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ABSTRACT Deep Learning methods have produced good carrier frequency offset estimations for short
message sequences in comparison with methods based on the Fast Fourier Transform. However, these
performance gains were observed for short ranges of frequency offsets, sequences with predefined pilot
symbols and periodic modulation schemes. Chaotic modulation has an advantage over periodic signals in
offering security through the continuous changes produced by parameterising the chaotic map function.
However, synchronisation of chaotic map parameters in coherent receivers is dependent on the carrier
recovery of phase and frequency which dramatically reduces the demodulation performance under high
noise levels. This article presents a stacked sequence-to-sequence neural network architecture for blind
carrier frequency offset estimation of both periodic and chaotic modulation schemes. The results obtained
demonstrate better performance than conventional methods in low SNR for the Additive White Gaussian
Noise channel. While this technique operates without feature engineering, the results demonstrate that data
augmentation produces a higher degree of accuracy for such models, indicating the benefit of integration
with conventional signal pre-processing steps as part of the deep learning pipeline. The proposed neural
network architecture is shown to perform carrier frequency offset estimation, not only for the selected
periodic modulations, but also in the case of highly non-linear chaotic maps. This suggests the applicability
of deep learning methods for synchronisation in waveforms that employ chaotic modulation schemes for
secure communication and for applications where short and sporadic messaging are required (e.g., Internet
of Things).

INDEX TERMS Chaotic communication, deep learning, fast fourier transforms, frequency synchronisation,
carrier frequency offset estimation.

I. INTRODUCTION
The accuracy of Carrier Frequency Offset (CFO) estimation
methods based on the Fast Fourier Transform (FFT) in single
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carrier communications is dependent on the sample length
of the message, and on the Signal to Noise Ratio (SNR) [1].
Short sample message lengths are advantageous in low power
Internet of Things (IoT) applications and pilot signals used
for signal detection and synchronisation. Deep Learning
(DL) methods have demonstrated to outperform FFT-based
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methods under similar constraints [2], [3]. However, much
of the experimentation to date has focused largely on phase
amplitude modulation (PAM) or M -ary phase shift keying
(M -PSK) modulations, and has not investigated the potential
application to chaotic modulation techniques.

Chaotic modulations present a method for providing
physical layer security, and are well suited to address the
constraints placed on IoT applications [4]. Due to the con-
tinuously changing signal which results from parameteri-
sation of the chaotic map sequence, chaotic modulations
exhibit high autocorrelation for the same symbol and low
cross-correlation between symbols [5]. This characteristic is
advantageous for coherent detection, where each symbol is
correlated with a potential mapping function at the receiver
and is resilient to small levels of noise [5]. However to
achieve demodulation the receiver is required to estimate the
parameters for each chaotic map function which is known
as sequence synchronisation [6]. Sequence synchronisation
for chaotic maps is dependent on accurate estimation and
removal of the CFO [6], [7]. For estimating frequency offsets
in chaotic maps, autocorrelation methods are shown to be
effective for fixed preambles [8], however these methods
are difficult to implement for variable and non-repetitive
sequences.

Given that deep neural networks can learn non-linear
features, the estimation of CFO for randomised chaotic
sequences is an application well suited to such methods.
In this article we propose a data driven method for the
estimation of the CFO in short sequences of BPSK, QPSK
modulations, as well as for the Circular, Quadratic and
Zadoff-Chu chaotic maps. The approach is applied to both
fixed preamble and randomised sequences. The model per-
forms an iterative estimation of the frequency offset using
a sequence-to-sequence (Seq2Seq) block at each level. This
approach is capable of more accurate CFO estimation for
the M -PSK modulations in comparison with the FFT and
Phase Locked Loop (PLL) approach. While brute force
cross-correlation is more accurate without down-sampling
at the matched filter (at the expense of execution time),
the DL method is more accurate when compared with
cross-correlation on the shorter down-sampled signal. The
network can produce CFO estimates directly from the
In-phase and Quadrature (IQ) values of the received signal,
however data augmentation is shown to provide an advantage
for the accuracy of the estimation.

A. BACKGROUND AND RELATED WORK
The use of the FFT is demonstrated to perform an approxima-
tion for the maximum-likelihood function of the parameters
in a sinusoidal signal corrupted by Gaussian noise in [9].
The length of the FFT determines the accuracy of the mea-
surement, and was found to be optimal at up to 4 times the
length of the signal [9]. As the frequency step size of the FFT
produces a coarse estimation, an interpolation is required to
produce a finer estimate. In the case of [9] an iterative secant
method is applied to the fine estimate of the frequency but

is indicated to produce a larger error in low SNR [9]. The
threshold for the variance of the estimator in [9] is shown
to be optimal above an SNR between 15 dB and 17 dB
in [10] for corresponding sequence lengths between N = 64
to N = 2048.
Interpolation methods using points either side of the max-

imum value for the FFT are applied to calculate an adjust-
ment term for the frequency estimate in [11] and [12] and
improve on the method in [9]. These methods are shown to
have a bias for short sequences and low SNR in [10] which
proposes three and five point interpolation methods making
use of the phase information in the FFT coefficients. Several
methods of interpolation are compared in [13] which also
makes use of three coefficients to demonstrate a method that
approaches uniform error variance above 2 dB. An extended
number of fourier coefficients weighted by an approximation
of their mean square error are combined to estimate the
frequency offset in [14], resulting in an estimator approaching
the lower bound of variance close to 5 dB. However each of
these methods share limitations in lower SNR and for short
sequences. In addition the application of the FFT is applicable
for periodic signals and are not appropriate for use with those
chaotic modulations which do not exhibit distinctive peaks
within the power spectrum.

DL approaches, in particular convolutional neural net-
works (CNN), are demonstrated to outperform FFT based
methods on estimation of CFO for short random sequences
in 1-bit ADC’s at low SNR in [2]. The selection of DL
models is able to extrapolate well over a wider range of
SNR (between−20 and 40 dB), even though they are trained
on a subset of the SNR (between 0 and 10 dB) [2]. The
1-bit quantization method reduces the amount of information
available to the network for training [2] and for conventional
methods it is known to require up to four times oversampling
for the estimation of offset parameters [15]. In conventional
methods, knowledge of modulation order M is applied to
remove themodulation from the signal prior to the application
of FFT estimation, however the generality of the 1-bit ADC
in [2] did not motivate an exploration of the impact of the
modulation on CFO estimation. As our method is applied
after down-sampling at the matched filter output, the type
of modulation is shown to have an influence on estimation
accuracy for both FFT and DL approaches.

Further indication that DL can provide good frequency
offset estimation for sinusoidal waveforms in low SNR is
described in [3]. The network architecture was constrained
specifically to the fully connected network (FCN) with the
number of input nodes representing the length of the signal
to be processed and being dependent on the range of the fre-
quency offset, requiring larger dimensions for wider ranges
of frequency [3]. FCN networks require a larger number of
connections between layers as opposed to the CNN [16],
hence consideration of CNN layers would provide flexibility
for processing multiple signal lengths with a constant number
of layer parameters. Although the choice of network archi-
tecture limited the range of frequency offset, it was shown
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that the FFT and DL methods did decrease in accuracy under
shorter signal lengths [3]. To address a wider frequency offset
range, as well as several modulations, this article proposes the
stacked network architecture, which incorporates CNN layers
to extract features at each level rather than fully connected
layers.

Short signals prevent the FFT from accurate spectral esti-
mation due to the resulting coarse resolution, whereas a DL
method for super-resolution estimation of the approximate
spectrogram is proposed in [17]. A combination of both
FCN (linear) and CNN layers are applied in the architecture,
taking advantage of the ability of the CNN to accept mul-
tiple resolutions of input during training to learn translation
invariant features [17]. A customised minimum distance loss
is applied during the learning procedure and the model is
shown to produce more accurate estimation than the peri-
odogram and eigenvector (MUSIC) based estimators at a
limited range of SNR [17]. The model is trained and tested
on the complex sinusoid with amplitudes, frequency and
phase selected from random normal distribution at different
parameters [17]. A fixed output resolution is used to estimate
the pseudo-spectrum of the signal which is then mapped onto
a known frequency range [17], the resolution is dependent on
the signal length and is fixed. Our proposed stacked model
refines the peak frequency estimate at increasing resolutions
for each stack in the network and estimates an error correction
term to produce a high resolution estimate for the carrier
frequency offset at the final layer.

The CNN is leveraged in the literature on the CFO
estimation task, however as the signal varies over time,
a recurrent neural network (RNN) may be applied to learn
time dependent features over the signal. Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) network
models are trained to perform CFO estimation with the short
training field (STF) of the IEEE 802.11ah preamble frame
in [18]. Results demonstrate that the network performs well
on the CFO estimation task in comparison with the conven-
tional correlation method in low SNR [18]. The STF is a
fixed pattern within the frame and is useful in simplifying
the process of timing and CFO estimation [18]. It is designed
to improve the resulting accuracy of the estimation method.
In the proposed method, we experiment with both the fixed
preamble as well as randomised sequences for several mod-
ulations and demonstrate that the DL approach can learn to
estimate the CFO even where the modulation exhibits chaotic
behaviour. In the proposed architecture, recurrent LSTM lay-
ers learn time dependencies resulting from features modelled
by CNN layers and are organised in encoder-decoder blocks
which share the hidden state for learnt time dependencies
between them.

A common element in the cited literature is that the DL
method is more accurate than conventional methods in low
SNR and for short sequences. While the FCN layer is applied
in [3] due to the constraints of the experiment, the CNN has
advantages as an effective choice for feature extraction in the
CFO estimation task [2], [17] and the use of the LSTM is

shown to be effective in [18]. It is clear a DL model can be
constructed for a single modulation, the impact of estimating
CFO for multiple modulations has not been investigated for
such an approach. Spectral methods are optimal under the
right conditions and would be useful to incorporate into
the design of the network model as demonstrated in [17]. The
chaotic map becomes deterministic when the state parameters
are known. A recurrent network modelling approach may
demonstrate the ability to learn implicit information from the
signal, thereby aiding estimation of the CFO. A combination
of RNN and CNN would enable a DL model to both extract
translation invariant features as well as learn time dependent
features. This article proposes a stacked architecture which
estimates the probability of the peak frequency as well as
an error correction term using sequence-to-sequence blocks
comprised of CNN and LSTM units.

The rest of the paper has been structured in the following
way: The next section describes the system model, as well
as the conventional carrier offset estimation method. It also
explains the proposed model architecture, as well as the data
augmentation applied when training the model. Section III
shows the experimental results obtained when the proposed
DL approach is applied to a number of CFO estimation tasks.
A discussion on these results is also provided in this section.
Section IV closes the paper, by giving some final concluding
remarks on the research carried out.

II. METHODS
When transmitted over a channel, the baseband signal s(t)
is subject to perturbations of timing t , phase θ and carrier
frequency f0 offsets, shown in Equation (1), where a(t) repre-
sents the signal modulation after filtering, and n(t) represents
Additive White Gaussian Noise (AWGN).

s(t) = a(t)ejθej2π f0t + n(t) (1)

In this work the proposed model is trained on several mod-
ulations, which include Binary Phase Shift Keying (BPSK),
Quadrature Phase Shift Keying (QPSK), as well as chaotic
Circular, Quadratic and Zadoff-Chu maps. Frequency offsets
for M -PSK modulations are estimated in two stages: first,
a coarse estimate f̂1 is given by the position of maximum
frequency of the coarse grained FFT (Equations (2)-(4)).
The derivation for the use of the Discrete Fourier Trans-
form (applied through the FFT) as an approximation for the
maximum-likelihood estimator of the CFO is described in
Rife and Boorstyn [9], in this article we apply the Matlab
coarse frequency estimator [19] which is derived from the use
of the FFT in [20]. The received signal s(t) is first raised to
theM th power z(t) = s(t)M , then the FFT is calculated giving
S(k) (Equation (2)). The index km of the frequency, having
the maximum absolute value for S(k) (Equation (3) ) is then
divided by the modulation order M (M = 2 in BPSK and
M = 4 in QPSK) and is scaled by the sampling frequency fs
over the length of the FFT N (Equation (4)). After the coarse
estimate, a fine frequency adjustment f̂2 is estimated via
a PLL implemented by the Matlab carrier synchronisation
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function [21] derived in [22]. The difference in phase error
estimates1θ produced by the PLL are scaled to the frequency
estimate via the sampling rate fs and the down-sampling rate
d , and the operation is averaged to estimate the adjustment
for the frequency offset (Equation (5)). Finally, the frequency
offset is estimated as the sum of the coarse frequency estimate
and the fine frequency adjustment (Equation (6)). Improve-
ment in accuracy can be gained by increasing the resolution
of the FFT, results from [9] recommend a resolution up to
four times the length of the original signal, depending on
performance constraints. In our experiments the FFT res-
olution is set to 4× the down-sampled received signal of
104 samples.

Two FFT interpolation methods are employed for compar-
ison. Both methods adjust the index km through an estimate
of the difference to the peak of the FFT, δ̂ and add it to the
index as in Equation (10), the updated index, kadj is then
applied in estimating the frequency f1 (replacing km with
the adjusted index kadj). The first interpolation method is
described in [13] where the two values either side of the
maximum index are used to estimate the difference from
the peak of the FFT (Equation (7)), this method reduces the
bias of the quadratic interpolation. The second method is
proposed in [14] which incorporates all FFT coefficients (in
K < N/2− 1) and calculates an estimate for the adjustment
δ̂k at each coefficient index k (Equation (8)). These estimates
are aggregated through weighting each with an approximate
of their mean square error term (Equation (9)) [14]. In the
results section the first interpolation method is indicated on
plots as ’Jacobsen’ and the second ’Candan’. Both methods
are suitable for use in multiple iterations, however in our
comparison we generate results with only one application of
each method.

S(k) =
N−1∑
n=0

ziej2πkn/N (2)

km = argmax|S(k)| (3)

f̂1 =
fs
N
km
M

(4)

f̂2 =
1
N

N∑
i=1

fs
d
1θ

2π
(5)

f̂0 = f̂1 + f̂2 (6)

δ̂ = −Re
[

Skm+1 − Skm−1
2Skm − Skm−1 − Skm+1

]
× Re (7)

δ̂k =
N
π

tan−1
(
tan(

πk
N

)

×

 Skm+ke
−j(π/N )k

− Skm−ke
j(π/N )k

Skm+ke−j(π/N )k + Skm−kej(π/N )k −
2Skm

cos(kπ/N )



(8)

δ̂ =

∑K
k=1 1/ sin

2 (πk/N )δ̂k∑K
k=1 1/ sin

2 (πk/N )
,K < N/2− 1 (9)

kadj = km + δ̂ (10)

The cross-correlation method is applicable where a tem-
plate such as a pilot signal is known. The template signal is
rotated by frequency steps f1, f2, . . . , fn between the range of
the expected frequency offset (in our experiments ±5 kHz).
The complex cross-correlation between the received signal
and the distorted template is calculated and the maximum
cross-correlation is used to determine the index of the fre-
quency estimate. In our randomised experiments, the DL
model does not have any knowledge of the template used
for the comparative method, whereas in the fixed preamble
setting it is trained on a fixed sequence. Cross correlation
is performed prior to down-sampling at 4× sample length
and post down-sampling at 2× sample length for compari-
son. This method is computationally expensive and is most
accurate on small frequency ranges and longer signal lengths.

A. DATA GENERATION
The data used in training and evaluation are divided into
two experimental settings, the fixed preamble setting and
the randomised sequence setting. In the fixed preamble set-
ting, M -PSK sequences are generated by repeating a fixed
message containing the 13 bit Barker code. For the chaotic
maps, the initial conditions are predefined along with a
fixed length for the recurrence relation within the map.
Randomised sequences consist of random bits for theM -PSK
messages and sliding windows of chaotic maps. Both types
of sequences (fixed and random) are constructed where the
bit sequence length is dependent on the number of bits
per symbol and produce 2 samples per symbol resulting
from matched filtering (up-sampled at 8× and decimated at
4× per sample respectively). After applying a root raised
cosine matched filter at the transmitter and receiver, a 52-bit
sequence for BPSK and 104-bit sequence for QPSK generate
104 samples. In the chaotic modulations 52 symbols are
mapped to a resulting 104 symbols after matched filtering.
All sequences are 104 samples in length.

Chaotic sequences cannot be randomised in the same
manner as bit sequences, since they depend upon the initial
conditions for each symbol and are parameterised depending
on the mapping function. Given their reliance on succes-
sive feedback, a randomised chaotic sequence is generated
by randomly selecting the number of feedback iterations
from an initial condition and stepping the mapping function
over the sequence length while storing the feedback signal
to use as the initial conditions for the next sequence. The
mapping functions for each of the chaotic maps are shown
in Table 1, along with the feedback parameter and initial
condition parameters. Figure 1 illustrates the IQ values for
each of the corresponding map functions.

During the data generation process, no phase rotation is
applied, and the frequency offset is selected from a ran-
dom uniform distribution within the range ±5 kHz with a
sampling frequency fs = 1 MHz. Noise is added for SNR,
Es/N0 = 0 . . . 9 dB with the noise variance σ 2 being esti-
mated from parameters Es and N0 in Equations (11)-(13),
where Es is the energy per channel symbol, N0 the noise
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TABLE 1. The set of chaotic map functions and their initial parameters
used in generating sliding sequences.

FIGURE 1. Example IQ plots of the chaotic map functions for a) Circular,
b) Quadratic and c) Zadoff-Chu maps.

power spectral density, L the number of symbols, and n the
bits per symbol. For training the network an offline dataset of
102400 sequences is generated for each modulation (502400
sequences) and each sequence is labelled with the corre-
sponding random frequency offset that was applied to distort
the signal.

Es =

∑L
t=1 s(t)
L/n

(11)

N0 =
Es

Es/N0
(12)

σ 2
= N0/2 (13)

B. NETWORK ARCHITECTURE
The intuition applied to the design of the network architecture
was that the network should be capable of multiple stages
of refinement in the task of frequency offset estimation.
A stacked architecture was arrived at such that each stack
would successively estimate a discrete set of steps for the
frequency range where the step size decreases at each level
in the stack. The final level then estimates the error between
the coarse estimate of the previous layer and the target fre-
quency. For comparison, the error adjustment layer is imple-
mented with two approaches. The first applies a classification
approach that is constrained within ±100 Hz of the coarse
estimate. The second approach applies a direct regression
to provide a continuous error correction to compensate for
broader variation of the error between the coarse estimate and
target frequency offset.

Each stack consists of a subnetwork block which is respon-
sible for learning features and performing estimation for
that block. To perform feature extraction, as well as learn
recurrence relationships, a sequence-to-sequence (Seq2Seq)
network is defined within the feature extraction block. The
Seq2Seq architecture follows the approach first defined
in [23], however beam search is not applied during estimation
and the inclusion of Convolutional layers differs from the
original model. The block design includes a Convolutional
(CNN) layer to extract input features, a bidirectional Long
Short-Term Memory (LSTM) encoder, latent space imple-
mented as a CNN layer, a bidirectional decoder LSTM layer
followed by an output CNN layer. Classification is provided
by a Dense block with a soft-max activation while regression
is achieved with a tanh activation. Regularisation is provided
by applying Batch Normalisation [24] following each CNN
and intermediate Dense layer, and Layer Normalisation is
applied after each LSTM layer. Max-pooling is applied to
the output of intermediate CNN layers with Global Average
Pooling applied prior to the Dense layer.

Aside from the estimation output, the hidden LSTM state is
shared between encoder and decoder LSTM, and the hidden
state of the decoder is forwarded to the encoder in the subse-
quent stack. The latent CNN state is also forwarded between
network stacks and concatenated with the input features for
the encoder in the subsequent stack. These skip connec-
tions enable multiple forward paths fusing latent features
and sharing hidden recurrent state throughout the network
and enable gradient flow during back-propagation [25]. Such
connections are proposed to enable ensemble like behaviours
in deep networks [26]. Figure 2 presents the schematic view
of the sequence-to-sequence block as well as the dense esti-
mator blocks for the network output and the interconnection
between the blocks is illustrated in Figure 2. Three stacks
were defined, with frequency bins of 100 and 50 Hz for both
the classifier and regressor networks. A frequency adjustment
of ±100 Hz is applied for the final estimator of the classifier
network, and a single continuous parameter applied in the
final estimator of the regressor network. Table 2 lists the
number of units for each layer type.
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FIGURE 2. Sequence to Sequence blocks with CNN feature extraction are interconnected with paths for hidden
recurrent state and latent CNN state. The final output of each block pools the output features of the sequence to
sequence block to produce the estimate for either the frequency bin or the frequency error.

FIGURE 3. Interconnection between two sequence-to-sequence blocks shares the decoder hidden state
with the encoder of the subsequent block and merges the latent CNN state with the CNN output via a
concatenation.

TABLE 2. The set of chaotic map functions and their initial parameters
used in generating sliding sequences.

During the network’s training, the data set is partitioned
into 50% training, 20% validation and 30% test. A cyclical
learning rate schedule [27] was applied which allowed the

learning rate to oscillate between 0.0001 and 0.001. Input
data was scaled by dividing the input signal by the l2-norm
and min-max normalising with parameters ±1. Target fre-
quency is min-max normalised with parameters ±5 kHz.
Back-propagation is performedwith Adam optimisation [28].
Cross-entropy loss is applied to the classification estimator
and mean squared error loss is applied to the regression
estimator. Each stack is trained iteratively, and the weights
of each previous stack are frozen prior to training the sub-
sequent stack. When training the final stack, the difference
between the previous stack frequency estimate and the true
target frequency is calculated and applied as the target after
min-max normalisation (±5 kHz).
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TABLE 3. Data augmentation produced 17 features prior to the input for
the network. Each of the features were derived from steps used in
conventional synchronisation.

The network models are trained under two experimental
settings, fixed preambles and randomised sequences, with
each setting producing separate models (eight individual
models in total, four model variants in each setting). A third
experiment explores the difference in training on a single
modulation, as opposed to multiple modulations. In this task,
two variants of the network model are independently trained
on QPSK and Quadratic map modulations for each setting,
resulting in eight individual models.

C. DATA AUGMENTATION
A comparison is made betweenmodels trained with and with-
out data augmentation. For those networks that are trained
without data augmentation, the complex signal is represented
as a matrix with two columns for the in-phase and quadrature
components. Those networks trained with data augmentation
were supplied with 17 features derived from the treatment
of the complex signal in conventional synchronisation algo-
rithms, these are described in Table 3.

During evaluation, a separate feature importance analysis
is undertaken by iteratively assigning uniform noise to each
feature and calculating the difference in performance between
the baseline model and the noisy input data.

III. RESULTS
The Mean Absolute Error (MAE), in Hz, produced by
the Stacked Model and the FFT/PLL method for the CFO

TABLE 4. Comparison between STACKNetC and STACKNetR on fixed
preamble sequences indicates a minor difference between model
variants when data augmentation is applied. A slight improvement in
MAE Hz does result from the regression model in comparison to the
classification model.

estimation task is shown in Figure 4 for BPSK and QPSK
modulations between 0 and 15 dB SNR in both experimen-
tal settings. Accuracy differs on each modulation for both
the proposed and conventional methods, with the proposed
method achieving higher accuracy on short sequences at
104 samples than the FFT/PLL method with 4× FFT res-
olution. Similarly the MAE, in Hz, for each chaotic map
sequence is shown in Figure 5, where the panels on the
left hand side show the proposed stacked network results
for estimation using 104 samples and those on the right
showing the effect of sample length on the brute force
correlation method at 2× and 4× sample lengths (208
and 416 samples). The stacked network is more accurate
than the cross-correlation with 2× upsampling, however
the cross-correlation at 4× upsampling demonstrates much
higher accuracy at the expense of execution timing. Like
the BPSK and QPSK modulations, the kind of chaotic map
influences the accuracy of the estimate.

Comparison is made between two configurations of the
network architecture where error adjustment is implemented
with either a classification layer (STACKNetC ) or as a regres-
sion layer (STACKNetR). In addition, models are trained
with and without data augmentation as indicated by the
postfix 17F . In the fixed preamble setting, there is little
difference between models that are trained with and without
data augmentation, while the regression model achieves a
lower MAE Hz on average than the classification model,
indicated in Table 4. On randomised sequences, those models
trained with data augmentation demonstrate slightly lower
MAE (Hz) on most modulations and SNR. While the per-
formance of the augmented classification and regression
models (STACKNetC17F and STACKNetR17F) are similar,
the regression model does appear to perform better on most
modulations for randomised sequences, especially on QPSK
and Quadratic modulations which exhibit higher MAE (Hz)
for all models. Table 5 shows the mean improvement in
MAE (Hz) between those models in the random setting.

In a separate experiment, the model architecture with data
augmentation is trained on single modulations for QPSK
and Quadratic maps. Figure 6 indicates a lower MAE Hz
for the regression model with the exception of random
QPSKwhere performance between the two variants are close.
Figures 4 and 5, indicate that training on a single modula-
tion produces results similar to training on multiple mod-
ulations and that performance is dependent on the type of
modulation.
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FIGURE 4. Comparison between stacked model configurations for classification (STACKNetC ) and regression (STACKNetR ) demonstrates better
performance for CFO estimation on short BPSK and QPSK sequence lengths of 104 samples verse FFT/PLL methods.

FIGURE 5. The stacked model demonstrates higher accuracy on the chaotic map than the cross-correlation with 2× upsampling however does not
perform as well as the 8× upsampled cross-correlation.

Figure 7 displays a box plot for the execution timing
of each method. The network is more complex than the

conventional FFT/PLL, and this is reflected in the timings,
hence the trade-off between accuracy and complexity. It is
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FIGURE 6. Models trained on a single modulation exhibit similar MAE to those trained on multiple modulations, indicating that training on
multiple modulations does not appear to influence the performance of the model as much as the choice of modulation itself.

TABLE 5. Comparison between STACKNetC and STACKNetR on random
sequences indicates an improvement in MAE Hz when data augmentation
is applied and a small improvement in MAE Hz resulting from
classification as opposed to regression.

notable that it takes longer to process a single record on a
DL model than it does to process a batch size of 100 records.
This is due to the hardware environment being more suited to
parallel execution, which will be an important consideration
when integrating DL into other systems. Such an estimate
may be taken as an average across windowed sequences for
the received signal. The brute force cross-correlation method
is much more expensive than the other two given the wide
frequency range.

Those models constructed with data augmentation
demonstrate an improvement over those learning from the
unprocessed signal in the randomised setting. Both variants of
the models (classification and regression) appear consistent
in the influence of each of the features shown in Figure 8. One
notable difference is that they disagree on the influence of the
lagged difference for the conjugate of the signal where the
imaginary value does not contribute as highly to the model

FIGURE 7. Execution speed of the simpler FFT/PLL method is faster in
comparison to the deep network model which performs well on larger
batches and is faster than the brute force cross-correlation method.

accuracy for the classification model STACKNetC17F as
opposed to the regression model. Variables contributing the
lowest scores include the signal raised to 4th power and the
lag-1 difference of phase in the signal. Both models nominate
the phase of the squared signal 6 r2 as causing the highest
MAE when the feature is replaced with Gaussian noise. The
low resolution FFT (length of 104), appears to be influential
to both models, however is not able to be used in isolation
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FIGURE 8. Feature importance indicated by the increase in MAE Hz when the feature is replaced with gaussian noise.

from the auto-correlation and squared polar form of the
signal.

A. DISCUSSION
After training the proposed stacked network on the selected
set of modulations, the model was able to produce
more accurate CFO estimates than the FFT/PLL and the
cross-correlation methods for short message sequences.
On the other hand, the cross-correlation method required
a longer message sequence to outperform the DL model.
As shown in the related research, DL is capable of CFO
estimation for short random sequences [2] and for noisy sinu-
soidal modulations [3], [18]. The stacked network models are
also able to accept random sequences of several chaotic maps
without reference to a template pilot sequence, indicating
the ability of the trained network to estimate CFO without
explicit knowledge of the feedback parameters for these types
of signals. As such, this methodology is suitable for use
with chaotic modulations and, given the ability to estimate
frequency offset, it may be possible for such a method to esti-
mate additional parameters required for chaotic synchronisa-
tion, such as the time dependent state variables of the chaotic
map. Future research in this task may investigate the use of
encoder-decoder networks in the estimation and tracking of
multiple chaotic system parameters such as in [29].

Data augmentation was applied to the model, and in the
randomised setting, demonstrated an improvement of approx-
imately 20 Hz MAE over those models which did not make
use of data augmentation. In the fixed preamble setting, data

augmentation did not demonstrate much influence over the
performance of the model, this is indicative that the variation
in message content is influential over the performance of
the model, with a fixed preamble illustrating low variation
(outside of the channel model) as opposed to randomised
sequences. While DL is capable of representation learning
without the requirement of manual feature engineering, it is
also true that domain specific feature engineering does pro-
vide an advantage in the application of DL. Such an approach
indicates that DL will be most useful where it can be incor-
porated into communications systems alongside conventional
signal processing methods in a hybridised form.

In this study we applied simulations with an AWGN
channel to generate the required data. The difficulty in
the supervised learning approach is the requirement for
off-line training, which requires a large volume of data espe-
cially when training across multiple signal modulations. The
amount of data required increases with each supported mod-
ulation so as to ensure an equal sized population for each
modulation in the training set. However this research has not
investigated the potential for transfer learning [16] to enable
the network to adapt to new modulations or channel models,
which is a topic for future investigation.

Performance of the model is influenced by the modulation
of the signal as shown in the results, hence the network model
is learning features related to themodulation in the carrier off-
set estimation task. In an end-to-end learning setting, it may
be possible to dynamically learn a suitable modulation to
reduce receiver error as demonstrated in works such as [30]
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and [31]. Future work will investigate methods of incorpo-
rating learnt CFO estimation which may jointly benefit from
the modulations learnt at the transmitter, necessarily moving
from an offline supervised learning problem to an online
learning problem.

Execution timing demonstrated that the DL model is more
efficient on batches of signal frames rather than on a single
signal frame. This is also a result consistent with the bench-
marking performed in [32]. This poses a design challenge for
the practical application of DL models in communications
systems, where batches of signal frames will be necessary to
most efficiently make use of the DL architecture. Future work
will be required to investigate the practical implementation
challenges of integrating DL based CFO estimation within
an end-to-end wireless communications system.

IV. CONCLUSION
In this article we have demonstrated the use of a stacked
sequence-to-sequence encoder to perform carrier frequency
offset estimation in multiple modulations, including for feed-
back dependent chaotic maps. The proposed architecture has
been shown to outperform FFT/PLL and cross-correlation
methods on short sequences, in both the fixed preamble
setting and in the randomised setting without knowledge
of the modulation, and in the randomised setting without
a pilot template. However increasing the message sequence
length did enable the cross-correlation method to outperform
the DL model, at the expense of additional execution time.
Data augmentation in the randomised setting, was shown to
provide an increased accuracy for the CFO estimation (of
approximately 20 Hz) and indicates that while DL models
are capable of learning feature representations directly from
raw IQ values, the use of appropriately chosen features is an
avenue for enhancing the performance of the model. Iterative
estimation was performed by separate stages of the stacked
network architecture with an error correction performed at
the final stack, thereby taking advantage of the composability
of DL modules as a means of iteratively refining the CFO
estimate. This work demonstrates the capability of DL tech-
niques to estimate the carrier offset parameter for chaotic
communications, and provides an incremental step towards
the application of DL in short messaging systems and chaotic
communication.
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