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Abstract

This work attempts to contribute further knowledge and understanding in the

discipline of computational science in general and numerical modeling of dis-

continuity problems in particular. Of particular interest is numerical simulation

of dynamic strain localization and fracture problems. The distinguishing fea-

ture in this study is the employment of neural-networks-(RBF)-based meshfree

methods, which differentiates the present approach from many other computa-

tional approaches for numerical simulation of strain localization and fracture

mechanics.

As a result, new meshfree methods based on RBF networks, namely moving

RBF-based meshless methods, have been devised and developed for solving

PDEs. Unlike the conventional RBF methods, the present moving RBF is

locally supported and yields sparse, banded resultant matrices, and better con-

dition numbers. The shape functions of the new method satisfy the Kronecker-

delta property, which facilitates the imposition of the essential boundary condi-

tions. In addition, the method is applicable to arbitrary domain and scattered

nodes. To capture the characteristics of discontinuous problems, the method

is further improved by special techniques including coordinate mapping and

local partition of unity enrichment. Results of simulation of strain localiza-

tion and fracture, presented in the latter chapters of the thesis, indicate that

the proposed meshless methods have been successfully applied to model such

problems.
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Chapter 1

Introduction

This chapter gives a general description of the overall picture of the present

research. In this chapter, we present an overview of numerical simulation of

strong discontinuity including crack and shear bands. In addition, global Indi-

rect/Integrated/Integral Radial Basis Function Network (IRBFN) approxima-

tion is briefly reviewed and the plan of this research is outlined at the end of

the chapter.

1.1 Motivation

In classical solid mechanics, analyses are generally carried out in the context

of the strict continuum assumption where the displacement field is postulated

to be continuous. However, jumps in the displacement field have necessarily to

be regarded (in macroscopic scale) in phenomena such as shear bands (strain

localization), cracks and slip lines. These behaviours are observed on a wide

range of engineering materials including metals, concrete and geological materi-

als, and are characteristics of inelastic deformations. From now on the jumps in

the displacement field are termed strong discontinuities. They need to be dis-
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tinguished from weak discontinuities corresponding to the jumps in the strain

field (the displacement remains C0 continuous). Typically, strain localization

may occur within a very narrow zone (e.g. in a 1m structure the width of a

shear band might be 10−5m) while the remaining part of the structure experi-

ences unloading. Such strain localization usually can be induced by geometrical

nonlinearities (e.g. necking of metallic bars) or by material instabilities (e.g.

micro-cracking). The formation of shear bands often precedes the formation

and development of cracks, leading to fracture and rupture in the structure.

Furthermore, stress and strain fields are singular at crack tip in a linear elastic

fracture mechanics theory or a highly localized strain region (i.e. the nonlinear

zone around the crack tip is often referred to as the fracture process zone) exists

in the vicinity of the crack tip in a nonlinear elastic fracture mechanics scope

(Tada et al., 2000).

Mathematically, the onset of strain localization in the context of a rate-independent

local continuum model leads to loss of hyperbolicity of the governing partial

differential equations, i.e. when the matrix of tangent modulus ceases to be

positive-definite. At the critical point, the fundamental path may bifurcate into

several equilibrium paths and the solution starts losing its uniqueness. From

a physical point of view, the loss of hyperbolicity results in ill-posed mathe-

matical model since the region undergoing strain softening was restricted to a

volume of (Lebesgue) measure zero (Bazant and Belytschko, 1985). Thus the

conventional theory of solid mechanics is proved inadequate for simulation of

strain localization and fracture.

It is well-known that there are two types of mesh sensitivities in numerical sim-

ulation of shear bands in inelastic solids. The first appears in phenomenological

rate-independent plasticity as stated above. It is due to the fact that the rate-

independent plasticity theories admit the singular solutions exhibiting a zero

volume of strain localization. Hence, the discrete Galerkin formulations with

finite mesh size are unable to capture this discontinuous surface precisely. The
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second is mesh-alignment sensitivity. It is often referred to as the inability of

a finite element mesh to resolve shear bands at angles oblique to the elements

boundaries, which happens in mesh-based numerical computations regardless

of whether a continuum model is regularized or not (Sluys, 1992).

To regularize the ill-posed problems (the first type of mesh sensitivities), there

are presently two large families of methodologies for numerical simulation of

strong discontinuities which can be categorized into continuum and discrete

approaches (Oliver, 1996a). In continuum approaches, standard stress-strain

constitutive equations can be considered everywhere. In order to model the

discontinuities, the following two basic ingredients have been resorted to: (i) an

implicit regularization employs the so-called characteristic length which is taken

as a material property or as a numerical parameter (Oliver, 1996b; Wells and

Sluys, 2000; Jirásek, 2000), and (ii) regularized constitutive models lead to well-

posed mathematical models and allow strain localization to occur, for example,

non-local models (Patzák and Jirásek, 2003; Le et al., 2007b, 2008a), rate-

dependent models (Le et al., 2006, 2007a), gradient-dependent models, visco-

plastic models (Wang et al., 1997), damage-based models (de Borst, 2002), and

Cosserat continuum model (Sluys, 1992; Alsaleh, 2004). In contrast to contin-

uum approaches, discrete approaches such as smeared crack and cohesive crack

models (Elices et al., 2002; Kubair and Geubelle, 2003) are based on nonlinear

fracture mechanics theory to characterize cohesive behaviour at the discontin-

uous surfaces, whereas standard stress-strain constitutive relations are utilized

for the remaining continuous parts of the domain. Furthermore, appropriate

criteria have to be chosen (Rudnicki and Rice, 1975; Belytschko et al., 2003a)

to determine the initiation and propagation of the discontinuity.
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1.2 Review of strong discontinuities simulation

The equations governing the evolution of strain localization (in the context of a

rate-independent local continuum model) are fully coupled, highly nonlinear and

stiff, and it is not simple, even for one-dimensional problems, to obtain closed

form solutions that could describe a range of constitutive behaviours and bound-

ary and initial conditions. For a number of special cases, closed form exact and

approximate solutions have been developed by several authors to capture some

of the fundamental characteristics of strain localization. For example, evolution

of adiabatic shear bands in elasto-thermo-viscoplastic materials was studied by

Rice and Rudnicki (1980); Molinari and Clifton (1987); Wright (1990); Bai and

Dodd (1992); Wright (2002); Sherif and Shawki (1992) and isothermal shear

bands in quasi-brittle materials by Bazant and Belytschko (1985); Sluys (1992);

Xin and Chen (2000); Armero and Park (2003) for one-dimensional problems.

For two- (three-) dimensional problems, Hill (1962) investigated general char-

acteristics of wave propagation in solids. Bardet (1991) presented the analyti-

cal solutions for localized bifurcation of compressible solids subjected to plane

strain loadings. Loret and Prevost (1990a,b) introduced viscosity as a means

to regularize the ill-posed problems and devised general formulations of strain

localization in elasto-visco-plastic solids.

Generally, numerical solutions are helpful in a parametric study to cover a range

of possible behaviours. However, it could be costly to resolve shear bands fully

in a large scale computation since the morphology of a shear band exhibits very

fine transverse scales, with aspect ratios of the high shear region usually in the

hundreds or even thousands or more (Bai and Dodd, 1992; Wright, 2002). Thus

it is highly desirable to have effective and efficient numerical methods for the

analysis of strain localization and fracture problems.
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1.2.1 Boundary element methods

Among the conventional numerical methods, Boundary Element method (BEM)

has been successfully applied to model crack propagation. However, to the

author’s best knowledge a majority of works has been developed in the context

of linear elastic fracture mechanics, BEM is not yet well-developed for non-

linear materials and multiple-cracks (Beballal et al., 2006). See also the studies

by Mackerle (2000); Wu and Stern (1989); Yan and Nguyen-Dang (1995); Liang

and Li (1991); Silveira et al. (2005); Tan et al. (2005); Garćıa-Sánchez et al.

(2006); Rungamornrat (2006); Beballal et al. (2006), for example.

1.2.2 Finite element methods

The conventional FEM (Belytschko et al., 2003b) based on the piecewise con-

tinuous polynomial function space is sufficient to yield very good results for

smooth problems and enrichment does not offer any significant improvement.

However, when the solutions are not smooth or possess high/steep gradients

(i.e. crack, shear-band, boundary layer, singularity), standard FEMs seem un-

able to lead to good results. In these cases, attempts have been made to capture

the discontinuties by techniques such as remeshing, element deletion methods,

cohesive element methods and enriched FEM.

Finite elements integrated with adaptive remeshing have been used (Pastor

et al., 1991; Potyondy et al., 1995; Askes, 2000; Schollmann et al., 2003; Patzák

and Jirásek, 2004; Li et al., 2005). However, for multiple cracks, the FEM

may be very burdensome due to the requirement of remeshing. Furthermore,

remeshing requires mapping the internal variables between different meshes,

which decreases accuracy for nonlinear problems.

The simplest way to treat cracks are the so-called element deletion methods (Fan

and Fish, 2008), where the elements containing discontinuities in the underlying
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coarse mesh are deleted and replaced by a local finer mesh, and the discontinu-

ities are treated explicitly by double nodes in the superimposed mesh. To avoid

mesh-dependence, the dissipative energy in the softening region is scaled to the

fracture energy.

In the cohesive elements approaches (Xu and Needleman, 1994; Camacho and

Ortiz, 1996; Ortiz and Pandoli, 1999; Zhou and Molinari, 2004; Yang et al.,

2005; Molinari et al., 2006), cracks or shear bands are only allowed to develop

along existing inter-element edges. This provides the method with comparative

simplicity. However, the disadvantage is that the crack/shear band propaga-

tion depends on the geometry and the topology of the mesh. Furthermore,

the dissipated energy is over-estimated when the actual discontinuity path is

not coincident with element edges. Remeshing and refinement could overcome

this shortcoming but these approaches are computationally expensive. Mesh-

dependence has been reported in the work of Falk et al. (2001). This can be

lessened by adding randomness to the strength as in Zhou and Molinari (2004).

Finite elements with embedded discontinuities (EFEM) (Oliver, 1996a,b; Wells

and Sluys, 2000; Jirásek, 2000; Oliver et al., 2003; Spencer and Shing, 2003;

Oliver and Huespe, 2004a,b; Oliver et al., 2006b,a; Linder and Armero, 2007;

Oliver et al., 2008) are based on an enrichment at element level. Thus EFEM

can be incorporated into commercial FEM packages with relatively small effort.

This method can handle arbitrary discontinuities without remeshing. Crack

opening is mostly assumed constant although more realistic piecewise linear

crack opening was reported by Linder and Armero (2007). EFEM can be clas-

sified into three different groups: KOS, SOS and KSON. In kinematically opti-

mal symmetric formulation (KOS), the kinematics is introduced in a way that

does not restrict the rigid body relative motion of the two portions of the el-

ement. However, traction continuity across the discontinuous interface is not

guaranteed. For statically optimal symmetric formulation (SOS), in contrast to

KOS, the traction continuity across the discontinuous interface is satisfied but
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the rigid body relative motion of the two portions of the element is not guaran-

teed and stress locking phenomenon is encountered in many cases (Oliver et al.,

2003). Hence, mixed and assumed enhanced strain techniques are envisaged

as appropriate remedies. Both traction continuity across the discontinuous in-

terface and rigid body relative motion of the two portions of the element are

guaranteed in statically and kinematically optimal non-symmetric formulation

(SKON). However, this formulation results in an unsymmetric stiffness matrix.

Since the enrichement can be reduced at element level in EFEM, the compu-

tational cost does not increase for multiple cracks/shear bands (Oliver et al.,

2006b). A comprehensive review of EFEM has been presented by Jirásek (2000).

A very accurate method to capture discontinuities is the extended finite ele-

ment method (XFEM) (Belytschko and Black, 1999; Moës et al., 1999a), in

which the solution space is enriched by a priori knowledge about the behaviour

of the solution near any discontinuity (Dolbow, 1999; Chessa, 2002) with the

use of the partition of unity method (Melenk and Babuška, 1996; Babuška and

Melenk, 1997). Recently developed XFEM has been proven to be an efficient

tool for computational fracture mechanics, including multiple-cracks simula-

tion (Budyn, 2004). This method can also deal with arbitrary crack or shear

band propagation without adaptive remeshing. Unlike EFEM, XFEM enriches

the nodes whose support (i.e. the elements surrounding a specific node) is

intersected by the discontinuity surfaces, hence additional degrees of freedom

inherent to the nodes are introduced in the variational formulation and have

to be solved for (Bordas, Duflot, and Le, 2008a). Recent studies (Fries and

Belytschko, 2006) show that no additional unknowns are introduced at the en-

riched nodes, which makes the method very flexible, e.g. higher order crack

openings can be incorporated quite easily. However, as a result, it is more com-

plicated to implement XFEM into commercial FEM packages. A shortcoming

of XFEM is the blending region (Chessa et al., 2003), which is introduced to the

neighboring elements of the crack tip element. Those elements in the blending

region are partially enriched where the local partition of unity does not hold,
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thus the solution becomes inaccurate in this region. Nevertheless difficulties in

the blending region can be overcome by shifting in Partition of Unity method.

On the other hand, XFEM requires an explicit representation of discontinuity

surface, which usually has been provided by the Level Sets method (Moës et al.,

2002; Gravouil et al., 2002). Therefore, the treatment of phenomena such as

branching and fragmentation is more difficult, since additional level sets need

to be introduced whenever a new branch emerges. A complete review on recent

development of XFEM is presented in the works of Karihaloo and Xiao (2003);

Xiao and Karihaloo (2005). A very interesting comparative study between ele-

ment deletion, cohesive elements and XFEM is presented by Song et al. (2008).

Another exciting comparison of XFEM versus EFEM is presented by Oliver

et al. (2006b).

The generalized finite element method (GFEM), which is very similar to XFEM

in methodology, was first introduced by Strouboulis et al. (2000a,b) and Duarte

et al. (2000), and has been proven to be a promising technique for complex

geometries (including multiple voids and cracks) and fracture mechanics prob-

lems in some recent works (Rüegg, 2002; Duarte and Babuška, 2002; Tian et al.,

2006; Babuška et al., 2007; Strouboulis et al., 2007; Babuška et al., 2008). This

method allows an incorporation of analytically known or numerically computed

handbook functions within some range of their applicability into the standard

FE shape functions with the partition of unity method to enhance the local

and global accuracy of the computed solution. GFEM can model arbitrary dy-

namic crack propagation without any remeshing of the domain, and has been

also successful at modeling 3D cracks (Duarte et al., 2001; Pereira and Duarte,

2005; Duarte et al., 2006, 2007; Duarte and Kim, 2008).
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1.2.3 Meshfree/meshless methods

In contrast to the FEM, meshless methods (Atluri and Zhu, 1998; Li and Liu,

2000; Batra and Zhang, 2004; Atluri and Shen, 2002; Han and Atluri, 2003,

2004; Han et al., 2005, 2006) offer some advantages, including (i) shape func-

tions are constructed by using a highly smooth window function, (ii) a purely

displacement-based formulation does not exhibit volumetric locking within a

range of support size of the window functions (Li and Liu, 2000), and (iii) ap-

proximations are non-local. Thus, meshless methods provide more continuous

solutions than the piece-wise continuous ones obtained by the FEM. These prop-

erties not only provide an effective remedy for the mesh alignment sensitivity

in the computation of strain localization but also are able to model arbitrary

crack path propagation without refinement.

Meshless methods can be largely classified into two major categories: weak

form approaches such as element free Galerkin method (Belytschko et al., 1994),

meshless local Petrov-Galerkin method (Atluri and Zhu, 1998), natural element

method (Sukumar et al., 2001), and strong form approaches such as the mesh-

less collocation methods. Meshfree weak form methods possess the following

attractive advantages (Liu and Gu, 2003; Gu and Liu, 2005): They exhibit very

good stability and excellent accuracy (The reason is that the weak form can

spread the error over the integral domain and control the error level); Traction

(Neumann or derivative) boundary conditions can be naturally and conveniently

incorporated into the same weak form equation. However, a major drawback

of weak form methods is high computational cost due to numerical integration.

See, for example, Li and Liu (2002); Liu (2003); Li and Liu (2004); Liu and Gu

(2005) for an overview of meshfree weak-form methods.

The element free Galerkin method (EFG), which is based on moving least square

approximation, was first introduced by Belytschko et al. (1994) and has been

intensively developed in recent years (Krongauz and Belytschko, 1998; Rao
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and Rahman, 2000; Belytschko et al., 2000; Duflot and Nguyen-Dang, 2002a,b;

Liu, 2003; Li and Liu, 2004; Liu and Gu, 2005). Reviews of EFG method

are presented in the works of Belytschko et al. (1996b); Fries and Matthies

(2004a); Nguyen et al. (2008a). For crack problems, a crack is considered to

be opaque and techniques to describe the crack include the visibility method,

transparency and diffraction method (Fleming et al., 1997). To capture the

singular stress/strain field near crack tip without refinement, Fleming et al.

(1997) introduced methods to enrich the trial and the basis functions with the

near-crack-tip asymptotic fields; Duflot and Nguyen-Dang (2004) and Duflot

(2006) proposed to enrich the weight functions for 2D and 3D crack propaga-

tion problems. Fleming et al. also presented a mapping algorithm to align

the discontinuity with the crack geometry for multiple-crack segment problems.

However, these enrichment techniques may not be appropriate for solving non-

linear fracture mechanics problem. Therefore, Rao and Rahman (2004) sug-

gested a new enriched basis functions technique based on elastic-plastic frac-

ture mechanics for nonlinear fracture analysis. Based on the idea of XFEM,

the partition-of-unity-based meshfree method, which uses a jump function to

account for the displacement discontinuity along the crack surfaces and level set

method to track arbitrary crack path propagation, was offered by Ventura et al.

(2002), and successfully developed for cohesive crack problems by Rabczuk and

Zi (2007) afterwards. Since the work of Ventura et al. (2002), level set method

has been an effective tool for the description of the evolution of failure surfaces

(crack or shear band) in EFG methods (Sethian, 1999; Duflot, 2008). To sim-

plify representation of crack, Rabczuk and Belytschko (2004b) introduced the

cracked particle method where a crack is modeled by unconnected piecewise

segments passing through cracked particles, displacement discontinuity across

crack surface is described by mean of the sign enrichment function and no crack

topology representation is needed. This approach is simple and able to treat

the nucleation of cracks and complex pattern involving cohesive crack branch-

ing and crossing in 2D and 3D (Rabczuk and Belytschko, 2007b). However,

the accuracy of this method is limited. Recently, Zi et al. (2007) proposed a
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new approach, which does not need any crack tip enrichment to ensure that the

crack closes at the tip and was successfully applied to static and dynamic cohe-

sive crack problems. Three-dimensional crack problems have been successfully

modeled by EFG method, for example, linear fracture mechanics problems with

static and elasto-dynamic crack growth are analyzed in the studies of Sukumar

et al. (1997); Duflot (2006) and Krysl and Belytschko (1999), respectively; non-

linear problems with crack growth are examined by Rabczuk and Belytschko

(2005b); Rabczuk et al. (2008b); nonlinear problems with multiple-crack initia-

tion, propagation and junction are studied in Rabczuk et al. (2007d); Rabczuk

and Belytschko (2007b). A very interesting overview on three-dimensional crack

growth was presented in the work of Rabczuk et al. (2008a). For shear band

problems, EFG has also been demonstrated to be an efficient method to model

complicated patterns of shear band in full-scale engineering models. Li and

Liu (2000); Li et al. (2000) simulated the shear band propagation in 2D and

3D without any special treatment except the refinement around the expected

paths. Based on the idea of cracked particles in the previous works (Rabczuk

and Belytschko, 2004b, 2007b), Rabczuk et al. (2007a); Rabczuk and Samaniego

(2008) recently developed the so-called sheared particles method, which is able

to simulate the evolution of multiple cohesive shear bands in 2D and 3D. How-

ever, the accuracy of this method is also limited.

Some other meshfree weak form methods such as meshless local Petrov-Galerkin

(MLPG) method (Atluri and Zhu, 1998; Atluri and Shen, 2002; Han and Atluri,

2003, 2004; Atluri et al., 2004; Fries and Matthies, 2004b; Han et al., 2005, 2006),

and natural neighbour Galerkin (NNG) method (Sukumar et al., 1998, 2001;

Idelsohn et al., 2003; Cueto et al., 2003; Hehua et al., 2007), are able to model

cracks in linear elastic fracture mechanics context, for example, see Batra and

Ching (2002); Sladek et al. (2004); Gao et al. (2006); Kaiyuan et al. (2006);

Sladek et al. (2006) for MLPG method, and Sukumar et al. (1998) for NNG

method. However, to the best knowledge of the author they have not yet been

applied for simulation of strong discontinuities such as shear bands and cracks
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in nonlinear fracture mechanics framework.

In contrast to meshfree weak form methods, meshfree strong form methods

have the following attractive advantages (Liu and Gu, 2003; Gu and Liu, 2005):

(i) they are simple to implement; (ii) they are computationally efficient since

no numerical integration is required; (iii) they are truly meshless. However

meshfree strong form methods result in typically poorer accuracy for prob-

lems governed by partial differential equations with Neumann-type boundary

conditions such as solid mechanics problems with traction (natural) boundary

conditions. Therefore, many efforts have been made to develop techniques for

handling the Neumann-type boundary conditions such as direct collocation, fic-

titious points (Liu and Gu, 2005); Hermite-type collocation (Zhang et al., 2000;

Li et al., 2003); meshfree weak-strong-form method (Liu and Gu, 2003; Gu

and Liu, 2005). Recently, Libre et al. (2008) proposed a stabilized collocation

scheme for radial basis functions (RBF) by increasing the shape parameter of

RBF and the number of collocation points around the Neumann boundaries,

Le et al. (2008b, 2010a) introduced a new approach based on first-order system

formulation where both displacements and stresses are considered as primary

variables to treat the Neumann-type boundary conditions. There has been just

a few meshfree strong form methods developed for problems involving discon-

tinuities so far. For example, Kim et al. recently developed meshfree point

collocation methods for weak discontinuity problems in two-dimension, which

use the moving least square (MLS) procedure and both intrinsic (Kim et al.,

2007a) and extrinsic enrichments (Kim et al., 2007b). Lee and Yoon (2004a)

incorporated diffuse derivatives into MLS approximation and used discontinu-

ous weight functions to model two-dimensional linear elastic cracks without any

enrichment, and later on this method was enriched with the near tip field for

general two-dimensional linear elasto-static crack problems (Yoon et al., 2006).

For strain localization simulation, meshfree strong-form methods are mostly de-

veloped for one-dimensional problems such as the meshfree collocation methods

based on pseudo-spectral method (Bayliss et al., 1994), smooth-particle hydro-
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dynamics (Batra and Zhang, 2004) and RBF interpolation (Le et al., 2006,

2007b,a, 2008a).

The present review of literature shows a need for further development of nu-

merical methods for simulation of strain localization (shear bands) and fracture

phenomena, especially in three-dimensional problems, and meshfree methods

are more suitable for such problems.

1.3 The global IRBFN approximation

The global IRBFN for approximating functions and solving PDEs is presented

in this section. In the IRBF method (Mai-Duy and Tran-Cong, 2001, 2003,

2005; Mai-Duy and Tanner, 2005; Le et al., 2007a, 2008a), the formulation

of the problem starts with the decomposition of the highest order derivatives

under consideration into RBFs. The derivative expression obtained is then

integrated to yield expressions for lower order derivatives and finally for the

original function itself. The present work is illustrated with the approximation

of a function and its derivatives of order up to 2, the formulation can be thus

described as follows.

u,jj(x) =

m∑

i=1

w(i)g(i)(x), (1.1)

u,j(x) =

∫ m∑

i=1

w(i)g(i)(x)dxj + C1(xl;l 6=j) =

m+p1∑

i=1

w(i)H
(i)
[xj ]

(x), (1.2)

u(x) =

∫ m+p1∑

i=1

w(i)H(i)(x)dxj + C2(xl;l 6=j) =

m+p2∑

i=1

w(i)H
(i)

[xj ]
(x), (1.3)
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or in compact form

u,jj(x) = G(x)w[xj ], (1.4)

u,j(x) = H[xj](x)w[xj ], (1.5)

u(x) = H[xj ](x)w[xj ], (1.6)

where, the comma denotes partial differentiation, m is the number of RBFs,

{g(i)(x)}m
i=1 is the set of RBFs, {w(i)}m+p2

i=1 is the set of corresponding network

weights to be found, {H(i)(x)}m
i=1 and {H̄(i)(x)}m

i=1 are new basis functions ob-

tained by integrating the radial basis function g(i)(x), p1 and p2 are the number

of centers used to represent integration constants in the first and second deriva-

tives, (1.2) and (1.3), respectively (p2 = 2p1). For the multiquadric function

g(i)(x) =

√
‖x − c(i)‖2

+ (a(i))
2
, (1.7)

where c(i) is the RBF center and a(i) is the RBF width. The width of the ith

RBF can be determined according to the following simple relation

a(i) = βd(i), (1.8)

where β is a factor, β > 0, and d(i) is the distance from the ith center to its

nearest neighbour.

Now, the “constants” of integration C1(xl;l 6=j) and C2(xl;l 6=j) on the right hand

side of (1.2) and (1.3) can also be interpolated using the IRBFN method as

follows.

C
′′

1 (xl; l 6= j) =

M∑

i=1

w̄(i)g(i)(xl; l 6= j), (1.9)

C
′

1(xl; l 6= j) =
M∑

i=1

w̄(i)H(i)(xl; l 6= j) + Ĉ1, (1.10)

C1(xl; l 6= j) =

M∑

i=1

w̄(i)H̄(i)(xl; l 6= j) + Ĉ1xk;k 6=j + Ĉ2, (1.11)
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where {w̄(i)}M
i=1 are the corresponding weights; M is the number of distinct

centers. The unknowns to be found are the sets of weights in (1.1) and (1.9),

which can be determined by the SVD (singular value decomposition) procedure,

for example.

Mai-Duy and Tran-Cong (2005) performed a prior conversion of the unknowns

from network weights, i.e. {w(i)}m+p2

i=1 , to nodal function value u in order to

form a square system of equations of smaller size as follows.

Without loss of generality, a two-dimensional system is considered. The set of

network weights are expressed in terms of nodal function value as

w[x] =
[
H[x]

]−1
u, (1.12)

w[y] =
[
H[y]

]−1
u, (1.13)

and the substitution of (1.12) and (1.13) into the system (1.4)-(1.6) yields

u,xx(x) = G(x)
[
H[x]

]−1
u, (1.14)

u,x(x) = H[x](x)
[
H[x]

]−1
u, (1.15)

u(x) = H[x](x)
[
H[x]

]−1
u = Iu, , (1.16)

u,yy(x) = G(x)
[
H[y]

]−1
u, (1.17)

u,y(x) = H[y](x)
[
H[y]

]−1
u, (1.18)

u(x) = H[y](x)
[
H[y]

]−1
u = Iu, , (1.19)

where I is the identity matrix. It can be seen from (1.14)-(1.19) that the function

and its derivatives are all expressed in terms of the function values rather than

network weights. Consequently, the system of equations obtained is normally

smaller, square and the unknowns to be solved for are the nodal function values

instead of the network weights.
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1.4 Outline of the Thesis

The rest of the thesis is organized as follows.

• Chapter 2 devises and implements numerical schemes (Le et al., 2010a)

that enhance the performance of strong form meshless methods based on

the IRBFN for irregular domain problems with traction (derivative or

Neumann) boundary conditions in solid mechanics.

• Chapter 3 proposes a novel approximation method based on RBF for gen-

erally complicated geometries and random data point distribution, namely

Moving IRBFN (MIRBFN) interpolation (Le et al., 2010c). The MIRBFN

method is implemented in the collocation of first-order system formula-

tion in chapter 2 (section 2.3.1) to solve PDEs governing various problems

including heat transfer, elasticity and linear static crack problems.

• Chapter 4 presents a weak form approach to formulate a new Galerkin

meshfree method based on the MIRBFN interpolation introduced in chap-

ter 3. The new method has successfully been verified by various test

examples including elasticity and crack problems.

• Chapter 5 describes an IRBFN meshless method for the numerical model-

ing of the dynamics of strain localization due to strain softening in quasi-

brittle materials (Le et al., 2008a). Also , we introduce a new and effective

regularization method to enhance the performance of the IRBFN method

and alleviate the numerical oscillations associated with weak discontinuity

at the elastic wave front. The dynamic response of a one dimensional bar

is investigated using both local and non-local continuum models.

• Chapter 6 reports a numerical simulation of the formation and evolution of

strain localization in elasto-thermo-viscoplastic materials (adiabatic shear

band) by the IRBFN meshless method (Le et al., 2007a). The effects of

strain and strain rate hardening, plastic heating, and thermal softening
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are considered. The IRBFN method is enhanced by a new coordinate

mapping which helps capture the steep spatial structure of the resultant

band.

• Chapter 7 reports a further development of the MIRBFN Galerkin mesh-

free method for numerical simulation of elasto-plastic materials with lin-

ear strain hardening and strain localization of elato-visco-plastic materials

with strain softening in two dimensions as well as some preliminary re-

sults.

• Chapter 8 is to develop further the MIRBFN meshfree method in chap-

ter 4 for fracture problems (Le et al., 2010d). The present method is

enhanced by a local partition of unity enrichment technique to capture

the discontinuity across the crack and the extremely sharp gradient in the

vicinity of the crack tip.

• Chapter 9 draws some conclusions from the research and discusses some

future works.



Chapter 2

An IRBFN-based Cartesian-grid

collocation technique for mixed

boundary value problems

This chapter reports a meshless method based on Cartesian discretisation with

1D-integrated radial basis function networks (1D-IRBFN) as approximants. In

this method, high order systems are reformulated as first order systems which

are then numerically solved by a collocation method. The present method is en-

hanced by a new boundary interpolation technique based on 1D-IRBFN which

is introduced to obtain function approximation at irregular points in irregular

domains. The proposed method is well suited to problems with mixed boundary

conditions on both regular and irregular domains. The main results obtained

are (a) the boundary conditions for the reformulated problem are of Dirichlet

type only; (b) the integrated RBFN approximation avoids the well known re-

duction of convergence rate associated with differential formulations; (c) the

primary variable (e.g. displacement, temperature) and the dual variable (e.g.

stress, temperature gradient) have similar convergence order; (d) the volumet-

ric locking effects associated with incompressible materials in solid mechanics
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are alleviated. Numerical experiments show that the proposed method achieves

very good accuracy and high convergence rates.

2.1 Introduction

Traditional finite element methods (FEM) (Belytschko et al., 2003b; Bordas

et al., 2008a) and boundary element methods (BEM) (Mackerle, 2000; Bebal-

lal et al., 2006) have been based on weak form formulations. Recently, weak

form meshless (meshfree) methods are being developed as an alternative ap-

proach. Weak form methods have the following advantages (Liu, 2003) (a)

they have good stability and reasonable accuracy for many problems; (b) Neu-

mann boundary conditions can be naturally and conveniently incorporated into

the same weak form equation. However, elements have to be used for the in-

tegration of a weak form over the global problem domain (Belytschko et al.,

1994) and the numerical integration is still computationally expensive for these

weak form methods. On the other hand, collocation methods are based on

strong form governing equations and have been found to possess the following

attractive advantages (Liu, 2003; Le et al., 2006, 2007b, 2008b) (a) they are

computationally efficient since there is no need for numerical integration of the

governing equations; (b) the implementation is simple; (c) implementation of

Dirichlet boundary conditions is very straightforward. However, the strong form

approach is less stable due to the pointwise nature of error minimisation and

results in typically poorer accuracy for problems governed by partial differen-

tial equations with Neumann-type boundary conditions such as solid mechan-

ics problems with traction (natural) boundary conditions. Furthermore, some

strong form methods such as finite difference and pseudo spectral methods are

restricted to rectangular domains.

Therefore, many efforts have been made to develop techniques for handling the

Neumann-type boundary conditions such as direct collocation, fictitious points,
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regular grids, dense nodes in the derivative boundaries (Liu and Gu, 2005), and

Hermite-type collocation (Zhang et al., 2000; Li et al., 2003). Recently, Zhang

et al. (2001) suggested a least-squares collocation meshless method which can

improve the accuracy of the solution in comparison with that of standard col-

location method. Onate et al. (2001) introduced a stabilization technique by

adding artificial terms in both governing equations and Neumann boundary

conditions, however, these terms only serve the stabilization purpose and their

suitability is restricted to some special problems. Liu and Gu (Liu and Gu, 2003;

Gu and Liu, 2005) proposed a meshfree weak-strong-form method, in which the

weak form is applied to the subdomain concerned with Neumann boundary

conditions and strong form to the one with Dirichlet boundary conditions. Pan

et al. (2005) presented meshless Galerkin least-squares method by making use of

Galerkin method in the boundary domain and least-squares method in the inte-

rior domain. Hu et al. (2006) and Chen et al. (2008a) introduced the weighted

radial basis collocation method in which the residual error on the Neumann

boundary is treated by a proper scaling weight. Atluri et al. (2004, 2006) pro-

posed a “mixed” collocation technique, however, stable solutions are obtained

with resort to the local weak form at nodal points for stress and the penalty

method for Neumann boundary conditions. Libre et al. (2008) proposed a sta-

bilized collocation scheme for RBF by increasing the shape parameter of RBF

and the number of collocation points around the Neumann boundaries, how-

ever, increasing the shape parameter leads to increased ill-conditioning. Lee and

Yoon (2004b) introduced generalized diffuse derivative in a collocation method.

In recent years, increased attention has been given to the development of first-

order system formulation. In earlier works of Cai et al. (1994, 1997b), they

developed the theory of first-order system formulation for general second-order

elliptic PDEs. This methodology has been then extended to the Stokes equa-

tions (Cai et al., 1997a) in two and three dimensions, elasticity problems (Cai

et al., 1998, 2000; Cai and Starke, 2003), and boundary value problems with

Robin boundary conditions (Lee, 1999). However, the efforts have been mainly



2.1 Introduction 21

concentrated in using weak form Galerkin or weak form least-squares formu-

lation. For example, Jiang and Wu (2002) presented the least-squares finite

element method; Park and Youn (2001) introduced the least-squares meshless

method and Kwon et al. (2003) subsequently extended this method to elastic-

ity problems. Relatively few works have been reported with first-order system

formulation based on strong form method.

Following a strong form approach, this chapter describes a new efficient colloca-

tion method using integrated radial basis function network (IRBFN) and Carte-

sian grid (Mai-Duy and Tran-Cong, 2007) for the numerical modeling of certain

problems governed by second order PDEs in both regular and irregular do-

mains. Firstly, the governing equations are written or re-written as a first order

system “mixed” formulation where both primary (e.g. displacement, tempera-

ture) and dual (e.g. stress, temperature gradient) variables are approximated

independently. Secondly, a new technique based on 1D-IRBFN is introduced

to easily interpolate variables along curved boundaries. The mixed boundary

conditions are easily and directly accommodated as a result of the first-order

formulation while the new boundary interpolation technique overcomes the chal-

lenge traditionally posed by Cartesian-grid discretisation of irregular domains

(Roache, 1980). In the present approach (a) the mixed boundary conditions for

the original second-order system are of Dirichlet type only for the reformulated

first-order problem; (b) the integrated RBFN approximation is able to capture

very sharp gradient (or boundary layer) (Le et al., 2007a, 2008a) and avoid the

well known reduction of convergence rate associated with differential formula-

tions; (c) the primary variable (e.g. displacement, temperature) and the dual

variable (e.g. stress, temperature gradient) have similar convergence order; (d)

the volumetric locking effects associated with incompressible materials in solid

mechanics are alleviated without any extra effort. (In contrast, in meshless weak

form approaches, special treatments need to be done in the case of incompress-

ible materials, for instance, Dolbow and Belytschko (1999) introduced reduced

integration procedure, Chen et al. (2000) proposed the pressure projection tech-
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nique for the purpose of alleviating the incompressible locking.) Moreover, the

generation of a Cartesian grid is a straightforward task and therefore the cost

associated with spatial discretisation is greatly reduced in comparison with that

associated with FE generation. Numerical experiments show that the proposed

method achieves very good accuracy and high convergence rates.

The remainder of the chapter is organized as follows. The physical problem and

its mathematical model are defined in section 2.2. The numerical formulation

for the mathematical model is presented in section 2.3. The proposed method

is illustrated by numerical examples in section 2.4. Section 2.5 draws some

conclusions.

2.2 Problem formulations

2.2.1 First-order systems

It is noticed that in general higher-order differential equations can be trans-

formed into first-order differential equations (Cai et al., 1994; Lee, 1999). The

higher-order differential equations are transformed into first-order differential

equations by introducing new dual variables. Both primary and dual variables

are independently interpolated and have shape functions of the same order. Cai

and co-workers (Cai et al., 1994, 1997b,a, 1998, 2000; Cai and Starke, 2003) stud-

ied the behaviour of equivalent first-order formulations of second-order systems

and found that FE implementation of such first-order systems yields uniform

optimal performance. The resultant first-order system of governing equations

can be written as follows.

Lu = f , in Ω (2.1)

Bu = g, on Γ (2.2)
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where Ω is a bounded domain in R
d, d = 1, 2 or 3, Γ the boundary of Ω,

uT = [u1, u2, ..., um] is a vector of m unknown functions (including primary and

dual variables) of xT = [x1, x2, ..., xd], f a given function in the domain, B a

boundary algebraic operator, and g a given function on the boundary, L is a

first-order linear differential operator

Lu = L0u +

d∑

i=1

Li
∂u

∂xi
, (2.3)

in which Li are the coefficient matrices which characterize the differential op-

erator L. Examples of problems formulated as first-order systems are given in

the following sections.

2.2.2 Two-dimensional Poisson equation

Consider the following two-dimensional Poisson equation

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= f(x, y) in Ω, (2.4a)

φ(x, y) = g(x, y) on ΓD, (2.4b)

∂φ(x, y)

∂n
= h(x, y) on ΓN , (2.4c)

where Ω is a bounded domain in R
2, ΓD and ΓN the boundary of Ω on which

the Dirichlet and Neumann boundary conditions are imposed, respectively, n =

(nx, ny)
T the outward unit normal to ΓN , and f , g and h given functions on Ω,

ΓD and ΓN , respectively.

A first-order formulation is obtained by introducing the dual variables in (2.4)
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as follows

∂φ(x, y)

∂x
− ξ(x, y) = 0 in Ω and on ΓD

⋃
ΓN , (2.5a)

∂φ(x, y)

∂y
− η(x, y) = 0 in Ω and on ΓD

⋃
ΓN , (2.5b)

∂ξ(x, y)

∂x
+
∂η(x, y)

∂y
= f(x, y) in Ω and on ΓD

⋃
ΓN , (2.5c)

φ(x, y) = g(x, y) on ΓD, (2.5d)

nxξ + nyη = h(x, y) on ΓN . (2.5e)

2.2.3 Linear elasticity problems

Consider the following two-dimensional problem on a domain Ω bounded by

Γ = Γu

⋃
Γt

∇ · σ = b in Ω, (2.6a)

u = ū on Γu, (2.6b)

σ · n = t̄ on Γt, (2.6c)

in which σ is the stress tensor, which corresponds to the displacement field u

and b is the body force, n the outward unit normal to Γt. The superposed bar

denotes prescribed value on the boundary.

The governing equations (2.6) are closed when a constitutive relation is specified

for σ. Here the linear Hooke’s law is used to describe the σ − u relation. By

choosing displacement u as primary variable and stress σ as dual variable, the

governing equations remain first-order, which are written for plane stress case



2.3 Numerical formulations 25

as follows

∂u

∂x
− 1

E
σx +

µ

E
σy = 0, (2.7a)

∂v

∂y
+
µ

E
σx −

1

E
σy = 0, (2.7b)

∂u

∂y
+
∂v

∂x
− 2(1 + µ)

E
τxy = 0, (2.7c)

∂σx

∂x
+
∂τxy

∂y
= bx, (2.7d)

∂τxy

∂x
+
∂σy

∂y
= by, (2.7e)

u = ū on Γu, (2.7f)

σ · n = t̄ on Γt, (2.7g)

where µ is Poisson ratio and E Young’s modulus. By introducing the dimen-

sionless stress tensor s = σ/E, the above first-order system can be rewritten as

follows

∂u

∂x
− sx + µsy = 0, (2.8a)

∂v

∂y
+ µsx − sy = 0, (2.8b)

∂u

∂y
+
∂v

∂x
− 2(1 + µ)sxy = 0, (2.8c)

∂sx

∂x
+
∂sxy

∂y
= bx, (2.8d)

∂sxy

∂x
+
∂sy

∂y
= by, (2.8e)

u = ū on Γu, (2.8f)

s · n = t̄ on Γt. (2.8g)

2.3 Numerical formulations

In a number of methods, approximations of spatial derivatives are less accurate

because differentiation magnifies errors. Madych (1992) estimated that MQ-
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RBF enjoys spectral convergence of order O(λ
a
h ), where 0 < λ < 1, a is the

shape parameter and h is the maximum mesh size. A differential formulation

with spatial derivatives of order δ reduces convergence rate of MQ to O(λ
a
h
−δ).

To increase the accuracy and the convergence rate of MQ, several approaches

have been proposed such as (a) increasing a or decreasing h or both (Libre

et al., 2008), (b) integrated methods of Mai-Duy and Tran-Cong (2001, 2003,

2005, 2007) and (c) using higher order MQ, e.g. ϕi = (r2
i + a2

i )
β, where β > 1

2

(Wertz et al., 2006).

To avoid the reduction of convergence rates due to differentiation and enhance

the stability of the collocation-based numerical schemes in the case of Neumann

type boundary value problems, in the present work we use Cartesian grid tech-

nique to discretise governing equations obtained by first-order formulation as

follows.

2.3.1 1D-IRBFN approximation

For the sake of completeness, the 1D-IRBFN approximation for 2D problems

in Mai-Duy and Tran-Cong (2007) is reproduced as follows. Consider a grid

point/regular point x (x = (x, y)T ) (Figure 2.1). Along the horizontal line

passing through this point, one can use IRBFNs to construct the expressions

for the function u and its derivatives with respect to x. The construction process

can be described as follows. The second-order derivative of u is first decomposed

into RBFs; the RBF network is then integrated twice to obtain the expressions
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for the first-order derivative and the function itself

∂2u(x)

∂x2
=

N∑

i=1

w(i)g(i)(x) =

N∑

i=1

w(i)H
(i)
[2] (x), (2.9)

∂u(x)

∂x
=

N∑

i=1

w(i)H
(i)
[1] (x) + c1, (2.10)

u(x) =
N∑

i=1

w(i)H
(i)
[0] (x) + c1x+ c2, (2.11)

where N is the number of nodal points (interior and boundary points) on the

line, {w(i)}N
i=1 are RBF weights to be determined, {g(i)(x)}N

i=1 are known RBFs,

H[1](x) =
∫
H[2](x)dx, H[0](x) =

∫
H[1](x)dx, and c1 and c2 are integration

constants. Here, it is referred to as a second-order 1D-IRBFN scheme, denoted

by IRBFN-2. The present study employs multiquadrics (MQ) whose form is

g(i)(x) =
√

(x− c(i))2 + a(i)2, (2.12)

where c(i) and a(i) are the center and the RBF width/shape parameter of the ith

RBF. The width of the ith RBF can be determined according to the following

simple relation

ai = βdi, (2.13)

where β is a factor, β > 0, and di is the distance from the ith center to its

nearest neighbour. The set of centers is chosen to be the same as the set of the

collocation points. It is more convenient to work in the physical space than in

the network-weight space. The values of the variable u at the N nodal points
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x1 2 3 N

Figure 2.1: Domain discretization by Cartesian grid: the boundary and interior
points used for constructing the IRBFN approximations at point x are high-
lighted. The intersections of the grid lines and the boundary (e.g. points 1, N)
are referred to as irregular if they do not coincide with grid points.

can be expressed as

u(x(1)) =

N∑

i=1

w(i)H
(i)
[0] (x

(1)) + c1x
(1) + c2, (2.14)

u(x(2)) =
N∑

i=1

w(i)H
(i)
[0] (x

(2)) + c1x
(2) + c2, (2.15)

· · · · · · · · · · · · · · ·

u(x(N)) =
N∑

i=1

w(i)H
(i)
[0] (x

(N)) + c1x
(N) + c2, (2.16)

or in a matrix form

û = H



 ŵ

ĉ



 , (2.17)
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where û = (u(1), u(2), · · · , u(N))T , ŵ = (w(1), w(2), · · · , w(N))T , ĉ = (c1, c2)
T , and

H is a known matrix of dimension N × (N + 2) defined as

H =





H
(1)
[0] (x

(1)) H
(2)
[0] (x(1)) · · · H

(N)
[0] (x(1)) x(1) 1

H
(1)
[0] (x

(2)) H
(2)
[0] (x(2)) · · · H

(N)
[0] (x(2)) x(2) 1

· · · · · · · · · · · · · · · · · ·
H

(1)
[0] (x

(N)) H
(2)
[0] (x(N)) · · · H

(N)
[0] (x(N)) x(N) 1




.

Using the singular value decomposition (SVD) technique, one can write the

RBF coefficients including two integration constants in terms of the physically

meaningful nodal variable values



 ŵ

ĉ



 = H−1û. (2.18)

It is noted that the purpose of using SVD here is to provide a solution whose

norm is the smallest in the least-squares sense. By substituting (2.18) into

(2.9)-(2.11), the values of u and its derivatives with respective to x at point x

can now be computed by

∂2u(x)

∂x2
=

(
H

(1)
[2] (x), H

(2)
[2] (x), · · · , H(N)

[2] (x), 0, 0
)
H−1û, (2.19)

∂u(x)

∂x
=

(
H

(1)
[1] (x), H

(2)
[1] (x), · · · , H(N)

[1] (x), 1, 0
)
H−1û, (2.20)

u(x) =
(
H

(1)
[0] (x), H

(2)
[0] (x), · · · , H(N)

[0] (x), x, 1
)
H−1û. (2.21)

Substituting a discrete approximation of u and its first-order derivatives as

given in (2.21) and (2.20) into (2.1) and (2.2) and using the collocation method

at all the nodes of Ω and Γ, one obtains the linear algebraic system as presented

below.

Let NΩ denote the number of interior nodes, ND the number of nodes on

the Dirichlet boundary, NN the number of nodes on the Neumann bound-

ary, mp the number of primary unknowns and md the number of dual un-
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knowns associated with a node, the number of nodal unknowns is generally

(NΩ +ND +NN)(mp +md). If one collocates the governing equations (2.1) at

NΩ interior nodes and the boundary conditions (2.2) at (ND + NN) boundary

nodes, the number of obtained equations is (NΩ(mp + md) + NDkD + NNkN),

where kD and kN are the number of equations from the boundary conditions

per node on the Dirichlet and Neumann boundaries, respectively. Consequently,

the number of equations is less than the number of unknowns on the bound-

aries since kD and kN are usually less than mp + md, respectively. To over-

come this deficiency, we propose a new scheme for the treatment of bound-

ary conditions of the first-order collocated system as follows. The governing

equations (2.1) is collocated at all the interior and boundary nodes, yielding

(NΩ +ND +NN)(mp +md) equations. The boundary conditions are imposed by

collocating equation (2.2) at all the boundary nodes, i.e. the obtained system

has (NΩ +ND +NN )(mp +md)+NDkD +NNkN equations. The final system is

obtained by removing NDkD + NNkN appropriate equations corresponding to

the governing equations collocated at the boundary nodes. Consequently, the

number of equations of the resultant system is equal to the number of nodal

unknowns and it can be rewritten in a compact form

Au = f̄ . (2.22)

Another possible treatment of the boundary conditions in this case is that both

governing equations (2.1) and boundary conditions (2.2) are imposed at all

the boundary nodes. As a result, the number of equations is greater than the

number of unknowns, and the resultant system can be solved in the least-square

sense. However, our numerical study indicates that the least-squares scheme

provides poorer accuracy than the proposed scheme.
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2.3.2 Irregular boundary interpolation technique

Consider a representative irregular boundary as shown in Figure 2.2, Cartesian

grid based methods generally are not able to represent irregular nodes (e.g.

points 1, N in Figure 2.2) on this boundary and the 1D-IRBFN is no excep-

tion. To interpolate variables at irregular points, a new boundary interpolation

technique based on 1D-IRBFN is introduced as follows.

If the curve (irregular boundary) is a function of x and y, i.e. ζ = ζ(x, y), and

x = x(ζ) and y = y(ζ), a function value f = f(x, y) is invariant with respect to

ζ coordinate system (i.e. the natural coordinate system)

f = f(x, y) = f [x(ζ), y(ζ)] = f(ζ). (2.23)

From (2.23), we have the following relation

∂f

∂ζ
=
∂f

∂x

∂x

∂ζ
+
∂f

∂y

∂y

∂ζ
, (2.24)

which can be used for determining ∂f
∂x

(or ∂f
∂y

) at the irregular nodes if ∂x
∂ζ

, ∂y
∂ζ

and ∂f
∂y

(or ∂f
∂x

) are known. In general, f(ζ), x(ζ), y(ζ) and their correspond-

ing derivatives can be approximated by 1D-IRBFN. To illustrate the proposed

scheme, let the irregular boundary be a circular arc, we need to determine ∂f
∂x

at the “square” nodes on the circular arc (Figure 2.2). We have the relations

ζ(x, y) ≡ θ(x, y) = arctan(y/x), (2.25)

x = r cos(θ), y = r sin(θ), (2.26)

f(θ) = f [x(θ), y(θ)] = f, (2.27)

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
, (2.28)
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ζ = ζ (x,y)

Figure 2.2: 1D interpolation scheme for irregular boundary

where r is the radius of the circular arc. In general, if f(θ) is not available

analytically, it can be approximated by a 1D-IRBFN, ∂f
∂y

(∂f
∂x

) of these nodes

can be approximated along the vertical (horizontal) lines. Therefore, ∂f
∂x

(∂f
∂y

)

can be easily obtained by using (2.28).

2.4 Numerical examples

For an error estimation and convergence study, the discrete relative L2 norm of

errors of primary and dual variables are defined as

Lφ
2 =

√
∑M

i=1

(
φ

(i)
e − φ(i)

)2

√
∑M

i=1

(
φ

(i)
e

)2
, (2.29)

Lξη
2 =

√
∑M

i=1

[(
ξ

(i)
e − ξ(i)

)2

+
(
η

(i)
e − η(i)

)2
]

√
∑M

i=1

[(
ξ

(i)
e

)2

+
(
η

(i)
e

)2
] , (2.30)
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for Poisson equation and

Lu
2 =

√
∑N

i=1

(
(ux)

(i)
e − (ux)(i)

)2 (
(uy)

(i)
e − (uy)(i)

)2

√
∑N

i=1

[(
(ux)

(i)
e

)2

+
(
(uy)

(i)
e

)2
] , (2.31)

Lσ
2 =

√
∑M

i=1

[(
(sx)

(i)
e − s

(i)
x

)2

+
(
(sy)

(i)
e − s

(i)
y

)2

+
(
(sxy)

(i)
e − s

(i)
xy

)2
]

√
∑M

i=1

[(
(sx)

(i)
e

)2

+
(
(sy)

(i)
e

)2

+
(
(sxy)

(i)
e

)2
] , (2.32)

for elasticity problems, where M is the number of unknown nodal values and the

subscript “e” denotes the exact solution. The convergence order of the solution

with respect to the refinement of spatial discretization is assumed to behave as

L2(h) ≈ ζhλ = O(hλ), (2.33)

where h is the maximum grid spacing in either x or y direction, ζ and λ are the

parameters of the exponential model, which are found by general linear least

square formula. It is noted that the value of the shape parameter β in (2.13) is

1 for all the following numerical examples.

2.4.1 Poisson equation in a regular domain

Consider the following Poisson equation

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= −2π2 cos(πx) cos(πy), (2.34)

defined in Ω = [0, 1] × [0, 1], subject to the Dirichlet boundary condition

φ(0, y) = cos(πy), on x = 0, (2.35)
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and the following Neumann boundary conditions

∂φ(1, y)

∂x
= 0, on x = 1, (2.36a)

∂φ(x, 0)

∂y
= 0, on y = 0, (2.36b)

∂φ(x, 1)

∂y
= 0, on y = 1. (2.36c)

(2.36d)

The corresponding exact solution is given by

φ(x, y) = cos(πx) cos(πy). (2.37)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0
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0.8

1

1.2

X

Y

Figure 2.3: Poisson equation in a regular domain: domain discretisation with
11 × 11 points.

Figure 2.3 shows the geometry of the problem and the domain discretisation

based on a uniform Cartesian grid with 11 × 11 collocation points (CPs). The

obtained results with 11×11 CPs are presented in Figures 2.4-2.8. The solution
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Figure 2.4: Poisson equation in a regular domain: solution of φ(x, y) obtained
by the proposed method in comparison with exact solution along y = 1.

for the primary unknown φ(x, y) on three Neumann boundaries obtained by

the present method and the exact solution are plotted in Figures 2.4-2.6, the

solution for the dual unknowns ξ(x, y) (on y = 0 and y = 1) and η(x, y) (on

x = 0 and x = 1) are shown in Figure 2.7 and Figure 2.8, respectively. From

these figures, it can be seen that both the Dirichlet and Neumann boundary

conditions are imposed exactly by the present method and the present solutions

excellently agree with the exact solutions.

To study the convergence behaviour of the solution, a number of uniform grids,

namely 11× 11, 21× 21, 31× 31, 41× 41, 51× 51, 71× 71, 81× 81, 121× 121

and 141 × 141 CPs is employed in computation. The h is equivalent to the

maximum grid space (in x direction) for all numerical examples. The conver-

gence behaviours for φ(x, y) (Lφ
2 ) and its derivatives (Lξη

2 ) are shown in Figure

2.9. It can be observed that the error norm Lφ
2 is slightly lower than Lξη

2 , the

convergence rates for φ(x, y) and (ξ(x, y), η(x, y)) are O(h3.26) and O(h3.5), re-

spectively. At the finest grid, the relative error Lφ
2 and Lξη

2 are 1.0458 × 10−7

and 1.1958 × 10−7, respectively.
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Figure 2.5: Poisson equation in a regular domain: solution of φ(x, y) obtained
by the proposed method in comparison with exact solution along y = 0 .

2.4.2 Poisson equation in a multiply-connected domain

To illustrate the proposed interpolation technique for irregular boundaries, we

consider the Poisson equation in example 2.4.1 with a multiply-connected do-

main as shown in Figure 2.10, where the Dirichlet boundary condition is pre-

scribed on the left edge and right edge as

φ(−2, y) = cos(πy), (2.38a)

φ(2, y) = cos(πy), (2.38b)

and the Neumann boundary condition is given on the other edges: upper edge,

lower edge and curve edge as follows

∂φ(x, 2)

∂x
= 0, (2.39a)

∂φ(x,−2)

∂y
= 0, (2.39b)

nx
∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 1, (2.39c)

where n = (nx, ny)
T is the outward unit normal to the boundary, q(x, y) =

−nxπ sin(πx) cos(πy) − nyπ cos(πx) sin(πy). With the above boundary condi-



2.4 Numerical examples 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

φ(
x,

y)

φ(x,y) along x = 1

 

 

exact φ(x,y)
proposed method φ(x,y)

Figure 2.6: Poisson equation in a regular domain: solution of φ(x, y) obtained
by the proposed method in comparison with exact solution along x = 1.

tions, the exact solution is given as in example 2.4.1.

In the case of irregular domains, the irregular boundary interpolation technique

in section 2.3.2 is employed to improve the performance of 1D-IRBFN approx-

imation. Figures 2.11-2.13 show the numerical results by the present method

along the curved boundary (Neumman boundary condition). It can be seen

that the obtained results are in good agreement with the exact solution.

The convergence of the method is investigated with 120, 512, 3232, 4688, 6716,

9984 and 16084 nodes (which are based on uniform grids of 11×11, 24×24, 62×
62, 75×75, 90×90, 110×110 and 140×140) as plotted in Figure 2.14. The con-

vergence rates for φ(x, y) and its derivatives are O(h2.57) and O(h2.40), respec-

tively. At the finest grid, the relative error norms Lφ
2 and Lξη

2 are 9.455 × 10−4

and 1.345× 10−3, respectively. The obtained results indicate that the proposed

boundary interpolation technique greatly improves performance of 1D-IRBFN

in irregular domains.
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Figure 2.7: Poisson equation in a regular domain: solution of ξ(x, y) obtained
by the proposed method in comparison with exact solution (a) along y = 1, (b)
along y = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

y

η(
x,

y)

η(x,y) along x = 0

 

 

exact η(x,y)
proposed method η(x,y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

y

η(
x,

y)

η(x,y) along x = 1

 

 

exact η(x,y)
proposed method η(x,y)

(a) (b)

Figure 2.8: Poisson equation in a regular domain: solution of η(x, y) obtained
by the proposed method in comparison with exact solution (a) along x = 0, (b)
along x = 1.

2.4.3 Poisson equation in an irregular domain

The Poisson equation in example 2.4.1 is examined in a more complicated ir-

regular domain as shown in Figure 2.15. The Dirichlet boundary conditions on

the upper edge and the left edge are given as follows.

φ(0, y) = cos(πy), on x = 0, (2.40a)

φ(x, 0) = cos(πx), on y = 0. (2.40b)
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Figure 2.9: Poisson equation in a regular domain: relative error norms Lφ
2 and

Lξη
2 .

The Neumann boundary conditions on the inner arc and the outer arc are,

respectively

nx
∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 1, (2.41a)

nx
∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 4, (2.41b)

where q(x, y) = −nxπ sin(πx) cos(πy) − nyπ cos(πx) sin(πy).

The complexity is increased with the Neumann boundary conditions on two

curved boundaries. Making use of the proposed boundary interpolation scheme,

the irregular boundaries can be accurately represented as in the following ob-

tained results. A number of grids of 77, 275, 1459 and 2872 CPs is used for

computation. Figure 2.16 numerically shows the convergence behaviour of the

method. The convergence rates of the present method for primary variable φ

and dual variables (ξ, η) are O(h3.88) and O(h3.43), respectively. At the finest

grid, the relative error norm Lφ
2 and Lξη

2 are 1.375 × 10−5 and 1.016 × 10−4,

respectively.
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Figure 2.10: Poisson problem in a multiply-connected domain: domain discreti-
sation with 512 nodes.

2.4.4 Linear elastic cantilever beam

The performance of the present method is now further evaluated, using the

problem of a cantilever beam subject to parabolic shear load at the end x = 0

as shown in Figure 2.17.

The following parameters are used for the problem: L = 4.8 and D = 1.2. The

beam has a unit thickness. Young’s modulus is E = 3 × 106 , Poisson’s ratio

is µ = 0.3 (also µ = 0.5) and the integrated parabolic shear force is P = 100.

Plane stress condition is assumed and there is no body force.

The exact solution for this problem was given by Timoshenko and Goodier

(1970) as

σxx(x, y) =
P (L− x)y

I
(2.42a)

σyy(x, y) = 0 (2.42b)

τxy(x, y) =
−P
2I

(
D2

4
− y2

)
(2.42c)
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Figure 2.11: Poisson equation in a multiply-connected domain: solutions along
curved boundary of φ(x, y) with 512 nodes.
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Figure 2.12: Poisson equation in a multiply-connected domain: solutions along
curved boundary ξ(x, y) with 512 nodes.

The displacements are given by

ux =
Py

6EI

[
(6L− 3x)x+ (2 + ν)

(
y2 − D2

4

)]
(2.43)

uy =
−P
6EI

[
3νy2(L− x) + (4 + 5ν)

Dx2

4
+ (3L− x)x2

]
(2.44)

The exact displacement (2.43) and (2.44) are applied on the Dirichlet boundary

x = L. In the Galerkin formulation, the traction-free boundary condition is

automatically met but in a collocation scheme, the the traction-free condition
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Figure 2.13: Poisson equation in a multiply-connected domain: solutions along
curved boundary η(x, y) with 512 nodes.

must be explicitly enforced.

Figure 2.19 shows a comparison of the exact solution and that of the present

method (with a regular grid of 5×20 CPs as shown in Figure 2.18) for the beam

deflection uy(x, y) along the x-axis. An excellent agreement between the ana-

lytical and numerical results is observed. Figure 2.20 and Figure 2.21 illustrate

the comparison between analytically calculated solutions and the numerical re-

sults for sxy along x = L and sx along upper and lower edges. Again, the plots

show that numerical solution and exact solution are in excellent agreement,

which is confirmed by the error measures as shown in Figure 2.22. The present

results compare very favourably with those by direct and least-squares colloca-

tion meshless methods using moving least square approximation of Zhang et al.

(2001) and Pan et al. (2005). Thus, compared with the standard collocation

method, the present method has a good accuracy and stability for this problem.

For convergence study, a number of regularly distributed grids of 20×5, 36×9,

52 × 13, 68 × 17, 84 × 21, 124 × 31 and 164 × 41 CPs is employed for both

compressible material (µ = 0.3) and incommpressible material (µ = 0.5) cases.

The convergence behaviour in the case of µ = 0.3 is shown in Figure 2.22, which
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Figure 2.14: Poisson equation in a multiply-connected domain: relative error
norms Lφ

2 and Lξη
2 , and convergence rates.

indicates that the present method has very good stability and accuracy with a

convergence rate of 3.1265 and 3.0557 for displacement and stress, respectively.

At the finest grid, the relative error norms Lu
2 and Lσ

2 are 5.102 × 10−6 and

4.802 × 10−6, respectively. Moreover, unlike the displacement-based formula-

tion, in which the accuracy for stress variables is much lower than that for the

displacement variables, the proposed method obtained a higher accuracy and

convergence rate for the stress field as well.

The robustness of the proposed method in the incompressible limit is also exam-

ined. The cantilever beam problem is analyzed with different values of Poisson

ratio: µ = 0.499, µ = 0.49999, and µ = 0.5. Our numerical experiments in-

dicate that the volumetric locking can be alleviated by the present approach

without any extra effort even in the case of µ = 0.5, for which the convergence

behaviour is presented in Figure 2.23, showing good stability and high accuracy.

The convergence rates for displacement and stress variables are O(h3.215) and

O(h3.0), respectively. At the finest grid, the relative error norms Lu
2 and Lσ

2 are

4.818 × 10−6 and 4.869 × 10−6, respectively.

In term of efficiency, the computational costs versus error in displacement norm
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Figure 2.15: Poisson problem in an irregular domain: domain discretisation
with 77 points.

of the proposed method and FEM (using Q4 element) are plotted in Figure 2.24.

The comparisons in Figure 2.22 and 2.24 demonstrate that not only the accu-

racy and order of convergence but also the efficiency of the former exceed those

of the latter. Furthermore, the efficiency of the proposed method is compared

with that of the latest meshfree method, namely the edge based smooth point

interpolation methods (ES-PIM and ES-RPIM) (Liu and Zhang, 2008), by plot-

ting the differential computational cost (DCC) of the methods in comparison

with the FEM (DCC = CPU time of FEM − CPU time of the reference method)

at the same level of relative error in displacement norm (Figure 2.25). It can be

observed that the proposed method is less efficient than ES-PIM(T3) (the most

efficient one among the ES-PIM family) but more efficient than ES-RPIM(T6)

(the most efficient one among the ES-RPIM family).

2.4.5 Linear elastic infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional

tensile load of 1.0 in the x direction as shown in Figure 2.26 is analyzed. The
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Figure 2.16: Poisson equation in an irregular domain: relative error norms Lφ
2

and Lξη
2 , and convergence rates.

Figure 2.17: Cantilever beam: a mathematical model.

radius of the hole is taken as 1 unit. Owing to symmetry, only the upper right

quadrant [0, 3] × [0, 3] of the plate is modeled (Figure 2.27).

In this problem, plane stress conditions are assumed with elastic isotropic prop-

erties E = 103, µ = 0.3 (also µ = 0.5). The exact solution to this problem was

given by Timoshenko and Goodier (1970) as follows

σx(x, y) = σ

[
1 − a2

r2

[
3

2
cos(2θ) + cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (2.45a)

σy(x, y) = −σ
[
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (2.45b)
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Figure 2.18: Cantilever beam: discretisation model with 20 × 5 CPs.
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Figure 2.19: Cantilever beam: uy(x, y) along y = 0 with 20 × 5 CPs (µ = 0.3).

τxy(x, y) = −σ
[
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3a4

2r4
sin(4θ)

]
, (2.45c)

where (r, θ) are the polar coordinates, a the radius of the hole.

The corresponding displacements are given by

ux(x, y) = σ
(1 + µ)

E

[
1

1 + µ
r cos(θ) +

2

1 + µ

a2

r
cos(θ) +

1

2

a2

r
cos(3θ) − 1

2

a4

r3
cos(3θ)

]

(2.46a)

uy(x, y) = σ
(1 + µ)

E

[ −µ
1 + µ

r sin(θ) +
1 − µ

1 + µ

a2

r
sin(θ) +

1

2

a2

r
sin(3θ) − 1

2

a4

r3
sin(3θ)

]

(2.46b)

The boundary conditions of the problem are as follows. The tractions which
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Figure 2.20: Cantilever beam: sxy along Dirichlet boundary x = L with 20 × 5
CPs (µ = 0.3).
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Figure 2.21: Cantilever Beam (µ = 0.3): sx solution with 20× 5 CPs (a) along
y = D/2, (b) along y = −D/2.

correspond to the exact solution for the infinite plate are applied on the top

and right edges, the symmetric conditions are applied on the left and bottom

edges, and the edge of the hole is traction free.

The obtained results with 493 CPs are plotted in the Figures 2.28-2.29. Figure

2.28 expresses a comparison of displacement ux(x, y) along y = 0 by the numer-

ical method and the exact solution. This figure shows that the obtained result

is in good agreement with the analytical solution. Figure 2.29 demonstrates a

comparison of stress sx(x, y) along x = 0 by the proposed method and the exact

solution. An excellent agreement of the numerical stress and the exact one can

be observed in this figure.
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Figure 2.22: Cantilever beam (µ = 0.3): relative error norms Lu
2 and Lσ

2 , and
convergence rates.

The convergence behaviour of the proposed method in this example is studied

with 116, 213, 493, 1136, 1872 and 2691 CPs, which are based on uniformly

distributed grids. The convergence curves for a compressible case (µ = 0.3) are

presented in Figure 2.30. Good stability and high accuracy are obtained in this

problem as shown in the figure. The same rates of convergence are observed

for displacement and stress. The convergence rates for displacement and stress

variables are O(h4.141) and O(h4.028), respectively. At the finest grid, the relative

error norms Lu
2 and Lσ

2 are 8.687 × 10−4 and 6.221 × 10−4, respectively.

The above configurations of collocation points are also employed to examined

the performance of the present method in the case of incompressible materi-

als (µ = 0.5). The convergence behaviour is presented in Figure 2.31. Like

the cantilever beam example, the obtained results indicates that the volumetric

locking due to incompressibility is alleviated. Good accuracy and high conver-

gence rate are obtained even in the case of µ = 0.5 as shown in Figure 2.31.

The convergence rates for displacement and stress variables are O(h4.183) and

O(h4.118), respectively. At the finest grid, the relative error norms Lu
2 and Lσ

2

are 1.147 × 10−3 and 8.086 × 10−4, respectively. Unlike standard collocation

method, which is very unstable for elasticity problems with traction boundary
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Figure 2.23: Cantilever beam (µ = 0.5): relative error norms Lu
2 and Lσ

2 , and
convergence rates.

conditions (Zhang et al., 2001; Pan et al., 2005), the present method shows

superior accuracy and stable convergence.

2.5 Conclusion

This chapter reports a successful solution approach for problems governed by

high order PDEs where the governing equations are reformulated as first-order

systems. Such first-order systems are then numerically modeled with Cartesian

grid discretisation and 1D-IRBFN, which is efficient (Cartesian grid) and yields

high order accuracy (IRBFN), as illustrated by a variety of test problems with

regular as well as irregular domains.



2.5 Conclusion 50

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Log
10

(CPU time)

Lo
g 10

(e
rr

or
 in

 d
is

pl
ac

em
en

t)

 

 

proposed method
FEM

Figure 2.24: Cantilever beam (µ = 0.3): comparison of efficiency between the
proposed method and FEM. Computational cost (second) versus L2 relative
error norm in displacement.
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Figure 2.25: Cantilever beam (µ = 0.3): comparison of efficiency between the
proposed method and the most efficient ES-PIM and ES-RPIM. Differential
computational cost (DCC) of different methods in comparison with FEM (CPU
time of FEM − CPU time of the reference method) at the same level of relative
error in displacement norm.
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Figure 2.26: Infinite plate with a circular hole.

Figure 2.27: Infinite plate with a circular hole: domain discretisation with 493
CPs.
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Figure 2.28: Infinite plate with a circular hole: ux(x, y) along y = 0 with 493
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Figure 2.30: Infinite plate with a circular hole (µ = 0.3): relative error norms
Lu

2 and Lσ
2 , and convergence rates.
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Chapter 3

A Moving IRBFN-based

integration-free meshless method

A novel approximation method using integrated radial basis function networks

(IRBFN) coupled with moving least square (MLS) approximants, namely mov-

ing integrated radial basis function networks (MIRBFN), is proposed in this

chapter. In this method, the computational domain Ω is divided into finite

sub-domains ΩI which satisfy point-wise overlap condition. The local function

interpolation is constructed by using IRBFN supported by all nodes in subdo-

main ΩI . The global function is then constructed by using Partition of Unity

Method (PUM), where MLS functions play the role of partition of unity. As a

result, the proposed method is locally supported and yields sparse and banded

interpolation matrices. The computational efficiency are excellently improved

in comparison with that of the original global IRBFN method. In addition,

the present method possesses the Kronecker-δ property, which makes it easy

to impose the essential boundary conditions. The proposed method is appli-

cable to randomly distributed datasets and arbitrary domains. In this work,

the MIRBFN method is implemented in the collocation of first-order system

formulation (Le et al., 2010a) to solve PDEs governing various problems includ-
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ing heat transfer, elasticity of both compressible and incompressible materials,

and linear static crack problems. The numerical results show that the present

method offers high order of convergence and accuracy.

3.1 Introduction

In recent years, RBF-based meshless methods have received increasing interest

from the research community since the associated discretisation of the govern-

ing PDEs is very simple for random point distribution and arbitrary domain.

Furthermore, global RBFN/IRBFN enjoys spectral accuracy and exponential

convergence (Madych, 1992; Cheng et al., 2003). However, the main drawback

of the globally supported RBFN/IRBFN is that the resultant interpolation

matrix is dense and highly ill-conditioned due to the nature of global approxi-

mation. For example, the condition number of such a matrix is about 6 × 1019

with only 20 × 20 collocation points (Fasshauer, 1997). Therefore, globally

supported RBFN/IRBFN methods are less effective in large-scale computation

and in problems concerning with small-scale features such as cracks/strain lo-

calization. Attempts to deal with this deficiency include domain decomposition

method (Ling and Kansa, 2004), block partitioning and multizone methods

(Kansa and Hon, 2000), and preconditioned methods (Baxter, 2002; Brown

et al., 2005).

Recently, local RBFN methods have been developed as an alternative approach.

Compactly supported RBF truncated from polynomials can improve the con-

dition number, yet a large support is required to obtain a reasonable accuracy

(Wendland, 1995). It is thus considered not a robust method against non-

uniform datasets (Tobor et al., 2004). Moreover, some new local methods that

exchange spectral accuracy for a sparse and better-conditioned system, have

been proposed, including explicit local RBF (Šaler and Vertnik, 2006), finite

difference based local RBF (Wright and Fornberg, 2006; Liu et al., 2006), dif-
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ferential quadrature based local RBF (Shu et al., 2003; Shu and Wu, 2007), and

radial point interpolation method (Liu et al., 2005b,a).

Another approach to local RBF is one based on the partition of unity (PU)

method. The PU concept was first introduced by Sherpard and known as Sher-

pard’s method. However, Sherpard’s method is not widely applied since it is

only of constant precision. Since the works of Babuška and Melenk (1997), this

method has received more attention and may be considered an underlying con-

cept for many other methods such as, PUFEM (Melenk and Babuška, 1996),

XFEM (Moës et al., 1999a; Bordas et al., 2006, 2008a), GFEM (Strouboulis

et al., 2000a,b) and certain meshfree methods (Rabczuk and Belytschko, 2004a,

2007a; Rabczuk et al., 2007b; Ventura et al., 2002). For RBF methods, locally

supported RBF based on the PU concept was first introduced in data fitting by

Wendland (2002) and has been further expanded by several researchers (Tobor

et al., 2004, 2006; Ohtake et al., 2006). In recent times, the idea of local RBF

based on the PU concept was extended by Chen et al. (2008b) for solving PDEs.

In their method, the reproducing kernel function is employed as PU function to

achieve a higher precision than that of Sherpard method.

Motivated by the former works, this chapter proposes a new locally supported

MIRBFN method, in which the standard globally supported IRBFN is cou-

pled with the moving least square (MLS) approximants via the PU concept to

formulate a locally supported MIRBFN interpolation method. Moreover, the

present interpolation method is implemented in the collocation of first-order

system formulation, resulting in an integration-free meshless method for solv-

ing PDEs. The proposed method is verified by various numerical examples,

including heat transfer, elasticity of compressible and incompressible materials,

and linear static crack problems. The remaining of this chapter is organized

as follows. The construction of the present MIRBFN is presented in section

3.2. Section 3.3 reports the numerical experiments and section 3.4 draws some

conclusions.
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3.2 Construction of Moving IRBFN

3.2.1 Moving least-square approximants

The moving least-square (MLS) procedure presented in Belytschko et al. (1994)

is briefly reproduced in this section as follows. The interpolant uh(x) of the

function u(x) is defined in the domain Ω by

uh(x) =

M∑

j=1

aj(x)pj(x) ≡ pT (x)a(x), (3.1)

where xT = [x, y], pT = [1, x, y] is a linear basis, M = 3 in R
2.

a(x) is obtained at any point x by minimizing the following weighted, discrete

L2 norm

J =
n∑

I=1

w(x− xI)[p
T (xI)a(x) − uI ]

2, (3.2)

where n is the number of points in the neighbourhood of x for which the weight

function w(x − xI) 6= 0, and uI is the nodal value of u at x = xI .

The minimization of J in equation (3.2) with respect to a(x) leads to the

following linear relation between a(x) and the vector of local nodal values u

A(x)a(x) = B(x)u, (3.3)

or

a(x) = A−1(x)B(x)u, (3.4)
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where A(x) and B(x) are defined by

A(x) =
n∑

I=1

w(x − xI)p(xI)p
T (xI) (3.5)

B(x) =




w(x − x1)





1

x1

y1




, w(x − x2)





1

x2

y2




, . . . , w(x− xn)





1

xn

yn









(3.6)

uT = [u1, u2, . . . , un]. (3.7)

Substitution of equation (3.4) into equation (3.1) yields

uh(x) =
n∑

I=1

M∑

j=1

pj(x)(A−1(x)B(x))jIuI ≡
n∑

I=1

ϕI(x)uI , (3.8)

where the shape function ϕI(x) is defined by

ϕI(x) =
M∑

j=1

pj(x)(A−1(x)B(x))jI , (3.9)

or in compact form

ϕI(x) = cT (x)w(x − xI)p(xI), (3.10)

where A(x)c(x) = p(x) defines vector c(x).

c(x) can efficiently be computed by the LU factorization of A(x) with backward

substitution (Belytschko et al., 1996a; Nguyen et al., 2008b) as follows.

LUc(x) = p(x), Uc(x) = L−1p(x), c(x) = U−1L−1p(x). (3.11)
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The partial derivatives of ϕI(x) can be obtained by

ϕI,i(x) = cT
,i(x)w(x− xI)p(xI) + cT (x)w,i(x − xI)p(xI), (3.12)

where (.),i = ∂(.)
∂xi

and

c,i(x) = A−1
,i (x)p(x) + A−1(x)p,i(x), (3.13)

with

A,i(x) =
n∑

I=1

w,i(x − xI)p(xI)p
T (xI). (3.14)

It is noted that the following circular kernel function (Schilling et al., 2001) is

used to compute MLS shape function in this chapter

w(r) =





[1 + cos(π r

Rs
)]/2, r

Rs
≤ 1;

0, r
Rs
> 1,

(3.15)

where Rs is the radius of the support domain of the weight function w(r),

r = ‖x − xI‖ and ‖.‖ denotes the Euclidean norm.

3.2.2 Moving IRBFN interpolation

We propose a locally supported IRBFN, constructed by using the partition

of unity concept (Melenk and Babuška, 1996; Babuška and Melenk, 1997) as

follows.

Let the open and bounded domain of interest Ω ⊆ R
d be discretised by a set of

N points X

X = {x1,x2, . . . ,xN}, xI ∈ Ω, I = 1, 2, . . . , N, (3.16)

X is used to define an open cover of Ω, i.e. {ΩI} such that Ω ⊆ ⋃N
I=1 ΩI and
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{ΩI} satisfies a point-wise overlap condition

∀x ∈ Ω ∃k ∈ N : card{I|x ∈ ΩI} ≤ k. (3.17)

We choose a family of compactly supported, non-negative, continuous functions

ψI supported on the closure of ΩI , such that at every point x we have the

following property
N∑

I=1

ψI(x) = 1, ∀x ∈ Ω, (3.18)

where {ψI} is called a partition of unity subordinate to the cover {ΩI}.

For every subdomain ΩI , a local approximation uI is constructed by using

IRBFN supported by all nodes in ΩI as presented in section 1.3, i.e.

uh
I (x) ∈ VI , VI = span{H(1)

I (x), H
(2)

I (x), . . . , H
(M)

I (x)}, (3.19)

where {VI} are referred to as the local approximation spaces.

The global approximation of u(x), uh(x) is obtained via

uh(x) =
N∑

I=1

ψI(x)uh
I (x), uh(x) ∈ V, (3.20)

where ψI(x) and uh
I (x) are associated with the subdomain ΩI , and V is called

PU method space and defined by

V :=

N∑

I=1

ψIVI . (3.21)

In the present work, the partition of unity function ψI is chosen to be identical

to the MLS shape function ϕI in equation (3.8), the subdomain ΩI is centered

at xI as shown in Figure 3.1.
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Figure 3.1: Schematic representation of a moving IRBFN: Ω is the domain of
interest which is subdivided into N overlapping subdomains ΩI centered at xI .

Replacing ψI with MLS shape function ϕI , equation (3.20) can be rewritten as

follows

uh(x) =
N∑

I=1

ϕI(x)uh
I (x), (3.22)

and the associated derivatives of uh(x) are given by

uh
,x(x) =

N∑

I=1

[
ϕI,x(x)uh

I (x) + ϕI(x)uh
I,x(x)

]
, (3.23)

uh
,y(x) =

N∑

I=1

[
ϕI,y(x)uh

I (x) + ϕI(x)uh
I,y(x)

]
, (3.24)

where uh
I,x(x) and uh

I,y(x), are derived in equations (1.15) and (1.18).

uh(x) and its derivatives can be rewritten in a compact form as

uh(x) =

N∑

I=1

ϕI(x)uh
I (x) = ΦT (x)u, (3.25)

uh
,x(x) = ΦT

x (x)u, (3.26)

uh
,y(x) = ΦT

y (x)u, (3.27)
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Figure 3.2: Moving IRBFN yields symmetric, sparse and banded interpolation
matrices.

where u = {u1, u2, . . . , uN}, Φ(x) is the vector of shape functions.

It is noted that ΦI(xJ) = δIJ as shown in Figures 3.3. Consequently, this

MIRBFN method possesses the Kronecker-δ property which makes it easy to

impose the essential boundary conditions. Owing to the locally supported prop-

erty, MIRBFN yields symmetric, sparse and banded interpolation matrices as

shown in Figure 3.2. This feature makes the method very efficient in storage

and computation.

3.2.3 Selection of RBF centers and support radius

In the present MIRBFN method, the selection of local RBF centers {ci}I is

very flexible. Generally, they can be different from the set of local data points

{xi}I associated with subdomain ΩI . For example, if a two-dimensional IRBFN

is used, the size of the matrices to be inverted H[x] and H[y] in equations (1.12)

and (1.13), respectively, will be nI × (mI + p2I), where nI is the number of

data points, mI the number of RBF centers {ci}I and p2I the number of centers

used to represent integration constants in the second derivatives. Therefore,



3.3 Numerical examples 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ(
x)

(a) (b)

Figure 3.3: Example of MIRBFN shape functions: (a) φI(x) in one dimension
and (b) φI(x, y) in two dimensions.

the number of columns of the matrices will be p2I larger than the number of

rows when {ci}I is the same as {xi}I . To obtain square matrices, we choose

the number of centers to be less than the number of data points (mI < nI) and

p2I to be appropriately small.

On the other hand, the selection of support radius for each subdomain ΩI

also affects the numerical results significantly. The larger support radius is,

the higher accuracy and convergence rate are. However, the higher cost of

storage and computation, and the deterioration of the condition number of the

matrices are consequential trade-offs. Hence, to make the method more local

and efficient, smaller values of support radius are preferred in this work.

3.3 Numerical examples

Several PDEs are recast as first-order system (see section 2.2) which are numer-

ically solved in this chapter. The proposed MIRBFN method is implemented

in the collocation of such first-order systems. As a result, an integration-free

meshless method is formulated and has successfully been tested as reported in

this section.
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For an error estimation and convergence study, the discrete relative L2 norm of

errors of primary and dual variables are defined as

Lφ
2 =

√
∑N

i=1

(
φ

(i)
e − φ(i)

)2

√
∑N

i=1

(
φ

(i)
e

)2
, (3.28)

Lξη
2 =

√
∑N

i=1

[(
ξ

(i)
e − ξ(i)

)2

+
(
η

(i)
e − η(i)

)2
]

√
∑N

i=1

[(
ξ

(i)
e

)2

+
(
η

(i)
e

)2
] , (3.29)

for Poisson equation and

Lu
2 =

√
∑N

i=1

(
(ux)

(i)
e − (ux)(i)

)2 (
(uy)

(i)
e − (uy)(i)

)2

√
∑N

i=1

[(
(ux)

(i)
e

)2

+
(
(uy)

(i)
e

)2
] , (3.30)

Lσ
2 =

√
∑N

i=1

[(
(sx)

(i)
e − s

(i)
x

)2

+
(
(sy)

(i)
e − s

(i)
y

)2

+
(
(sxy)

(i)
e − s

(i)
xy

)2
]

√
∑N

i=1

[(
(sx)

(i)
e

)2

+
(
(sy)

(i)
e

)2

+
(
(sxy)

(i)
e

)2
] , (3.31)

for elasticity problems, where N is the number of unknown nodal values and the

subscript “e” denotes the exact solution. The convergence order of the solution

with respect to the refinement of spatial discretization is assumed to be in the

form of

L2(h) ≈ ζhλ = O(hλ), (3.32)

where h is the maximum nodal spacing, ζ and λ are the parameters of the

exponential model, which are found by general linear least square formula in

this work.

It is noted that the CPU time in the following sections is associated with a

computer which has 8.0 GB of RAM and two Intel(R) Xeon(R) CPUs of 3.0
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GHz each. The code is written in MATLABr language.

3.3.1 Poisson equation

Poisson equation in a regular domain

Consider the following Poisson equation

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= −2π2 cos(πx) cos(πy), (3.33)

defined in Ω = [0, 1] × [0, 1], subjected to the Dirichlet boundary condition

φ(0, y) = cos(πy), on x = 0, (3.34)

and the following Neumann boundary conditions

∂φ(1, y)

∂x
= 0, on x = 1, (3.35a)

∂φ(x, 0)

∂y
= 0, on y = 0, (3.35b)

∂φ(x, 1)

∂y
= 0, on y = 1. (3.35c)

(3.35d)

The corresponding exact solution is given by

φ(x, y) = cos(πx) cos(πy). (3.36)

Two discretisations are considered for this problem: uniform and nonuniform

distributions of nodes/collocation points (CPs) as shown in Figures 3.4 and

3.8, respectively. For both cases, the radius of support domains is set at Rs

h
=

2.1, where h is the maximum spacing between two nearest nodes in x or y

direction. The maximum number of uniformly distributed RBF centers mI in
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(a) (b)

Figure 3.4: Poisson equation in a regular domain: discretisation with uniform
distribution of (a) 11× 11 nodes, (b) 21× 21 nodes. The small circles are RBF
centers and the big one is subdomain ΩI .

Table 3.1: Poisson equation in a regular domain: uniform discretisations with
MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs

h
CPU time

second

3×3 0.4415 1.1413 51.7250 12 2.1 0.15
7×7 0.0252 0.0219 512.8116 12 2.1 0.30

11×11 0.0036 0.0041 813.8110 12 2.1 0.59
21×21 4.4864e-4 5.5402e-4 2.2514e3 12 2.1 2.07
25×25 2.5203e-4 3.1671e-4 2.9034e3 12 2.1 3.07
31×31 1.2419e-4 1.5922e-4 4.1964e3 12 2.1 5.13
41×41 5.0132e-5 6.5620e-5 6.1935e3 12 2.1 10.59
61×61 1.4217e-5 1.9006e-5 1.5362e4 12 2.1 35.84
81×81 5.9951e-6 8.0377e-6 3.5862e4 12 2.1 90.0
91×91 4.2892e-6 5.6966e-6 5.2312e4 12 2.1 136.40

101×101 3.2363e-6 4.2199e-6 7.4923e4 12 2.1 197.11
121×121 2.1324e-6 2.6352e-6 9.037e4 12 2.1 374.7

O(h3.32) O(h3.38)

Table 3.2: Poisson equation in a regular domain: uniform discretisations with
global IRBFN

No. points Lφ
2 Lξη

2 cond(A) β CPU time
second

7×7 0.0245 0.0273 1.6043e4 1 0.161
11 × 11 0.0038 0.0048 2.5617e4 1 0.179
21 × 21 7.4562e-5 1.5070e-4 5.8907e4 1 2.462
31 × 31 1.2924e-5 2.3775e-5 1.2225e5 1 30.064
41× 41 4.3906e-6 7.9095e-6 2.0292e5 1 149.319
51 × 51 2.1210e-6 3.7691e-6 3.0404e5 1 535.049
61 × 61 1.3851e-6 2.1592e-6 7.0649e4 1 1674.980

O(h4.71) O(h4.52)
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Figure 3.5: Poisson equation in a regular domain with uniform distribution of
21 × 21 nodes: influence of the local support radius on the accuracy of the
solution.

Table 3.3: Poisson equation in a regular domain: unstructured nodes with
MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs

h
h CPU time

second

88 0.2833 0.1438 1.6887e5 10 2.1 0.1250 0.73
108 0.0402 0.0613 4.5345e5 10 2.1 0.1200 0.80
327 0.0077 0.0057 6.2091e7 10 2.1 0.0685 2.23
691 0.0018 0.0019 4.5704e8 10 2.1 0.0507 5.65
1723 7.2107e-4 5.7631e-4 1.3461e8 10 2.1 0.0308 22.12
2248 3.3681e-4 2.5718e-4 1.2765e8 12 2.1 0.0272 35.58

O(h3.78) O(h3.82)

each subdomain is 5 as shown in Figure 3.4. The numbers of centers to represent

the integration constants p1I and p2I are 3 and 6, respectively. The values of β

in equation (1.8) for both cases are listed in Tables 3.1 and 3.3.

The influences of local support radius Rs

h
and β on the accuracy of the solution

are numerically studied in this example. Figure 3.5 shows the relative error

norms (Lφ
2 and Lξη

2 ) obtained by the present MIRBFN method with different

values of Rs

h
while β is fixed. On the other hand, the results with different values

of β and fixed local support radius are displayed in Figure 3.6. It can be seen

that the values around 2 for Rs

h
are not only able to capture well the solution
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Figure 3.6: Poisson equation in a regular domain with uniform distribution of
21 × 21 nodes: influence of the RBF width β on the accuracy of the solution.

but also keep the matrix small, as long as β is large enough.

To study the convergence of the method, a number of discretization refinements

and the relative L2 error norms for function values Lφ
2 and its derivatives Lξη

2 are

reported in Tables 3.1 and 3.3 for uniform and unstructured cases, respectively.

As shown in these tables and Figures 3.7 and 3.9, very good accuracy and

stability are obtained. The convergence rates for φ(x, y) and (ξ(x, y), η(x, y)) are

O(h3.32) and O(h3.38), respectively, for uniform distribution, and, O(h3.78) and

O(h3.82), respectively, for unstructured nodes. It can be seen that the condition

numbers in the case of uniform distribution are relatively smaller than those

in the case of random distribution (Table 3.3) since there is a relatively larger

number of nodes in each subdomain in the case of random distribution.

The results in Tables 3.1-3.2 and Figure 3.7 indicate that the global IRBFN

gives higher orders of convergence. Nonetheless, the condition numbers by the

MIRBFN method are slightly better in comparison with those by the global

IRBFN method, as listed in Tables 3.1 and 3.2, although β is set quite large

for the MIRBFN method. Furthermore, the MIRBFN method is much more

efficient than the global IRBFN method as can be seen in Figure 3.10.



3.3 Numerical examples 69

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

R
el

at
iv

e 
er

ro
r 

no
rm

: L
2

h

 

 

L
2
φ , MIRBFN,  rate =3.3261

L
2
ξη, MIRBFN, rate =3.3824

L
2
φ , global IRBFN, rate =4.7096

L
2
ξη, global IRBFN rate =4.5172

Figure 3.7: Poisson equation in a regular domain with uniform distribution of
nodes: relative error norms Lφ

2 and Lξη
2 , and associated convergence rates.

Poisson equation in an irregular domain

The Poisson equation in example 3.3.1 is examined in a complicated irregular

domain as shown in Figure 3.11. The Dirichlet boundary conditions on the

upper edge and the left edge are given as below

φ(0, y) = cos(πy), on x = 0, (3.37a)

φ(x, 0) = cos(πx), on y = 0. (3.37b)

The Neumann boundary conditions on the inner arc and the outer arc are,

respectively

nx
∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 1, (3.38a)

nx
∂φ(x, y)

∂x
+ ny

∂φ(x, y)

∂y
= q(x, y), on x2 + y2 = 4, (3.38b)

where q(x, y) = −nxπ sin(πx) cos(πy) − nyπ cos(πx) sin(πy).
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Figure 3.8: Poisson equation in a regular domain: discretisation with unstruc-
tured distribution of (a) 327 nodes, (b) 691 nodes, (c) 1723 nodes and (d) 2248
nodes.

The complexity is increased with the Neumann boundary conditions on two

curved boundaries. The structured domain discretisation is described as follows.

A uniformed grid covering the domain is generated, then the points outside the

domain and on the curves are removed. Finally, the points on the inner and

outer arcs are generated uniformly.

In the case of structured discretisation (Figure 3.11), the local support radius

Rs

h
is set at 4.1, β is 9, the maximum number of centers in each subdomain is

13. The relative L2 error norms Lφ
2 and Lξη

2 associated with the structured node

discretizations are presented in Table 3.4 and in Figure 3.13. It can be observed

that high orders of convergence are obtained with a large support radius, namely
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Figure 3.9: Poisson equation in a regular domain: relative error norms Lφ
2

and Lξη
2 , and associated convergence rates obtained by MIRBFN method with

unstructured nodes.

O(h4.06) and O(h3.96) for the function and its derivatives, respectively. However,

the condition numbers are much larger than those in the previous example. For

unstructured node distributions (Figure 3.12), the corresponding parameters

and obtained results are presented in Table 3.6 and Figure 3.14. The results

indicate that the solution by the proposed method apparently converges at the

rates of (O3.80) and (O3.50) for Lφ
2 and Lξη

2 , respectively.

Figures 3.13 and 3.15 show a comparison between the MIRBFN method and

Table 3.4: Poisson equation in an irregular domain: structured dicerizations
with MIRBFN

No. points Lφ
2 Lξη

2 cond(A) β Rs

h
h CPU time

second

51 3.4762e-1 5.4441e-1 3.1001e5 9 4.1 0.25 0.83
87 2.8487e-2 5.2716e-002 1.9944e6 9 4.1 0.181 1.31
266 1.4620e-3 3.8399e-3 2.0634e7 9 4.1 0.0095 3.86
595 5.0421e-4 8.7207e-4 6.4519e8 9 4.1 0.0065 11.55
1029 1.7279e-4 4.0659e-4 6.2724e8 9 4.1 0.0048 23.05
1574 8.5957e-5 2.4792e-4 4.1291e8 9 4.1 0.039 43.17
2266 3.6035e-5 8.0371e-5 6.5102e9 9 4.1 0.039 84.48
3413 3.0210e-5 5.0281e-5 1.9016e8 9 4.1 0.033 172.53

O(h4.06) O(h3.96)
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Figure 3.10: Poisson equation in a regular domain with uniform distribution of
nodes: CPU times of MIRBFN method versus that of global IRBFN method.

Figure 3.11: Poisson equation in an irregular domain: structured discretisation
with 266 nodes.

Table 3.5: Poisson equation in an irregular domain: structured dicerizations
with global IRBFN

No. points Lφ
2 Lξη

2 cond(A) β h CPU time
second

84 1.8247e-1 2.8821e-1 7.2784e4 1 0.1818 1.457
270 4.7780e-2 7.9363e-2 4.1412e5 1 0.0952 2.20
592 3.2654e-3 1.0017e-2 7.4161e6 1 0.0645 5.809
1017 2.0561e-3 9.0760e-3 2.0139e7 1 0.0488 37.059
1577 9.0259e-4 2.7085e-3 2.8683e8 1 0.0392 125.515
3068 5.5965e-4 2.5365e-3 2.3056e7 1 0.0282 1442.613

O(h3.38) O(h2.77)
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Figure 3.12: Poisson equation in an irregular domain: discretisation with un-
structured distribution of (a) 51 nodes, (b) 338 nodes, (c) 1046 nodes and (d)
1711 nodes.

the global IRBFN method (structured discretisation). It is interesting that not

only the efficiency but also the accuracy and the convergence rates of the former

are superior to those of the latter.

3.3.2 Linear elasticity problems

Cantilever Beam

A cantilever beam subjected to parabolic shear load at the end x = 0 as shown

in Figure 3.16 is considered in this example.
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Table 3.6: Poisson equation in an irregular domain: unstructured discretisation
with MIRBFN
No. points Lφ

2 Lξη
2 cond(A) β Rs

h
h CPU time

second

51 1.9465e-1 1.9142e-1 7.5387e4 14 3.1 2.7337e-1 4.775
338 2.4059e-3 6.7564e-3 4.4212e6 14 3.1 1.1182e-1 22.017
1046 7.1240e-4 1.7302e-3 9.0038e6 12 3.1 5.9731e-2 89.633
1486 4.2708e-4 8.4299e-4 7.5913e7 12 3.1 5.3098e-2 203.883
1711 1.4251e-4 2.1264e-4 1.4224e8 8 3.1 4.8722e-2

O(h3.80) O(h3.50)
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Figure 3.13: Poisson equation in an irregular domain with regular distribution
of nodes: relative error norms Lφ

2 and Lξη
2 , and associated convergence rates.

The following parameters are used for the problem: L = 4.8 and D = 1.2. The

beam has a unit thickness. Young’s modulus is E = 3 × 106 , Poisson’s ratio

µ = 0.3 (also µ = 0.5) and the integrated parabolic shear force P = 100. Plane

stress condition is assumed and there is no body force.

The exact solution to this problem was given by Timoshenko and Goodier Tim-

oshenko and Goodier (1970) as

σxx(x, y) =
−Pxy
I

, (3.39a)

σyy(x, y) = 0, (3.39b)
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Figure 3.14: Poisson equation in an irregular domain with unstructured distri-
bution of nodes: relative error norms Lφ

2 and Lξη
2 , and associated convergence

rates.

Table 3.7: Cantilever beam: uniform discretizations with MIRBFN (µ = 0.3).
No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

20 × 5 1.9598e-1 3.3652e-1 4.1516e6 8 2.1 0.240 0.60
36 × 9 1.4986e-2 2.5489e-2 1.4193e8 10 2.1 0.133 1.84
68 × 17 1.2182e-3 2.1326e-3 3.0383e6 14 2.1 0.070 6.98
124 × 31 5.8434e-4 5.7764e-4 4.0336e6 14 2.1 0.039 43.78
164 × 41 2.2892e-4 2.3983e-4 8.3453e6 14 2.1 0.029 109.42
204 × 51 1.1069e-4 1.2366e-4 14 2.1 0.024 230.01
244 × 61 5.9462e-5 7.2455e-5 14 2.1 0.020 438.98

O(h3.04) O(h3.26)

τxy(x, y) =
−P
2I

(
D2

4
− y2

)
. (3.39c)

The displacements are given by

ux = −Px
2y

2EI
− µPy3

6EI
+
Py3

6IG
+ y

(
PL2

2EI
− PD2

8IG

)
, (3.40)

uy =
µPxy2

2EI
+
Px3

6EI
− PL2x

2EI
+
PL3

3EI
, (3.41)

where I = D3/12 is the moment of inertia of the cross section of the beam,

G = E/(2(1 + µ)) the modulus of elasticity in shear. The exact displacement



3.3 Numerical examples 76

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

Number of nodes

 C
P

U
 ti

m
e 

(s
ec

on
d)

 

 

Global IRBFN
MIRBFN

Figure 3.15: Poisson equation in an irregular domain with structured points:
CPU times of MIRBFN method versus that of global IRBFN method.

Figure 3.16: Cantilever beam: a mathematical model.

(3.40) and (3.41) are imposed on x = L while the shear load is applied on x = 0

and the upper and lower edges are traction free.

Both regular and irregular distributions of nodes used for this problem are

displayed in Figures 3.17 and 3.19, respectively. The local support radius is

Rs

h
= 2.1. The values of β are listed in Tables 3.7, 3.8 and 3.10. The scheme

for selection of RBF centers for both regular and irregular node distributions is

similar to that in example 3.3.1. In addition, the effect of incompressibility, i.e.

µ = 0.5, is also studied here.



3.3 Numerical examples 77

Figure 3.17: Cantilever beam: discretisation with 20 × 5 nodes.

Figure 3.18: Cantilever beam: a FEM mesh with 8 × 32 Q4 elements.

Figure 3.20 shows the shear stress sxy for µ = 0.3 at x = 2.4686 obtained by

the present method with 36 × 9 nodes. A very good agreement between the

obtained result and the exact solution can be observed in this figure.

To study the convergence of the method, a number of different uniform node

distributions is used for computation as presented in the Tables 3.7 and 3.8. For

µ = 0.3, the relative L2 error norms for displacement and stress are shown in

Table 3.7 and Figure 3.21, the convergence rates of displacement and stress are

O(h3.04) and O(h3.26), respectively. In the case of incompressible materials (µ =

Table 3.8: Cantilever beam: uniform discretizations with MIRBFN (µ = 0.5).
No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

20 × 5 1.0069e-1 1.9291e-1 2.3672e7 8 2.1 0.240 0.60
36 × 9 2.0936e-2 5.3772e-2 4.2607e7 10 2.1 0.133 1.81
68 × 17 7.8576e-4 1.6020e-3 2.1090e6 14 2.1 0.070 6.77
124 × 31 4.3029e-4 4.1872e-4 2.8678e6 14 2.1 0.039 41.12
164 × 41 1.6292e-4 1.6988e-4 5.7418e6 14 2.1 0.029 106.48
204 × 51 7.7595e-5 8.7489e-5 14 2.1 0.024 235.5
244 × 61 4.1951e-5 5.2041e-5 14 2.1 0.020 475.7

O(h3.07) O(h3.39)
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Figure 3.19: Cantilever beam: discretisation with unstructured distribution of
(a) 43 nodes, (b) 170 nodes, (c) 616 nodes, and (d) 1112 nodes.

0.5), the relative L2 error norms for displacement and stress are presented in

Table 3.8 and Figure 3.21. Very good orders of convergence are achieved, namely

O(h3.07) andO(h3.39) for displacement and stress, respectively. Furthermore, the

results shown in Figure 3.21 indicate that the present method does not suffer

from any volumetric locking.

The behaviour of the MIRBFN method in the case of irregular discretisation

Table 3.9: Cantilever beam: uniform discretizations with global IRBFN (µ =
0.3).

No. points Lu

2 Lσ
2 cond(A) β h CPU time

second

20 × 5 4.5356e-2 2.5571e-1 1.7953e6 1 0.2400 0.408
36 × 9 5.2822e-3 4.0279e-2 5.2505e6 1 0.1333 2.068
68 × 17 1.5706e-3 2.6022e-3 6.5476e7 1 0.0706 68.088
124 × 31 3.8901e-4 4.3698e-4 3.1351e8 1 0.0387 2351.78
164 × 41 2.1295e-4 2.2075e-4 1 0.0293 51201.338

O(h3.06) O(h3.39)
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Figure 3.20: Cantilever beam: sxy at x = 2.4686 with 36 × 9 nodes (µ = 0.3).

Table 3.10: Cantilever beam: unstructured nodes with MIRBFN (µ = 0.3).
No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

43 6.5385e-1 6.9895e-1 2.6549e6 10 2.1 4.6860e-1 0.715
170 2.7461e-2 5.5154e-2 3.9549e7 10 2.1 2.4000e-1 2.079
616 7.2999e-3 3.1141e-2 7.4558e7 10 2.1 1.2507e-1 7.888
1112 4.9025e-4 3.0318e-3 1.0345e9 10 2.1 1.0454e-1 20.190

O(h4.21) O(h3.07)

is also examined with four nodal configurations as shown in Figure 3.19. The

obtained results with the MIRBFN method and µ = 0.3 are shown in Table 3.10

and Figure 3.22. The orders of convergence of the present method are O(h4.21)

and O(h3.07) for displacement and stress, respectively.

In comparison with the global IRBFN method, the MIRBFN method achieves

similar accuracy and convergence rates as can be observed in Tables 3.7 and

3.9, and in Figure 3.21 as well. The present method is apparently much more

efficient than the global IRBFN method (Figure 3.23).

The obtained results are also compared with those by FEM using four-node

quadrilateral element (Table 3.11). Figure 3.21 shows that both accuracy and

order of convergence of the MIRBFN method are superior to those of FEM, e.g.
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Figure 3.21: Cantilever beam: L2 relative error norms for displacement and
stress for µ = 0.3 and µ = 0.5, with associated convergence rates.

Table 3.11: Cantilever beam: structured FEM mesh with four-node quadrilat-
eral element (Q4) (µ = 0.3).

No. elements Lu

2 h CPU time
second

16 × 4 1.3991e-1 0.40 0.1806
32 × 8 3.8516e-2 0.1714 0.4395
40 × 10 2.5191e-2 0.1333 1.7111
80× 20 6.9048e-3 0.0631 8.4087
160× 40 1.6994e-3 0.0307 21.5620
240× 60 9.1261e-4 0.0203 47.9957
320× 80 6.1308e-4 0.0152 307.579

O(h1.84)

the Lu
2 convergence rates are O(h3.04) and O(h1.84) for the MIRBFN method and

the FEM, respectively. The computing cost of the MIRBFN method is higher

than that of the FEM for the same number of nodes. However, the MIRBFN

method is more efficient than the FEM for the same accuracy, for example, it

takes the MIRBFN method 6.98 seconds for Lu
2 = 1.2182×10−3 while the FEM

needs 21.56 seconds with Lu
2 = 1.6994× 10−3 as exhibited in Figure 3.23, Table

3.7 and Table 3.11.
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Figure 3.22: Cantilever beam: L2 relative error norms for displacement and
stress, and associated convergence rates for µ = 0.3 with different unstructured
nodal configurations.

Infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional

tensile load of 1.0 in the x direction is analyzed as shown in Figure 3.24. The

radius of hole is taken as 1 unit. Owing to symmetry, only the upper right

quadrant [0, 3] × [0, 3] of the plate is modeled as shown in Figure 3.25.

In this problem, plane stress conditions are assumed with elastic isotropic prop-

erties E = 103, µ = 0.3 (also µ = 0.5). The exact solution to this problem was

given by Timoshenko and Goodier Timoshenko and Goodier (1970) as follows

σx(x, y) = σ

[
1 − a2

r2

[
3

2
cos(2θ) + cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (3.42a)

σy(x, y) = −σ
[
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (3.42b)

τxy(x, y) = −σ
[
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3a4

2r4
sin(4θ)

]
, (3.42c)
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Figure 3.23: Cantilever beam: CPU times of MIRBFN method versus that of
FEM and global IRBFN method.

where (r, θ) are the polar coordinates, a the radius of the hole.

The corresponding displacements are given by

ux(x, y) = σ
(1 + µ)

E

[
1

1 + µ
r cos(θ) +

2

1 + µ

a2

r
cos(θ) +

1

2

a2

r
cos(3θ) − 1

2

a4

r3
cos(3θ)

]

(3.43a)

uy(x, y) = σ
(1 + µ)

E

[ −µ
1 + µ

r sin(θ) +
1 − µ

1 + µ

a2

r
sin(θ) +

1

2

a2

r
sin(3θ) − 1

2

a4

r3
sin(3θ)

]

(3.43b)

Figure 3.24: Infinite plate with a circular hole.
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Figure 3.25: Infinite plate with a circular hole: computational domain with 119
nodes.

Table 3.12: Infinite plate with a circular hole: structured discretisation with
MIRBFN (µ = 0.3).

No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

50 3.0520e-1 2.6147e-1 6.7532e4 4 2.1 0.50 0.54
119 9.2110e-2 8.1240e-2 8.3533e6 4 2.1 0.30 1.03
409 1.0837e-2 1.2229e-2 6.1059e4 4 2.1 0.15 3.25
1129 8.7872e-4 2.6677e-3 2.0085e5 4 2.1 0.088 10.56
3085 1.8647e-4 4.2703e-4 4.4334e5 4 2.1 0.052 44.36

O(h3.61) O(h3.02)

The boundary conditions of the problem are as follows. The traction boundary

conditions corresponding to the exact solution for the infinite plate are applied

on the top and right edges, the symmetric conditions are applied on the left

and bottom edges, and the curved edge is traction free.

To solve the problem, the computational domain is discretized in the same

manner as in example 3.3.1. The support radius is Rs

h
= 2.1, the value of β

Table 3.13: Infinite plate with a circular hole: structured discretisation with
MIRBFN (µ = 0.5).

No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

50 7.8208e-1 5.7769e-1 1.1433e5 4 2.1 0.50 0.54
119 1.0186e-1 8.2598e-2 5.0328e6 4 2.1 0.30 1.01
409 1.3343e-2 1.4314e-2 5.5146e4 4 2.1 0.15 3.20
1129 9.5928e-4 2.7873e-3 2.0372e5 4 2.1 0.088 10.48
3085 4.0203e-4 4.6366e-4 6.0161e5 4 2.1 0.052 43.06

O(h3.68) O(h3.27)
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68 points 156 points

(a) (b)
1024 points 2439 points

(c) (d)

Figure 3.26: Infinite plate with a circular hole: discretisation with unstructured
distribution of (a) 68 nodes, (b) 156 nodes, (c) 1024 nodes, and (d) 2439 nodes.

varies between 3 and 4 as in Tables 3.12, 3.13 and 3.15, and the RBF centers

are identical to the nodes in each subdomain.

A comparison between the stress sx along x = 0 obtained by the MIRBFN with

a structured discretisation of 409 nodes and the exact solution are presented in

Figure 3.27. The result indicates that the solution obtained by the proposed

method agrees well with the exact one.

The convergence of the present method in the case of structured node distribu-

tion (Figure 3.25) is reported in Table 3.12 and Figure 3.28 for µ = 0.3, and

in Table 3.13 and Figure 3.28 for the case of incompressible materials. The

present method appears to converge at the rates of O(h3.61) for displacement
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Table 3.14: Infinite plate with a circular hole: structured discretisation with
global IRBFN (µ = 0.3).

No. points Lu

2 Lσ
2 cond(A) β h CPU time

second

119 1.3243e-1 1.1085e-1 7.0056e5 1 0.2727 0.413
409 2.3900e-2 1.5925e-2 1.4568e6 1 0.1429 2.222
886 4.8966e-3 3.3027e-3 3.3118e6 1 0.0968 21.323
3085 2.5075e-4 7.2314e-4 4.3415e6 1 0.0517 977.988

O(h3.78) O(h3.08)
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Exact     s
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Figure 3.27: Infinite plate with a circular hole: sx along x = 0 with 409 nodes
(µ = 0.3).

and O(h3.02) for stress in the case of µ = 0.3. In the case of incompressible

materials, the orders of convergence are O(h3.68) and O(h3.27) for displacement

and stress, respectively.

The performance of the MIRBFN method is also tested with irregular node

distributions as shown in Figure 3.26. The obtained results are presented in

Table 3.15 and Figure 3.29, which show that the convergence rates are O(h3.60)

and O(h2.50) for displacement and stress, respectively.

Again, the MIRBFN method achieves similar accuracy and convergence rates

in comparison with those of the global IRBFN method as shown in Table 3.12

and 3.14, and in Figure 3.28. Clearly, the efficiency of the present method is

superior to that of the global IRBFN (Figure 3.30).
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Figure 3.28: Infinite plate with a circular hole: L2 relative error norms for
displacement and stress for µ = 0.3 and µ = 0.5. Convergence rates are also
shown.

Table 3.15: Infinite plate with a circular hole: unstructured node distribution
with MIRBFN (µ = 0.3).
No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

68 7.5923e-1 8.0880e-1 4.9714e4 4 2.1 5.0000e-1 1.383
156 2.3616e-1 3.4100e-1 2.9975e5 4 2.1 3.0888e-1 2.911
479 1.0531e-2 4.0582e-2 2.7228e6 4 2.1 1.6343e-1 8.729
1024 5.0684e-3 2.2821e-2 6.2775e6 3 2.1 1.1346e-1 23.620
2439 9.9303e-4 8.2974e-3 1.2450e8 3 2.1 7.5139e-2 81.186

O(h3.60) O(h2.50)

Mode I crack problem

Consider an infinite plate containing a straight crack of length 2a and loaded

by a remote uniform stress field σ as shown in Figure 3.31. Along ABCD the

closed form solution in terms of polar coordinates in a reference frame (r, θ)

centered at the crack tip is given by
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Figure 3.29: Infinite plate with a circular hole: L2 relative error norms for
displacement and stress for µ = 0.3 with unstructured nodes. Convergence
rates are also shown.

σx =
KI√
r

cos
θ

2

(
1 − sin

θ

2
sin 3

θ

2

)
, (3.44a)

σy =
KI√
r

cos
θ

2

(
1 + sin

θ

2
sin 3

θ

2

)
, (3.44b)

τy =
KI√
r

sin
θ

2
cos

θ

2
cos 3

θ

2
, (3.44c)

for stress and

ux =
2(1 + µ)√

2π

KI

E

√
r cos

θ

2

(
2 − 2µ− cos2 θ

2

)
, (3.45a)

uy =
2(1 + µ)√

2π

KI

E

√
r sin

θ

2

(
2 − 2µ− cos2 θ

2

)
, (3.45b)

for displacement, where KI = σ
√
πa is the stress intensity factor, µ Poisson’s

ratio and E Young modulus, ABCD a square of 10×10 mm2, a = 100 mm, E =

107N/mm2, µ = 0.3 (also µ = 0.5), σ = 104N/mm2. Plane strain condition

is assumed and the body force is zero. The computational domain ABCD is

shown in Figure 3.31. Owing to symmetry, only upper half of ABCD, namely
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Figure 3.30: Infinite plate with a circular hole: CPU times of MIRBFN method
versus that of global IRBFN method.

Table 3.16: Center crack problem: uniform discretisations with MIRBFN (µ =
0.3).

No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

10 × 10 0.2017 1.3794 2.7726e5 0.01 1.1 1.0 0.53
14 × 14 0.13882 0.6583 6.7641e5 0.01 1.1 0.714 0.94
16 ×16 0.0909 0.5043 4.7002e5 0.01 1.1 0.625 1.22
20 × 20 0.0374 0.2327 5.1297e5 0.01 1.1 0.50 1.85
24 ×24 0.0269 0.1887 1.6910e6 0.01 1.1 0.416 2.68

O(h2.47) O(h2.38)

CDEFG as shown in Figure 3.32, is analyzed. The segment of crack denoted

by EF has a length of b = 5 mm. The boundary condition of the problem is

as follows. The traction free boundary condition is applied on the crack while

the displacement field given in equations (3.45) is imposed on the remaining

boundaries.

It is known that stress tends to infinity when r tends to 0. Thus, to alleviate

the oscillation due to the effect of singularity, the support radius Rs and β are

selected as small as possible. For this example, Rs

h
and β are set 1.1 and 0.01,

respectively, and the RBF centers are chosen to be identical to the nodes in

each subdomain.
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Figure 3.31: Infinite cracked plate under remote tension.

Figure 3.32: Infinite cracked plate: analyzed portion.

The performance of the present method in this singular problem is examined

by employing a number of uniform data point distributions as displayed in the

Tables 3.16 and 3.17. The results with 24 × 24 nodes (µ = 0.3) are plotted

in Figures 3.33-3.35 as follows. Figures 3.33 and 3.34 exhibit displacement ux

and uy, respectively, in comparison with those of analytical solution. Figures

3.35 (a) and (b) depict stress sx and sy by MIRBFN method, respectively, and

the corresponding exact solutions. Some oscillation can be observed in these

figures due to singularity of stress with C0 continuity of displacement and C∞

property of IRBFNs. This oscillation is known as the Gibbs phenomenon in

RBF-based methods (Jung, 2007) where numerical oscillations occur around a

jump discontinuity because of high order approximation by RBF. Nevertheless,
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Figure 3.33: Infinite cracked plate: ux obtained by (a) exact solution and (b)
MIRBFN method with 24 × 24 nodes (µ = 0.3).
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Figure 3.34: Infinite cracked plate: uy obtained by (a) exact solution and (b)
MIRBFN method with 24 × 24 nodes (µ = 0.3).
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Figure 3.35: Infinite cracked plate - stress ahead of the crack-tip (θ = 0, r > 0):
(a) sx and (b) sy obtained by MIRBFN method and exact solutions with 24×24
nodes (µ = 0.3).



3.3 Numerical examples 91

Table 3.17: Center crack problem: uniform discretizations with MIRBFN (µ =
0.5).

No. points Lu

2 Lσ
2 cond(A) β Rs

h
h CPU time

second

10 × 10 0.1087 0.9622 1.4859e5 0.01 1.1 1.0 0.53
14 × 14 0.1064 0.6401 2.9922e5 0.01 1.1 0.714 0.94
16 ×16 0.0477 0.3233 2.8071e5 0.01 1.1 0.625 1.22
20 × 20 0.0366 0.2627 5.3818e5 0.01 1.1 0.50 1.85
24 ×24 0.0379 0.2613 4.9657e5 0.01 1.1 0.416 2.73

O(h1.44) O(h1.64)
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Figure 3.36: Infinite cracked plate: L2 relative error norms for displacement
and stress, and associated convergence rates for µ = 0.3 and µ = 0.5.

the obtained results are in good agreement with the analytical ones and the

present MIRBFN method is able to capture highly steep gradients.

The convergence of the method can be seen in Tables 3.16 and 3.17, and in

Figure 3.36. In the case of µ = 0.3, high convergence rates of O(h2.47) and

O(h2.38) for displacement and stress, respectively, are obtained. It is apparent

that the accuracy of stress field is considerably reduced in comparison with

that of displacement due to the presence of singularity (Figure 3.36,). For

incompressible materials, the convergence rates reduce to O(h1.44) and O(h1.64)

for displacement and stress, respectively.
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3.4 Concluding remarks

In this chapter, we propose a locally supported RBF interpolation method,

namely MIRBFN, with the main features as follows.

• The proposed method is a locally supported approximation method. As a

consequence, the resultant interpolation matrices are sparse and banded,

resulting in improved efficiency in comparison with those of standard RBF

methods.

• The shape functions of the MIRBFN method possesses the Kronecker-δ

property that facilitates the imposition of the essential boundary condi-

tions.

• The present method offers high orders of convergence and is applicable to

scattered node distribution, arbitrary domain and highly steep gradient

problems.

Moreover, the proposed interpolation method is implemented in the collocation

of the first-order system formulation resulting in an integration-free meshless

method which enjoys high convergence rate and very good accuracy. The mov-

ing IRBFN method is also developed with weak form approach (chapter 4), and

further developed for discontinuous problems such as strain localization as well

as elato-plastic problems (chapter 7) and cracks (chapter 8).



Chapter 4

A Moving IRBFN-based

Galerkin meshless method

A novel meshless method based on Radial Basis Functions (RBF) and varia-

tional principle (global weak form) is presented in this chapter. In this method,

the global integrated RBFN is localized and coupled with the moving least

square method via the partition of unity concept. As a result, the system ma-

trix is symmetric, sparse and banded. The trial and test functions satisfy the

Kronecker-delta property, i.e. φi(xj) = δij . Therefore, the essential boundary

conditions are imposed in strong form as in the FEMs. Moreover, the proposed

method is applicable to scattered distributions of nodes and arbitrary domains.

The method is examined with several numerical examples and the results in-

dicate that the accuracy and the rate of convergence of the proposed method

are superior to those of the EFG method using linear basis functions. In ad-

dition, the method does not exhibit any volumetric locking near the limit of

incompressible material.
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4.1 Introduction

In recent years meshless methods have achieved remarkable progress. Among

meshless methods, the Element Free Galerkin (EFG) method introduced by

Belytschko et al. (1994) has attracted much attention and been successfully

applied to various engineering computations owing to its flexibility in solving

problems with moving boundaries and moving discontinuities such as evolv-

ing crack (Rabczuk and Belytschko, 2004a; Rabczuk et al., 2007b; Rabczuk

and Areias, 2006; Rabczuk and Belytschko, 2007b) and shear band formation

(Rabczuk et al., 2004, 2007a; Rabczuk and Samaniego, 2008).

In comparison with FEM, the EFG meshless method enjoys a number of ad-

vantages. For example, the latter does not require a mesh for the interpolation

process; offers a higher order of continuity; and may not suffer so much degra-

dation in accuracy as nodal arrangements are irregular. Moreover, it is easier

for adaptivity (Rabczuk and Belytschko, 2005a) and able to alleviate the ef-

fects of volumetric locking at the limit of incompressible materials provided

that the local support radius is large enough. However, the major disadvan-

tage of EFG as well as Moving Least Square (MLS) based meshless methods is

that the shape functions lack the Kronnecker-delta property, i.e. φi(xj) 6= δij .

The essential boundary conditions are not easy to be imposed accurately as in

the FEMs due to this inequality. Attempts to overcome this shortcoming in-

clude Lagrange multiplier and penalty method (Zhu and Atluri, 1998), Nitsche’s

method (Fernández-Mández and Huerta, 2004), point collocation (Wanger and

Liu, 1999), singular weight functions (Kaljevic and Saigal, 1997), coupling with

FEM (Belytschko et al., 1995b; Rabczuk et al., 2006). Another alternative

approach to address this limitation is employing the interpolation techniques

that possess the Kronecker-delta property in constructing the shape functions

of meshless Galerkin method. Examples include point interpolation meshless

method (Wang and Liu, 2002), radial point interpolation method (Liu et al.,

2005a), and moving kriging method (Gu, 2003).
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Motivated by the former works, this chapter proposes a novel meshless method

based on Moving Integrated Radial Basis Function Network (MIRBFN) of Le

et al. (2010c) and (global weak form) Galerkin formulation, namely Moving

IRBFN Galerkin (MIRBFNG) meshless method. In the present method, the

shape functions are constructed within subdomains instead of the global do-

main. The system matrix is thus sparse and banded. The shape functions sat-

isfy the Kronnecker-delta property, therefore, essential boundary conditions are

imposed easily and straightforwardly as in the FEMs. Moreover, the proposed

method is applicable to irregular distributions of nodes and arbitrary domains.

The remaining of this chapter is organized as follows. The Galerkin formula-

tion for elasticity problems is presented in section 4.2. Section 4.3 reports the

numerical experiments and section 4.4 draws some conclusions.

4.2 Variational form of two dimensional elas-

ticity problems

Consider the following two-dimensional problem on a domain Ω bounded by

Γ = Γu

⋃
Γt

∇ · σ + b = 0 in Ω, (4.1a)

u = ū on Γu, (4.1b)

σ · n = t̄ on Γt, (4.1c)

in which σ is the stress tensor, which corresponds to the displacement field u

and b the body force, n the outward unit normal to Γt. The superimposed bar

denotes prescribed value on the boundary.
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The weak form for the above equations is expressed as

∫

Ω

δ(∇su)T σdΩ =

∫

Ω

δuT bdΩ +

∫

Γt

δuT t̄dΓ, (4.2)

where the subscript s denotes the symmetric part of the gradient operator.

Discretization of Equation (4.2) with Moving IRBFN as described in section

3.2.2 yields

Ku = f , (4.3)

where

Kij =

∫

Ω

BT
i CBjdΩ, (4.4)

fi =

∫

Γt

Φit̄dΓ +

∫

Ω

ΦibdΩ, (4.5)

Bi =





Di
x 0

0 Di
y

Di
y Di

x



 . (4.6)

It is noted that the moving shape functions and their derivatives (constructed

in section 3.2) are used for Φi in (4.5), and Di
x and Di

y in (4.6).

For the linear Hookean constitutive relation, the matrix C in the case of plane

stress is

C =
E

1 − ν2





1 ν 0

ν 1 0

0 0 1−ν
2




, (4.7)

where E is elastic modulus and ν Poisson ratio.



4.3 Numerical examples 97

As a global weak form discretisation, a background mesh independent of data

nodes is necessary for numerical integration of Equations (4.4)-(4.5), and Gaus-

sian quadrature is employed for the numerical integration in this chapter. The

remarkable feature of the present method is that the essential boundary condi-

tion is imposed easily and straightforwardly as in the FEM.

4.3 Numerical examples

For an error estimation and convergence study, the displacement norm and

energy norm are defined as follows

displacement norm =

√∫

Ω

(unum − uexact)T (unum − uexact)dΩ, (4.8)

energy norm =

√
1

2

∫

Ω

(εnum − εexact)T (σnum − σexact)dΩ, (4.9)

where the superscripts num and exact denote numerical and exact solutions,

respectively; the stress and strain components are presented in vector form σ

and ε, respectively.

The convergence order of the solution with respect to the refinement of spatial

discretization is assumed to be in the form of

error(h) ≈ ζhλ = O(hλ), (4.10)

where h is the maximum nodal spacing, ζ and λ are the parameters of the

exponential model, which are found by general linear least square formula.

It is noted that the scheme for selection of RBF centers presented in section

3.2 is also applied in this chapter and the present results are compared with
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those obtained by the EFG method which only uses linear basis function. In

the following numerical examples, α and β are referred to as the scale factor

of the radius of the domains of influence and the shape parameter of the RBF

given in (1.8), respectively. α is defined by α = Rs/h, where Rs is the radius of

the domains of influence (see equation (3.15)).

4.3.1 One dimensional example

Figure 4.1: One dimensional example: a mathematical model.

Consider a one-dimensional bar of unit length (L = 1) subjected to a linear

body force of magnitude x as shown in Figure 4.1. The bar is fixed at the left

end and traction free at the right end. The cross sectional area of the bar is of

unit value and the modulus of elasticity is E = 1.

The equilibrium equation and boundary conditions for this problems are as

follows.

E
∂2u

∂x2
+ x = 0, 0 ≤ x ≤ 1 (4.11)

u(0) = 0, (4.12)

∂u

∂x
(1) = 0. (4.13)

The exact solution to the problem is given by

u(x) =
1

E

[
1

2
x− x3

6L2

]
. (4.14)
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Figure 4.2: One dimensional example: the results obtained by present method
with 9 nodes are interpolated with 50 nodes, (a) displacement and (b) stress.
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Figure 4.3: One dimensional example: the results obtained by the EFG method
with 9 nodes are interpolated with 50 nodes, (a) displacement and (b) stress.
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Figure 4.4: One dimensional example: L2 error norm for displacement.
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Figure 4.5: One dimensional example: L2 error norm for energy.

In this example, the domain is uniformly discretised, α and β are set at 2.1 and

4, respectively. Seven Gauss points are employed in each cell (defined by two

nearest nodes) for the numerical integration.

Figure 4.2 shows the numerical solution obtained by the present method with

uniform distribution of 9 nodes and the results are interpolated at 50 points.

It can be seen that the numerical solution excellently agrees with the exact

solution. Moreover, the accuracy of the present method is favourably compared

with that of the EFG method as shown in Figures 4.2-4.3.

The rates of convergence of the present method, using displacement and energy

norms are 2.73 and 1.87, respectively, while those of the EFG method are 2.50

and 1.48, respectively, as displayed in Figures 4.4-4.5.

4.3.2 Cantilever Beam

The present method is now verified, using the problem of a cantilever beam

subject to parabolic shear load at the end x = 0 as shown in Figure 4.6. The

following parameters are used for the problem: L = 4.8 and D = 1.2. The
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Figure 4.6: Cantilever beam: a mathematical model.

 

 

Figure 4.7: Cantilever beam: discretisation model with 20 × 5 nodes.

beam has a unit thickness. Young’s modulus is E = 3 × 106, Poisson’s ratio is

µ = 0.3 (also µ = 0.4999) and the integrated parabolic shear force is P = 100.

Plane stress condition is assumed and there is no body force.

The exact solution to this problem was given by Timoshenko and Goodier (1970)

as

σxx(x, y) =
−Pxy
I

, (4.15a)

σyy(x, y) = 0, (4.15b)

τxy(x, y) =
−P
2I

(
D2

4
− y2

)
. (4.15c)

The displacements are given by

ux = −Px
2y

2EI
− µPy3

6EI
+
Py3

6IG
+ y

(
PL2

2EI
− PD2

8IG

)
, (4.16)
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(a) (b)

Figure 4.8: Cantilever beam: σx given by (a) MIRBFNG with 20×5 nodes and
(b) Exact solution.

uy =
µPxy2

2EI
+
Px3

6EI
− PL2x

2EI
+
PL3

3EI
, (4.17)

where I = D3/12 is the moment of inertia of the cross section of the beam (of

unit thickness), G = E/(2(1 + µ)) the modulus of elasticity in shear.

The exact displacements (4.16) and (4.17) are applied on the Dirichlet boundary

x = L.

To solve this problem, uniform distributions of nodes (Figure 4.7) are consid-

ered. The scale factor of local support α is set at 2.1. β is 9. Background

meshes of four-node cell with 4 × 4 Gauss quadrature points per cell are used

for the numerical integration.

Figure 4.8 illustrates the comparison between the stress (σx) obtained by the

proposed method with 20 × 5 nodes and the exact one. Figures 4.9 and 4.10

show the convergence behaviour of the method in displacement norm and energy

norm, respectively. High orders of convergence achieved by the present method

can be observed in the figures, i.e. O(h5.21) and O(h2.95) (µ = 0.3) for L2

error norms using displacement and energy, respectively. The plots (Figure 4.8)

together with the error norm (Figures 4.9-4.10) show an excellent agreement

between the numerical results and the analytical solution. Furthermore, the

numerical results in the case of µ = 0.4999 indicate that the MIRBFNG method
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Figure 4.9: Cantilever beam: L2 error norm for displacement.

does not suffer from any volumetric locking near the limit of incompressible

material.

For the purpose of comparison, the same configurations of nodes, local supports

and background meshes are used for the EFG method with 4 × 4 Gaussian

quadrature points in each integration cell. The comparison shows that the rates

of convergence and the accuracy achieved by the present method are superior

to those obtained by the EFG as shown in the above figures.

To study the performance of the method with sets of scattered nodes (µ = 0.3),

the domain of interest is discretised with 125, 225, 633, 803, 1020, 1725 and

2502 unstructured nodes as depicted in Figure 4.11. The convergence of τxy

at x = 2.40 is revealed in Figure 4.12. It can be observed that the method

performs very well with scattered distribution of nodes. The convergence rates

using displacement and energy norms obtained by the present method are 3.95

and 1.72, respectively.
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Figure 4.10: Cantilever beam: L2 error norm for energy.

(a) 803 nodes (b) 1020 nodes

(c) 1725 nodes (d) 2502 nodes

Figure 4.11: Cantilever beam: untructured discretisations.

4.3.3 Infinite plate with a circular hole

In this example, an infinite plate with a circular hole subjected to unidirectional

tensile load of 1.0 in the x direction as shown in Figure 4.15 is analyzed. The

radius of the hole is taken as 1 unit. Owing to symmetry, only the upper right

quadrant [0, 4] × [0, 4] of the plate is modeled as shown in Figure 4.16.

In this problem, plane stress conditions are assumed with elastic isotropic prop-

erties E = 103, µ = 0.3. The exact solution to this problem was given by

Timoshenko and Goodier Timoshenko and Goodier (1970) as follows.



4.3 Numerical examples 105

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−140

−120

−100

−80

−60

−40

−20

0

20

y

τ xy

 

 
MIRBFNG solution
Exact solution

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−140

−120

−100

−80

−60

−40

−20

0

20

y

τ xy

 

 
MIRBFNG solution
Exact solution

(a) 225 nodes (b) 633 nodes

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−140

−120

−100

−80

−60

−40

−20

0

20

y

τ xy

 

 
MIRBFNG solution
Exact solution

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−140

−120

−100

−80

−60

−40

−20

0

20

y

τ xy

 

 
MIRBFNG solution
Exact solution

(c) 803 nodes (d) 1020 nodes

Figure 4.12: Cantilever beam: convergence of τxy at x = 2.40 with untructured
nodal refinement.
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Figure 4.13: Cantilever beam: L2 error norm for displacement with unstruc-
tured nodes.
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Figure 4.14: Cantilever beam: L2 error norm for energy with unstructured
nodes.

σx(x, y) = σ

[
1 − a2

r2

[
3

2
cos(2θ) + cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (4.18a)

σy(x, y) = −σ
[
a2

r2

[
1

2
cos(2θ) − cos(4θ)

]
+

3a4

2r4
cos(4θ)

]
, (4.18b)

τxy(x, y) = −σ
[
a2

r2

[
1

2
sin(2θ) + sin(4θ)

]
− 3a4

2r4
sin(4θ)

]
, (4.18c)

Figure 4.15: Infinite plate with a circular hole.
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Figure 4.16: Infinite plate with a circular hole: computational domain dis-
cretization with 315 nodes.

where (r, θ) are the polar coordinates, a the radius of the hole.

The corresponding displacements are given by

ux(x, y) = σ
(1 + µ)

E

[
1

1 + µ
r cos(θ) +

2

1 + µ

a2

r
cos(θ) +

1

2

a2

r
cos(3θ) − 1

2

a4

r3
cos(3θ)

]

(4.19a)

uy(x, y) = σ
(1 + µ)

E

[ −µ
1 + µ

r sin(θ) +
1 − µ

1 + µ

a2

r
sin(θ) +

1

2

a2

r
sin(3θ) − 1

2

a4

r3
sin(3θ)

]

(4.19b)

The boundary conditions of the problem are as follows. The tractions which

correspond to the exact solution for the infinite plate are applied on the top

and right edges, the symmetric conditions are applied on the left and bottom

edges, and the edge of the hole is traction free.

The problem is discretised as shown in Figure 4.16. The value of α and β are 1.5

and 1, respectively. The number of Gaussian quadrature points per integration

cell is 4 × 4.

To study the convergence of the method, a number of configurations of 50, 120,

315, 511 nodes is considered. Figures 4.17-4.18 show that the present method

achieves excellent accuracy and high rates of convergence, i.e. 2.91 and 1.45

using displacement and energy norms, respectively. Again, it can be seen that

the accuracy and the convergent rates of the proposed method are favourably
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MIRBFNG, α = 1.5 , ν = 0.3 ,rate =2.91
EFG, α = 1.5 , ν = 0.3 ,rate =2.15

Figure 4.17: Infinite plate with a circular hole: L2 error norm for displacement.

compared with those of the EFG method as shown in the figures.

4.3.4 Mode I crack problem

Consider an infinite plate containing a straight crack of length 2a and loaded

by a remote uniform stress field σ as shown in Figure 4.19. Under plane strain

condition, the closed form solution in terms of polar coordinates in a reference

frame (r, θ) centered at the crack tip is given by (body force is zero)

σx =
KI√
r

cos
θ

2

(
1 − sin

θ

2
sin 3

θ

2

)
, (4.20a)

σy =
KI√
r

cos
θ

2

(
1 + sin

θ

2
sin 3

θ

2

)
, (4.20b)

τy =
KI√
r

sin
θ

2
cos

θ

2
cos 3

θ

2
, (4.20c)



4.3 Numerical examples 109

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

10
−0.2

10
−2.9

10
−2.8

10
−2.7

10
−2.6

10
−2.5

10
−2.4

10
−2.3

10
−2.2

10
−2.1

L 2 e
rr

or
 n

or
m

 fo
r 

en
er

gy

h

 

 

MIRBFNG, α = 1.5, ν = 0.3 ,rate =1.45
EFG, α = 1.5, ν = 0.3 ,rate =0.981

Figure 4.18: Infinite plate with a circular hole: L2 error norm for energy.

and the closed form of near tip displacement field is given by

ux =
2(1 + µ)√

2π

KI

E

√
r cos

θ

2

(
2 − 2µ− cos2 θ

2

)
, (4.21a)

uy =
2(1 + µ)√

2π

KI

E

√
r sin

θ

2

(
2 − 2µ− cos2 θ

2

)
, (4.21b)

where KI = σ
√
πa is the stress intensity factor, µ is Poisson’s ratio and E

is Young modulus. ABCD is a square of 10 × 10 mm2, a = 100 mm; E =

107N/mm2, µ = 0.3 ( also µ = 0.4999), σ = 104N/mm2.

The computational domain ABCD is shown in Figure 4.19. Owing to symmetry,

only the upper half of ABCD, namely CDEFG as shown in Figure 4.20, is

analyzed. The segment of the crack denoted by EF has a length of b = 5

mm. The boundary condition of the problem is as follows. The traction free

boundary condition is applied on the crack while the displacement field given

in equation (4.21) is imposed on the remaining boundaries.

In this example, the domain of interest is uniformly discretised. α and β are

1.1 and 1, respectively. 2 × 2 Gauss quadrature points per integration cell are
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Figure 4.19: Infinite cracked plate under remote tension.

Figure 4.20: Infinite cracked plate: analyzed portion.

used for the numerical integration.

The numerical solutions to displacement and stress obtained with 20×10 nodes

(µ = 0.3) and the analytical solutions are plotted in Figures 4.21-4.23. The

comparison indicates an excellent agreement between the solutions obtained by

the proposed method and the exact solutions.

For convergence study, a number of regular distribution of 4×8, 8×16, 12×24,

16 × 32, 20 × 40, and 24 × 48 nodes is employed with µ = 0.3 and µ = 0.4999.

The convergence curves for displacement and energy are shown in Figures 4.24

and 4.25, respectively. The orders of convergence using displacement and energy

norms are 1.35 and 0.48, respectively, for µ = 0.3. It can be seen that the rate
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Figure 4.21: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solu-
tion of ux with 20 × 10 nodes (µ = 0.3).
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Figure 4.22: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solu-
tion of uy with 20 × 10 nodes (µ = 0.3).

of convergence for energy is reduced significantly due to singularity in the stress

field. Again, the numerical results demonstrate that the method does not show

any volumetric locking in the case of µ = 0.4999 (Figures 4.24-4.25).

4.4 Concluding remarks

This chapter proposed a novel meshless method based on the MIRBFN interpo-

lation and Galerkin method for solving PDEs. The key feature of the method is

that the shape functions are locally supported and satisfy the Kronecher-delta

property. As a result, the essential boundary conditions are imposed exactly
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(a) (b)

Figure 4.23: Infinite cracked plate: (a) MIRBFNG solution and (b) exact solu-
tion of σx with 20 × 10 nodes (µ = 0.3).
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MIRBFNG, α = 1.1 , ν = 0.3 , rate =1.3471
MIRBFNG, α = 1.1 , ν = 0.4999 , rate =0.80745

Figure 4.24: Infinite cracked plate: L2 error norm for displacement.

and straightforwardly in this method. The method is applicable to sets of scat-

tered nodes and irregular domains. Furthermore, the proposed method achieves

high orders of convergence and high accuracy with smooth problems. The ob-

tained results also indicate that there is no evidence of volumetric locking with

the present method. Furthermore, it is encouraging that the accuracy and the

rate of convergence of the method is favourably compared with those of the

EFG method.
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MIRBFNG, α = 1.1, ν = 0.3 , rate =0.47981
MIRBFNG, α =1.1, ν = 0.4999 , rate =1.3152

Figure 4.25: Infinite cracked plate: L2 error norm for energy.



Chapter 5

Modeling dynamic strain

localization in quasi-brittle

materials with IRBFN

collocation technique

This chapter describes the indirect (integrated) radial basis function network

(IRBFN) method for the numerical modeling of the dynamics of strain local-

ization due to strain softening in quasi-brittle materials. The IRBFN method

is a truly meshless method that is based on a point collocation procedure. A

new and effective regularization method is introduced to enhance the perfor-

mance of the IRBFN method and alleviate the numerical oscillations associated

with weak discontinuity at the elastic wave front. The dynamic response of a

one dimensional bar is investigated using both local and non-local continuum

models. Numerical results, which compare favourably with those obtained by

the FEM and the analytical solutions for a local continuum model, demonstrate

the efficiency of the present IRBFN approach in capturing large strain gradients

encountered in the present problem.
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5.1 Introduction

In many engineering structures subjected to extreme loading conditions, the

initially smooth distribution of strain may change into a highly localised one.

Typically, extremely high strains may occur within a very narrow zone while

the remaining part of the structure experiences unloading. Such strain localiza-

tion usually can be caused by geometrical nonlinearities (e.g., necking of metallic

bars) or by material instabilities (e.g., micro-cracking). Mathematically, the on-

set of strain localization, in the context of a rate-independent local continuum

model, leads to loss of hyperbolicity of the governing partial differential equa-

tions, i.e. when the matrix of tangent modulus ceases to be positive-definite.

From a computational point of view, the loss of hyperbolicity causes numerical

difficulties since the mathematical model becomes ill-posed (localised zone of

zero volume). To regularize the ill-posed problems, a number of localization

limiters have been developed to ensure that localised zones have a finite vol-

ume and the problem becomes well-posed. Examples of localisation limiters

include non-local models, rate-dependent models, gradient-dependent models,

visco-plastic models, damage-based models, cohesive crack models, smear crack

models and Cosserat continuum model.

For one dimensional problems (softening bars), some closed-form exact and

approximate solutions have been developed by many authors, including, for

example, Bazant and Belytschko (1985); Sluys (1992); Xin and Chen (2000);

Armero and Park (2003) for the evolution of dynamic strain localization via

rate-independent local constitutive models. The above closed-form solutions

demonstrated that one of the following two cases is possible. First, if the be-

haviour of the tensile bars is fully elastic, the displacement field is C0 continuous,

the strain field is discontinuous and the discontinuities propagate as incident as

well as reflected waves. Second, if localization occurs, the mathematical model

becomes ill-possed in the context of a rate-independent local continuum model

as stated above. Hence, numerical methods are not able to capture the solutions
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using rate-independent local constitutive models (Bazant and Belytschko, 1985;

Sluys, 1992; Askes et al., 1998). Moreover, even if a localization limiter is ap-

plied, for an accurate description of the localized zone, a very fine computational

mesh is needed, since the strain gradients are very high within localized zones.

Hence, robust numerical methods are required to analyze such strain localiza-

tion phenomena. In general, the position of the localization zone is unknown,

therefore, an automatic mesh adaptive procedure is required to increase the

efficiency of the numerical method. However, the polynomial approximations

in FEM can poorly capture the non-smooth transition between the unloading

region with almost constant strain and the localization zone with rapid strain in-

crease (Patzák and Jirásek, 2003) and the FEM results are very sensitive to the

computational grids. The extended finite element method (Patzák and Jirásek,

2003), which incorporates special enrichment functions into the shape functions,

produces better results, however, the asymptotic solutions are required to be

known in advance. Owing the non-local nature of approximations used (Li and

Liu, 2000; Batra and Zhang, 2004; Le et al., 2007a), meshless methods pos-

sess some advantages in modeling such strain localization problems and provide

more continuous solutions than the piece-wise continuous ones obtained from

FEM. Thus meshless methods offer effective solutions to the mesh alignment

sensitivity in strain localization modelings.

In this study, we report a new numerical method based on radial basis function

networks, a truly meshless method, for the analysis of the dynamics of strain

localization in 1D problems. The present indirect/integral radial basis function

network (IRBFN) method is based on (i) the universal approximation property

of RBF networks, (ii) exponential convergence characteristics of the chosen mul-

tiquadric (MQ) RBF, (iii) a simple point collocation method of discretisation of

the governing equations, and (iv) an indirect/integral (IRBFN) rather than a

direct/differential (DRBFN) approach (Kansa, 1990) for the approximation of

functions and derivatives. For the DRBFN, Madych and Nelson (1990) showed

that the convergence rate is a decreasing function of derivative order. Since the
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introduction of the IRBFN approach by Mai-Duy and Tran-Cong (2001, 2005);

Kansa et al. (2004); Ling and Trummer (2004), based on the theoretical result of

Madych and Nelson (1990), concluded that the decreasing rate of convergence

can be avoided in the IRBFN approach. Furthermore, the integration constants

arisen in the IRBFN approach are helpful in dealing with problems with mul-

tiple boundary conditions (Mai-Duy and Tran-Cong, 2006). However, being a

global and high order approximation method, IRBFN based methods also suffer

from the Gibbs phenomenon where numerical oscillations occur around a jump

discontinuity or near a boundary (Jung, 2007), with consequential deterioration

of convergence rate, accuracy and stability. In the case of approximation meth-

ods based on multiquadric radial basis function (MQ-RBF), several approaches

have been developed to attenuate the Gibbs oscillations. For example, Jung

(2007) proposed an adaptive piecewise linear basis functions in the vicinity of

the discontinuity; Driscoll and Heryudono (2007) suggested an adaptive residual

subsampling methods and Le et al. (2007a) offered a new coordinate mapping

(for boundary layer problems). In addition, we introduce a new and effective

regularization method based on the IRBFN to alleviate numerical oscillations,

which enhances the performance of the present method in dealing with weak

discontinuities associated with the strain localization process. The chapter is

organized as follows. The physical problem and its mathematical model are

defined in section 5.2. The numerical formulation for the mathematical model

is presented in section 5.3 which is followed by numerical examples in section

5.4. Section 5.5 concludes the chapter.

5.2 Problem definition

Consider a solid bar of of length 2L, with a unit cross sectional area and mass

ρ per unit length as shown in Figure 5.1. Let the bar be loaded by forcing

both ends to move simultaneously outward, with a constant opposite velocity

of magnitude c. The governing equations are described as follows.
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Figure 5.1: A model of uniform bars.

The momentum equation is given by

ρ
∂2u(x, t)

∂t2
=
∂σ(x, t)

∂x
, (5.1)

where x is the coordinate measured from the mid-point of the bar, −L ≤ x ≤ L;

t is time 0 ≤ t ≤ tmax; u(x, t) is the displacement in x the direction and σ(x, t)

is the stress.

The material behaviour is described by a bilinear constitutive law as presented

in Figure 5.2, which exhibits elastic behaviour with Young’s modulus E up to

strain εp at the peak stress fy (strength), followed by strain-softening (line PF ),

which has a negative slope Et up to εf , where the stress has a value of zero,

finally, followed by a nearly horizontal tail of a very small positive slope Ef .

Figure 5.2: A constitutive relation for quasi-brittle materials.

The constitutive relation is thus given by

△σ(x, t) = Ē△ε, (5.2)
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in which ǫ = ǫ(x, t) = ∂u(x,t)
∂x

is the strain and Ē is the slope of the stress-strain

relation, defined by

Ē =






E, if ε ≤ εp,

Et, if εp ≤ ε ≤ εf ,

Ef , if ε ≥ εf .

(5.3)

The boundary conditions are

u(x = −L, t) = −ct; u(x = L, t) = ct, for t ≥ 0. (5.4)

The initial solutions are taken as follows

u(x, t = 0) = 0 and
∂u(x, t = 0)

∂t
= 0, for − L ≤ x ≤ L. (5.5)

Due to symmetry, the problem is equivalent to a bar fixed at x = 0. Thus the

boundary conditions for a half model now become

u(x = −L, t) = −ct; u(x = 0, t) = 0, for t ≥ 0. (5.6)

The governing equations are non-dimensionalised using the following scheme:

characteristic length a; characteristic time T = a
ve

, where ve =
√
E/ρ is the

elastic wave speed; characteristic stress σc = E; velocities are normalised by

ve, e.g. c/ve is the dimensionless loading velocity at the ends of the bar. The

dimensionless momentum equation is given by

∂2u(x, t)

∂t2
=

(
ET 2

ρa2

)
∂σ(x, t)

∂x
=

(
Ē

E

)
γ2∂ε(x, t)

∂x
, (5.7)

where Ē is given in (5.3), γ =
√

ET 2

ρa2 = veT
a

.

In the remaining of the chapter, for brevity, in addition to (u, x, t, σ), c and L

are now dimensionless quantities.
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5.3 Numerical formulation

Consider an initial-boundary-value problem governed by the second order PDE

∂u

∂t
= q1

∂2u

∂x2
+ q2

∂u

∂x
+ q3u+ q4, (5.8)

where q1, q2, q3 and q4 are the coefficients, 0 ≤ t ≤ T and xmin ≤ x ≤ xmax,

with the boundary and initial conditions

u(t, x = xmin) = u1, (5.9)

∂u

∂x
|(t,x=xmax) = u′N , (5.10)

u(0, x) = g(x), (5.11)

in which u1 and u′N are given values, and g(x) is a known function.

5.3.1 Spatial discretisation

In the indirect RBF method (see Mai-Duy and Tran-Cong (2001, 2005); Mai-

Duy (2005); Mai-Duy and Tanner (2005)), the formulation of the problem starts

with the decomposition of the highest order derivative under consideration into

RBFs. The derivative expression obtained is then integrated to yield expressions

for lower order derivatives and finally for the original function itself. The present

work is concerned with the approximation of a function and its derivatives of

order up to 2, the formulation can be thus described as follows (Mai-Cao and
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Tran-Cong, 2005; Le et al., 2007a)

d2u(x, t)

dx2
=

m∑

i=1

wi(t)gi(x) =
m∑

i=1

wi(t)H
[2]
i (x), (5.12)

du(x, t)

dx
=

∫ m∑

i=1

wi(t)gi(x)dx+ c1(t)

=

m∑

i=1

wi(t)

∫
gi(x)dx+ c1(t)

=
m∑

i=1

wi(t)H
[1]
i (x) + c1(t), (5.13)

u(x, t) =

m∑

i=1

wi(t)

∫
H

[1]
i (x)dx+ c1(t)x+ c2(t)

=
m∑

i=1

wi(t)H
[0]
i (x) + c1(t)x+ c2(t), (5.14)

where m is the number of RBFs, {gi(x)}m
i=1 is the set of RBFs, {wi(t)}m

i=1 is the

set of corresponding network weights to be found and {H [j]
i (x)}m

i=1 (j = 0, 1)

are new basis functions obtained from integrating the radial basis function gi(x)

once or more times. The multiquadrics function is chosen in the present study

gi(x) =
√

(x− ci)2 + a2
i , (5.15)

where ci is the RBF center and ai is the RBF width. The width of the ith RBF

can be determined according to the following simple relation

ai = βdi, (5.16)

where β is a factor, β > 0, and di is the distance from the ith center to its

nearest center. To have the same coefficient vector as (5.14), (5.12) and (5.13)

can be rewritten as follows.

d2u(x, t)

dx2
=

m∑

i=1

wi(t)H
[2]
i (x) + c1(t).0 + c2(t).0, (5.17)

du(x, t)

dx
=

m∑

i=1

wi(t)H
[1]
i (x) + c1(t).1 + c2(t).0. (5.18)
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Here we choose the RBF centers ci to be identical to the collocation points xi,

i.e. {ci}m
i=1 = {xi}N

i=1. The evaluation of (5.17), (5.18) and (5.14) at a set of N

collocation points leads to

u′′(t) = H[2]w(t), (5.19)

u′(t) = H[1]w(t), (5.20)

u(t) = H[0]w(t), (5.21)

where

u′′(t) =

[
∂2u1(t)

∂x2
,
∂2u2(t)

∂x2
, . . . ,

∂2uN(t)

∂x2

]T

, (5.22)

u′(t) =

[
∂u1(t)

∂x
,
∂u2(t)

∂x
, . . . ,

∂uN (t)

∂x

]T

, (5.23)

u(t) = [u1(t), u2(t), . . . , uN(t)]T , (5.24)

H[2] =





H
[2]
1 (x1) H

[2]
2 (x1) · · · H

[2]
N (x1) 0 0

H
[2]
1 (x2) H

[2]
2 (x2) · · · H

[2]
N (x2) 0 0

...
...

. . .
...

...
...

H
[2]
1 (xN ) H

[2]
2 (xN) · · · H

[2]
N (xN ) 0 0




, (5.25)

H[1] =





H
[1]
1 (x1) H

[1]
2 (x1) · · · H

[1]
N (x1) 1 0

H
[1]
1 (x2) H

[1]
2 (x2) · · · H

[1]
N (x2) 1 0

...
...

. . .
...

...
...

H
[1]
1 (xN ) H

[1]
2 (xN) · · · H

[1]
N (xN ) 1 0




, (5.26)

H[0] =





H
[0]
1 (x1) H

[0]
2 (x1) · · · H

[0]
N (x1) x1 1

H
[0]
1 (x2) H

[0]
2 (x2) · · · H

[0]
N (x2) x2 1

...
...

. . .
...

...
...

H
[0]
1 (xN ) H

[0]
2 (xN) · · · H

[0]
N (xN ) xN 1




, (5.27)

and

w(t) = [w1(t), ..., wN(t), c1(t), c2(t)]
T . (5.28)
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From an engineering point of view, it would be more convenient to work in the

physical space. Owing to the presence of integration constants, the process of

converting the networks-weight space into the physical space can also be used

to implement Neumann boundary conditions. With the boundary conditions

(5.9) and (5.10), the conversion system can be written as



 u(t)

u′N(t)



 = Cw(t), (5.29)

where C is the conversion matrix of dimension (N+1)×(N +2) that comprises

the matrix H[0] and the last row of H[1]. Solving (5.29) yields

w(t) = C−1



 u(t)

u′N(t)



 . (5.30)

By substituting (5.30) into (5.19) and (5.20), the values of the second and first

derivatives of u with respect to x are thus expressed in terms of nodal variable

values and Neumann boundary values

u′′(t) = H[2]C−1



 u(t)

u′N(t)



 = D[2]



 u(t)

u′N(t)



 , (5.31)

u′(t) = H[1]C−1



 u(t)

u′N(t)



 = D[1]



 u(t)

u′N(t)



 . (5.32)

Making use of (5.31) and (5.32), (5.8) can be transformed into the following

discrete form
du(t)

dt
= q1u

′′(t) + q2u
′(t) + q3u(t) + q4, (5.33)

or

du

dt
= q1D

[2]



 u(t)

u′N(t)



 + q2D
[1]



 u(t)

u′N(t)



 + q3u(t) + q4, (5.34)



5.3 Numerical formulation 124

where q4 = [q4, q4, . . . q4]
T is an N × 1 vector, and

du

dt
=

[
du1(t)

dt
,
du2(t)

dt
, . . . ,

duN(t)

dt

]T

. (5.35)

Since the values of u1 and u′N are given, the unknown vector becomes

[u2(t), u3(t), . . . , uN(t)]T , (5.36)

and hence, the first row in (5.34) will be removed from the solution procedure.

The remainder of (5.34) can be integrated in time by using standard solvers

such as the Runge-Kutta technique.

5.3.2 Regularization of IRBFNs and capturing of discon-

tinuous strains

When the displacement field is C0 continuous (e.g., across a bi-material inter-

face or strain localization); it was found to be difficult to capture accurately

the resultant discontinuous strains with conventional FEM. The latter can be

improved with the introduction of enriched FEM (Patzák and Jirásek, 2003),

however, mesh alignment sensitivity remains a drawback at least for quadrilat-

erals and embedded discontinuity methods (Li and Liu, 2000). On the other

hand, several meshfree methods used special shape functions to account for

the jump across a discontinuity (Krongauz and Belytschko, 1998; Kim et al.,

2007a), which seem to work well if the location of discontinuities are known. It

will be seen that the present IRBFN method can capture strain discontinuities

without suffering any mesh-alignment sensitivities (IRBFN is a truly meshless

method) and without having to know the location of discontinuities in advance.

However, being a global and high order approximation, the RBFN still produce

some oscillations around the discontinuity (Figure 5.3). In this study, we in-

troduce a new approach where RBFNs can be further regularised to alleviate
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oscillatory behaviours near such discontinuities.
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Figure 5.3: Regularization of IRBFNs.

With noisy data, the generalization performance of RBFNs can be improved

using regularization techniques presented in Orr (1995b), which are adapted

here for IRBFNs. Let
{
(x = {xi}N

i=1, ŷ = {ŷi}N
i=1)

}
denote the set of input and

f(x) the output in the present IRBFN method, the sum-squared-error is

S =
N∑

i=1

(ŷi − f(xi))
2, (5.37)

where N is the number of input data points, f(xi) is the approximate solution

given by (5.14) (or (5.21) in matrix form). The output sensitivity to noisy

inputs is minimised by augmenting the sum-squared-error with a smoothing

term (Orr, 1995b) as follows.

C =
N∑

i=1

(ŷi − f(xi))
2 + λ

m∑

j=1

w2
j , (5.38)

where C is a cost function, m is the number of RBF centers, wj are the network

weights, λ is a non-negative regularization parameter. An optimal weight vector

w can be found by minimizing C in (5.38) with respect to network weights

{wj}N
j=1 as follows. Differentiating the cost function C with respect to the



5.3 Numerical formulation 126

network weights {wj}N
j=1 yields

∂C

∂wj

= −2
N∑

i=1

(ŷi − f(xi))
∂f(xi)

∂wj

+ 2λ
m∑

j=1

wj . (5.39)

From (5.14) or (5.21), ∂f(xi)
∂wj

in (5.39) can be found simply as

∂f(xi)

∂wj
= H

[0]
j (xi), (5.40)

or in compact form
∂f

∂wj
= h

[0]
j , (5.41)

where

f = [f(x1), f(x2), ..., f(xN)]T , (5.42)

and

h
[0]
j =

[
H

[0]
j (x1), H

[0]
j (x2), ..., H

[0]
j (xN)

]T

. (5.43)

Note that vector h
[0]
j is the j-th column of the matrix H[0] in (5.27). Substituting

(5.41) into (5.39) and equating the results to zero lead to

N∑

i=1

f(xi)H
[0]
j (xi) + λwj =

N∑

i=1

yiH
[0]
j (xi). (5.44)

There are m such equations corresponding to m radial basis functions, 1 ≤
j ≤ m, each represents one constraint on the solution. The resultant system of

linear equations like (5.44) can be rewritten in matrix form,

(
H[0]

)T
f + λIm+2w =

(
H[0]

)T
ŷ, (5.45)

in which Im+2 is an identity matrix of size (m + 2) × (m + 2). Solving (5.45)

leads to the vector of optimal weights

w = A−1
(
H[0]

)T
ŷ, (5.46)
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where

A =
(
H[0]

)T
H[0] + λIm+2. (5.47)

Since the performance of the IRBFN regularization completely depends on the

regularization parameter λ, an optimal λ must be identified to minimise the

error. A number of methods predicting an optimal value of λ automatically

have been developed (Orr, 1995a,b, 1996) including the re-estimation method

using different error prediction criteria, (e.g. cross-validation, generalized cross-

validation, Bayesian information criterion, final prediction error, unbiased esti-

mate of variance). In the present work, the generalized cross-validation (GCV)

error prediction criterion is employed as follows.

σ̂2 =
N ŷT P2ŷ

[trace(P)]2
, (5.48)

where σ̂2 is the variance estimate, N is the number of input data points, P is

the projection matrix, which is defined by

ŷ − f = ŷ −H[0]A−1
(
H[0]

)T
ŷ = Pŷ, (5.49)

in which P = IN − H[0]A−1
(
H[0]

)T
, IN is an identity matrix of size N × N .

Thus P relates to the sum-square-error S by

S = ŷTP2ŷ, (5.50)

and the cost function C by

C = ŷTPŷ. (5.51)

Since all the above error prediction criteria relate nonlinearly to λ, a method

of nonlinear optimization is required for the estimation of λ. Any standard

technique of nonlinear optimization such as the Newton method can be used

in this circumstance. Alternately, the optimal value of λ can automatically be
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determined by a simple iterative procedure (Orr, 1996) as follows.

By differentiating the GCV error prediction and setting the results to zero, a

nonlinear equation of λ can be obtained. After some mathematical manipula-

tions, λ can be found iteratively as

λ =
ŷTP2ŷ trace (A−1 − λA−2)

wTA−1w trace(P)
, (5.52)

where the right hand side contains λ (explicitly as well as implicitly through

A−1 and P). The iterative procedure is started with an initial value of λ for

the computation of the right hand side, which is a new estimate of λ, and the

process is repeated until convergence.
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Figure 5.4: Noisy input, exact solution, DRBFN regularization and IRBFN
regularization.

The above regularization method is illustrated with a much improved result

as shown in Figure 5.3, and further demonstration of the method is given in

the following example. Figure 5.4 shows the results using 100 noisy input data

points and 300 output (test) values obtained by IRBFN and DRBFN regular-

ization methods. The input data are based on y = sin(10x), for 0 ≤ x ≤ 1, with

additional Gaussian noise of standard deviation σ = 0.20 (the curve with circu-

lar marker in Figure 5.4). The target (exact) function y = sin(10x) is depicted

by the dash curve. As shown in Figure 5.4, the IRBFN regularization method
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provides a better result (the dot-dash curve) with the mean square error (eM)

of 0.0022 compared with 0.0033 of the DRBFN method (the continuous curve),

where eM is defined as

eM =

∑N
i=1 (f(xi) − yi)

2

N
, (5.53)

in which N is the number of test nodes (N = 300), f(xi) the output value and

yi the exact value of the target function. This results is also in good agreement

with those of Mai-Duy (2005), which showed that the IRBFN method obtained

by integration process leads to a better approximation than the DRBFN method

by differential process.

5.4 Numerical examples

For all computations presented in this section, the common dimensionless pa-

rameters are chosen as

L = 50, γ2 =
(

ET 2

ρa2

)
= 1, εp = 1,

fy = 1,
(

Ēt

E

)
= −0.70, εf = 2.4286,

(
Ēf

E

)
= 10−6.

Those parameters that are specific to each example are described later where

appropriate.

5.4.1 Wave propagation in fully elastic bars

A uniform bar is loaded by an extensional velocity c of the two ends as shown in

Figure 5.1. Longitudinal elastic wave propagation precedes strain localisation

and is considered in this example. Moreover, if c satisfies the condition c ≤
εp/2, the behaviour of the bar is purely elastic over the whole computational
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domain (Bazant and Belytschko, 1985). The differential equation of motion

(5.7) reduces to (in dimensionless form)

∂2u(x, t)

∂t2
= γ2∂

2u(x, t)

∂x2
, (5.54)

which is hyperbolic. The exact solution of (5.54) for the given boundary condi-

tions (5.4) and the initial solutions (5.5) can be found in Bazant and Belytschko

(1985) and presented for the displacement u and strain ε as follows.

u = −c 〈γt− (x+ L)〉 + c 〈γt+ (x− L)〉 , 0 ≤ t ≤
(

1

γ

)
2L, (5.55)

where the symbol 〈〉 is defined by

〈A〉 =






A, if A ≥ 0,

0, if A < 0,

(5.56)

and

ε =
∂u

∂x
= c [H (γt− (x+ L))] + c [H (γt+ (x− L))] , (5.57)

in which H denotes the Heaviside step function, defined by

H(x) =






1, if x ≥ 0,

0, if x < 0.

(5.58)

The governing equation (5.54) involves second-order derivatives of both space

and time, and it is convenient to decouple it into a system of first-order equations

in both space and time by introducing new variables r and s as follows. Let

r = γ
∂u

∂x
, s =

∂u

∂t
, (5.59)
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and (5.54) is thus equivalent to the system of equations

∂r

∂t
= γ

∂s

∂x
, (5.60)

∂s

∂t
= γ

∂r

∂x
, (5.61)

subject to the corresponding boundary conditions

s(−L, t) = −c, s(L, t) = c, ∀t ∈
[
0,

(
1

γ

)
2L

]
, (5.62)

and the initial solutions

r(x, 0) = 0, s(x, 0) = 0, ∀x ∈ [−L,L]. (5.63)

To reduce the computational cost, a half model is analyzed in this section. The

equivalent boundary conditions of the half model are

s(−L, t) = −c, s(0, t) = 0, ∀t ∈
[
0,

(
1

γ

)
2L

]
, (5.64)

The numerical formulation presented in section 5.3 is used for solving the system

of equations (5.60) and (5.61) with the boundary conditions (5.64) and the

initial solutions (5.63), with c = 0.45εp. The forward Euler formula is used

to perform time integration. To satisfy the CFL condition (△t ≤ 1
γ
△x), the

time step is chosen as △t = 10−2 1
γ
△x in this example. The results presented

in this example are achieved with 80 uniform collocation points and β = 1 in

(5.16). Computations are also carried out with 20, 40, 60 and 100 uniformly

distributed collocation points. The obtained solution essentially converges when

40 or more collocation points are used. Figure 5.5, Figure 5.6 and Figure 5.7

show the evolution of the displacement and strain, the numerical results and

the exact solutions are plotted on the same graphs. First, the displacement

and strain waves propagate from the ends to the center of the bar until these
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Figure 5.5: Fully elastic bars: the evolution of displacement, the continuous
curves denote the IRBFN solutions and the dash ones the exact solution.

incident waves meet each other at the center at time t =
(

1
γ

)
L. The zero-th

order continuous displacement leads to the strain discontinuity whose position

evolves with time as shown in the above figures. As a result of the collision of

the two incident waves (at x = 0), an abrupt jump of value of strain appears at

x = 0 (Figure 5.8), the strain magnitude is doubled, and the reflection waves

propagate outwards to the ends as displayed in Figures 5.5(e)-(f)-(g)-(h), Figure

5.7 and Figure 5.8. The obtained results by the present IRBFN method are in

good agreement with the analytical solutions as shown in Figure 5.5-Figure 5.8.

It is shown that the IRBFN can capture the discontinuous strain in this exam-

ple, however, there are some oscillations due to the violation of the smoothness

assumption inherent in the RBFN approximation. This situation can be im-

proved with regularisation as discussed in section 5.3.2. When the regularisation
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Figure 5.6: Fully elastic bars: the propagation of step function waves of strain:
the continuous curves denote the IRBFN solutions, the dashed ones exact solu-
tions and the dot-dashed curves indicate the IRBFN regularized results on the
left column. On the right column, the non-regularized results are removed for
clarity.

parameter λ is set to be equal to 0.07135, it can be seen that the obtained strains

shown on the right columns in Figure 5.6 and Figure 5.7 are much smoother

and closer to the exact solutions than those by the standard IRBFN method

shown on the left columns of the same figures. Thus, good results are achieved

with a general global regularisation of the IRBFNs in contrast with other nu-

merical approaches (discussed in section 5.3.2) where special treatments must

be applied at the elemental level (extended FEM) or special shape functions

must be used. Moreover, these special treatments require a priori knowledge of

the location of discontinuities while the present IRBFN method does not.



5.4 Numerical examples 134

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 61.6011

 

 

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 61.6011

 

 

−50 0 50
0.4

0.6

0.8

x

ε

t = 70.4676

 

 

−50 0 50
0.4

0.6

0.8

x

ε

t = 70.4676

 

 

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 79.3341

 

 

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 79.3341

 

 

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 92.6339

 

 

−50 0 50

0.5
0.6
0.7
0.8
0.9

x

ε

t = 92.6339

 

 

e1)
e2)

f1) f2)

g1) g2)

h1) h2)

Figure 5.7: Fully elastic bars: the propagation of step function waves of strain:
the continuous curves denote the IRBFN solutions, the dashed ones exact solu-
tions and the dot-dashed curves indicate the IRBFN regularized results on the
left column. On the right column, the non-regularized results are removed for
clarity.

5.4.2 Wave propagation and strain localization in strain-

softening bars: local continuum model

In this example, the problem defined in section 6.2 is considered with the pre-

scribed velocities at the ends have c = 0.85εp, which is above the critical value

of 0.5εp. The behaviour of the bar is elastic until the incident waves meet at

the center of the bar (i.e. for 0 ≤ t ≤ L) as discussed in section 5.4.1. Right

after the collision of the incident waves, the strain is doubled to 2c = 1.7εp,

causing strain softening and strain localization. From the onset of localization,

the computational domain can be divided into two regions with different be-



5.4 Numerical examples 135

−50
0

50

0

50

−40

−20

0

20

40

x

Numerical displacement

t

u

−50
0

50

0

50

−40

−20

0

20

40

x

Exact displacement

t

u

−50
0

50

0

50

0

0.2

0.4

0.6

0.8

x

Numerical strain

t

ε

−50
0

50

0

50

0

0.2

0.4

0.6

0.8

x

Exact strain

t

ε

a) b)

c) d)

Figure 5.8: Fully elastic bars: the displacement and strain waves propagations.

haviours: the strain softening and localization zone, and the elastic zone. For

the elastic domain, the momentum equation (5.7) takes the hyperbolic form of

(5.54) which is solved in the same manner as presented in section 5.4.1. For

the localized zone, the momentum equation becomes elliptic and is solved by a

scheme described as follows.

The elliptic momentum equation of the localized zone is

∂2u(x, t)

∂t2
= −µ2∂

2u(x, t)

∂x2
, (5.65)

in which µ2 = |Et|
E

ET 2

ρa2 , and |Et| is the absolute value of Et. (5.65) can be

decoupled into a system of first-order equations in both time and space by

letting

r = −µ∂u
∂x
, s =

∂u

∂t
, (5.66)
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resulting in a system of equations in r and s for the strain-softening zone given

by
∂r

∂t
= −µ∂s

∂x
, (5.67)

∂s

∂t
= µ

∂r

∂x
. (5.68)

At the end of the softening process, fracture and rupture will probably occur,

however, a fracture criterion is not included in present study, so the material

is assumed to be elastic again with a very small elastic modulus Ef/E = 10−6.

The governing equations in this stage are the same as those in section 5.4.1, ex-

cept that the modulus E is replaced by Ef . As before, only a half model needs

be discretised (in this case with 80 uniformly distributed nodes). The resultant

system of equations is integrated in time by using the forward Euler formula

as in section 5.4.1, where the time step is taken as △t = 0.25 × 10−4△x
γ

in this

example. The solution of (5.67) and (5.68) clearly shows the onset of strain

localization, characterized by the sudden jump in velocity, displacement, strain

and the rapid descent of stress in the localized zone as exhibited in Figure 5.9

which depicts the evolution of velocity, displacement, strain and stress at the

collocation point x = −0.6329, which is the nearest point to the x = 0 node.

In Figure 5.9(d), the stress profile is slightly oscillatory until the loading waves

are about to meet. Upon the collision of the incident waves, the stress increases

rapidly to the elastic limit fy then decreases as rapidly down to zero again due

to strain-softening. The speedy drop of the stress level is accompanied by the

abrupt jump in velocity and rapid increase in displacement and strain as ex-

hibited in Figure 5.9(c)-(a)-(b), respectively. Unstable development follows as

the localized zone is unable to carry load while the velocity is increasing, the

displacement and strain are growing rapidly, two halves of the bar are moving

increasingly in two opposite directions like in mode I crack as shown in Fig-

ure 5.10. In the next stage of evolution, the velocity and stress increase very

slightly while the displacement and strain are growing continuously and quickly

because of elastic loading as can be seen in Figure 5.9. The steep profiles of

stress, velocity and strain are well captured by the present explicit method,
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Figure 5.9: Local continuum model: the evolution of: (a) displacement, (b)
strain, (c) velocity and (d) stress at x = −0.6329 with 80 uniform collocation
points.

although with smaller time steps in comparison with other implicit methods.

Figure 5.10-Figure 5.12 depict the spatio-temporal evolution of the displace-

ment, velocity and strain, respectively, while Figure 5.13-Figure 5.15 show the

spatial distribution of velocity, stress, displacement and strain, respectively, at

several time instants. The solutions of the elliptic equations yield a standing

wave, which is not able to extend outside the localised zone, as illustrated by

the strain wave displayed in Figure 5.12 and Figure 5.15, and the displacement

wave in Figure 5.10 and Figure 5.14 as well. When softening occurs, which is

the case here, the localised strain softening zone causes reflection waves travel-

ling backwards from the localised front (x = 0), due to sudden unloading.
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Figure 5.10: Local continuum model: the evolution of displacement with a
uniform discretisation of 80 points.

Figure 5.10 and Figure 5.14 expose the development of displacement which

grows rapidly as a standing wave confined in a very narrow zone. Correspond-

ingly, the increasingly intensive strain within the localized zone is depicted in

Figure 5.12 and Figure 5.15. The velocity is doubled at the onset of localisation

and reflected back from the localised zone as shown in Figure 5.11 and Figure

5.13(a). Similarly, displacement, strain and stress waves also reflected from the

localised zone. However, unlike the response in purely elastic bars, the reflected

strain wave is out of phase with, and therefore cancelling out the incident strain

wave of the same magnitude. Due to the nature of the displacement waves the

displacement field in the elastic region is C0 continuous (Figure 5.10 and Figure

5.14). The point of C0 continuous displacement propagates along the elastic

region in both directions depending on the stage of loading. Consequently, a

discontinuity occurs in the profile of stress, velocity (Figure 5.13), and strain
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Figure 5.11: Local continuum model: the evolution of velocity with a uniform
discretisation of 80 points.

(Figure 5.15). The oscillatory behaviour of the stress is observed in Figure

5.13(b) which was also found in Sluys (1992) and Bazant et al. (1984).

Although the results presented above correspond to an 80 point discretisation,

computation is also carried out for 20, 40, 60, 100, 120 point discretisations.

As the number of collocation points increases, the bandwidth of the localised

zone decreases and the maximum strain increases as shown in Figure 5.14 and

Figure 5.15, which is a trend predicted by the exact solution (Bazant and Be-

lytschko, 1985). However, the zero bandwidth and singular strain associated

with the exact model solution cannot be expected to be captured by a numeri-

cal method. The obtained results in this section compare favourably with those

of the FEM (Sluys, 1992; Bazant et al., 1984). It is worth noting that, unlike the
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Figure 5.12: Local continuum model: the evolution of strain with a uniform
discretisation of 80 points.
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evolution of velocity, (b) stress obtained with a uniform discretisation of 80
points.
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Figure 5.14: Local continuum model: the evolution of displacement at time
levels: 1(t = 60.0) ; 2(t = 70.0) ; 3(t = 80.0) ; 4(t = 90.0) ; 5(t = 100.0) (the
curve labels indicate time levels) (a) 20 points, (b) 40 points, (c) 60 points and
(d) 80 points (uniformly discretised).

FEM, the present method does not require a priori knowledge of the location

of discontinuities which are well captured by a uniform discretisation.

5.4.3 Wave propagation and strain localization in strain-

softening bars: non-local continuum model

In this example, the material is described by a non-local continuum model based

on strain averaging or non-local strain. In this model, the local equivalent strain

ε is replaced by its non-local counterpart obtained by a weighted average process

over a spatial neighbourhood of each point of interest. The non-local strain ε̄
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Figure 5.15: Local continuum model: the evolution of strain at time levels:
1(t = 60.0) ; 2(t = 70.0) ; 3(t = 80.0) ; 4(t = 90.0) ; 5(t = 100.0) (a) 20 points,
(b) 40 points, (c) 60 points and (d) 80 points (uniformly discretised).

is defined by

ε̄(x, t) =

∫

V

α(x, ξ)ε(ξ, t)dξ, (5.69)

where α(x, ξ) is a given non-local function. In an infinite body, the weight

function is assumed to depend only on the distance r =‖ x − ξ ‖ between

the “source” point ξ and the “receive” point x. In the vicinity of a boundary,

the weight function is usually rescaled such that the non-local operator does

not change the uniform field, this means that the weight function satisfies the

normalizing condition

∫

V

α(x, ξ)dξ = 1, ∀x ∈ V. (5.70)
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This can be achieved by setting

α(x, ξ) =
α0(‖ x− ξ ‖)∫

V
α0(‖ x− ζ ‖)dζ , (5.71)

where α0(r) is an even and non-negative function of the distance r =‖ x− ξ ‖,
monotonically decreasing for r ≥ 0. It is often taken as the piecewise polynomial

bell-shaped function

α0(r) =






[
1 − r2

R2

]2

, if 0 ≤ r ≤ R,

0, if r > R,

(5.72)

where R is a parameter related to the internal length of the material. Since

R corresponds to the maximum distance of point ξ that affects the non-local

average at point x, it is called the interaction radius (Patzák and Jirásek, 2003).

The stress-strain relation in (5.2) becomes (in dimensionless form)

σ̄(x, t) =
Ē

E
ε̄(x, t), (5.73)

where ε̄ is the non-local strain. Thus the stress in (5.73) is also non-local.

In order to evaluate ε̄, it is necessary to compute ε(ξ, t) in (5.69), which is

accomplished as follows. After an IRBFN discretisation, the vectors of unknown

nodal displacements and their corresponding first and second derivatives with

respect to x are given by (5.21), (5.32) and (5.31), respectively. Thus, the first

order derivative of the displacement with respect to x at an arbitrary point ξ

can be written as follows.

∂u(ξ, t)

∂x
= ε(ξ, t) = H [1](ξ)C−1u(t) = D[1](ξ)u(t), (5.74)

where C−1 and u(t) are given by (5.30) and (5.21), respectively. H [1](ξ) and

D[1](ξ) are obtained in the same manner that leads to H[1] and D[1]in (5.32),
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but with x = ξ. Substitution of (5.74) into (5.69) leads to

ε̄(x, t) =

∫ R

−R

α(x, ξ)D[1](ξ)u(t)dξ. (5.75)

Since the nodal variable vector u(t) is independent of the spatial variable, (5.75)

can be rewritten as

ε̄(x, t) =

∫ R

−R

α(x, ξ)D[1](ξ)dξu(t) = B(x)u(t), (5.76)

where

B(x) =

∫ R

−R

α(x, ξ)D[1](ξ)dξ. (5.77)

The momentum equation (5.7) becomes

∂2u(x, t)

∂t2
=

(
Ē

E

)(
ET 2

ρa2

)
∂σ̄(x, t)

∂x
, (5.78)

which, in the elastic case, reduces to

∂2u(x, t)

∂t2
= γ2∂ε̄(x, t)

∂x
. (5.79)

Since the stress and strain are non-local, a new system of governing equations

is derived by decoupling the momentum equation (5.79) as follows. Let

r = γε̄(x) = γB(x)u(t), s =
∂u

∂t
. (5.80)

After discretisation, the unknown nodal vectors for r and s are, respectively,

r(t) = [r1(t), r2(t), . . . , rN(t)]T , (5.81)

and

s(t) = [s1(t), s2(t), . . . , sN(t)]T , (5.82)

where N is the number of collocation points.
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From (5.80) and (5.82), we have

∂u(t)

∂t
= s(t). (5.83)

From (5.79), (5.80) and (5.83), the following system of governing equations,

which is equivalent to (5.79) (i.e. the elastic case), is obtained

∂r(t)

∂t
= γBs(t), (5.84)

∂s(t)

∂t
= γ

∂r

∂x
, (5.85)

where

B = [B(x1), B(x2), . . . , B(xN)]T , (5.86)

with B(xi) =
∫ R

−R
α(xi, ξ)D

[1](ξ)dξ, for i = ¯1, N

and ∂r

∂x
is obtained by an IRBFN approximation as

∂r(t)

∂x
= D[1]r(t). (5.87)

For the softening response, the corresponding system of governing equations is

∂r(t)

∂t
= −µBs(t), (5.88)

∂s(t)

∂t
= µ

∂r

∂x
. (5.89)

The boundary and initial conditions for r and s are the same as those given

in section 5.4.2. As can be seen in the previous two examples, the ramp-like

spatial displacement profile results in a discontinuous strain field which can

be well captured by the present IRBFN method. However, when a non-local

continuum model is used here, the smoothness of the equivalent non-local strain

is adversely affected by noises that might exist in the neighbouring strain field.

Thus it is found to be advantageous to incorporate IRBFN regularisation into
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Figure 5.16: Example of IRBFN regularization.

the general IRBFN formulation. The effect of such regularisation is illustrated

by considering a ramp function given by

û(x) = xH(x), for − 50 ≤ x ≤ 50, (5.90)

where H is the Heaviside function defined in (5.58). The exact solution of the

first order derivative of û(x) with respect to x is

ε̂(x) =
∂û(x)

∂x
= H(x). (5.91)

Let ε̃(x) denote the IRBFN approximation of ∂û(x)
∂x

, which is determined by

ε̃(x) ≈ ∂û(x)

∂x
= D[1](x)û(x), (5.92)
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Figure 5.17: Non-local continuum model: the evolution of velocity with a uni-
form distribution of 161 collocation points.

The weighted average of ε̃(x), denoted by ¯̃ε(x), is achieved by replacing ε(ξ, t)

in (5.69) by ε̃(x)

¯̃ε(x) =

∫

V

α(x, ξ)ε̃(x)dξ, (5.93)

The domain is discretised with a uniform distribution of 161 collocation points.

The IRBFN parameter β = 1 in (5.16), the interaction radius R = 5 in (5.93)

which is integrated with 11-point Gaussian quadrature, and the IRBFN regu-

larisation parameter is λ = 3.391895. The results shown in Figure 5.16 demon-

strate the effectiveness of the present method. In this figure, the exact solution

ε̂(x) is represented by the Heaviside curve; the dot-dashed curve indicates the

IRBFN solution ε̃(x); the solid curve represents the weighted average of the

IRBFN approximation ¯̃ε(x); the heavy dashed curve represents the regularised

weighted average ¯̃ε(x). The above specific parameters, except λ which is depen-
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Figure 5.18: Non-local continuum model: the evolution of displacement with a
uniform distribution of 161 collocation points.

dent on the number of collocation points, are also used in obtaining the results

described below.

Returning to the bar problem, the prescribed end velocities are the same as

those given in section 5.4.2, i.e. c = 0.85εp. The time step is 10−3△x
γ

. Due to

the presence of the non-local operator, the full model is analyzed. In fact, in

the present computation s is regularised, instead of ε, with similar end results.

Figure 5.17-Figure 5.19 exhibit the evolution of velocity, displacement and non-

local strain, respectively. Owing to the properties of non-local weighted average

operator, the non-local continuum model yields much smoother response than

the corresponding results obtained with a local continuum model, although the

evolutionary profiles are similar as expected. The effect of standing wave can

be seen in Figure 5.18-Figure 5.19 (continuous spatio-temporal representation),
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Figure 5.19: Non-local continuum model: the evolution of non-local strain with
a uniform distribution of 161 collocation points.

Figure 5.21 and Figure 5.22 (at selected times), which show that the growing

displacement and strain are confined to the localised zone. The bandwidth of

the localized zone and the magnitude of the localized strain are finite, which is

in contrast with the the results obtained with a local continuum model, where

the exact solution is singular (zero bandwidth localised zone and hence infinite

strain). After the onset of strain localization, the velocity, displacement, strain

and stress waves reflected from the localised zone as shown in Figure 5.20-Figure

5.22. However, unlike the case of local continuum model, the wave profiles are

smooth. In Figure 5.20(b), the profiles of stress indicate a complicated loading

and unloading process after the initiation of strain localization. There are two

narrow zones of high stress at the interfaces between the localized zone and the

elastic regions. The standing wave causes the stress to rise in the narrow zones
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Figure 5.20: Non-local continuum model: the curve labels represent time levels:
1(t = 60.0) ; 2(t = 70.0) ; 3(t = 80.0) ; 4(t = 90.0) ; 5(t = 100.0) (a) the
evolution of velocity obtained ,( b) stress obtained with a uniform distribution
of 161 collocation points

until the elastic limit is reached when sudden unloading occurs due to strain

softening effect.

Finally, convergence of the present numerical procedure is demonstrated in Fig-

ure 5.23 where the non-local strain profiles (at t = 70.0) are displayed for a series

of collocation points. As discretisation is refined, it can be seen that the band-

width converges when the number of collocation points is about 160 while the

peak non-local strain varies by only 2.3% when the number of collocation points

increases from 161 to 241. The slight variation of the peak non-local strain can

be expected since the local strain at the center of the band is singular.

5.5 Conclusion

An IRBFN meshless method is developed and used to simulate the dynamic

strain localization of a bar of quasi-brittle material under dynamic tensile load-

ing. Both local and non-local continuum models are used to describe the ma-
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Figure 5.21: Non-local continuum model: the evolution of displacement at time
levels: 1(t = 60.0) ; 2(t = 70.0) ; 3(t = 80.0) ; 4(t = 90.0) ; 5(t = 100.0) (the
curve labels indicate time levels) (a) 41 points, (b) 81 points, (c) 121 points and
(d) 161 points uniformly discretised.

terial behaviour. The method incorporates a new general and effective reg-

ularization method. The enhanced IRBFN approach is able to alleviate the

effect of noisy data and capture very well weak discontinuities typical of wave

propagation and strain localisation. The present method is able to achieve

these results using only uniformly distributed collocation points and requiring

no prior knowledge of the location of discontinuities.
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Chapter 6

Modeling strain localization in

elasto- thermo-viscoplastic

materials with IRBFN

collocation technique

This chapter presents a numerical simulation of the formation and evolution of

strain localization in elasto-thermo-viscoplastic materials (adiabatic shear band)

by the indirect (integrated) radial basis function network (IRBFN) method.

The effects of strain and strain rate hardening, plastic heating, and thermal

softening are considered. The IRBFN method is enhanced by a new coordi-

nate mapping which helps capture the steep spatial structure of the resultant

band. The discrete IRBFN system is integrated in time by the implicit fifth-

order Runge-Kutta method. The obtained results are compared with those of

the Modified Smooth Particle Hydrodynamics (MSPH) method and Chebychev

Pseudo-spectral (CPS) method
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6.1 Introduction

Strain localization in elasto-thermo-visco-plastic materials is a phenomenon that

occurs during high strain-rate plastic deformation, such as machining, forging,

shock impact loading, ballistic impact and penetration, and has been proposed

as an explanation for deep earthquakes (Walter, 1992). In particular, a shear

band is a narrow, nearly planar or two dimensional region of very large shear

strain and strain rate. The formation of shear bands often precedes the rup-

ture in materials. Even when the rupture does not occur, the development

of shear bands generally reduces the performance of the material. Hence, an

understanding of shear-band morphology and evolution is an important pre-

requisite to improve material processes and manufacturing techniques. Shear

bands are commonly of isothermal or adiabatic types (Molinari and Clifton,

1987). Isothermal shear bands form as a result of strain softening, and thermal

softening plays a negligible role in the process. On the other hand, adiabatic

shear bands, in which thermal softening plays a primary role, form as a result

of an autocatalytic process: an increase in strain rate in a weaker zone causes a

local increase in temperature which in turn creates a further increase in strain

rate. Once a band is fully formed, the two sides of the region are displaced

relative to each other, much like a mode II or mode III crack, but the material

still retains full physical continuity from one side to the other.

This chapter focuses on adiabatic shear bands. The equations governing the evo-

lution of adiabatic shear bands are coupled, highly nonlinear and stiff, and it is

not simple, even for one-dimensional problems, to obtain close form solutions

that could describe a range of constitutive, boundary, and initial conditions.

For a number of special cases, close form exact and approximate solutions have

been developed by many authors, for example, Rice and Rudnicki (1980); Moli-

nari and Clifton (1987); Wright (1990); Sherif and Shawki (1992), just to name

a few, to capture some of the fundamental characteristics of strain localization.

Generally, numerical solutions are helpful in a parametric study to cover a range
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of possible behaviours. However, it could be costly to resolve shear bands fully

in a large scale computation since the morphology of a shear band exhibits very

fine transverse scales, with aspect ratios of the high shear region usually in the

hundreds or even thousands (Wright, 2002). Thus it is highly desirable to have

effective and efficient numerical methods for the analysis of strain localisation

problems. The spectral method (Bayliss et al., 1994) is particularly effective

and efficient, but generally restricted to simple geometries. The finite element

method (FEM) (Wright and Walter, 1987; Batra and Kim, 1991; Walter, 1992)

has been used to analyze shear strain localization problems with good results

for 1D cases, since the Lagrangian finite element mesh is not badly distorted

and small element size of O(10−7) enables one to capture the high strain. How-

ever, the FEM has many drawbacks in 2D or 3D strain localization problems.

In contrast to the FEM, meshless methods (Li and Liu, 2000; Batra and Zhang,

2004) offer some advantages, including (i) shape functions are constructed by

using a highly smooth window function, (ii) purely displacement-based formu-

lation is possible without incurring volumetric locking within a range of support

size of the window functions (Li and Liu, 2000), and (iii) approximations are

non-local. Thus, meshless methods provide more continuous solutions than the

piece-wise continuous ones obtained by the FEM. These properties provide an

effective remedy for the mesh alignment sensitivity in the computation of strain

localization.

In this study, we report a new numerical method based on radial basis func-

tion networks, a truly meshless method, for analysis of the dynamics of strain

localization in 1D problems. The present indirect/integral radial basis function

network (IRBFN) method is based on (i) the universal approximation property

of RBF networks, (ii) exponential convergence characteristics of the chosen mul-

tiquadric (MQ) RBF, (iii) a simple point collocation method of discretisation of

the governing equations, and (iv) an indirect/integral (IRBFN) rather than a

direct/differential (DRBFN) approach (Kansa, 1990) for the approximation of

functions and derivatives. For the DRBFN, (Madych and Nelson, 1990) showed
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that the convergence rate is a decreasing function of derivative order. Since the

introduction of the IRBFN approach by Mai-Duy and Tran-Cong (2001, 2005);

Kansa et al. (2004), and Ling and Trummer (2004), based on the theoretical

result of Madych and Nelson (1990), concluded that the decreasing rate of con-

vergence can be avoided in the IRBFN approach. Furthermore, the integration

constants arisen in the IRBFN approach are helpful in dealing with problems

with multiple boundary conditions (Mai-Duy and Tran-Cong, 2006). In addi-

tion, a new coordinate mapping is here introduced to help capture the charac-

teristics of extremely thin boundary layers (i.e. the localised shear bands). The

chapter is structured as follows. The physical problem and its mathematical

model are defined in section 6.2. The numerical formulation of the mathemat-

ical model is presented in section 6.3 which is followed by numerical examples

in section 6.4. Some conclusions are drawn in section 6.5.

6.2 Problem definition

We consider the unidirectional shearing of an infinite slab of half thickness H̄ ,

and of an elasto-thermo-viscoplastic material. In this section we use the overbar

to represent dimensional quantities, the subscript comma to denote the partial

differentiation with respect to the variable indicated by the subscript. The

unknowns are the shear stress s̄, the particle velocity v̄, the plastic strain γ and

the temperature measured from the reference value Θ̄. In addition, the strain

hardening parameter Ψ is also introduced as in Walter (1992) and Bayliss et al.

(1994).

Let ȳ be the coordinate across the slab with origin on the middle plane, i.e.

−H̄ ≤ ȳ ≤ H̄, and t̄ denote time. The mathematical model for this problem

can be found in Walter (1992); Wright (2002) and Bayliss et al. (1994), and is

reproduced here as follows.
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v̄,t̄ =
s̄,ȳ

ρ̄
, (6.1a)

s̄,t̄ = µ̄(v̄,ȳ − γ̄,t̄), (6.1b)

ρ̄c̄Θ̄,t̄ = k̄Θ̄,ȳȳ + s̄γ̄,t̄, (6.1c)

Ψ̄,t̄ =
s̄γ̄,t̄

κ̄(Ψ)
, (6.1d)

where ρ̄ is the density, c̄ the specific heat, k̄ the thermal conductivity, µ̄ the shear

modulus, and κ̄ a strain hardening factor. The constitutive relation between s̄,

Ψ, Θ̄ and γ̄,t̄ is given by

s̄ = κ̄(Ψ)g(Θ̄)f(γ̄,t̄), (6.2)

where g a thermal softening factor, and f a strain rate hardening factor. Differ-

ent material models can be obtained with appropriate choices of these factors,

which will be illustrated when we consider examples in section 6.4. The prob-

lem is assumed to be symmetric about the middle plane ȳ = 0. The slab is

subjected to a constant shearing velocity ±v̄0 prescribed at the top and bottom

surfaces of the slab, respectively. The surfaces are thermally insulated and all

plastic work is converted into heat. The above assumptions lead to the following

boundary conditions

v̄(0, t̄) = 0, v̄(H̄, t̄) = v̄0, Θ̄,ȳ(0, t̄) = 0, Θ̄,ȳ(H̄, t̄) = 0. (6.3)

The nominal strain rate is

˙̄γ0 = γ̄0
,t̄ =

v̄0

H̄
, (6.4)

where the time derivatives are from now on indicated by a dot over the variable.

The variables are non-dimensionalised as follows.

y = ȳ
H̄

, t = t̄ ˙̄γ0, Ψ̇ =
˙̄Ψ
˙̄γ0 , v = v̄

H̄ ˙̄γ0 , s = s̄
κ̄0 ,

Θ = ρ̄c̄Θ̄
κ̄0 , κ = κ̄

κ̄0 , γ̇ =
˙̄γ
˙̄γ0 , k = k̄

ρ̄c̄H̄2 ˙̄γ0 ,

ρ = ρ̄H̄2( ˙̄γ0)2

κ̄0 , µ = µ̄
κ̄0 , b = b̄ ˙̄γ0, a = āκ̄0

ρ̄c̄
,
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where ā is the thermal softening parameter, b̄ is the strain-rate hardening pa-

rameter, κ̄0 is the yield stress in the quasi-static isothermal simple shear test.

The dimensionless governing equations are given by

v̇ =
s,y

ρ
, (6.5a)

ṡ = µ(v,y − γ̇), (6.5b)

Θ̇ = kΘ,yy + sγ̇, (6.5c)

Ψ̇ =
sγ̇

κ(Ψ)
. (6.5d)

The constitutive relation is

s = κ(Ψ)g(Θ)f(γ̇). (6.6)

The boundary conditions are

v(0, t) = 0, v(1, t) = 1, Θ,y(0, t) = 0, Θ,y(1, t) = 0. (6.7)

From (6.5a) and (6.7), the boundary conditions for shear stress can be found

easily as

s,y(0, t) = 0, s,y(1, t) = 0. (6.8)

We will present a meshless numerical method for solving (6.5a)-(6.8) in the next

section, and in section 6.4 we will present results for two particular models,

namely the thermal imperfection and the strength imperfection cases.

6.3 Resolution of very large spatial gradients

The IRBFN procedure in section 5.3 is here employed to approximate spatial

variables. In addition, a new coordinate mapping is introduced to capture the

spatial structure of the shear bands as follows.



6.3 Resolution of very large spatial gradients 160

It has been shown that the IRBFN method can capture sharp gradients in some

PDE solutions (Mai-Duy and Tran-Cong, 2003) with relatively coarse uniform

spatial discretisation. However, with extremely sharp gradients in a solution,

the option of uniformly refining the discretisation is not efficient or even ef-

fective. The computing of such extremely sharp gradients can be achieved

effectively and efficiently with appropriate coordinate mappings of a relatively

coarse, originally uniform discretisation. A very good mapping can be intro-

duced as follows.

Consider the singularly perturbed boundary value problem (BVP)

ǫu′′(x) + p(x)u′(x) + q(x)u(x) = f(x), ∀x ∈ [a, b] , (6.9)

subject to the boundary conditions

u(a) = ua, u(b) = ub, (6.10)

where ǫ > 0 denotes a fixed small constant. In many cases, (6.9) possesses

boundary layers, i.e. regions of rapid change in the solution as ǫ −→ 0. Hence,

in solving (6.9) with a point collocation method, the number of collocation

points needs to be very large as ǫ −→ 0 to obtain an accurate solution. For

a good resolution of the solution structure, at least one of collocation points

must lie in the boundary layer (Tang and Trummer, 1996; Ling and Trummer,

2006). For example, if ǫ ≪ 1 and the problem possesses a boundary layer of

width O(ǫ), then on a uniform grid with O(N−1) spacing between the points

we would need N = O(ǫ−1), which is not practical in most cases.

We transform the BVP (6.9) via the variable transformation x 7−→ y(x) into a

new BVP

ǫv′′(y) [y′(x)]
2

+ P (y)v′(y) + Q(y)v(y) = F (y), ∀y ∈ [a, b] , (6.11)



6.3 Resolution of very large spatial gradients 161

subject to boundary conditions

v(a) = ua, v(b) = ub, (6.12)

where v(y) = u(x(y)), and the transformed coefficients are given by

P (y) = ǫy′′(x) + p(x)y′(x), Q(y) = q(x), F (y) = f(x). (6.13)

In this mapping, x represents the physical space and y the computational space.

Without loss of generality, we assume that [a, b] = [−1, 1]. Consider the one-to-
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Figure 6.1: (a) Coordinate mapping with 61 collocation points, uniformly
spaced in the computational space y, (b) IRBFN solution v(x) and exact solu-
tion u(x) of (6.18) with ǫ = 10−6, α = 13, on the physical space x.

one mapping given by

x(y) =
sinh(αy)

sinh(α)
, (6.14)

where α > 0 is a parameter that allows control of the discretisation, the smaller

the value of ǫ is, the larger the value of α is required. From (6.14) the inverse

mapping and the derivatives of y with respect to x can be determined simply

y(x) =
arcsinh(λx)

α
, (6.15)
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y′(x) =
λ

(1 + λ2x2)
1

2 α
, (6.16)

y′′(x) =
−λ3x

(1 + λ2x2)
3

2 α
, (6.17)

where λ = sinh(α). As shown in the Figure 6.1(a), the physical space x is

very dense around the layer’s location x = 0 while the computational space y

is uniform.

Note that the transform (6.14) also maps the interval [−1, 0] and [0, 1] onto

themselves. Hence, if (6.9) has only one boundary layer on the left (or central

or right), we can translate the physical space to [−1, 0] (or [−1, 1] or [0, 1]) to

avoid unnecessary collocation points in the non-steep region.

To illustrate the above mapping, we let p(x) = 1, q(x) = 0, f(x) = x + 1 + ǫ,

[a, b] = [0, 1], ua = 0.5 and ub = 1.5 in (6.9), obtaining

ǫu′′(x) + u′(x) = x + 1 + ǫ, ∀x ∈ [0, 1] , u(0) = 0.5, u(1) = 1.5, (6.18)

which has an exact solution given by

u(x) =
1

2

(
e−

ǫ
x + x2 + 2x

)
. (6.19)

For ǫ = 10−6, the IRBFN solution in the physical space with 61 collocation

points, α = 13, are shown in the Figure 6.1(b), which shows that the numerical

solution is quite indistinguishable from the exact solutions. For ǫ = 10−12, we

can capture an accurate solution by using 161 collocation points and α = 29.
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6.4 Numerical examples

6.4.1 Example 1: A model of thermal imperfection

In this example we consider a specific case of the general unidirectional shearing

problem defined in section 6.2 where the thermal softening factor in (6.6) is given

by

g(Θ) = (1 − aΘ), (6.20)

the strain hardening factor by

κ(Ψ) =

(
1 +

Ψ

Ψ0

)n

, (6.21)

and the strain rate hardening factor by

f(γ̇) = (1 + bγ̇)m. (6.22)

For comparison purpose, the initial conditions and boundary conditions are

taken to be the same as in Batra and Zhang (2004). The latter are described

earlier by (6.7) and the former are given by

v(0, y) = y , Ψ(0, y) = 0.1 , γ = 0.0692,

Θ(0, y) = 0.1003 + 0.1(1 − y2)9e−5y2

,

s(0, y) =
(
1 + 0.1

Ψ0

)n
(1 − aΘ(0, y))(1 + b)m,

where the second term on the right-hand side of the expression for the temper-

ature Θ represents a thermal imperfection. With the half thickness of the slab

H̄ = 2.58mm, the nominal strain rate is γ̄0
t̄ = 500s−1 and the dimensionless

parameters are

ρ = 3.982 × 10−5 , µ = 240.3 , a = 0.4973 , n = 0.09 ,

κ = 3.978 × 10−3 , Ψ0 = 0.017 , m = 0.025 , b = 5 × 10−6.
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Figure 6.2: The curve labels indicate time levels (µs): 1(59.489); 2(60.257);
3(60.433); 4(60.477); 5(60.507); 6(60.602); 7(60.702); 8(60.804); 9(60.903);
10(60.934); 11(60.975); 12(60.992); 13(61.003); 14(61.019). (a) Evolution of
temperature, (b) the temperature in the neighbourhood of y = 0 showing that
the solution is highly consistent with the boundary conditions at y = 0, (c)
evolution of Ψ, (d) evolution of plastic train.

The discretisation of the governing equations yields a system of fully coupled,

stiff and nonlinear ordinary differential equations (ODEs) which are integrated

with respect to time t using an implicit 5th Runge-Kutta method with subrou-

tine RADAU5 developed by Hairer et al. (1987); Hairer and Wanner (1996).

The subroutine automatically adjusts the time step size to compute the solu-

tions within the prescribed accuracy. The results presented in this chapter are

obtained by setting RTOL = 10−7 and ATOL = 10−7 in RADAU5.

The results presented in this section are obtained with 261 collocation points

and the value of α in the mapping (6.14) is 9, β in (5.16) is 1. The evolutions of
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Figure 6.3: The evolution of plastic strain rate γ̇. The curve labels indicate time
levels (µs): 1(59.489); 2(60.257); 3(60.433); 4(60.477); 5(60.507); 6(60.602);
7(60.702); 8(60.804); 9(60.903); 10(60.934); 11(60.975); 12(60.992); 13(61.003);
14(61.019).

the spatial profile of the temperature Θ, plastic strain γ, and strain hardening

parameter Ψ, are shown in Figure 6.2; the plastic strain rate in Figure 6.3;

stress and velocity in Figure 6.4. These figures show that the solution is highly

consistent with the boundary conditions at y = 0 (and at y = ±1, although

not shown on the plots). From Figure 6.2 it can be observed that the plastic

strain increases rapidly in the neighbourhood of y = 0 where the band of high

shear strains becomes less and less diffuse, reaching a minimum with a very

high corresponding plastic strain level before becoming more and more diffuse

again. Similar patterns of development are observed for the temperature, strain

hardening parameter, plastic strain rate and velocity as shown in Figures 6.3

and 6.4. In contrast, the spatial profile of stress evolves slightly differently

which will be discussed in more detail later. Although banding of high shear
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Figure 6.4: The curve labels indicate time levels (µs): 1(59.489); 2(60.257);
3(60.433); 4(60.477); 5(60.507); 6(60.602); 7(60.702); 8(60.804); 9(60.903);
10(60.934); 11(60.975); 12(60.992); 13(61.003); 14(61.019). (a) Spatial struc-
ture of shear stress at different times, (b) the shear stress in the neighbourhood
of y = 0 showing that the solution is highly consistent with the boundary con-
ditions at y = 0, (c) spatial structure of particles velocity at different times of
localization, (d) the structure of the velocity boundary layer.

strains is apparent, the smooth spatial profiles do not provide a clear and unique

bandwidth. Thus we define the limit of the high shear band as the position

where the temperature equals 40% of the peak temperature at the center of

the band (This criterion is somewhat arbitrary, for example, Batra and Zhang

(2004) used a value of 40% while Bayliss et al. (1994) preferred 50%). The

bandwidth evolves with time, for example when the plastic strain rate at y = 0

reaches its maximum value (at t = 60.8385µs), the extent of the corresponding

bandwidth is y = ±0.00252. Hence the width of the shear band is 2×0.00252×
2580 = 13.0µm. The dimensionless half bandwidths correspond to different time

levels (in parentheses) are 0.0688 (3),0.0257 (4),0.0102 (5),0.00279 (6),0.00237
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Figure 6.5: (a) and (b) evolution of shear stress at y = 0, (c) and (d) evolution
of temperature at y = 0.

(7),0.002468 (8),0.00264 (9),0.00274 (10),0.00276 (11), which indicate that the

shear band becomes narrowest (around time level 7 or 60.702µs) before the

plastic strain rate peaks between time levels 8 (60.804µs) and 9 (60.903µs).

Figures 6.5(a)-(d) show the evolution of the shear stress and temperature at

y = 0. As can be seen in Figure 6.5(a), the shear stress initially increases slightly

(from the initial value of 1.575) since strain and strain rate hardening effects

are stronger than the thermal softening effect. As time progresses, the increase

in plastic work causes increase in Θ and the thermal softening effect tends to

compensate the strain and strain rate hardening effects. In the next phase of

the evolution, Θ increases very slowly (Figure 6.5(c)) and the thermal softening

effect becomes gradually stronger than strain and strain rate hardening effects,

and the shear stress decreases very slowly as shown in Figure 6.5(a). Further
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Figure 6.6: (a) Evolution of plastic strain rate γ̇ at y =0, (b) evolution of plastic
strain at y = 0.

evolutions of the stress and velocity profiles indicate unstable development, i.e.

the shear stress at y = 0 is decreasing rapidly and the two halves of the slab

(corresponding to H ≥ y > 0 and −H ≤ y < 0) are shearing relative to each

other increasingly like rigid bodies. The instability can be seen more clearly

by observing the evolution of shear stress (Figure 6.5) and plastic strain rate

(Figure 6.6) at y = 0. The latter varies gradually and unremarkably up to

t = 60µs, and shortly after which time, suddenly and steeply, i.e. by about

five orders of magnitude in less than 0.5µs. After reaching the peak value of

5.3145 × 105 at t = 60.8385µs, the plastic strain rate quickly drops to a value

very close to zero (i.e. 674 compared with the peak value of 5.3145×105) before

showing a very small and slow increase, followed quickly by another sharp rise

to a second peak (14.865 × 105) nearly three times the first one, as shown in

Figure 6.6. Although the stress decreases rapidly and the plastic strain rate

increases even more rapidly, the evolution is smooth and therefore it is not

possible to define the onset of instability uniquely. Here we define the onset of

the strain localization instability as the point when the rate of change of stress

with time continues to increase monotonically and rapidly. We detect this point
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Figure 6.7: The behaviour of the shear stress at y = 0 around the onset of
localisation. P is defined by (6.23).

by examining the ratio P defined as

P =
ds
dt
|tn+1

ds
dt
|tn

, (6.23)

for several time levels n. The instability is thus found to occur at t = 60.407µs as

shown in Figure 6.7. Figures 6.2, 6.3, 6.4 show that the interaction between the

strain hardening and thermal softening effects, coupled with thermal diffusion

and mechanical loading, gives rise to interesting mechanical response of the slab.

The initially slow thermal diffusion, relative to the rate of mechanical loading,

allows the thermal imperfection to cause local heating, which in turn causes

thermal softening in a narrow band. As the thermal softening effect grows

stronger than the strain and strain rate hardening effects, the plastic strain

rate increases sharply and the shear stress drops suddenly at the band center.

Thermal diffusion also becomes more extensive and the extent of the softened

material propagates outwards as shown in Figure 6.4. Continued shearing of the

slab after the onset of strain localization exhibits more interesting interaction

between thermal softening and strain and strain rate hardening effects, giving

rise to apparent elastic unloading in the neighbourhood of y = 0 as shown in

Figures 6.8 and 6.9 while plastic deformation continues on either sides of the

band center as shown in Figure 6.3(d). However, high rate of plastic deformation
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Figure 6.8: More detailed evolutions at y = 0.

quickly resumes as shown by the same figures.

6.4.2 Example 2: A model of strength imperfection

In this section, we consider another specific case of the general unidirectional

shearing problem defined in section 6.2, where the strain rate hardening factor

f is the same as in the previous example (i.e. given by (6.22), and the thermal

softening factor in (6.2) is given by

g(Θ̄) = e−āΘ̄. (6.24)
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Figure 6.9: Evolution of the spatial profile of the plastic strain rate.

Following Bayliss et al. (1994), the strain hardening factor κ̄(Ψ) in (6.1d) is now

taken as

κ̄(Ψ) =
(
1 − 0.005(1 − ȳ2)50e−500ȳ2

)
κ̄0

(
1 +

Ψ

Ψ0

)n

, (6.25)

where the leading factor represents a strength imperfection. (6.24) and (6.25)

are rewritten in dimensionless form as follows.

g(Θ) = e−aΘ. (6.26)

κ(Ψ) =
(
1 − 0.005(1 − y2)50e−500y2

)(
1 +

Ψ

Ψ0

)n

, (6.27)

To compare the results of the present method with those obtained by other

methods, we use the same parameters, boundary and initial conditions as in

Walter (1992) and Bayliss et al. (1994). The boundary conditions are described
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earlier by (6.7) and the initial conditions are

v(0, y) = y, s(0, y) = 0, γ(0, y) = 0,

Θ(0, y) = 0.1(1 − y2)9e−5y2

, Ψ(0, y) = 0. (6.28)

The half thickness of the slab H̄ and the nominal strain rate ˙̄γ0 are taken as

3.47mm and 1000s−1, respectively. Other parameters are

ρ̄ = 7860kgm−3, µ̄ = 80GPa, κ̄0 = 602MPa, ā = 6.43 × 10−4s−1,

b̄ = 1 × 104Js2(kgm2)−1, Ψ0 = 0.017, c̄ = 473J(kgoC)−1,

k̄ = 49.2J(msoC)−1, m = 0.0251, n = 0.09.

The results presented in this section are obtained with 221 collocation points,

the value of α in the mapping (6.14) is 8 and β in (5.16) is 1. The results

obtained here are in good qualitative agreement with those of Bayliss et al.

(1994), who also studied the sensitivity of the material response to imperfec-

tions. Figure 6.10 reveals the spatial structure of the particle velocity v at

selected points of time, which shows that the strength imperfection (weakness)

at the band center leads to a fast process of softening in a narrow band around

y = 0, manifested by a sudden and dramatic increase in the particle velocity

due to the sudden drop in shear stress. The characteristics of shear banding

are further exposed in Figure 6.11 which shows that plastic strain rate, plastic

strain, temperature and stress are more or less constant within very narrow

bands around y = 0. Figure 6.11 also shows that there are two evolutionary

stages of the shear band. In the first stage, the band narrows up to time instant

around t = 0.77145 (instant 6) and the field variable profiles are self-similar.

The band then widens in the second stage from around time instant t = 0.77254

(instant 7) onwards. The bandwidth evolution can be quantified by defining the

extent of the bandwidth as the position where the value of a physical property

(Θ, γ, or γ̇) drops to 50% of its value at the band center (here we use the 50%

criterion in order to compare our results with those of Bayliss et al. (1994)).
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Figure 6.10: The spatial structure of particle velocity at selected points of
time: (a) full linear scale, (c) semi-log scale 0 < y <= 1, (b) behaviour
in the neighbourhood of y = 0, linear scale, (d) behaviour in the neigh-
bourhood of y = 0, semi-log scale y > 0. The band narrowing stage
(the solid curves) includes instants of t = 0.76963(1), 0.77020(2), 0.77056(3),
0.77091(4), 0.77116(5), 0.77145(6) and the band widening or post-localization
stage (the dash curves) includes instants t = 0.77254(7), 0.78364(8), 0.78815(9),
0.79408(10), 0.79763(11), 0.80000(12).

The bandwidths are shown in Figure 6.12, confirming the band narrowing and

widening stages as observed above, with the bandwidth for the plastic strain

rate being the thinnest and for temperature the thickest. There is a smooth

transitional region between the central shear band and the outer material where

the plastic strain rate, plastic strain and temperature profiles remain virtually

unchanged with time. However, the stress profile continues to evolve every-

where, with stress level generally dropping due to the softening effect, except

some temporary hardening at the band center (Figure 6.13).
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Figure 6.11: The spatial structure of field variables at selected points of time
(a) plastic strain, (b) plastic strain rate, (c) temperature, (d) shear stress. The
band narrowing stage (the solid curves) includes instants of t = 0.76963(1),
0.77020(2), 0.77056(3), 0.77091(4), 0.77116(5), 0.77145(6) and the band widen-
ing or post-localization stage (the dash curves) includes instants t = 0.77254(7),
0.78364(8), 0.78815(9), 0.79408(10), 0.79763(11), 0.80000(12).

Figure 6.13 shows the timing of key events during the process of strain lo-

calization. The plastic strain rate rises rapidly and attains its peak value at

t1 = 0.77154, followed by the temperature peaking at t2 = 0.77250, and the

stress at t3 = 0.77440. By using the criterion (6.23) as in example 1, the onset

of localization is found to occur at t = 0.76976, which is when the rate of tem-

perature increase starts to rise rapidly as shown in Figure 6.14. This figure also

shows that the strength imperfection is such that the thermal diffusion process

is much slower than the rate of heat generated by plastic work which causes

rapid localised increase of Θ. The high temperature triggers a dramatic ther-

mal softening process with a very brief period of elastic unloading. Although
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Figure 6.12: Evolution of bandwidths shows the band narrowing stage followed
by the band widening stage, and the bandwidth based on the plastic strain rate
is the narrowest while the one based on temperature is the widest.

strain hardening becomes stronger briefly, thermal softening dominates and the

band widens. Soon after the onset of localisation, γ̇ at y = 0 reaches a peak

value γ̇peak = 10606.778 at time t = t1 = 0.77154 while the strain hardening

parameter Ψ is still growing. At this time, Θ is still increasing and shear stress

decreasing. After attaining the maximum value, γ̇ drops rapidly to near zero

then rises slowly. There are small oscillations in the behaviour of γ̇ in this

regime, which was also found in Bayliss et al. (1994). As the plastic strain rate

drops, the rate of plastic heating becomes slower and thermal diffusion becomes

briefly dominant between t2 = 0.77250 and t4 = 0.77759 when the rate of plastic

heating is again faster, causing further temperature rise. At t = t1 = 0.77154

the bandwidths are 6.43 × 10−3, 8.40 × 10−4, 6.75 × 10−4 based on Θ, γ, γ̇

respectively, which are compared with the corresponding values of 6.08× 10−3,

7.61 × 10−4, 3.92 × 10−4 obtained by Bayliss et al. (1994).
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Figure 6.13: The evolution of (a) shear stress, (b) temperature, (c) plastic
strain, (d) plastic strain rate at y = 0. A peak value of the plastic strain rate of
10606.778 occurs at t1 = 0.77154, the temperature of 10.9490 at t2 = 0.77250,
the stress of 0.84238 at t3 = 0.77440, and a second peak (local minimum of
7.4781) of temperature at t4 = 0.77759. Thus t1 < t2 < t3 < t4.
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kΘ,yy, dash-dot curve the effect of plastic heating sγ̇, and the solid curve the
combined effect dΘ

dt
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onset of strain localisation occurs at t = 0.76976. Some key events occur at
t1 = 0.77154 < t2 = 0.77250 < t3 = 0.77440 < t4 = 0.77759, as identified in the
previous figure.
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Figure 6.17: The evolution of shear stress.

The evolution of plastic strain rate γ̇, and temperature Θ in the localized region

during the severe localization are visualised in Figure 6.15 and Figure 6.16 re-

spectively. In Figure 6.17, the evolution of shear stress s over the whole domain

is depicted. The spatial profile of the shear stress s is very uniform before the

shear stress reaches its minimum at t3, followed by mildly oscillatory behaviour,

a behaviour not observed in the thermal imperfection model considered in ex-

ample 1 above. The present results are compared with those obtained by the

Modified Smooth Particle Hyrodynamics method (MSPH) (Batra and Zhang,

2004) and Chebyshev Pseudo Spectral method (CPS) (Bayliss et al., 1994) in

Tables 6.1-6.2. Despite general qualitative agreement between the methods and

some excellent quantitative agreements, there are some large differences between



6.4 Numerical examples 181

the numerical results. For the timing of key events, t1, t2, t3, t4, the present

results fall between the MSPH and the CPS results and are much closer to the

latter (within 7%), although the time lags t2 − t1, t3 − t1, t4 − t1 are virtually

identical between the present IRBFN and the MSPH methods. In contrast, the

results for γ̇peak, Θpeak, smin, Θmin, γt1 and γt2 are much closer to those obtained

by the MSPH method.

Table 6.1: Comparison of the results between methods: The results obtained
by the present IRBFN method are generally between those by the MSPH and
the CPS methods, except for the case of Θmin and γt1 .

t1 t2 t3 t4 γ̇peak Θpeak smin Θmin γt1 γt2

MSPH 0.9445 0.9455 0.9474 0.9505 11500 11 0.78 7.4 11 24
IRBFN 0.7715 0.7725 0.7744 0.7776 10606 10.95 0.84 7.48 14.0 22.1
CPS 0.7239 0.7252 0.7268 0.7284 5300 8.61 1.22 6.95 6.8 11.7

Table 6.2: Comparison of the time lags between methods: agreement is generally
excellent, except that the CPS results show an ealier occurrence of the local
temperature minimum.

t2 − t1 t3 − t1 t4 − t1
MSPH 0.001 0.0029 0.0060
IRBFN 0.001 0.0029 0.0061
CPS 0.0013 0.0029 0.0045

6.4.3 Convergence characteristics

For example 1, we use six discretisations ({Ni}p=6
i=1 = {61, 101, 141, 181, 221, 261}

uniformly spaced collocation points, i.e. spacing hi = 1/Ni) to study the con-

vergence of our method. Due to a lack of exact solution, an estimate of “error”

is computed as follows. For each level of discretisation, the governing equations

are integrated to a specified time instant just after the onset of localisation

(t = 60.507µs and t = 0.77115 for example 1 and 2, respectively) to obtain the
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spatial profile of the temperature at this time instant. Then the temperatures

at Q = 300 points are computed by interpolation (i.e. by the close form RBFN

just found) and the discrete relative L2 error is computed as

Ne =

√√√√
∑Q

j=1(Θ
i
j − Θp

j)
2

∑Q
j=1(Θ

p
j)

2
, i = 1, 2, . . . , p− 1,

where p = 6 for example 1 and 5 for example 2. Similarly, for example 2, we

use five discretisations ({Ni}p=5
i=1 = {61, 101, 141, 181, 221} uniformly spaced col-

location points). Figure 6.18 shows that the “error” is proportional to O(h2.48)

and O(h4.12) for example 1 and 2, respectively. If we set the error at 10−2, we

would need 143 collocation points for example 1, and 98 for example 2. In the

case of example 1, Batra and Zhang (2004) used 442 nodes in their investigation

by the FE and MSPH methods, while in the case of example 2, Bayliss et al.

(1994) used 61 points in their CPS method.

6.5 Conclusion

We use the meshless IRBFN method to analyze the strain localization of an

elasto-thermo-visco-plastic slab under simple shearing. We introduce a new co-

ordinate mapping that allows very high resolution of the spatial structure of the

resultant localised shear band with a relatively small number of computational

degrees of freedom, distributed uniformly in the computational domain. The

effects of elastic unloading, strain and strain rate hardening, thermal soften-

ing, heat conduction are considered. Either the thermal imperfection in the

initial conditions or the strength imperfection in the constitutive relation can

lead to severe strain localization, i.e. in a very narrow adiabatic shear band

characterised by very high plastic strain rate, rapid increase of temperature

and sudden drop of shear stress. The dynamics of formation and evolution as

well as the spatial structures of the resultant adiabatic shear band are investi-
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gated. We define a criterion that allows a consistent determination of the onset

of localization. The present results are compared favourably with those of the

Modified Smooth Particle Hyrodynamics method (Batra and Zhang, 2004), and

somewhat less efficient than the Chebyshev Pseudo Spectral method (Bayliss

et al., 1994). The governing equations are not integrated further since we are

not considering any fracture criterion.
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Figure 6.18: Convergence characteristics: (a) thermal imperfection model, (b)
strength imperfection model.



Chapter 7

Modeling elasto-plastic and

strain localization problems in

two dimensions with MIRBFN

meshless method

7.1 Introduction

Numerical simulation of shear bands and other material instability phenomena

has become of considerable interest because of its importance in prediction of

failure of materials. It is known that the classical rate-independent plastic-

ity theory does not possess an intrinsic length scale, which leads to numeri-

cal pathologies in simulation of strain localization such as mesh size and mesh

alignment sensitivities as mentioned in section 1.1. Several regularization mech-

anisms have been introduced in constitutive model, including non-local models

(Patzák and Jirásek, 2003; Le et al., 2007b, 2008a), rate-dependent models (Le

et al., 2006, 2007a), gradient-dependent models, visco-plastic models (Wang

et al., 1997), damage-based models (de Borst, 2002), and Cosserat continuum
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model (Sluys, 1992; Alsaleh, 2004). See sections 1.1 and 1.2 for a more detailed

literature review of numerical modeling of shear bands.

This chapter reports a further development of the MIRBFN Galerkin method

developed in Chapters 3 and 4 for elasto-plastic and strain localization problems

in two dimensions. Two consitutive models, namely elasto-plastic materials with

linear strain hardening and elasto-visco-plastic materials with strain softening,

are considered. In addition, preliminary results are also reported. The rest

of the chapter is organized as follows. Section 7.2 describes the constitutive

models. Section 7.3 presents the numerical algorithms of the present method

and section 7.4 reports some preliminary results. Section 7.5 concludes the

chapter.

7.2 Constitutive models

7.2.1 Rate-independent elasto-plastic materials

A classical rate-independent isotropic hardening (softening) elasto-plasticity

model (Simo and Huges, 1998) is presented as follows. In this plasticity theory,

the strain rate tensor is decomposed into an elastic ε̇e and a plastic ε̇p part

according to

ε̇ = ε̇e + ε̇p. (7.1)

Therefore the stress-strain relation can be written in a rate form as

σ̇ = De (ε̇ − ε̇p) , (7.2)

where De is the isotropic elastic constitutive tensor. The plastic strain rate

tensor is written as the product of a non-negative scalar γ̇ and the gradient of
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the yield surface

ε̇p = γ̇
∂f(σ, κ)

∂σ
, (7.3)

where f is the yield function, which is defined by

f(σ, κ) = 0, (7.4)

where κ is a scalar value, namely hardening or softening parameter which is

dependent on the strain history. For example, κ can be integrated in time via

κ =

∫ t

0

√
2

3
(ε̇p)T ε̇pdt. (7.5)

The Prager’s consistency condition is

ḟ(σ, κ) = 0, (7.6)

which can be rewritten in another form as follows.

nT σ̇ +
∂f

∂κ
κ̇ = 0, (7.7)

where n is the gradient of the yield surface

n =
∂f

∂σ
. (7.8)

The yield criterion and the loading (unloading) conditions can be expressed in

Kuhn-Tucker form as

γ̇ ≥ 0, f ≤ 0, γ̇f = 0. (7.9)

From (7.2),(7.3) and (7.7), γ̇ can be determined by

γ̇ =
nTDe

h∗ + nT Dem
ε̇, (7.10)

where h∗ is the hardening (softening) modulus.
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The relation between stress rate and strain rate is obtained by substitution of

(7.10) in (7.2) as follows.

σ̇ =

[
De −

DemnT De

h∗ + nT Dem

]
ε̇. (7.11)

The expression in brackets is called the continuum tangent stiffness matrix. The

integration of this rate equation can be done via explicit or implicit scheme such

as Euler forward or Euler backward formula.

7.2.2 Rate-dependent elasto-visco-plastic materials

In the Perzyna’s viscoplastic model (Simo and Huges, 1998), the viscoplastic

strain rate is defined as

ε̇vp = γ̇
∂f(σ, κ)

∂σ
, (7.12)

where

γ̇ =
1

η
〈f(σ, κ)〉 , (7.13)

in which η is a fluidity parameter. The notation 〈〉 is defined as

〈x〉 =






x, if x > 0,

0, otherwise.

(7.14)

7.3 Numerical algorithms

7.3.1 Weak form of MIRBFN meshless method

The weak form for the governing equations with quasi-static assumption is

expressed as ∫

Ω

δ(∇su)T σdΩ =

∫

Ω

δuT bdΩ +

∫

Γt

δuT t̄dΓ, (7.15)
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where the subscript s denotes the symmetric part of the gradient operator.

Linearisation of Equation (7.15) in conjunction with MIRBFN as described in

section 3.2.2 and nonlinear constitutive stress-strain relation (plasticity) yields

KT△u = fext − f int(u) (7.16)

uk+1
n+1 = uk

n+1 + △u, (7.17)

where f int and fext are respectively internal and external force vectors, u the

displacement vector, k and n denote the kth iteration and the nth loading step,

respectively. KT , fext and f int(u) are defined by

KT
ij =

∫

Ω

BT
i DepBjdΩ, (7.18)

fext
i =

∫

Γt

φit̄dΓ +

∫

Ω

φibdΩ, (7.19)

f int
i (u) =

∫

Ω

BT
i σdΩ, (7.20)

in which Dep is the tensor of consistent tangent elastoplastic modulus and B

given by

Bi =





(Φx)i 0

0 (Φy)i

(Φy)i (Φx)i




. (7.21)

7.3.2 Radial return mapping scheme

elasto-plasticity

A radial return mapping algorithm to update stress and internal variables for

von Mises materials and plane strain case (Simo and Huges, 1998; Krenk, 2009)

is as follows.
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Given the increment of strain

∆ε = εn+1 − εn, (7.22)

corresponding to a typical (pseudo-) time increment [tn, tn+1], and given the

state variables [σn, κn] at tn, the elastic trial state variables are

∆σ = De∆ε, (7.23)

σtrial
n+1 = σn + ∆σ, (7.24)

strial
n+1 = dev[σtrial

n+1 ], (7.25)

κtrial
n+1 = κn. (7.26)

Having computed the elastic trial state, the next step is to check whether σtrial
n+1

lies inside or outside of the trial yield surface as follows.

• If σtrial
n+1 lies inside of the yield surface, i.e. if

f trial = ‖strial
n+1‖ −

√
2

3

(
σY 0 + h∗κtrial

n+1

)
≤ 0, (7.27)

then the process within the interval [tn, tn+1] is purely elastic and the trial

state is the solution to the integration problem, i.e.

εn+1 = εtrial
n+1 ,

σn+1 = σtrial
n+1 ,

κn+1 = κtrial
n+1 ,

• Otherwise, the process is elasto-plastic and the following return mapping

is employed.

In the case of linear isotropic hardening (softening), increment of plastic



7.3 Numerical algorithms 191

multiplier ∆γ is given by

∆γ =
f trial

2G̃+ 2h∗

3

, (7.28)

where G̃ is the shear modulus.

Then the state variables are updated as follows.

εn+1 = εn + ∆ε,

κn+1 = κn +

√
2

3
∆γ,

σn+1 = K̃trace[εn+1]1 + strial
n+1 − 2G̃∆γ

strial
n+1

‖strial
n+1‖

,

where K̃ is the bulk modulus, and

1 = [1 1 1 0]T .

The consistent elasto-plastic tangent modulus Dep is computed by

Dep
n+1 = K̃1 ⊗ 1 + 2G̃Θn+1

[
I − 1

3
1 ⊗ 1

]
− 2G̃Θ̄n+1

[
strial

n+1

‖strial
n+1‖

⊗ strial
n+1

‖strial
n+1‖

]
,

(7.29)

where

Θn+1 = 1 − 2G̃∆γ

‖strial
n+1‖

,

Θ̄n+1 =
1

1 + σY 0+h∗κn+1

3G̃

− (1 − Θn+1),

I =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2




.
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Extension to elasto-visco-plasticity

The extension of the above radial return mapping to the elasto-visco-plastic

model presented in section 7.2.2 requires some minor modifications, which are

discussed in the sequel. Starting from (7.13), we define the increment of visco-

plastic multiplier ∆γvp as

∆γvp =
∆t

η
〈f(σn+1, κn+1)〉 . (7.30)

Due to the fact that in rate-dependent plasticity the loading-unloading condi-

tions are missing, the computation of ∆γvp is carried out (for f trial > 0) by

inverting (7.30) to obtain

fn+1 = f(σn+1, κn+1) =
η∆γvp

∆t
. (7.31)

The relation between fn+1 and f trial
n+1 is

fn+1 = f trial
n+1 − (2G̃+

2

3
h∗)∆γvp. (7.32)

Accordingly, one obtains

∆γvp =
f trial

n+1
η

∆t
+ 2G̃+ 2h∗

3

, (7.33)

which differs from (7.28) only for the presence of the term η
∆t

in the denominator,

which somehow plays the same role as a hardening modulus.

Finally, the tangent visco-plastic modulus is given by

Dep
n+1 = K̃1⊗1+2G̃Θn+1

[
I − 1

3
1 ⊗ 1

]
−2G̃Θ̄n+1

[
strial

n+1

‖strial
n+1‖

⊗ strial
n+1

‖strial
n+1‖

]
, (7.34)
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where

Θn+1 = 1 − 2G̃∆γvp

‖strial
n+1‖

,

Θ̄n+1 =
1

η

2G̃∆t
+ 1 + h

3G̃

− 2G̃∆γvp

‖strial
n+1‖

.

7.3.3 Orthogonal residual solver

An elegant procedure, namely orthogonal residual method, originally devised

by Krenk (Krenk, 1995; Krenk and Hededal, 1995; Kouhia, 2008), is used in this

chapter. In this method the load is adjusted in such a way that the residual

force is orthogonal to the current displacement increment. This method is well

suited with the use of iterative solvers since it does not need a block elimination

scheme. The method is supplemented with displacement increment control

(Krenk, 2009), leading to improved robustness of algorithm. The supplemented

version of the method is briefly presented as follows.

Figure 7.1: Schematic representation of orthogonal residual method.
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Algorithm 8.1. Orthogonal residual procedure

initial state: u0, fext
0 , ∆u = 0

Load increment n = 1, 2, . . . , nmax

∆u1 = (KT )−1∆fext

if (∆u1)
T ∆u < 0 then

∆u1 = −∆u1, ∆fext = −∆fext

∆u = min(1,umax/‖∆u1‖)∆u1

Iteration i = 1, 2, ... , imax

∆f int = f int(un−1 + ∆u) − fext
n−1

ξ = (∆f
int)T ∆u

(∆fext)T ∆u

R = ξ∆fext − ∆f int

δu = (KT )−1R

Stop iteration if ‖R‖
‖∆fext‖ < Tolerance

Update the state variables:

un = un−1 + ∆u

fn = fn−1 + ξ∆f

Stop load increment if n > nmax or ‖fext‖ > ‖fext
max‖

Let the equilibrium equation to be solved for be of the form

f int(u) = fext. (7.35)

Consider a single load step, let (u0, f
ext
0 ) be the last established equilibrium

state. A load increment ∆fext is applied, and the corresponding displacement

increment is

KT ∆u = ∆fext. (7.36)

This leads to the predicted displacement u0 + ∆u and internal force f int(u0 +

∆u). The load increment is now adjusted by a scaled load increment ξ∆fext
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instead of ∆fext as illustrated in Figure 7.1. The associated residual force R is

R = fext
0 + ξ∆fext − f int(u0 + ∆u) = ξ∆fext − f int(u0 + ∆u) − f int(u0)

= ξ∆fext − ∆f int, (7.37)

where ξ is the scaling factor whose optimal value is determined from orthogo-

nality condition of R and ∆u

RT∆u = 0. (7.38)

Substitution of (7.37) into (7.38) leads to

ξ =
(∆f int)T ∆u

(∆fext)T ∆u
. (7.39)

When the optimal residual R has been reached, a sub-increment of displacement

δu is determined from

KTδu = R. (7.40)

The orthogonal residual procedure is summarized in Algorithm 8.1.

7.4 Preliminary results

7.4.1 Elasto-plastic constitutive model with linear strain

hardening

Consider a finite plate with a circular hole in uniaxial tension as shown in Figure

7.2, where H = 2, W = 6 and R = 1. Owing to symmetry, a quarter of the

plate is modeled as depicted in Figure 7.3. The material parameters are taken

as, the elastic modulus E = 100, Poisson ratio ν = 0.3, the initial yield stress

σY 0 = 1, the hardening modulus h∗ = 10. Here the von Mises yield function is
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Figure 7.2: A holed plate in uniaxial tension: a mathematical model.

A

Figure 7.3: A holed plate in uniaxial tension: discretization.

used for the yield criterion.

The obtained results with 65 unstructured nodes (Figure 7.3) are as follows.

Figure 7.4 shows equilibrium path of the problem at load-step 45 (using dis-

placement of node A). The evolution of the equivalent plastic strain at Gauss

points is presented in Figures 7.5-7.7. The corresponding von Mises stress at

Gauss points at load-step 45 is also plotted in Figure 7.8.
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Figure 7.4: A holed plate in uniaxial tension with elasto-plastic constitutive
model: load versus displacement.

7.4.2 Elasto-visco-plastic constitutive model with linear

strain softening

The previous problem is considered here with a elasto-visco-plastic constitutive

relation with linear strain softening. All the parameters are the same as in the

previous example except that the softening modulus h∗ = −50 and a displace-

ment δu = v0t is applied on the left and right edges instead of the traction,

where the velocity v0 = 0.1 and the time increment ∆t = 0.01. The Perzyna

elasto-visco-plastic model is used with the fluidity parameter η = 70.

The discretised model is the same as that in previous example. The obtained

results are shown in Figures 7.9-7.12. The effect of strain softening can be

observed in Figure 7.9, which shows the equilibrium path of the problem at load-

step 15 (using displacement of node A). The evolution of strain localization is

depicted in Figures 7.10-7.11, which plot the equivalent plastic strain at Gauss

points at load-steps 10 and 15, respectively. The associated von Mises stress at

load-step 15 is also displayed in Figure 7.12.
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Figure 7.5: A holed plate in uniaxial tension with elasto-plastic constitutive
model: equivalent plastic strain at load-step 15.

7.5 Conclusion

In this chapter, the MIRBFNG meshless method has been further developed

for plasticity and strain localization problems in two dimensions. Two con-

stitutive relations, namely elasto-plasticity with strain hardening and elasto-

visco-plasticity with strain softening, are considered. The method is illustrated

with examples in section 7.4. The preliminary results indicate that the present

method is successfully applied to non-linear plasticity and strain localization

problems.
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Figure 7.6: A holed plate in uniaxial tension with elasto-plastic constitutive
model: equivalent plastic strain at load-step 25.

Figure 7.7: A holed plate in uniaxial tension with elasto-plastic constitutive
model: equivalent plastic strain at load-step 45 .
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Figure 7.8: A holed plate in uniaxial tension with elasto-plastic constitutive
model: von Mises stress at load-step 45.
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Figure 7.9: A holed plate in uniaxial tension with elasto-visco-plastic constitu-
tive model with linear strain softenig: load versus displacement.
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Figure 7.10: A holed plate in uniaxial tension with elasto-visco-plastic consti-
tutive model with linear strain softenig: strain localization at load-step 10.

Figure 7.11: A holed plate in uniaxial tension with elasto-visco-plastic consti-
tutive model with linear strain softenig: strain localization at load-step 15.
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Figure 7.12: A holed plate in uniaxial tension with elasto-visco-plastic consti-
tutive model with linear strain softenig: von Mises stress at load-step 15.



Chapter 8

Modeling elasto-static crack

problems with an extended

MIRBFN (XMIRBFN) meshless

method

This chapter presents a new meshless method based on MIRBFN Galerkin

meshless method and local partition of unity enrichment for linear crack prob-

lems. In the present method, the shape functions are constructed within sub-

domains instead of the global domain. The system matrix is thus sparse and

banded. The feature of the method is that the shape functions satisfy the

Kronecker-delta property, which facilitates the imposition of essential bound-

ary conditions. The method is verified by various benchmark examples and

compared with the extended finite element method (XFEM) and the element

free Galerkin (EFG) method. The results demonstrate that the present method

achieves high accuracy and rates of convergence.
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8.1 Introduction

Fracture mechanics is of major importance in engineering design and prediction

of life of structures. Although this discipline has been the object of intensive

research interest in the academic community in the last decades, numerical

modeling of fracture mechanics still faces challenges. Several methods developed

to model cracks have been reported in finite element and meshless literatures.

In the finite element method, simplified approaches have been introduced for

crack problems, including adaptive remeshing (Pastor et al., 1991; Potyondy

et al., 1995; Askes, 2000; Schollmann et al., 2003; Patzák and Jirásek, 2004;

Li et al., 2005) and element deletion (Fan and Fish, 2008). Although these

approaches are useful, more accurate methods are necessary for certain classes

of problems. A very accurate method among the FEMs is the extended finite

element method (XFEM) (Belytschko and Black, 1999; Moës et al., 1999a; Bor-

das et al., 2008a), in which the solution space is enriched by a priori knowledge

about the behaviour of the solution near a discontinuity with the use of the

partition of unity concept. Recently developed XFEM has been proven to be

an efficient tool for computational fracture mechanics, including multiple-cracks

simulation (Budyn et al., 2004). This method can also deal with arbitrary crack

or shear band propagation without adaptive remeshing. Difficulties occur in the

so-called blending regions (Chessa et al., 2003), i.e. regions that are partially

enriched. Partition of unity does not hold in the blending regions leading to

inaccurate solutions. However, such difficulties in the blending region can be

overcome by shifting in partition of unity method or using a ramp function to

localize the enrichment functions (Fries, 2008).

In contrast to the FEM, meshless methods offer some advantages that include

inter alia higher order continuity, non-local approximation, insensitivity to mesh

distortion, ease in h-refinement and no need for mesh generation. Thus, mesh-

less methods provide more continuous solutions than the piece-wise continuous
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ones obtained by the FEM. Among the meshless methods, the element free

Galerkin method (EFG) (Belytschko et al., 1994), which is based on moving

least square approximations, is one of the most frequently used meshless meth-

ods. This method has been very successfully applied to fracture mechanics and

discontinuous problems such as cracks and shear bands (Rabczuk et al., 2007a;

Rabczuk and Samaniego, 2008; Bordas et al., 2008c; Rabczuk et al., 2007c). Re-

cently, partition of unity based enrichment functions have been introduced in

the EFG method (Rabczuk and Belytschko, 2004a, 2007a) to further improve

its performance with discontinuous problems. Reviews of meshless methods

can be found in Belytschko et al. (1996b) and Nguyen et al. (2008a), for ex-

ample. However, the major disadvantage of the EFG as well as moving least

square (MLS) based meshless methods is that the shape functions lack the

Kronnecker-delta property, i.e. φi(xj) 6= δij . Therefore, essential boundary

conditions cannot be imposed in strong form as in the FEM. Attempts to over-

come this shortcoming include Lagrange multiplier and penalty method (Zhu

and Atluri, 1998), Nitsche’s method (Fernández-Mández and Huerta, 2004),

point collocation (Wanger and Liu, 1999), singular weight functions (Kaljevic

and Saigal, 1997), and coupling with FEM (Belytschko et al., 1995b; Rabczuk

et al., 2006).

This chapter presents a novel meshless approach based on MIRBFN Galerkin

meshless method (Le et al., 2010c,b) and local partition of unity enrichment,

namely eXtended MIRBFN (XMIRBFN) Galerkin meshless method, for elasto-

static crack problems. In the present method, the shape functions are con-

structed within subdomains instead of the global domain. The system ma-

trix is thus sparse and banded. The shape functions satisfy the Kronnecker-

delta property, therefore, essential boundary conditions are imposed easily and

straightforwardly as in the FEMs. The remaining of this chapter is organized

as follows. The local PU enrichment of MIRBFN approximation is briefly pre-

sented in section 8.2.1 followed by the Galerkin discretization for elasto-static

crack problems in section 8.2.2. Section 8.3 reports the benchmark verification
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Figure 8.1: Domain of influence of nodes partially and completely cut by a crack

and section 8.4 draws some conclusions.

8.2 Extended Moving IRBFN prodedure

8.2.1 Local PU enrichment

The displacement field is decomposed into a standard part ustd and a discon-

tinuous part uenr

u(x) = ustd(x) + uenr(x), (8.1)

where ustd is approximated by the ‘standard’ MIRBFN procedure constructed

in section 3.2.

The discontinuous displacement approximation is only required in a sub-domain

influence by the crack as illustrated in Figure 8.1. The approximation of the

discontinuous displacement field can be written as (Moës et al., 1999a; Ventura

et al., 2002; Rabczuk and Zi, 2007)
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uenr(x) =
∑

J∈N step

ΦJ(x) [H(x) −H(xJ)]aJ+
∑

K∈NTip

ΦK(x)

4∑

κ=1

[Bκ(x) − Bκ(xK)]bKκ,

(8.2)

where N step is the set of enriched nodes whose support is entirely cut by the

crack, N T ip is the set of nodes whose support is partially cut by the crack

(Figure 8.1), H(x) is the step enrichment functions

H(x) =





+1 if (x − x∗) · n ≥ 0,

−1 otherwise,
(8.3)

where x is a sample point, x∗ (on the crack) is the closest point projection of

x, and n is the unit outward normal to the crack at x∗, Bκ is the set of tip

enrichment functions

Bκ =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]
(8.4)

where r and θ are polar coordinates in the local crack tip coordinate system

and aJ and bKκ are additional unknowns that need to be solved for.

Explicitly, the displacement approximation is

uh(x) =
∑

I

ΦI(x)uI +
∑

J∈N step

ΦJ(x) [H(x) −H(xJ)] aJ

+
∑

K∈NTip

ΦK(x)

4∑

κ=1

[Bκ(x) −Bκ(xK)]bKκ.

(8.5)
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Figure 8.2: A body with internal discontinuous surface subjected to loads.

8.2.2 Variational form of 2D elasticity crack problems

Consider the following two-dimensional problem on a domain Ω bounded by

Γ = Γu

⋃
Γt as shown in Figure 8.2. The equilibrium equation and boundary

conditions are

∇ · σ + b = 0 in Ω, (8.6a)

u = ū on Γu, (8.6b)

σ · n = t̄ on Γt, (8.6c)

σ · n = 0 on Γd+ , (8.6d)

σ · n = 0 on Γd−, (8.6e)

n− = n+ = n, (8.6f)

in which σ is the stress tensor, which corresponds to the displacement field u

and b is the body force, n the outward unit normal to Γt and Γd (discontinuous

surface). The superimposed bar denotes prescribed values on the boundary.

The weak form for the above equations is expressed as

∫

Ω

δ(∇su)T σdΩ =

∫

Ω

δuT bdΩ +

∫

Γt

δuT t̄dΓ, (8.7)
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where the subscript s denotes the symmetric part of the gradient operator.

Discretization of Equation (8.7) with Equation (8.5) yields

Ku = f , (8.8)

where

Kij =

∫

Ω

BT
i CBjdΩ, (8.9)

fi =

∫

Γt

Φit̄dΓ +

∫

Ω

ΦibdΩ (8.10)

Bi =
[
Bstd

i | Benr
i

]
, (8.11)

Bstd
i =





(Φx)i 0

0 (Φy)i

(Φy)i (Φx)i




, (8.12)

Benr
i =





(Φx)i [Ψ(x) − Ψ(xi)] + Ψ(x),xΦi 0

0 (Φy)i [Ψ(x) − Ψ(xi)] + Ψ(x),yΦi

(Φy)i [Ψ(x) − Ψ(xi)] + Ψ(x),yΦi (Φx)i [Ψ(x) − Ψ(xi)] + Ψ(x),xΦi




,

(8.13)

where Ψ(x) is either H(x) or Bκ(x). For a linear Hookean constitutive relation,

the matrix C in the case of plane strain is
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C =
E

(1 + ν)(1 − 2ν)





1 − ν ν 0

ν 1 − ν 0

0 0 1−2ν
2




, (8.14)

where E is elastic modulus and ν Poisson ratio.

8.2.3 Numerical Integration

As a global weak form, a background mesh independent of nodes is necessary

for numerical integration. In this chapter a background mesh of uniform rect-

angular cells is employed. Gauss quadrature rule is used to obtain the discrete

equations. Due to the presence of the discontinuity and singularity at the

crack tip, the quadrature cells cut by the crack or containing the crack tips

are partitioned into sub-triangles as depicted in Figure 8.3 to further improve

the accuracy of the method. Another approach is to modify the quadrature

weights (Rabczuk and Areias, 2006; Rabczuk et al., 2007b), which does not re-

quire sub-triangulation. Furthermore, care should be taken at crack tips due to

the presence of the singularity. To perform more accurate numerical integration

with the standard Gauss quadrature points, a mapping method introduced by

Nagarajan and Mukherjee (Nagarajan and Mukherjee, 1993; Park et al., 2009)

is as follows.

TM : (x, y) 7−→ (ρ, θ), (8.15)

where

x = ρ cos2 θ, y = ρ sin2 θ. (8.16)

This mapping, which transforms a rectangle in to a triangle as shown in Figure

8.4, is able to eliminate the singularity in the integrand. Another approach is to

transform the domain integral into a line integral as proposed by Ventura et al.

(2009) and in the context of the smoothed finite element method by Bordas
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Figure 8.3: Schematic representation of sub-triangulation of integration cells.

et al. (2008b).

8.3 Numerical examples

For an error estimation and convergence study, the displacement error norm

and energy error norm are defined as follows

displacement norm =

√∫

Ω

(unum − uexact)T (unum − uexact)dΩ, (8.17)

energy norm =

√
1

2

∫

Ω

(εnum − εexact)T (σnum − σexact)dΩ, (8.18)

where the superscripts num and exact denote numerical and exact solutions,

respectively; the stress and strain components are presented in vector form σ
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Figure 8.4: Mapping transformation of integration on a rectangle into integra-
tion on a unit triangle for near singular enrichment functions.

and ε, respectively.

The convergence order of the solution with respect to the refinement of spatial

discretization is assumed to be in the form of

error(h) ≈ ζhλ = O(hλ), (8.19)

where h is the maximum nodal spacing, ζ and λ are the parameters of the

exponential model, which are found by general linear least square formula.

In the following numerical examples, α and β are referred to as the scale factor

of the radius of the domains of influence and the shape parameter of the RBF

given in (1.8), respectively. α is defined by α = Rs/h, where Rs is the radius of

the domains of influence (see equation (3.15)).
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Figure 8.5: Infinite cracked plate under remote tension

8.3.1 Infinite plate with a straight crack

Consider an infinite plate containing a straight crack of length 2a and loaded

by a remote uniaxial stress field σ as shown in Figure 8.5. Under plane strain

condition, the closed form solution in terms of polar coordinates in a reference

frame (r, θ) centered at the crack tip is given by (body force is zero)

σx =
KI√
r

cos
θ

2

(
1 − sin

θ

2
sin 3

θ

2

)
, (8.20a)

σy =
KI√
r

cos
θ

2

(
1 + sin

θ

2
sin 3

θ

2

)
, (8.20b)

τy =
KI√
r

sin
θ

2
cos

θ

2
cos 3

θ

2
, (8.20c)
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Figure 8.6: Infinite cracked plate: discretised with 50 × 50 nodes.

and the corresponding displacement field is given by

ux =
2(1 + µ)√

2π

KI

E

√
r cos

θ

2

(
2 − 2µ− cos2 θ

2

)
, (8.21a)

uy =
2(1 + µ)√

2π

KI

E

√
r sin

θ

2

(
2 − 2µ− cos2 θ

2

)
, (8.21b)

where KI = σ
√
πa is the stress intensity factor, µ is Poisson’s ratio and E is the

Young’s modulus. ABCD is a square patch of 2 × 2 in2, a = 100 in; E = 105

psi, µ = 0.3 , σ = 1 psi.

The computational domain ABCD shown in Figure 8.5 is discretised as shown

in Figure 8.6 where the crack has a length of b = 1 in. The boundary condition

of the problem is as follows. The traction free boundary condition is applied

on the crack while the displacement field given in equation (8.21) is imposed on

the remaining boundaries.

The influence of β on the accuracy of the method is illustrated in Figure 8.7.

It can be seen that the accuracy consistently increases up to β = 5 and then

decreases with higher values of β. This reduction can be explained by the nature
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Figure 8.7: Infinite cracked plate: energy error norm versus different values of
β with 30 × 30 nodes (α = 2.1).
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Figure 8.8: Infinite cracked plate: (a) XMIRBFN solution and (b) exact solution
to ux with 50 × 50 nodes.
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Figure 8.9: Infinite cracked plate: (a) XMIRBFN solution and (b) exact solution
to uy with 50 × 50 nodes.
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(a) (b)

Figure 8.10: Infinite cracked plate: (a) XMIRBFN solution and (b) exact solu-
tion to σx with 50 × 50 nodes.

(a) (b)

Figure 8.11: Infinite cracked plate: (a) XMIRBFN solution and (b) exact solu-
tion to σy with 50 × 50 nodes.

of RBFN approximation since the higher values of β lead to ill-conditioned

systems. Therefore, for all numerical examples, β is set to 5, and α is 2.1 since

small values of α will keep the method efficient. It is noted that the scheme of

selecting RBF centers presented in section 3.2.3 is also applied in this chapter.

The numerical solutions to displacement and stress obtained with 50×50 nodes

and the analytical solutions are plotted in Figures 8.8-8.12. The comparison

indicates an excellent agreement between the solutions obtained by the proposed

method and the exact solutions.

Figure 8.13 and Figure 8.14 show the convergence behaviour of the proposed

method with uniform dicretisations using displacement error norm and energy
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(a) (b)

Figure 8.12: Infinite cracked plate: (a) XMIRBFN solution and (b) exact solu-
tion to σxy with 50 × 50 nodes.
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Figure 8.13: Infinite cracked plate: L2 error norm for displacement.

error norm, respectively. The convergence rates are 2.88 and 1.41 for the former

and the latter, respectively. It is noted that the convergence rates of the linear

XFEM (Laborde et al., 2005) and the EFG methods (Fleming et al., 1997;

Ventura et al., 2002; Rabczuk and Zi, 2007) using energy error norm are 0.50

and 0.86, respectively.

To verify the local convergence near the crack tip with uniform dicretisations,

the mode I stress intensity factor (SIF) KI is computed by using the J-integral

in its converted form of domain integral (Moës et al., 1999b). Figure 8.15 shows

the normalized value of KI

Kexact
I

for the various nodal refinements. Figure 8.16
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Figure 8.14: Infinite cracked plate: L2 error norm for energy.

presents the convergence behaviour of KI , where the relative error in SIF is

defined by

error in SIF =

√
(KI −Kexact

I )2

(Kexact
I )2

. (8.22)

The figures demonstrate that a very high rate of local convergence is obtained,

i.e. 4.395.

8.3.2 Edge-cracked plate under tension

A plate of dimension 1 × 2 in2 is loaded in tension with σ = 1.0 psi over the

top edge and bottom edge as shown in Figure 8.17. To get rid of the rigid body

mode, the displacement along the y axis is fixed at the bottom right corner, and

the plate is clamped at the bottom left corner. The material parameters are

103 psi for Young’s modulus and 0.3 for Poisson’s ratio. The reference mode I

SIF as given in Tada et al. (2000) is

Kref
I = F

( a
W

)
σ
√
πa, Kref

II = 0, (8.23)
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Figure 8.15: Infinite cracked plate: convergence of KI .

where a is the crack length, W is the plate width, and F
(

a
W

)
is an empirical

function. For a/W ≤ 0.6, the function F is

F

(
a

W

)
= 1.12 − 0.231

(
a

W

)
+ 10.55

(
a

W

)2

− 21.72

(
a

W

)3

+ 30.39

(
a

W

)4

.

(8.24)

Table 8.1: Edge-cracked plate in tension: normalised KI

Kref
I

computed by the

present method compared to that of XFEM and EFG

a (in) XFEM (linear) XFEM (quadratic) EFG XMIRBFN Kref
I

0.23 0.9202 0.9906 1.0150 0.9935 1.2303
0.50 0.8836 0.9899 1.0025 1.0012 3.5423

The whole domain of interest is discretized with 12 × 24 nodes as shown in

Figure 8.18. The deformed configuration with a = 0.5 in is shown in Figure

8.19. The obtained SIF KI compared with those by the XFEM with 12×12

nodes (Stazi et al., 2003) and the EFG using symmetrical conditions with 11×11

nodes (Belytschko et al., 1995a) are presented in Table 8.1, which indicates that

the obtained results are more accurate than those of the XFEM and the EFG

methods.
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Figure 8.16: Infinite cracked plate: relative error of KI .

8.3.3 Edge-cracked plate under shear loading

A plate is clamped on the bottom edge and loaded by a shear traction τ = 1.0

psi over the top edge as shown in Figure 8.20. The geometric dimensions are

W = 7 in, H = 16 in, a = 3.5 in. The material parameters are 3 × 107 psi for

Young’s modulus and 0.25 for Poisson’s ratio. The reference mixed mode stress

intensity factors as given in Yau and Corten (1980) are

Kref
I = 34.0 psi

√
in

Kref
II = 4.55 psi

√
in

(8.25)

Table 8.2: Edge-cracked plate under shearing: KI and KII computed by the
present method

XMIRBFN
Nodes KI KII

KI

Kref
I

KII

Kref
II

6×12 41.1500 4.9355 1.2103 1.0847
10×20 36.4650 4.3881 1.0725 0.9644
12×26 33.5200 4.5415 0.9858 0.9981
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Figure 8.17: Edge-cracked plate under tension

Figure 8.18: Edge-cracked plate under tension: discretization with 12×24 nodes

Table 8.3: Edge-cracked plate under shearing: SIFs by EFG (Fleming et al.,
1997)

standard EFG extrinsic EFG intrinsic EFG
Nodes KI

Kref
I

KII

Kref
II

KI

Kref
I

KII

Kref
II

KI

Kref
I

KII

Kref
II

5× 11 0.7912 0.7538 1.0126 1.0066 0.9482 0.9253
11× 29 0.9562 0.9516 1.0062 1.0000 0.9962 0.9978
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Numerical deformed shape

Figure 8.19: Edge-cracked plate under tension: deformed configuration with
12 × 24 nodes.

The numerical solution to uy(x, y) with 12 × 26 nodes is plotted in Figure 8.21.

The mixed mode SIFs obtained by the present method with different nodal

configurations are given in Table 8.2. It can be seen that the results are in

good agreement with those of the EFG method of Fleming et al. (1997), who

also used partition of unity enriched EFG formulations (extrinsic and intrinsic),

shown in Table 8.3.

8.3.4 Center crack in a finite plate

Consider a finite plate with a center crack under tension. The geometry of the

plate is described in Figure 8.22,where a is the half crack length and b is the

half width of the plate, a = 0.25 in, h = 3 in, b = 1 in and σ = 1 psi is

the tensile load applied at the top and the bottom of the plate. The material

parameters are E = 3× 107 psi, µ = 0.25. To remove the rigid body mode, the

displacement along the y axis is fixed at the bottom right corner, and the plate
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Figure 8.20: Edge-cracked plate under shearing

is clamped at the bottom left corner.

The reference stress intensity factors for this problem (Tada et al., 2000) are

Kref
I = σ

√
πa sec

πa

2b
, Kref

II = 0 (8.26)

The reference SIF for the above parameters is Kref
I = 0.9220 psi

√
in.

The purpose of this example is to illustrate the performance of the method with

problems containing multiple crack tips. Thus, the symmetry is not taken into

account in order to verify the same behaviour of the two crack tips.

Table 8.4: Center crack in a finite plate: KI computed by the present method
KI

Nodes tip 1 tip 2
Ktip1

I

Kref
I

Ktip2

I

Kref
I

16×48 0.9023 0.9240 0.9786 1.0022
21×62 0.9212 0.9273 0.9991 1.0057

The numerical solution to uy(x, y) and the deformation of the plate are displayed

in Figures 8.23 and 8.24, respectively. The SIFs KI with different numbers of
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Figure 8.21: Edge-cracked plate under shearing: XMIRBFN solution to uy(x, y)
with 12×26 nodes

nodes compared to the Kref
I are given in Table 8.4. The comparison shows

that the obtained results excellently agree with the reference solution and the

behaviour at the two crack tips are almost the same.

8.3.5 Double edge crack plate

The last example is another classical problem of fracture mechanics. A double

edge crack plate is subjected to tensile stresses, as shown in Figure 8.25. The

geometrical parameters are h = 1.5 in, b = 0.5 in, a = 0.25 in. The material

parameters are E = 3 × 107 psi, µ = 0.25. The plate is stretched by a tensile

stress σ = 1 psi at the top and the bottom. To remove the rigid body mode,

the displacement along the y axis is fixed at the bottom right corner, and the

plate is clamped at the bottom left corner.

The reference SIF given in Tada et al. (2000) is
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Figure 8.22: Center crack in a finite plate under tension

Table 8.5: Double edge crack plate: KI computed by the present method
KI

Nodes tip 1 tip 2 Kref
I

11×32 1.0318 1.0364 1.0305
15×44 1.0307 1.0250 1.0305

Kref
I = F

(a
b

)
σ
√
πa, Kref

II = 0, (8.27)

where

F
(a
b

)
=

(
1 + 0.122 cos4

πa

2b

)
√

2b

πa
tan

πa

2b
. (8.28)

The domain of interest is discretized with 11×32 and 15×44 nodes. The nu-

merical solutions to displacement ux(x, y) and uy(x, y) with 15×44 nodes are

plotted in Figures 8.26 and 8.27, respectively. The deformation of the structure

is described in Figure 8.28. The SIF by the present method is presented in Ta-

ble 8.5, which shows a very good agreement between the obtained results and

the reference SIF.
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Figure 8.23: Center crack in a finite plate: XMIRBFN solution to uy(x, y) with
21 × 62 nodes.

8.4 Conclusion

A new meshless method has been developed for modeling fracture problems

by using a local partition of unity enrichment approach. A remarkable fea-

ture of the proposed method is that the essential (Dirichlet) boundary condi-

tions are imposed exactly and easily since the shape functions possesses the

Kronecker-delta property. The numerical experiments demonstrate that the

proposed method performs well for linear fracture mechanics problems which

encounter the problematic issues of discontinuity and singularity.

In addition, the local support, high convergence rate and high order continu-

ity make MIRBFN very promising for meshless methods. The method is also

applicable to other discontinuous problems such as inclusion and bimaterial in-

terface problems, and can be readily extended to nonlinear fracture mechanics

problems and three dimensions, which is going to be carried out in our next

works.
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Numerical deformed shape

Figure 8.24: Center crack in a finite plate: deformed configuration with 21×62
nodes.
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Figure 8.25: Double edge crack plate
.
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Figure 8.26: Double edge crack plate: XMIRBFN solution to ux(x, y) with
15 × 44 nodes.
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Figure 8.27: Double edge crack plate: XMIRBFN solution to uy(x, y) with
15 × 44 nodes.
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Numerical deformed shape

Figure 8.28: Double edge crack plate: deformed configuration with 15 × 44
nodes.



Chapter 9

Conclusion

The aim of this research is to devise and develop new meshless methods based

on RBF networks to model strain localization and fracture phenomena. This

has been attained by a number of logical steps in two major parts of the thesis,

progressing from developing meshless methods for smooth problems to discon-

tinuous problems. Part I, consisting of chapters 2-4, primarily focuses on de-

vising and developing the new RBF-based meshless methods for PDEs whose

solution is smooth, for example, heat transfer, elasticity and crack problems.

Part II is concerned with further development and application of the meshless

methods in Part I for simulation of discontinuous problems, in particular, strain

localization (chapters 5, 6 and 7) and fracture (chapter 8).

The outcome of the current research is the successful formulation and imple-

mentation of new meshless methods based on the present MIRBFN procedure.

The creation of MIRBFN method is based on the partition of unity concept,

where IRBFN and MLS procedures are coupled together. As a result, the

proposed MIRBFN method is locally supported and yields sparse and banded

interpolation matrices. The computational efficiency are significantly improved

in comparison with that of the original global IRBFN method. In addition, the

shape functions of MIRBFN satisfy the Kronecker-δ property, which facilitates
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the imposition of the essential boundary conditions, and the method is appli-

cable to randomly distributed datasets and arbitrary geometries. Furthermore,

MIRBFNs yield high order of convergence and accuracy for function approxi-

mation and solution of PDEs owing to the property of PU method (non-local

approximation), the universal high order approximation ability offered by RBFs

and the avoidance of the reduction in convergence rate caused by differentiation

(integral approach). The MIRBFN technique is employed in both strong and

weak form approaches to formulate different meshless methods.

Owing to their simplicity and efficiency, strong form meshless methods are im-

plemented by using a collocation procedure with IRBFNs (chapters 2, 5 and 6)

and MIRBFNs (chapter 3). To overcome the problem of reduction of accuracy

associated with natural (Neumann) boundary conditions in a collocation frame-

work, a first-order system collocation technique is introduced in chapter 2 and

successfully applied to various problems including heat transfer, elasticity and

crack (reported in chapters 2 and 3). Moreover, the robustness and effectiveness

of the IRBFN-based meshless collocation are also successfully demonstrated

by simulation of strain localization in quasi-brittle materials (chapter 5) and

in elasto-thermo-visco plastic materials (chapter 6), where the occurrence of

boundary layer and discontinuity is a significant challenge for numerical meth-

ods.

In numerical computation weak form methods are still most frequently used

since they yield good stability and reasonable accuracy for many problems.

A new weak form meshless method based on MIRBFNs is also proposed and

successfully verified with various problems in elasticity, including cracks, in

chapter 4. In contrast to collocation approach, in this method both natural and

essential boundary conditions are accommodated straightforwardly because of

the nature of the weak form approach for the natural BCs and the Kronnecker-

delta property of MIRBFN shape functions for the essential BCs. The method

is further developed for elasto-static crack problems by using a local partition
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of unity enrichment technique (chapter 8). A wide range of crack problems

including mixed mode, multiple crack tips and multiple cracks is used for testing

the performance of the XMIRBFN meshless method. The obtained results in

chapter 8 also indicate that the new method is compared favorably with XFEM

and very promising for modeling discontinuity problems.

Finally, it is possible to extend the present methods for several 2D and 3D

problems, for example,

• modeling of non-linear fracture mechanics including multiple crack initi-

ation, propagation and interaction in 2D and 3D;

• simulation of strain localization (shear bands) in 2D and 3D;

• simulation and prediction crack pattern in composite materials such as

reinforced concrete.



Appendix A

Near crack tip asymptotic

enrichment functions and

computation of stress intensity

factor

A.1 Derivatives of near crack tip enrichment

functions

To compute the stiffness matrices for nodes enriched by the near tip asymptotic

functions Φκ, the following expression is to be determined

(ΦiΨκ),x = (Φi),xΨκ + Φi(Ψκ),x, (A.1a)

(ΦiΨκ),y = (Φi),yΨκ + Φi(Ψκ),y, (A.1b)

where Ψκ,x and Ψκ,y are the derivatives of Ψκ with respect to the global Carte-

sian coordinate system. These derivatives are, at first, found in the local crack
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tip coordinate system (x1, x2) (Figure A.1), then a vector transformation is used

to transform them into the global Cartesian coordinate system (x, y).

The derivatives of Ψκ with respect to the local crack tip coordinate system

(x1, x2) are given by

(Ψκ),x1
= (Ψκ),rr,x1

+ (Ψκ),θθ,x1
, (A.2a)

(Ψκ),x2
= (Ψκ),rr,x2

+ (Ψκ),θθ,x2
. (A.2b)

The near tip enrichment functions are recalled for ease of reading

Ψκ(r, θ) =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
. (A.3)

The derivatives of Ψκ with respect to the polar coordinate (r, θ) are

(Ψ1),r =
1

2
√
r

sin
θ

2
, (Ψ1),θ =

√
r

2
cos

θ

2
, (A.4a)

(Ψ2),r =
1

2
√
r

cos
θ

2
, (Ψ2),θ = −

√
r

2
sin

θ

2
, (A.4b)

(Ψ3),r =
1

2
√
r

sin
θ

2
sin θ, (Ψ3),θ =

√
r(

1

2
cos

θ

2
sin θ + sin

θ

2
cos θ), (A.4c)

(Ψ4),r =
1

2
√
r

cos
θ

2
sin θ, (Ψ4),θ =

√
r(−1

2
sin

θ

2
sin θ + cos

θ

2
cos θ). (A.4d)

The derivatives of r and θ with respect to (x1, x2) are as follows.

r,x1
= cos(θ), r,x2

= sin θ, (A.5a)

θ,x1
= − sin θ/r, θ,x2

= cos θ/r. (A.5b)

Finally, we have the derivatives of Ψκ with respect to the local crack tip system

(Ψ1),x1
= − 1

2
√
r

sin
θ

2
, (A.6a)
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(Ψ1),x2
=

1

2
√
r

cos
θ

2
, (A.6b)

(Ψ2),x1
=

1

2
√
r

cos
θ

2
, (A.7a)

(Ψ2),x2
=

1

2
√
r

sin
θ

2
, (A.7b)

(Ψ3),x1
= − 1

2
√
r

sin
3θ

2
sin θ, (A.8a)

(Ψ3),x2
=

1

2
√
r
(sin

θ

2
+ sin

3θ

2
cos θ), (A.8b)

(Ψ4),x1
= − 1

2
√
r

cos
3θ

2
sin θ, (A.9a)

(Ψ4),x2
=

1

2
√
r
(cos

θ

2
+ cos

3θ

2
cos θ). (A.9b)

Figure A.1: Global and local coordinate systems

Using a vector transformation, the derivatives of near tip enrichment functions

with respect to the global coordinate system are given by

(Ψκ),x = (Ψκ),x1
cos(α) − (Ψκ),x2

sin(α), (A.10a)

(Ψκ),y = (Ψκ),x1
sin(α) + (Ψκ),x2

cos(α), (A.10b)

where α is the inclination angle of the crack with respect to the x axis of the

global coordinate system (see Figure A.1).
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A.2 Contour integrals and their

domain representations in two-dimensions

Among the numerical methods for computing fracture parameters, boundary

integral methods (Forth and Keat, 1996; Sladek et al., Jan 2000) and the domain

integral method (Shih et al., 1986; Nikishkov and Atluri, 1987; Moran and

Shih, 1987) have been proved adequate tools. In this work, the domain integral

method, in conjunction with interaction energy integrals, is used to determine

mixed-mode stress intensity factors. In the interaction energy integral method,

auxiliary fields are introduced and superimposed onto the actual fields satisfying

the boundary value problem. By suitably selecting these auxiliary fields, a

relationship can be established between the mixed-mode stress intensity factors

and the interaction energy integrals. These integrals can be represented in

the so-called domain forms and evaluated in a post-processing step, once the

solution to the boundary value problem is known.

The energy release rate for general mixed-mode problems in two dimensions can

be written as

J =
1

E∗

(
K2

I +K2
II

)
, (A.11)

where E∗ is defined as

E∗ =






E
1−ν2 for plane strain,

E for plane stress
(A.12)

Consider a crack in two dimensions. A local Cartesian crack tip coordinate

system (e1, e2) is constructed. Let Γ be a contour encompassing the crack tip

and n be the unit normal to the contour Γ, oriented as shown in Figure A.2.
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The contour integral J is defined as (Rice, 1968)

J =

∫

Γ

[
Wdx2 − Ti

∂ui

∂x1
dΓ

]
=

∫

Γ

[
Wδ1j − σij

∂ui

∂x1

]
njdΓ, (A.13)

where Ti = σijnj is the traction on the contour Γ.

Two states of a cracked body are considered. State 1, (σ
(1)
ij , ǫ

(1)
ij , u

(1)
i ), corre-

sponds to the present state and state 2, (σ
(2)
ij , ǫ

(2)
ij , u

(2)
i ), is an auxiliary state.

The J-integral for the sum of the two states is

J (1+2) =

∫

Γ

[
1

2
(σ

(1)
ij + σ

(2)
ij )(ǫ

(1)
ij + ǫ

(2)
ij )δ1j − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
njdΓ.

(A.14)

Expanding and rearranging terms gives

J (1+2) = J (1) + J (2) + I(1+2), (A.15)

where I(1+2) is the interaction integral for states 1 and 2

I(1+2) =

∫

Γ

[
W (1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1

− σ
(2)
ij

∂u
(1)
i

∂x1

]
njdΓ, (A.16)

where W (1,2) is the interaction strain energy

W (1,2) = σ
(1)
ij ǫ

(2)
ij = σ

(2)
ij ǫ

(1)
ij . (A.17)

Writing equation (A.11) for the combined states gives

J (1,2) = J (1) + J (2) +
2

E ′
(K

(1)
I K

(2)
I +K

(2)
II K

(1)
II ). (A.18)
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Equating (A.15) and (A.18) leads to the following relationship

I(1+2) =
2

E∗
(K

(1)
I K

(2)
I +K

(2)
II K

(1)
II ). (A.19)

Making suitable choice of state 2 as the pure mode I asymptotic fields with

K
(2)
I = 1, K

(2)
II = 0, gives the mode I SIF in terms of the interaction integral

K
(1)
I =

E∗

2
I(1,ModeI). (A.20)

Similarly, choosing state 2 as the pure mode II asymptotic fields with K
(2)
II =

1, K
(2)
I = 0, gives the mode II SIF in terms of the interaction integral

K
(1)
II =

E∗

2
I(1,ModeII). (A.21)

The contour integral (A.16) is not well suited for its numerical evaluation. It

is useful, therefore, to transform this integral into an equivalent domain form

by multiplying the integrand with a sufficiently smooth weighting function q(x)

which takes a value of unity on an open set containing the crack tip and vanishes

on an outer prescribed contour C0.

The interaction integral for states 1 and 2 can be written (see Figure A.2):

I(1,2) = lim
Γ→0






∫

Γ∪C0∪C+∪C−

[
W (1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1

− σ
(2)
ij

∂u
(1)
i

∂x1

]
qmjds




 . (A.22)

In Figure A.2, let the contour C be the union of the curves Γ, C0, C
+ and C−

and let mj be the outward unit normal to the domain A whose boundary is

∂A = C = Γ∪C0 ∪C+ ∪C−. The outward unit normal mj to the domain A is

m =






−n on Γ

+n on C0 ∪ C+ ∪ C−

(A.23)
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Figure A.2: Domain used for computation of mixed mode stress intensity factors
in two dimensional space

From (A.22), and using the result in (A.23), and the divergence theorem the

interaction integral can be simplified to

I(1,2) =

∫

A

[
−W (1,2)δ1j + σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1

]
∂q

∂xj
dA. (A.24)

After the solution of the boundary value problem, we obtained the stress and

displacement fields of state 1, i.e. σ
(1)
ij , u

(1)
i and the spatial derivatives of the dis-

placement field in the global Cartesian coordinate system u
(1)
i,x , and u

(1)
i,y . These

terms need to be transformed to the local crack tip coordinate system by using

an appropriate vector transformation.

The derivatives of the displacement field with respect to x1, x2 are given as



u
(1)
1,x1

u
(1)
1,x2

u
(1)
2,x1

u
(1)
2,x2



 =



 cosα sinα

− sinα cosα







u
(1)
1,x u

(1)
1,y

u
(1)
2,x u

(1)
2,y







cosα − sinα

sinα cosα



 (A.25)

where α is the inclination angle between the local crack tip coordinate system
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and the global coordinate system, see Figure A.1.

The stress of state 1 in the local crack tip coordinate system is as follows.

σx1x1
=
σxx + σyy

2
+

(
σxx − σyy

2

)
cos(2α) + τxy sin(2α),

σy1y1
=
σxx + σyy

2
−

(
σxx − σyy

2

)
cos(2α) − τxy sin(2α),

σx1y1
= τxy cos(2α) −

(
σxx − σyy

2

)
sin(2α).

(A.26)

The distribution of weighting function can be determined by the MRBFN in-

terpolation

q =

m∑

i=1

Φiqi, (A.27)

and,

∂q

∂x
=

m∑

i=1

∂Φi

∂x
qi. (A.28)

A vector transformation is then used to convert ∂q/∂x to the local crack tip

coordinate system ∂q/∂xj

q,x1
= q,x cos(α) + q,y sin(α),

q,x2
= −q,x sin(α) + q,y cos(α).

(A.29)

In the following, the displacement, stress and strain field of the auxiliary field

are computed. Since we choose the state 2 as the pure mode I with KI = 1,

then we have

u
(2)
i =

{
ux

uy

}
=

1

2µ

√
r

2π

{
cos(θ/2)[̺−1+2 sin2(θ/2)]
sin(θ/2)[̺+1−2 cos2(θ/2)]

}

=
1

2µ

√
r

2π

{
cos(θ/2)[̺−cos(θ)]
sin(θ/2)[̺−cos(θ)]

}
,

(A.30)
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where ̺ and µ are material constants given by

µ =
E

2(1 + ν)
, ̺ =






3 − 4ν plane strain,

3−ν
1+ν

plane stress,

(A.31)

Letting

A =
1

2µ
;B =

√
r

2π
,

f1 = cos(θ/2) [̺− cos(θ)] ,

f2 = sin(θ/2) [̺− cos(θ)] .

(A.32)

The strain components of state 2 are

ǫ
(2)
ij =

1

2
(u

(2)
i,j + u

(2)
j,i ). (A.33)

The derivatives of the displacement fields are

u
(2)
1,1 = A(Bf1,1 +

f1r,1

4πB
), (A.34a)

u
(2)
1,2 = A(Bf1,2 +

f1r,2

4πB
), (A.34b)

u
(2)
2,1 = A(Bf2,1 +

f2r,1

4πB
), (A.34c)

u
(2)
2,2 = A(Bf2,2 +

f2r,2

4πB
). (A.34d)

Since r,1 = cos(θ), r,2 = sin(θ), θ,1 = − sin(θ)/r, and θ,2 = cos(θ)/r, by using

the chain rule, we can write the derivatives of f1, f2 as follows

f1,1 = f1,θθ,1, f1,2 = f1,θθ,2, (A.35a)

f2,1 = f2,θθ,1, f2,2 = f2,θθ,2, (A.35b)

f1,θ = −̺
2

sin
θ

2
+

1

2
sin

θ

2
cos θ + cos

θ

2
sin θ, (A.36a)
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f2,θ =
̺

2
cos

θ

2
− 1

2
cos

θ

2
cos θ − sin

θ

2
sin θ. (A.36b)

The stress field of Mode I is given by

σ(2)
xx =

1√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)
,

σ(2)
yy =

1√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
,

σ(2)
xy =

1√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
.

(A.37)

Since all terms in equation (A.24) are available now, Gaussian quadrature is

used for the numerical evaluation of this interaction integral

I(1,2) =
∑

subcells
inA

NGPs∑

p=1

{[
σ

(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1
−W (1,2)δ1j

]
∂q

∂xj

}
wpdetJ, (A.38)

where the domain A is divided into integration subcells, NGPs is the number of

Gauss points per integration cell and wp the weight. All terms of the state 2 are

functions of variables r, θ. Therefore, it is necessary to compute the coordinates

of Gauss points in the local crack tip coordinate system.

In the same manner, in order to compute KII , we choose state 2 as the pure

Mode II (K
(2)
I = 0) with K

(2)
II = 1.
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I. Babuška, U. Banerjee, and J. E. Osborn. Superconvergence in the generalized

finite element method. Numer. Math., 107:353—395, 2007.
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basis functions. In A. Le Méhauté, C. Rabut, and L.L. Schumaker, editors,

Surface Fitting and Multiresolution Methods, pages 131–138. Vanderbilt Uni-

versity Press, 1997.

S. Fernández-Mández and A. Huerta. Imposing essential boundary conditions

in mesh-free methods. Computer Methods in Applied Mechanics and Engi-

neering, 193:1257–1275, 2004.

M. Fleming, Y. A. Chu, B. Moran, and T. Belytschko. Enriched element-free

Galerkin methods for crack tip fields. International Journal for Numerical

Methods in Engineering, 40:1483–1504, 1997.



REFERENCES 252

S.C. Forth and W.D. Keat. Three-dimensional nonplanar fracture model using

the surface integral method. International Journal of Fracture, 77:243–262,

1996.

T. P. Fries and T. Belytschko. The intrinsic XFEM: a method for arbitrary

discontinuities without additional unknowns. International Journal for Nu-

merical Methods in Engineering, 68:1358–1385, 2006.

T. P. Fries and H.G. Matthies. Classification and overview of

meshfree methods. Technical report, Informatikbericht-Nr. 2003-

03,Technical University Braunschweig, Brunswick, Germany, July

2004a. http://opus.tu-bs.de/opus/volltexte/2003/418http://opus.tu-

bs.de/opus/volltexte/2003/418.

T. P. Fries and H.G. Matthies. A review of petrov-galerkin stabi-

lization approaches and an extension to meshfree methods. Tech-

nical report, Informatikbericht-Nr. 2004-01,Technical University Braun-

schweig, Brunswick, Germany, July 2004b. http://www.digibib.tu-

bs.de/?docid=00001549http://www.digibib.tu-bs.de/?docid=00001549.

T.P. Fries. A corrected xfem approximation without problems in blending el-

ements. International Journal for Numerical Methods in Engineering, 75:

503–532, 2008.

L. Gao, K. Liu, and Y. Liu. Application of MLPG method in dynamic fracture

problems. CMES: Computer Modeling in Engineering & Sciences, 12:181–

195, 2006.
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J. M. Melenk and I. Babuška. The partition of unity finite element method:

Basic theory and applications. Computer Methods in Applied Mechanics and

Engineering, 139:289–314, 1996.
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