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ABSTRACT: Soil information is needed for environmental
monitoring to address current concerns over food, water and
energy securities, land degradation, and climate change. We
developed the SOIL CONDITION ANALYSIS SYSTEM (SCANS) to
help address these needs. It integrates an automated soil core
sensing system (CSS) with statistical analytics and modeling to
characterize soil at fine depth resolutions and across
landscapes. The CSS’s sensors include a γ-ray attenuation
densitometer to measure bulk density, digital cameras to image
the measured soil, and a visible−near-infrared (vis−NIR)
spectrometer to measure iron oxides and clay mineralogy. The
spectra are also modeled to estimate total soil organic carbon
(C), particulate, humus, and resistant organic C (POC, HOC,
and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity
(AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman
smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise,
quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain
with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central
role soil plays in our environment.

■ INTRODUCTION

To improve our current understanding of soil and its role in
terrestrial ecosystems, we need new methods for assessing and
monitoring soil properties, e.g., organic C content and
composition, pH, and water content. The new methods should
produce quantitative soil information to depth and across
landscapes, to for example, help mitigate anthropogenic
greenhouse gas emissions, climate change, and land degrada-
tion, improve soil condition, and improve food, water and
energy securities, which are important for human well-being
and economic development.1

Pedology and the use of laboratory-based soil analytical
methods to measure the physical, biochemical, and minera-
logical properties of soil have so far served us well, but they
have not changed much in the past century.2 Largely, laboratory
methods have not kept up with the growing need for good
quality, quantitative, inexpensive, spatial and temporal soil
information to allow better soil and environmental use and
management. Many of these conventional methods are
constraining our further understanding of soil and its role in
our environments because they are time-consuming and
expensive and their measures do not truly represent soil at

field condition; they require soil samples to be dried, crushed,
ground, subsampled, prepared, and analyzed using often
complex procedures. Furthermore, there is additional cost
and effort needed to measure soil attributes at depth.
We need measurements of deeper soil to better understand

the characteristics of soil profiles and their attributes,
conditions, and functions. Measurements of soil at depth help
us to, for example, quantify the soil organic C stocks, measure
the available water capacity of agricultural soil, the concen-
tration of nutrients in the root zone, assess constraints to root
growth, quantify subsoil contamination and acidification, and
determine the potential for off-site agricultural pollution such as
leaching and runoff.
The past decades have witnessed growing interest in the

development and use of proximal soil sensors in different
applications to overcome the limitations of the conventional
approach.3 Proximal soil sensors can measure soil attributes
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rapidly, accurately and more cheaply than conventional
laboratory methods. Sensors can also be cheaper to buy and
use. They allow many more measurements to be made across
the landscape, at depth and in time, so that the data can
adequately characterize the spatial (lateral and vertical) and
temporal variability of many soil properties. Furthermore,
measurements can be made directly in the field so that the data
better represent the soil under field conditions.4

Proximal soil sensing integrated with robust mathematical
and statistical methods, and continued improvements in
computing, is modernizing pedology and the methods for soil
analyses.5,6 Importantly, integrated sensing systems are
providing new tools to deepen our understanding of soil and
to help address our current environmental concerns. We
propose that integrated, rapid soil core measurement systems
combined with statistically sound analytics and modeling will
facilitate the characterization of soil properties and their depth
profiles. Such systems will allow us to undertake soil surveys in
a far more efficient manner and will provide a natural
complement to vehicle-mounted sensor systems for surveying
soil.7 For example, they may be used to help monitor soil
organic C stocks after changes in land use or management and
may form a good base for the development of auditable and
verifiable soil C trading methodologies.8,9 They may also help
agronomically to determine subsoil constraints to production,
allow site-specific soil management, and increase the accuracy
of precision agriculture. Such systems may also facilitate the
assessment and monitoring of soil contamination by heavy
metals and other pollutants.
We have developed one such integrated system, the SOIL

CONDITION ANALYSIS SYSTEM (SCANS) (Figure 1).
The SCANS uses a combination of proximal sensing

technologies, smart engineering, and mathematics and statistics

to characterize soil variation, laterally across landscapes and
vertically down the profile (Figure 1). From Figure 1, the
SCANS uses (1) prior information that may be gathered from
different sources to characterize soil spatial variability. These
covariates are used to inform (2) the sampling design and (5)
the inference of the soil properties of interest, the latter, of
course, only after (3) sensing and (4) analyzing the data and
modeling. Thus, once the soil cores are sampled, (3) they are
measured with the core sensing system (CSS) (Figure 1). The
sensor data are processed, and a selected set of soil core
subsamples are analyzed in the laboratory for (4) spectroscopic
modeling and validation. The sensed soil attributes are then
used to derive continuous soil property profiles with estimates
of uncertainty. The soil property profiles can then be used to
(5) infer the soil properties across the study area to the
required depth, as means and totals and as continuous soil
property maps (Figure 1). Viscarra Rossel et al.9 described the
implementation of steps 1, 2, and 5 in Figure 1. Our aims here
are to describe the development of the SCANS automated soil
CSS, its sensors, and the sensor data analyses and modeling
used to derive depth profiles of soil organic C stocks and other
soil biochemical, physical, and mineralogical properties (Figure
1, steps 3 and 4, enclosed by the dashed line).

■ MATERIALS AND METHODS

The CSS automatically measures biochemical, physical, and
mineralogical properties of intact soil core samples that are
(wet) under field condition. The visible−near-infrared (vis−
NIR), active γ-ray attenuation and camera sensors measure the
soil cores at user-defined depth intervals. Below we describe the
sensing platform, its sensors, and the analyses and modeling of
the sensor data to derive measures of soil properties and their
depth profiles.

Figure 1. SOIL CONDITION ANALYSIS SYSTEM’s workflow. The components of the workflow that are depicted within the dashed line are described here.
Components that are outside of the broken line were described previously.9
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Soil Core Sensing System. The multisensor system was
developed to measure 1.2 m long soil core samples with
diameters between 45 and 85 mm. Measurements of longer soil
cores are possible with some small modifications. A schematic
of the CSS is shown in Figure 2.
The platform’s housing contains a support structure to rest

the soil core, a linear actuator to move the sensor head along
the core, a cable train to allow the movement of cables, and a
linear rail to provide additional support to the sensor head
(Figure 2), which holds four sensors: a vis−NIR spectrometer,
an active γ-ray attenuation sensor, a visible camera, and a
Lepton long wave infrared camera (see the Supporting
Information). A photoelectric proximity sensor is used to
detect the length and position of the core sample on the
support platform. The platform includes a safety interlock
system for the active γ-ray sensor that is triggered by opening
the protective door or an emergency stop button. The interlock
creates a safe system state by disabling motion and the sensors.
A touch panel computer is used to control the system via
software and a graphical user interface (Figure 2). Sensor
calibration standards (e.g., for the vis−NIR sensor) are
mounted on the core support platform for automated sensor
calibration (Figures 2 and 3). In the Supporting Information,
we provide details about the sensors used in the platform, its
control system, and the measurement process.
Field Deployment. The CSS is installed in an enclosure and

trailer for transport and operation in the field (Figure 3). For

in-field use, the enclosure holds a generator to provide electrical
power and an air compressor for the pneumatic system. The
measurements can be controlled remotely from a desktop
computer or tablet, and data can be retrieved using an
integrated 3G cellular modem. The enclosure has storage
compartments to carry ancillary equipment and soil cores that
are being returned to the laboratory. The field-deployable CSS
is shown in Figure 3.

Study Site and Soil Core Sampling. The site for this
study was a 600 ha cattle grazing farm located in Northern New
South Wales, Australia (S30.69, E151.48). The soil of the farm
was classified predominantly as Kurosol in the Australian Soil
Classification.10 In the World Reference Base (WRB)
classification, Kurosols might be Acrisols or Planosols.11

We used data from a mobile multisensor platform (with
electromagnetic induction and passive γ-radiometric sensors,
and a precise global navigation system) to produce spatially
explicit covariates that we used to derive a stratified simple
random sampling plan and 150 soil core sampling locations
spread over the entire farm (see Figure 1, steps 1 and 2). The
mobile multisensor platform used and the design of the
sampling strategy are similar to those described by Viscarra
Rossel et al.9 We used the CSS to measure all 150 sampled soil
cores (as in Figure 1, step 3).

Soil Core Sampling. We sampled the soil cores using a
Geoprobe 7822DT core sampling rig and the DT325 sampling
system. Cores were sampled directly into clear plastic liners

Figure 2. Schematic of the SCANS core sensing system: (a) (1) sensor head, (2) soil core, (3) emergency stop and reset buttons, (4) touch screen
PC, (5) electronics boxes, (6) linear actuator, and (7) polycarbonate hood with safety sensors and (b) (8) γ-ray source, (9) γ-ray detector, (10)
spectrometer contact probe attachment, and (11) cameras.

Figure 3. SCANS field-deployable core sensing system (CSS): (a) the SCANS sensing systems at a field site, (b) an operator loading a soil core on
the CSS, and (c) the core sensing system.
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with end-caps, and immediately before measurement, we cut a
longitudinal section of the liner with a DT325 liner cutter
(Geoprobe, Salina, Kansas) to expose the core surface for the
vis−NIR measurements and for capturing the images (Figure
S2). In the Supporting Information, we also describe the
different soil core sampling equipment that we have tested to
extract intact soil cores for the sensing.
Sensor Measurements and Data Analytics. Measure-

ments with the CSS can be made at fine depth resolutions,
predetermined in software by the user. For our experiments
here, the measurement resolution was set to 2.5 cm intervals
from the surface to 30 cm and 5 cm intervals from 30 to 100
cm. Thus, there were a total of 26 measurements from each of
the sensors (γ-ray densiometer, vis−NIR, and photographs, the
latter were combined to produce a complete image of the soil
core) per core, and the time taken to measure each core was
approximately 15 min (i.e., the sensing at each location on the
soil cores took approximately 35 s).
γ-Ray Densitometry. To measure the bulk density of the soil

cores that are wet, under field condition, the CSS uses
measurements of density from the γ-ray attenuation densi-
tometer and estimates of water content from the vis−NIR
spectrometer. The technique is described by Lobsey and
Viscarra Rossel,12 and we only briefly summarize it here. For a
soil core that is under field condition, the γ-ray attenuation is a
function of its mass and the mass attenuation coefficients of soil
and water in the attenuation path. Using the Beer−Lambert
law, this can be defined as

μρ μ ρ θ= − +I
I

xexp[ ( )]
0

s s w w
(1)

where I is the incident radiation at the detector, I0 is the
unattenuated radiation emitted from the source (determined
using calibration standards), and x is the sample thickness in
centimeters. Parameters μs and μw are in units of square
centimeters per gram and represent the mass attenuation
coefficients of the soil and water, respectively. Parameter ρw is
the density of water, which is 1 g cm−3, and θ is the volumetric
water content of the soil in cm−3 cm−3. The mass attenuation
coefficient of soil (μs) depends on both the photon energy and
its elemental constituents; however, at high photon energies
(e.g., 0.662 MeV), the effects of varying soil compositions
become negligible.13 We used values of the soil (0.0770 cm2

g−1) and water (0.0832 cm2 g−1) mass attenuation coefficients
derived by Lobsey and Viscarra Rossel.12 At each γ-ray
attenuation measurement on the soil core, we determine θ
using vis−NIR spectroscopy (described below). Thus, using the
sensors, we could calculate the dry bulk density of the soil (ρbγ)
using
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Spectroscopic Modeling and Validations. Spectroscopic
vis−NIR models (Figure 1, step 4) were used to simultaneously
estimate, at the 26 measurement locations on each of the 150
soil cores, the total organic C content, the C composition
characterized by the organic particulate, humus, and resistant
organic C fractions (POC, HOC, and ROC, respectively),14 the
clay content, the cation exchange capacity (CEC), the pH
measured in a 1:5 soil/water suspension (pHw), the pH
measured in a 1:5 soil/0.01 M CaCl2 suspension (pHc), the

volumetric water content (θ), and the available water capacity
(AWC).
We used the machine learning algorithm CUBIST

15 for the
spectroscopic modeling, but with different data sets for the
calibrations, which depended on the availability of reference
analytical data from the study site. When reference data from
the study site were unavailable, estimates were made with
general (or global) spectroscopic models derived using large
Australian soil spectral libraries (Table 1). This was the case for
pHc, θ, CEC, and AWC.
The soil water library (Table 1) consists a total of 1429 soil

vis−NIR reflectance spectra from 162 sites from across
Australia. The vis−NIR spectra of soil samples from three
different depths, 0−15, 13−30, and 30−60 cm, were recorded
under air-dry conditions and at −1, −5, −10, −30, and −60 kPa
using suction plates and −500 and −1500 kPa using pressure
chambers.18 For each sample in the data set, AWC was
calculated as the difference in θ at −33 and −1500 kPa. This
library was also used to correct for the effects of water on the
vis−NIR spectra that were measured under field conditions
(see below).
When we had a set of local, reference analytical data from our

study site, as was the case for total organic C, POC, HOC,
ROC, clay content, and pHw, the spectroscopic models were
developed using data from the ReSampling-Local (RS-LOCAL)
algorithm that is described by Lobsey et al.19 Briefly, RS-LOCAL
uses a (small) number of representative spectra with reference
analytical data from the local site to select an optimal subset of
data from a large soil spectral library, in our case the Australian
soil spectral libraries (see Table 1). The RS-LOCAL selection is
made by iteratively removing data from the spectral library with
the largest validation errors with respect to the local data. The
result is a subset of data from the large spectral library, which is
“customized” for the local predictions at the study site. Thus,
the “customized” subset is combined with the local data for
spectroscopic modeling. We refer the reader to Lobsey et al.19

for a detailed description of the RS-LOCAL algorithm. Below we
further describe our implementation.
Using the Kennard−Stone algorithm20 and the 3900 spectra

of the 150 soil cores (150 cores × 26 measurements at different
depths in each core), we selected a representative set of 20
corresponding local soil core subsamples, which we could afford
to analyze in the laboratory (Figure 1, step 3). The 20 samples
were analyzed for total soil organic C by total combustion using
a LECO carbon analyzer,21 particulate, humus, and resistant C
using the nuclear magnetic resonance (NMR) method.14 We
had 12 surface (0−30 cm) soil samples from a previous
reconnaissance survey at our study site with data on clay
content measured with the hydrometer method22 and pHw
measured in a 1:5 soil/water suspension.21 Using RS-LOCAL, a
subset of the relevant Australian spectral library (i.e., the soil
property or C fractions library in Table 1) was selected, and the
resulting smaller “customized” library was combined with the
small set of local samples from our study site. These combined
data were used to develop spectroscopic models with CUBIST to

Table 1. Soil Spectral Libraries Used in the Modeling

spectral library soil properties N ref

vis−NIR soil properties organic C, clay, pHc, pHw, CEC 18501 16
vis−NIR C fractions POC, HOC, ROC 550 17
vis−NIR soil water θ, AWC 1429 18
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predict the soil properties. The implementation of CUBIST for
spectroscopic modeling was described in detail by Viscarra
Rossel and Webster.16

Some of the soil attributes had strongly positively skewed
distributions [skewness of >1 (Table 2)], and to stabilize their
variances for spectroscopic modeling, described above, we
transformed the data to approximate normal distributions by
taking logarithms.
All of the spectroscopic models derived using data from

either the Australian spectral library or RS-LOCAL, as described
above, were validated using 50-repeat 10-fold cross validation,23

and the validation statistics reported are the means of the 50
repeats. Additionally, the RS-LOCAL model for soil organic C was
validated with an independent test data set that comprised 300
reference data with measurements of soil organic C made with
a LECO carbon analyzer. These validation samples were
selected using the Duplex algorithm24 from the 3900 spectra of
the 150 soil cores.
When the attributes were transformed to logarithms, the

cross validation statistics were reported on that scale. However,
the estimates of the independent validation of organic C and
the estimates of the soil property profiles that were made with
logarithmic models were back-transformed to their original
scales by adjusting the variance of the estimates using25

̂ = ψ ψ ψ̂ + ∑ ̂ −=y 10 N[ 1 ( ) /2]i
N

i i1
2

(3)

where y ̂ values are the back-transformed data, ψ̂ values are the
estimates of the soil attributes, ψ values are the observed values,
both on the logarithmic scale, and the numerator in the
exponent represents the mean square error (MSE) of the
model, or in the case of organic C, the MSE of the independent
validation data set. We note that in the SCANS workflow
(Figure 1), when the residuals, (ψ̂i − ψi), in eq 3 are not
normally distributed, the back-transformations are performed
using the nonparametric “smearing estimate” proposed by
Duan.26

To estimate uncertainty in the spectroscopic modeling, we
used the method described by Viscarra Rossel.27 The technique
uses random sampling with replacement (i.e., the bootstrap) to
produce multiple training data sets for spectroscopic modeling.
These models are used to derive different realizations of the soil
properties to form cumulative distribution functions for each
estimate, from which means, variances, and confidence intervals
can be calculated.
The volumetric soil organic C content (SOCv) was

calculated by multiplying the organic C content (percent)
and bulk density profiles. We also measured soil color using the
visible portion of the spectra,28 and the relative abundances of
hematite, goethite, kaolinite, illite, and smectite from the

heights and widths of wavelength-specific absorption features
on continuum-removed spectra.5,29

Correcting the Vis−NIR Spectra for Water Present in the
Soil. When measurements are taken in the field, soil vis−NIR
spectra are affected by water, primarily at absorption near 1400
and 1900 nm. To allow in-field prediction of soil attributes,
other than soil water, from the spectra of the soil cores that are
under field condition, the SCANS allows the use of either
external parameter orthogonalization (EPO)30,31 to project
spectra orthogonal to variations induced by water, or direct
standardization (DS)32 to transfer the wet field spectra so that
it may be predicted with the laboratory-derived spectral
libraries. The spectra used to develop the transformation
matrices for corrections of water using these methods were
derived using a soil water spectral library18 (Table 1).
In the study presented here, before using the vis−NIR

spectra for spectroscopic modeling, we corrected them using
EPO. We used DS to remove the effects of water before
measuring the Fe and clay mineralogy of the cores. In this case,
we used DS because unlike EPO, it does not alter the corrected
spectra.32

Repeatability of the Core Sensing System Measure-
ments. To test the repeatability of the CSS, we measured a
single core from our study site seven times over 2 days. On the
first day, the operator took four measurements: the first at 9
a.m. (17 °C), one at 11 a.m. (26 °C), one at 2 p.m. (33 °C),
and one at 5 p.m. (36 °C). On the second day, the operator
took three measurements: at 10 a.m. (26 °C), at 1 p.m. (35
°C), and finally at 4 p.m. (38 °C).
As described above, the sensor data were used to derive

measures of bulk density, organic C, SOCv, POC, HOC, ROC,
clay content, CEC, pHw, pHc, θ, and AWC, at each of the 26
measurement intervals on the soil core. For each soil property,
we measured the mean and standard error of the repeated
measurements and graphed our results.

Deriving Continuous Soil Property Depth Profiles. To
improve the estimates of the sensed soil properties along the
1 m soil core (i.e., with depth), we used Kalman filtering and
smoothing, implemented in the KFAS package33 in the R
software.34 An advantage of using Kalman smoothing over
other techniques for deriving soil property profiles (e.g., spline
interpolation) is that it allows the uncertainty in the sensor
measurements to be incorporated in the process and thus
allows its propagation to the filtered estimates of the soil
attribute profiles.
Consider a soil property, x (e.g., soil organic C), along the 1

m soil core. We start our sensor measurements at the surface
and then take measurements at defined depth intervals, k.
These measurements are imprecise, but we want to maintain a

Table 2. Statistical Summary of the Soil Attribute Data Used in Spectroscopic Modeling

soil attribute N mean standard deviation minimum median maximum skewness

organic C (%) 231 1.54 2.40 0.02 0.59 16.28 2.98
particulate C (%) 233 0.26 0.28 0.007 0.13 1.36 1.80
humus C (%) 233 0.82 0.59 0.13 0.67 3.01 1.29
resistant C (%) 233 0.38 0.31 0.01 0.32 1.64 1.55
clay (%) 329 25.3 19.53 0.20 20.30 96.40 0.99
pHw 329 6.47 1.28 3.60 6.30 9.60 0.18
pHc 4980 5.84 1.34 3.58 5.62 9.29 0.23
CEC (cmolc kg

−1) 9397 17.86 14.47 0.50 13.90 106.50 1.53
θ (cm−3 cm−3) 1429 0.26 0.21 0.00 0.22 0.94 0.63
AWC (%) 162 0.40 0.094 0.19 0.40 0.64 0.07
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model that defines the magnitude of x along the soil core and
its rate of change with depth. Thus, we define the linear state
space xk by

=
̇

⎡
⎣⎢

⎤
⎦⎥

x
x

xk (4)

where x ̇ is the rate of change of soil property with depth. Note
that we have assumed that k is discrete (i.e., fixed measurement
intervals), although this can vary depending on the measure-
ment plan defined by the user (see above). Then, the state
transition model between the k − 1 and k depths is defined by

= Δ +−
⎡
⎣⎢

⎤
⎦⎥

k
x x w

1
0 1k k k1

(5)

where wk ∼ N(0,Qk) is the process noise, which we assume to
be normally distributed with variance Qk. It can be fixed or
derived using maximum likelihood estimation (MLE) (see ref
33). At each depth, a noisy measurement, zk, of the true soil
property value is made with the particular sensor so that the
observation model can be defined by

= +z x v[1 0]k k k (6)

where vk ∼ N(0,Rk) is the observation noise that we assumed to
be normally distributed with variance Rk. Rk for the
spectroscopic estimates of soil properties was taken from the
respective spectroscopic model bootstrap variances (see above).
For the γ-ray attenuation measurements of bulk density, Rk was
the sum of two components. The first represents the standard
error of the γ-ray attenuation measurements of apparent
density, which was 0.029 g cm−3, from Lobsey and Viscarra
Rossel12, and the second is the bootstrap variance of the
spectroscopic estimates of θ used in the correction of the
apparent densities to derive bulk densities (see above and ref
12). We assumed that such errors were independent and not
autocorrelated with depth. Thus, the Kalman filter recursively
predicts the soil property at the particular depth using only the

previously estimated state and the sensor measurement at the
current depth and its uncertainty matrix. The Kalman smoother
then estimates the state of the system at depths k during a
second backward recursion and using the filtered state
estimates (see refs 33 and 35).

■ RESULTS

Sensor Measurements. An example of the data recorded
by the SCANS CSS is shown in Figure 4. It shows a true color
image of a soil core, which is useful for performing visual
inspection and for record keeping, the γ-ray attenuation counts,

Figure 4. Raw data from the sensors: (a) the image of a soil core showing a bleached horizon around 10−30 cm, (b) decreasing γ-ray counts with
depth, indicating the increasing density of the soil with depth, and (c) the vis−NIR spectra of the soil core, showing a fairly abrupt change in the
spectra around 30 cm, where absorptions due to iron oxides, clay minerals, and water are more pronounced. This soil is likely to have more clay
below 30 cm and a duplex texture profile.

Table 3. Spectroscopic Modeling Used To Estimate Soil
Properties and Their Performance Statisticsa

soil attribute method n m R2 RMSE

Repeated 10-fold Cross-Validation
log10 organic C (%) RS-LOCAL 211 20 0.83 0.39
log10 particulate C (%) RS-LOCAL 213 20 0.74 0.15
log10 humus C (%) RS-LOCAL 213 20 0.71 0.35
log10 resistant C (%) RS-LOCAL 213 20 0.71 0.17
clay (%) RS-LOCAL 317 12 0.70 10.17
pHw RS-LOCAL 317 12 0.71 0.70
pHc general 4980 0.76 0.66
log10 CEC (cmolc kg

−1) general 9397 0.70 0.23
θ (cm−3 cm−3) general 1429 0.96 0.04
AWC (%) general 162 0.75 0.048

Independent Validation
organic C (%) RS-LOCAL 211 20 0.81 0.41

aIn the table, n is the number of spectral library samples and m is the
number of local samples used with RS-LOCAL. For all of the attributes
listed, the coefficient of determination R2 and the root-mean-square
error (RMSE) were computed on predictions made using a repeated
10-fold cross-validation. Additionally for soil organic C, the statistics
were also computed using an independent data set of 300 samples.
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and the vis−NIR spectra measured at each depth increment of
the soil core.

A summary of the spectroscopic modeling and the
performance statistics of the models are given in Table 3.

Figure 5. Sensed soil properties of all of the 150 soil cores at each of the 26 depth increments. The bulk density (ρbγ) was measured with the γ-ray
densitometer. Kaolinite, illite, smectite, and iron oxide were measured directly from their characteristic vis−NIR absorptions. Spectroscopic models
were used to estimate organic C, particulate, humus, resistant C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity
(CEC), pH measured in 0.01 M CaCl2 and water (pHc and pHw, respectively), volumetric water content (θ), and available water capacity (AWC).
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The models for θ and organic C content were excellent with R2

values of >0.8; those for pHc and AWC were very good with R2

values of >0.75, and those for POC, HOC, ROC, pHw, clay
content, and CEC were good with R2 values of ≥0.70
(Table 3). The performance statistics in Table 3 are within
the ranges of those reported in the literature for studies on a
local scale.17,36−38

The sensed soil properties of all of the 150 soil cores at each
of the 26 depths are shown in Figure 5. They represent the
variability of the soil properties in the profiles of our study site
(closed discs in Figure 5). The median soil property values at
each of the measured depths are shown by the solid lines in
Figure 5.
Repeatability of the Measurements. The standard errors

of the repeated measurements on the same soil core, taken at
different times and temperatures over 2 days, are shown in
Figure 6.
Generally, the repeated CSS measurements of different soil

attribute profiles produced small standard errors and were
repeatable and precise (Figure 6). There was no particular
pattern or trend in the measurements taken over the 2 days and

at the different temperatures between 17 and 38 °C. The
Supporting Information includes graphs of the repeated
measurements for each soil attribute.

Soil Property Depth Profiles. Figure 7 shows for a single
soil core the spectroscopic predictions of organic C, clay
content, and CEC, and the implementation of Kalman
smoothing.
The uncertainties of the profile estimates of organic C were

small (Figure 7) because our spectroscopic modeling used a
data set selected with RS-LOCAL and the 20 well-selected samples
from our study site that were representative of the different soil
depths. The estimates of clay content were more accurate at the
surface above 30 cm [smaller error bars in the clay content
profile (Figure 7)] because for these predictions we used an RS-
LOCAL data set with 12 surface soil samples form our study site.
Below 30 cm, the estimates of clay content were more
uncertain (Figure 7) because the data set used for the modeling
did not contain local samples from below 30 cm. We did not
have any local samples to help with the modeling of CEC, and
so we used a general model derived with the Australian soil

Figure 6. Repeatability of the core sensing system measurements showing the standard errors of the seven repetitions made on a single soil core, at
different times and temperatures over 2 days. We provide graphs of the repeated measurements and confidence limits in the Supporting Information.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b00889
Environ. Sci. Technol. 2017, 51, 5630−5641

5637

http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b00889/suppl_file/es7b00889_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b00889/suppl_file/es7b00889_si_001.pdf
http://dx.doi.org/10.1021/acs.est.7b00889


property spectral library (Table 1). Thus, the uncertainties of
the CEC profile estimates were all relatively large (Figure 7).
Compared to the unfiltered discrete spectroscopic predic-

tions with 95% confidence limits (discs with error bars in
Figure 7), the Kalman estimates provide continuous profile
estimates with narrower uncertainties (shaded ribbons in Figure
6). For example, Figure 8 shows the Kalman filtered continuous
soil property profiles of two soil cores from our study site.
The soil organic C content of these profiles and that of the C

fractions, POC, HOC, and ROC, decrease exponentially with
depth. In both profiles, the humus fraction was the largest. The
POC and ROC fractions were present at higher concentrations
near the surface than at depth (Figure 8a,b). There was an
inverse relationship between organic C content and bulk
density, ρbγ (Figure 8a,b). The SOCv profiles show that a larger
portion of the stock occurs within the top 30 cm (Figure 8a,b).
The soil depicted in Figure 8a has a duplex texture profile,

with clay content and the abundance of clay and iron minerals
increasing below 30 cm. The volumetric water content, θ, and
the AWC of the profiles had shapes similar to that of the clay
content profile (Figure 8a). The soil has a bleached horizon
between around 10 and 30 cm, as shown by the brighter RGB
color values (Figure 8a) and the brighter appearance of the core
in this layer (Figure 4). Kaolinite is the dominant clay mineral,
particularly at depth. Both illite and smectite were less
abundant, but their presence suggests that there is interstrati-
fication of the clay minerals in this soil. Goethite was the
dominant iron oxide (Figure 8a). The CEC of the soil is larger
near the surface above 25 cm than at depth. This might be due
to organic C contributing primarily to the CEC near the surface
and the clay minerals, particularly kaolinite, which has a CEC
smaller than that of illite or smectite, at depth. The pH values
measured in water and CaCl2 are similar near the surface but
increasingly different at depth, with pHc becoming slightly
more acidic with depth (Figure 8a).

The soil profile shown in Figure 8b has a more gradational
texture profile. The θ and AWC profiles have shapes similar to
that of the clay content profile (Figure 8b), but the
uncertainties of the AWC estimates are larger, particularly at
depth. Illite is somewhat more abundant near the surface, but
otherwise, kaolinite is more abundant at depth (Figure 7b).
Hematite is the dominant iron oxide in this profile (Figure 8b).
The abundance of hematite increases gradually in the subsoil
below 30 cm. The CEC of the soil is largest near the surface
and decreases gradually to ∼30 cm. As before, the larger CEC
near the surface is likely to be due to the larger amounts of soil
organic C, but also the greater abundance of illite (Figure 8b).
pHw was roughly 1 unit larger than pHc throughout the profile
(Figure 8b).

■ DISCUSSION
Different proximal sensing systems have been developed to
improve the efficiency of soil analyses;3 however, few are
automated, and fewer deal with the problem of acquiring soil
measurements at depth. The two main approaches involve
either inserting sensors into the soil profile and making
measurements in situ or sampling undisturbed soil core samples
and measuring the soil ex situ. A few systems are available, at
least one commercially, that enable in situ measurements using
penetrometers, electrical conductivity sensors, and vis−NIR
spectrometers with fiber optics.39−43

Some researchers have used sensors to manually measure soil
profiles and/or core samples using vis−NIR reflectance and X-
ray fluorescence (XRF) spectrometers.44,45 For example, vis−
NIR spectroscopy was used to measure the clay content, color,
and mineralogy of soil profiles in the field.5 It has also been
used to measure the soil organic C content of soil core samples,
in cross section46 and longitudinally.47 The latter study first cut
the cores in half vertically and measured the vis−NIR
reflectance from the plane surface of the cores at 5 cm intervals.
There are no integrated sensing systems for measuring the

properties of soil profiles, although there are commercial
systems for measuring sediment and rock core samples in
geology, mining and exploration, and oceanography, for
example, the GEOTEK,48 HYLOGGER (FLSmidth Pty. Ltd.,
Welshpool, Australia), and ITRAX (Cox Analytical Systems,
Mölndal, Sweden) systems.
The SCANS (with its CSS) is unique because it provides an

integrated soil sensing and data analytics solution for
quantifying the properties of soil profiles, their depth functions,
and their variation in space and time. Therefore, it can be useful
for different environmental and agronomic applications. We
used a complementary set of sensors in the CSS that cover
different portions of the electromagnetic spectrum so that we
might gather useful information about a range of soil properties.
The CSS is modular so that as technologies develop, other
sensors (e.g., portable XRF and mid-infrared spectrometers)
may be relatively easily incorporated.
Although results from sensing may not be as accurate per

individual measurement as those from conventional laboratory
analysis, sensing is rapid and allows the collection of larger
amounts of spatially explicit data using cheaper, less laborious
methods. As an ensemble, the information gained will be more
precise and informative. Measurements with the CSS are
automated and rapid, and can be taken at fine depth resolutions
predetermined by the user, depending on the application.
Measuring a 1 m core at 2 cm intervals will result in 50
measurements along the core and will take approximately

Figure 7. Example for a single core of the implementation of Kalman
smoothing used to derive accurate soil attribute depth profiles. The
spectroscopic model predictions of soil organic C, clay content, and
cation exchange capacity (CEC) are represented by the discs; the error
bars are the measurement errors, depicted as 95% confidence limits,
derived from the bootstrap of the spectroscopic models, and the solid
lines and shaded ribbons are the Kalman filtered estimates of the
respective soil properties and their uncertainties. In this case, too, the
uncertainties are represented by 95% confidence limits.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b00889
Environ. Sci. Technol. 2017, 51, 5630−5641

5638

http://dx.doi.org/10.1021/acs.est.7b00889


Fi
gu
re

8.
M
ea
su
re
m
en
ts
m
ad
e
on

tw
o
so
il
co
re

sa
m
pl
es

(a
an
d
b)

fr
om

di
ff
er
en
t
lo
ca
tio

ns
on

ou
r
st
ud
y
si
te
.T

he
so
il
at
tr
ib
ut
e
pr
ofi
le
s
sh
ow

th
e
lo
ca
tio

ns
of

th
e
K
al
m
an

fi
lte
re
d
se
ns
or

m
ea
su
re
m
en
ts

(d
is
cs
)
an
d
th
ei
r
un
ce
rt
ai
nt
ie
s
(s
ha
de
d
rib

bo
ns
),
re
pr
es
en
te
d
by

95
%

co
nfi
de
nc
e
in
te
rv
al
s.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.7b00889
Environ. Sci. Technol. 2017, 51, 5630−5641

5639

http://dx.doi.org/10.1021/acs.est.7b00889


30 min. The repeatability and consistency of the system’s
measurements were improved by automating the CSS's
calibration and measurement routines. Automation also
improved the timeliness and cost efficiency of the system. An
operator needs to be present only to prepare and change cores
and to keep check of the measurements being taken.
As with any soil sampling, extraction of soil cores for

measurement with the CSS should be performed only when
suitable conditions prevail. Soil coring should be performed
using standardized practice and suitable equipment (e.g., using
appropriate coring tips to account for different soil types and
conditions and to prevent compaction). We have not yet used
the CSS with very sandy soil or with soil that has soft or weak
consistency. However, using the plastic liners and appropriate
sampling equipment, as described in the Supporting
Information, will help to ensure that the soil cores remain
intact and under field conditions for sensing. More recently, we
have used the system in soil with gravel layers, and in this case,
the plastic liners helped to hold the soil and gravel in place. The
sensors easily differentiated between soil and gravel, so that it
was easy to account for them in our analyses.
In some situations, taking the measurements in situ by

inserting the sensors into the soil profile41 might be
advantageous. The difficulties with the in situ approach,
however, are that penetration into the soil can be difficult in
dry or hard-setting soil, it is difficult to prepare and control the
measurements and the sensing areas, and direct measurements
of bulk density at depth are difficult if not impossible.
The CSS has sensors that use direct and indirect inference.3

Measures of density are made directly using γ-ray attenuation.
Measurements of color, iron oxide, and clay mineralogy are also
taken directly from the vis−NIR spectra. The other soil
attributes, however, are measured indirectly using empirical
calibrations of the reference soil attributes to vis−NIR spectra
recorded with the spectrometer. The accuracies of the
spectroscopic estimates depend on the models and how they
are derived. When “local” (or site-specific) data are available
(here we had local data on organic C, POC, HOC, ROC, clay,
and pHw), they should be used in the spectroscopic modeling
(e.g. with RS-LOCAL) to improve the accuracy of the
predictions. If “local” data are unavailable, then general (or
“global”) models using existing soil spectral libraries can be
made as long as the library contains spectra from soil samples
that are similar in composition to those that are present in the
study area. As we have shown here (and others elsewhere49,50),
compared to general spectroscopic models, local models
produce more accurate predictions of soil attributes.
We developed the SCANS because of the urgent need for

good quality spatial and temporal soil profile information for a
wide range of applications.
The SCANS CSS could be used to effectively monitor soil

organic C for accounting purposes9 and to increase the
frequency of adoption of best agronomic practices that will
improve the condition of soil and reduce greenhouse gas
emissions by farmers. Potentially, this could generate significant
carbon sequestration to reach the “4 pour 1000” proposal made
by French authorities ahead of the 21st Conference of Parties
to the United Nations Framework Convention on Climate
Change (COP21).
The flexibility of SCANS allows farmers and landowners to

select, depending on their situations, either a direct measure-
ment or a modeling approach for their organic C sequestration
projects.51 Models can be used to establish soil C storage

projects by predicting the potential magnitude and uncertainty
of soil organic C change over time due to specific management
actions. The SCANS CSS can provide the data needed to
parametrize such mechanistic soil organic C models (e.g.,
ROTHC52,53), which are otherwise limited by the paucity of data
available to run them.
The SCANS would be useful in agronomic applications too,

for example, helping to better understand nutrient mineraliza-
tion, determine subsoil constraints to production, and to devise
strategies for enhancing the water holding capacity and
infiltration of soil. Our system simultaneously quantifies the
variability of a range of biochemical, physical, and mineralogical
soil properties that will help farmers to assess and monitor the
condition of soil in the root zone. This could help to promote
sustainable management and more targeted decision making,
for example, in site-specific soil and crop management and
precision agriculture.54

An important environmental application of the SCANS CSS
could be to assess and monitor soil contamination by heavy
metals and other pollutants. The use of proximal soil vis−NIR
and XRF sensing for such applications has been reported in the
literature.45,55

The SCANS provides continuous soil attribute information
with a level of detail that is difficult to obtain with other
approaches. Its ability to simultaneously sense many important
soil properties to depth and across the landscape allows rapid,
inexpensive, and spatially explicit assessments of soil. The soil
information gained can help to baseline and assess whether the
condition of soil, its functions, and its productivity are
improving or deteriorating over time. In this way, the
information from the SCANS could be used to promote
good soil and environmental management, refine the
sustainability of farming practices to boost food production,
and sequester carbon.
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