (X) 

1, 2α β= =  
2.0334E+02 1.2969E+02 6.5324E+01 2.4379E+01 std f 
3.8806E+01 3.6273E+01 3.7526E+01 3.6697E+01 error f (%) 

1.0000 1.0000 1.0000 1.0000 mean MAC 
4.3548E-06 3.0029E-06 5.1085E-06 9.5927E-06 std MAC 
650.3663 402.8981 208.6073 76.6938 mean f (Hz)  

f NFVAC (X) 
1, 1α β= =  

9.1206E+01 5.6501E+01 2.9251E+01 1.0757E+01 std f 
2.2589E+00 2.2584E+00 2.2585E+00 2.2584E+00 error f (%) 

0.9973 0.9897 0.9962 0.9805 mean MAC 
1.7462E-03 9.8450E-03 2.3080E-03 1.8448E-02 std MAC 
560.0517 349.2904 178.0068 66.0023 mean f (Hz)  

f MAC-NFVAC (X) 
1, 1α β= =  

4.0993E+01 2.5427E+01 1.2928E+01 4.8665E+00 std f 
1.1942E+01 1.1348E+01 1.2742E+01 1.1997E+01 error f (%) 

1.0000 1.0000 0.9999 0.9999 mean MAC 
2.7176E-06 1.5568E-06 2.1098E-06 3.2266E-06 std MAC 
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Figure 7. Convergence curves of the IGWO (search agent=70 and maximum iteration=500) 

for the FE model updating 

Figure 7 illustrates the IGWO's convergence curves when using the Euler-Bernoulli beam 

element and S-RCFE. The mean values of ten independent runs were calculated for each case 

to provide reliability in comparison. It is clear that the IGWO significantly converges when the 

FE model is assembled based on S-RCFE. In contrast, the Euler-Bernoulli beam element leads 

to lower convergence rates. When aiming to minimize an objective function, convergence 

indicates the objective function's minimization capability and the accuracy of the FE model 

updating procedure. According to Figure 7, significant differences between the convergence 

curves of the Euler-Bernoulli beam element and S-RCFE reveal that the S-RCFE with the end 

fixity factor of each connection as additional design parameters enable us to minimize the 

objective functions effectively. An assembled FE model based on the Euler-Bernoulli beam 

element typically considers Young's modulus as design parameters, which might cause lower 

accuracy in challenging model updating problems.   
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Tables 7 and 8 have demonstrated that the INFO algorithm could not effectively find optimal 

solutions for the FE model updating problem regardless of which objective function is 

employed. It's crucial to understand that the failure of the INFO algorithm does not depend on 

the value of the search agent and the maximum number of iterations. Additionally, adjusting 

the coefficients (alpha and beta) could not solve the issue. Based on the statistical analysis 

accomplished, it is clear that the outcomes of the INFO algorithm have not been acceptable. 

As per Tables 7 and 8, there are significant differences between the updated and experimental 

natural frequencies. Besides, the mean MAC and std MAC values are NaN when the objective 

function is defined as f MTMAC (X), f frequency (X), and f MAC (X). The problem arises due to one or 

more out-of-range runs among the 10 independent runs. These runs may have significantly 

impacted the mean values and standard deviations, leading to the current problem. 

Tables 7 and 8 show that the INFO algorithm has failed to minimize objective functions based 

on f NFVAC (X) and f MAC-NFVAC (X). Adopting an appropriate algorithm for minimizing each 

objective function is crucial for achieving optimal results, and an inappropriate optimization 

algorithm may fail to find optimal solutions.  One of the possible drawbacks of optimization 

algorithms is their vulnerability to numerical instability, especially when dealing with large or 

very small numbers, which can cause the algorithm to fail. 

Based on Tables 7 and 8, the INFO algorithm could not provide reliable results by minimizing 

any of the objective functions, and extremely large standard deviations were obtained in all 

cases.  However, when analyzing statistically, the INFO algorithm may have only one 

successful solution that smoothed with weaker solutions.  Among 10 independent runs, a run 

with the highest convergence rate is a key indicator for recognizing the best solution. Tables 9 

and 10 demonstrate the best results obtained by the INFO algorithm. The results indicate at 

least one successful solution in updating the FE model using the INFO algorithm and objective 

functions that rely on MTMAC. The results achieved by the INFO algorithm regarding mode 

shape correlation and natural frequency agreement are similar to those obtained by the IGWO. 

According to Tables 9 and 10, the accuracy of the results is not dependent on objective 

functions' coefficients. However, adjusting α = 5 and β = 1 has deteriorated the correlation 

between the updated model and experimental measurements in the fourth mode. 

The results presented in Table 9 are quite accurate, indicating that further increasing the search 

agent to 102 and the maximum number of iterations to 103, as given in Table 10, would not lead 

to more accurate results. 

 



Table 7. Statistical results of FE model updating - INFO (search agent=70 and maximum iteration=500) 

 

 

4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
1377.0867 1301.3507 1261.5301 1229.7880 mean f (Hz)  

(X)MTMAC f  
1, 1α β= = 

2.3435E+03 2.8693E+03 3.3442E+03 3.6518E+03 std f 
1.1652E+02 2.3029E+02 5.1840E+02 1.5397E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

3764.1349 4325.9687 4751.6886 5106.8015 mean f (Hz)  
(X)MTMAC f  

1, 0.5α β= = 
4.0523E+03 5.0935E+03 5.8826E+03 6.5003E+03 std f 
4.9185E+02 9.9796E+02 2.2293E+03 6.7091E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

4191.1046 4919.8751 5466.8437 6126.7206 mean f (Hz)  
(X)MTMAC f  

1, 2α β= = 
3.7628E+03 4.7800E+03 5.5625E+03 6.3915E+03 std f 

5.5898E+02 1.1487E+03 2.5798E+03 8.0690E+03 error f   (%)  
NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

4343.8658 4848.3569 5535.7416 6168.4952 mean f (Hz)  
(X)MTMAC f  

0.5, 1α β= =  
3.9115E+03 4.7009E+03 5.6275E+03 6.4274E+03 std f 
5.8300E+02 1.1305E+03 2.6136E+03 8.1247E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

2945.3140 3265.8769 3499.5424 3740.9623 mean f (Hz)  
(X)MTMAC f  

2, 1α β= =  
3.7194E+03 4.6267E+03 5.3203E+03 5.9080E+03 std f 
3.6310E+02 7.2890E+02 1.6155E+03 4.8879E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

5081.4852 5894.4278 6736.4297 7437.4280 mean f (Hz)  
(X)MTMAC f  

5, 1α β= =  
3.8394E+03 4.7421E+03 5.6500E+03 6.3619E+03 std f 
6.9898E+02 1.3960E+03 3.2022E+03 9.8166E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

1207.0274 914.4644 1091.1564 1311.3391 mean f (Hz)  
f frequency (X) 

1, 2α β= =  
1.8057E+03 1.6459E+03 2.8054E+03 3.9096E+03 std f 
8.9784E+01 1.3210E+02 4.3488E+02 1.6485E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

1404.0882 1248.7960 1301.2184 1262.2705 mean f (Hz)  
f frequency (X) 

2, 2α β= =  
2.4289E+03 2.7031E+03 3.4697E+03 3.7545E+03 std f 
1.2077E+02 2.1695E+02 5.3785E+02 1.5830E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

2013.5136 2333.8209 2702.9255 2866.2992 mean f (Hz)  
f MAC (X) 

1, 2α β= =  
3.7922E+03 4.6204E+03 5.5449E+03 5.9854E+03 std f 
2.1659E+02 4.9234E+02 1.2250E+03 3.7217E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

Failed Failed Failed Failed mean f (Hz)  
f NFVAC (X) 

1, 1α β= =  
Failed Failed Failed Failed std f 
Failed Failed Failed Failed error f (%) 
Failed Failed Failed Failed mean MAC 
Failed Failed Failed Failed std MAC 
Failed Failed Failed Failed mean f (Hz)  

f MAC-NFVAC (X) 
1, 1α β= =  

Failed Failed Failed Failed std f 
Failed Failed Failed Failed error f (%) 
Failed Failed Failed Failed mean MAC 
Failed Failed Failed Failed std MAC 
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Table 8. Statistical results of FE model updating - INFO (search agent=102 and maximum iteration=103) 

 

 

4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
3594.7637 3986.4284 4459.4887 4858.2876 mean f (Hz)  

(X)MTMAC f  
1, 1α β= = 

3.8305E+03 4.6475E+03 5.5113E+03 6.1789E+03 std f 
4.6521E+02 9.1178E+02 2.0860E+03 6.3777E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

3559.2333 4036.1178 4503.5445 4840.8262 mean f (Hz)  
(X)MTMAC f  

1, 0.5α β= = 
3.7905E+03 4.7317E+03 5.5687E+03 6.1638E+03 std f 
4.5963E+02 9.2440E+02 2.1076E+03 6.3544E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

3607.4482 4031.3948 4586.5111 4855.2513 mean f (Hz)  
(X)MTMAC f  

1, 2α β= = 
3.8481E+03 4.7058E+03 5.6750E+03 6.2015E+03 std f 
4.6721E+02 9.2320E+02 2.1483E+03 6.3737E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

5297.7962 6158.6466 6933.2724 7485.8276 mean f (Hz)  
(X)MTMAC f  

0.5, 1α β= =  
4.0469E+03 4.9953E+03 5.8471E+03 6.4479E+03 std f 
7.3299E+02 1.4631E+03 3.2987E+03 9.8811E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

2860.8126 3124.4446 3410.3106 3691.4617 mean f (Hz)  
(X)MTMAC f  

2, 1α β= =  
3.5866E+03 4.4078E+03 5.1781E+03 5.8477E+03 std f 
3.4981E+02 6.9301E+02 1.5717E+03 4.8219E+03 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

6515.6734 7611.0032 8840.2556 9705.3369 mean f (Hz)  
(X)MTMAC f  

5, 1α β= =  
3.1220E+03 3.8395E+03 4.5729E+03 5.1108E+03 std f 
9.2448E+02 1.8317E+03 4.2335E+03 1.2840E+04 error f   (%)  

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

636.0000 394.0000 204.0000 75.0000 mean f (Hz)  
f frequency (X) 

1, 2α β= =  
4.1450E-11 3.3917E-11 8.8324E-11 2.1390E-10 std f 
2.4310E-12 5.2804E-12 1.1954E-11 5.0458E-11 error f (%) 

0.9951 0.9646 0.9729 0.9295 mean MAC 
4.9921E-03 5.6533E-02 4.8797E-02 1.0678E-01 std MAC 
1633.3038 1742.2796 1837.4670 2001.2322 mean f (Hz)  

f frequency (X) 
2, 2α β= =  

2.4878E+03 3.2590E+03 3.8076E+03 4.4091E+03 std f 
1.5681E+02 3.4220E+02 8.0072E+02 2.5683E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

3364.0542 4026.2434 4466.6345 5180.0121 mean f (Hz)  
f MAC (X) 

1, 2α β= =  
4.2332E+03 5.1275E+03 5.7334E+03 6.6912E+03 std f 
4.2894E+02 9.2189E+02 2.0895E+03 6.8067E+03 error f (%) 

NaN NaN NaN NaN mean MAC 
NaN NaN NaN NaN std MAC 

Failed Failed Failed Failed mean f (Hz)  
f NFVAC (X) 

1, 1α β= =  
Failed Failed Failed Failed std f 
Failed Failed Failed Failed error f (%) 
Failed Failed Failed Failed mean MAC 
Failed Failed Failed Failed std MAC 
Failed Failed Failed Failed mean f (Hz)  

f MAC-NFVAC (X) 
1, 1α β= =  

Failed Failed Failed Failed std f 
Failed Failed Failed Failed error f (%) 
Failed Failed Failed Failed mean MAC 
Failed Failed Failed Failed std MAC 
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Table 9. Best results of FE model updating among ten runs - INFO (search agent=70 and maximum iteration=500) 
 4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
1, 1α β= = 

1.1505E-09 8.3967E-12 6.5480E-10 8.7637E-10 error f (%) 
0.9993 0.9996 0.9998 0.9996 MAC 

1.7121E-03 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
1, 0.5α β= = 

3.3069E-12 4.6167E-12 1.4573E-11 2.7241E-10 error f (%) 
0.9999 0.9998 0.9996 0.9996 MAC 

6.2047E-02 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
1, 2α β= = 

2.7115E-10 9.5207E-08 6.4085E-10 5.2156E-09 error f (%) 
0.9995 0.9998 0.9997 0.9996 MAC 

4.9064E-07 Best objective function value 
636.0000 394.0000 203.9998 75.0000 f (Hz)  

(X)MTMAC f  
0.5, 1α β= = 

7.6496E-08 1.8937E-07 8.4812E-05 1.7347E-06 error f (%) 
0.9998 0.9998 0.9994 0.9994 MAC 

4.8527E-04 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
2, 1α β= = 3.3543E-06 6.0668E-08 1.6452E-07 6.6856E-08 error f (%) 

0.9995 0.9998 0.9997 0.9996 MAC 
5.2434E-03 Best objective function value 

635.9953 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
5, 1α β= = 7.3807E-04 4.6596E-09 5.0309E-11 3.5241E-10 error f (%) 

0.9958 0.9997 0.9996 0.9998 MAC 
4.1409E-02 Best objective function value 
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Table 10. Best results of FE model updating among ten runs - INFO (search agent=102 and maximum iteration=103) 
 4 3 2 1 Mode 

636 394 204 75 Experimental f (Hz) 
636.0000 394.0001 203.9999 75.0000 f (Hz)  

(X)MTMAC f  
1, 1α β= = 

7.7018E-06 1.5045E-05 3.9842E-05 1.4093E-05 error f (%) 
0.9998 0.9998 0.9997 0.9997 MAC 

9.5920E-04 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
1, 0.5α β= = 

1.1440E-12 5.2082E-12 1.1006E-12 4.9264E-12 error f (%) 
0.9994 0.9998 0.9997 0.9999 MAC 

6.9175E-02 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
1, 2α β= = 

5.3090E-12 1.0864E-11 1.1592E-11 1.6729E-10 error f (%) 
0.9996 0.9998 0.9997 0.9996 MAC 

4.3025E-07 Best objective function value 
636.0000 394.0000 204.0000 75.0018 f (Hz)  

(X)MTMAC f  
0.5, 1α β= = 

4.4920E-06 1.6277E-06 6.7652E-06 2.3447E-03 error f (%) 
0.9998 0.9999 0.9997 0.9990 MAC 

4.4220E-04 Best objective function value 
636.0000 394.0000 204.0000 75.0000 f (Hz)  

(X)MTMAC f  
2, 1α β= = 4.9693E-12 1.8871E-11 2.7321E-11 4.4281E-10 error f (%) 

0.9996 0.9998 0.9999 0.9996 MAC 
4.6321E-03 Best objective function value 

653.8848 393.9581 204.0001 75.0000 f (Hz)  

(X)MTMAC f  
5, 1α β= = 2.8121E+00 1.0642E-02 6.1085E-05 4.6388E-05 error f (%) 

0.9981 0.9999 0.9999 0.9998 MAC 
4.4994E-02 Best objective function value 
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Table 11. The performance of objective functions and optimization algorithms for FE model 
updating and damage detection ( Indicates best performances) 

Objective 
functions and 
coefficients 

FE model updating Damage detection 
Search agent = 70 Search agent = 102 Search agent = 70 Search agent = 102 

Maximum iteration  
= 500 

Maximum iteration 
= 103 

Maximum iteration  
= 500 

Maximum iteration  
= 103 

f MTMAC  
α = 1,  β=1 

IGWO  
INFO  

IGWO  
INFO  

IGWO   
INFO    

IGWO  
INFO   

f MTMAC  
α = 1,  β=0.5 

IGWO  
INFO  

IGWO  
INFO  

IGWO   
INFO    

IGWO  
INFO   

f MTMAC  
α = 1,  β=2 

IGWO  
INFO  

IGWO  
INFO  

IGWO  
INFO    

IGWO  
INFO   

f MTMAC  
α = 0.5,  β=1 

IGWO  
INFO  

IGWO  
INFO  

IGWO  
INFO   

IGWO  
INFO   

f MTMAC  
α = 0.55,  β=1 

 IGWO  
INFO   

IGWO  
INFO   

f MTMAC  
α = 0.6,  β=1 

IGWO  
INFO   

IGWO  
INFO   

f MTMAC  
α = 0.65,  β=1 

IGWO  
INFO   

IGWO  
INFO   

f MTMAC  
α = 2,  β=1 

IGWO  
INFO    

IGWO  
INFO    

IGWO  
INFO   

IGWO  
INFO   

f MTMAC  
α = 5,  β=1 

IGWO  
INFO   

IGWO  
INFO    

IGWO  
INFO   

IGWO  
INFO   

f frequency  
α = 1,  β=2 

IGWO  
INFO   

IGWO  
INFO    

IGWO  
INFO   

IGWO  
INFO   

f frequency  
α = 0.5,  β=2 

 IGWO  
INFO   

IGWO  
INFO   

f frequency  
α = 2,  β=2 

IGWO  
INFO    

IGWO  
INFO    

IGWO  
INFO   

IGWO  
INFO   

f MAC  
α = 1,  β=2 

IGWO  
INFO    

IGWO  
INFO    

 

f NFVAC  
α = 1,  β=1 

IGWO  
INFO   

IGWO  
INFO    

f MAC-NFVAC  
α = 1,  β=1 

IGWO  
INFO   

IGWO  
INFO    
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For statistical visualization of damage detection results, the mean values with plus and minus 

standard deviations are plotted in Figures 8 to 11. Based on the information provided in Table 3, 

the damage to the pipe has induced somewhere between 0.8375 m and 1.0375 m from the left 

end of the pipe. The 2.5-meter length pipe is discretized into 13 elements for FE analysis. The 

fifth and sixth elements are located within the damaged zone. It's important to mention that the 

fifth element contains a considerable damage length, and the sixth element includes only a minor 

damage length. In this paper, the actual severity of damage has not been estimated by theoretical 

methods. The fracture mechanics approach is typically used to estimate the damage severity, 

whereas one major drawback of this method is that it relies on relations that are empirically 

deduced [100]. Therefore, the exact location of the damage is only available to evaluate the 

performance of the proposed method. However, in the proposed damage detection and severity 

identification strategy, it is expected that the severity identified for the fifth element will be 

significantly higher than the stiffness reduction factor identified for the sixth element. Among 

the presented damage detection results in Figures 8 to 11, Figure 8 (g), Figure 9 (g), Figure 10 

(g), and Figure 11 (g) show the most accurate outcomes.    These results reveal that minimizing 

the objective function based on MTMAC and adjusted coefficients alpha = 0.65 and beta=1 

through the IGWO and INFO could detect the fifth and sixth elements as damaged.  Additionally, 

the proposed damage detection approach estimates the damage severity as expected for the fifth 

and sixth elements. At the same time, negligible false alarms have been found for the seventh 

and eighth elements. Comparing Figures 8 (g) and 9 (g) and Figures 10 (g) and 11 (g) show that 

increasing the search agent to 102 as well as the maximum number of iterations to 103 is 

unnecessary, and both algorithms perform well with initial settings. 

Figures 8 (a, b, c, d, e, f, h, and i), Figures 9 (a, b, c, d, e, f, h, and i), Figures 10 (a, b, c, d, e, f, 

h, and i) and Figures 11 (a, b, c, d, e, f, h, and i) confirm that there are several false identifications 

when adjusting other coefficients instead of alpha=0.65 and beta=1. Additionally, these figures 

prove that the IGWO and INFO have the same performance for minimizing objective functions 

based on MTMAC. 

As mentioned in subsection 2.3, natural frequencies are uncomplicated to measure, and this 

advantage may enable us to develop cost-efficient damage detection tools in real-world 

applications. Figures 8 (k) and 9 (k) illustrate that employing f frequency (SRF) as an objective 

function and adjusting alpha = 0.5 and beta =2 could only find the damaged elements without 

any false identifications. However, the identified stiffness reduction factor for the sixth element 

should include a minor value because the sixth element contains a negligible cut area. The 

performance of INFO is relatively lower as compared to IGWO.  Figures 10 (k) and 11 (k) show 
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false identifications for the seventh, eighth, and ninth elements. Besides, identified stiffness 

reduction factors for the fifth and sixth elements have relatively large standard deviations. 

The performance of objective functions and optimization algorithms is summarized in Table 11, 

considering optimization algorithms' settings for FE model updating and damage detection.  

A tick mark () indicates the best option or choice among several alternatives. 

6. Conclusions 

This paper presents an iterative finite element (FE) model updating method to establish a strong 

correlation between the dynamic characteristics of experimental measurements and those 

extracted from the FE model in tubular structures. Then, the damage identification step can 

accurately detect the damaged elements and their severities. The presented iterative FE model 

updating and damage detection strategies work through minimizing objective functions with 

adjustable coefficients by newly developed optimization algorithms, including grey wolf 

optimizer (IGWO) and weIghted meaN oF vectOrs (INFO). The semi-rigidly connected frame 

element (S-RCFE) was used to assemble the finite element (FE) model of the laboratory scale 

pipe. The S-RCFE, with further design parameters, facilitates achieving the most tuned FE model 

and detecting damaged elements with negligible false alarms. The main conclusions of 

comprehensive statistical analysis for evaluating the efficiency of different objective functions 

and optimization algorithms can be summarized as follows. 

(1) The repeatability of the characteristics extracted from the modal analysis has been 

examined by analyzing their sensitivity to different hammer impacts. The results show 

that the standard deviations for at least the first four natural frequencies are exceptionally 

close to zero, indicating high repeatability. 

(2) Incorporating the S-RCFE into the model updating process results in superior 

convergence rates compared to assembling the FE model using the standard  

Euler-Bernoulli beam element. 

(3) The statistical analysis shows that regardless of the objective functions used, the INFO 

algorithm is unreliable in updating the FE model. However, it's worth noting that the 

INFO algorithm yielded at least one successful solution in ten independent runs when 

MTMAC was defined as the objective function. The IGWO algorithm has provided 

reliable results with minor standard deviations when defining the MTMAC as the 

objective function. The results showed that the accuracy of the FE model updating is less 

dependent on the coefficients of MTMAC, and five out of six objective functions could 

obtain successful results. The relationship between the updated model and experimental 

measurements in the fourth mode has been reduced by setting α to 5 and β to 1. The 
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performance of objective functions based on natural frequency changes, NFVAC, MAC, 

and MAC-NFVAC, is significantly inadequate. 

(4) Both optimization algorithms can entirely minimize the objective function based on 

MTMAC when adjusting alpha=0.65 and beta=1. Consequently, damaged elements have 

been identified with much less false alarms. Besides, IGWO could provide promising 

damage identification results by employing the  f frequency (SRF) and adjusting alpha=0.5 

and beta=2. 

(5) A substantial limitation of optimization algorithms that typically leads to inadequate 

usage of computational resources originates from non-automated parameter tuning and 

the absence of systematic stopping criteria. A solution to overcome this limitation is using 

adaptive strategies that dynamically adjust the number of agents or iterations. Therefore, 

an adaptive version of the grey wolf optimizer is recommended to control the stopping 

criteria based on the significance of fitness improvement in the optimization process. 

This version can automatically converge to a sufficiently good optimum in the shortest 

possible time. 
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