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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Envirotyping identified six distinct 
Australian wheat environment types 
(ETs).

• Genetic algorithm identified ideotypes 
by optimising 14 wheat traits for yield 
improvement.

• Global, targeted at high-stress ETs, and 
location-specific ideotyping scenarios 
were assessed.

• Ideotypes boosted average yield (18 %) 
and yield stability (16 %) across the 
target population of environments.

• Global and local ideotyping strategies 
emphasised different traits and their 
interactions.
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A B S T R A C T

CONTEXT: Climate change threatens wheat production by intensifying drought, heat stress, and yield instability. 
Selecting optimal cultivars is crucial for mitigating climate change impacts. Crop model-assisted ideotyping, i.e., 
designing and/or selecting for traits that maximise yield or quality under defined conditions, requires exploring a 
large number of genotype-by-environment (GxE) interactions but is computationally demanding. This is where 
envirotyping, i.e., categorising environments into a few environment types (ETs), emerges as a promising so
lution. Integrating envirotyping with ideotyping enhances breeding efficiency and enables targeted trait opti
misation. This scalable, data-driven approach supports the development of climate-resilient wheat cultivars 
suited to diverse and changing environments.
OBJECTIVE: Show how an innovative approach leveraging envirotyping can significantly cut down the 
computational demands of ideotyping, while still maintaining yield improvements. This approach offers a 
scalable framework for developing resilient crop cultivars tailored to diverse and changing environments.
METHODS: Using the next generation of Agricultural Production Systems sIMulator (APSIM Next Generation), 
wheat growth and development was simulated across diverse Australian environments. Four commercial culti
vars were simulated under multiple sowing dates to determine optimal sowing windows and highest-yielding 
cultivars for each location. Cluster analysis of water supply/demand ratios identified six ETs with distinct sea
sonal drought patterns. A genetic algorithm was used to optimise 14 key cultivar parameters influencing 
phenology, morphology, resource use, and yield components. Three ideotyping strategies—global, targeted at 
high-stress ETs, and location-specific—were assessed for their impact on average yield and yield stability.

* Corresponding author.
E-mail address: brian.collins@unisq.edu.au (B. Collins). 

Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

https://doi.org/10.1016/j.agsy.2025.104430
Received 25 February 2025; Received in revised form 7 June 2025; Accepted 15 June 2025  

Agricultural Systems 229 (2025) 104430 

Available online 18 June 2025 
0308-521X/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:brian.collins@unisq.edu.au
www.sciencedirect.com/science/journal/0308521X
https://www.elsevier.com/locate/agsy
https://doi.org/10.1016/j.agsy.2025.104430
https://doi.org/10.1016/j.agsy.2025.104430
http://creativecommons.org/licenses/by/4.0/


RESULTS AND CONCLUSIONS: The ideotyping strategies effectively reduced the occurrence frequency of late- 
season water stress. The identified ideotypes significantly improved average yield (~18 %) and yield stability 
(up to 16 % reduction in coefficient of variation). Global and targeted ideotyping strategies outperformed 
location-specific approaches in enhancing broad adaptability. In these strategies, key traits influencing yield 
gains included low minimum leaf number, high grain potential size, high radiation use efficiency, low potential 
root water uptake rate, high stay-green, and high number of grains per gram of stem and spike biomass. 
Phenological traits and trait interactions were more influential in the location-specific strategy.
SIGNIFICANCE: This study demonstrates the potential of model-assisted envirotyping to improve wheat breeding 
efficiency by reducing computational demands while maximising average yield and yield stability. Incorporating 
envirotyping into breeding workflows provides a scalable, data-driven approach that complements traditional 
GxE testing. Our findings offer valuable insights for developing climate-resilient wheat cultivars and contribute 
to global food security in the face of increasing climatic variability.

1. Introduction

The global demand for agricultural crop production is projected to 
nearly double by 2050 due to population growth, increased consump
tion, and evolving dietary patterns (Gerland et al., 2014; Godfray et al., 
2010). This rising demand, compounded by the increasing frequency 
and intensity of extreme weather events (Collins, 2022; Kornhuber et al., 
2023; Ray et al., 2015; Trnka et al., 2019), presents significant chal
lenges. Developing climate-resilient crops (Hammer et al., 2020) and 
refining agronomic practices tailored to future climatic conditions are 
crucial for ensuring food security and adapting agricultural systems.

Among staple crops, wheat (Triticum aestivum L.) plays an indis
pensable role in global food security, providing essential nutrients and 
supporting economies worldwide (Senapati et al., 2022; Shewry and 
Hey, 2015; Trnka et al., 2019). Australia contributes approximately 
10–20 % of global wheat trade, producing an average of ~25 million 
tonnes annually (Australian Export Grains Innovation Centre, 2025). 
Australian wheat production faces substantial challenges due to its 
heavy reliance on rainfed systems, which are highly sensitive to climatic 
variability, including shifts in rainfall patterns and rising temperatures 
(Feng et al., 2018; Wang et al., 2015). These climatic shifts have been 
shown to accelerate crop development, shorten the growing season, and 
disrupt water availability during critical growth stages (Ababaei and 
Chenu, 2020; Collins and Chenu, 2021; Watson et al., 2017; Zheng et al., 
2012). Furthermore, drought and heat stress have become more 
frequent (Collins, 2022), amplifying yield reductions and creating a 
pressing need for adaptive strategies to align the wheat crop cycle with 
changing water and temperature dynamics. Such climate-induced vari
ability underscores the necessity of developing wheat cultivars that are 
both resilient to abiotic stresses and capable of maintaining productivity 
under fluctuating environmental conditions (Semenov and Halford, 
2009; Shavrukov et al., 2017). This task is further complicated by the 
inherent uncertainties in future climate projections and the limited re
sources available to breeders for identifying and improving key traits 
(Ghahramani et al., 2015; Parry et al., 2011; Reynolds et al., 2011; 
Zheng et al., 2012).

Previous research has highlighted the selection of optimal (i.e., 
“ideal”) cultivars as one of the most effective adaptation strategies for 
mitigating climate change impacts (Loison et al., 2017; Rötter et al., 
2015; Tao et al., 2017). The concept of crop ideotypes has gained trac
tion as an innovative approach to enhance breeding efficiency and 
develop resilient cultivars. Originally introduced by Donald (1968), an 
ideotype represents an idealised plant type optimised for specific envi
ronmental conditions and target traits. Unlike traditional yield selection, 
which relies heavily on chance, ideotype breeding involves deliberately 
designing and selecting for traits that maximise yield or quality under 
defined conditions (Semenov and Stratonovitch, 2013). This strategy 
offers a systematic framework to address complex challenges in modern 
agriculture, such as balancing yield with stress tolerance and resource 
use efficiency (Debaeke and Quilot-Turion, 2014; Rötter et al., 2011).

Donald’s early ideotype traits, such as reduced leaf area and shorter 

plant height, have since been expanded to include physiological char
acteristics like enhanced photosynthetic efficiency, optimised grain 
filling, and improved spike fertility (Gracia-Romero et al., 2023; Parry 
et al., 2011; Semenov and Stratonovitch, 2013, 2015; Tefera et al., 2022; 
Yadav et al., 2023). These traits collectively support the development of 
climate-resilient wheat cultivars. Advances in crop simulation models 
have strengthened the case for ideotyping by providing powerful tools 
for exploring genotype-by-environment (GxE) interactions and opti
mising trait combinations (Martre et al., 2015b; Rötter et al., 2015; 
Semenov and Stratonovitch, 2013, 2015; Webber et al., 2018). Despite 
their inherent limitations (Rötter et al., 2018; e.g., Webber et al., 2022), 
crop simulation models have been instrumental in ideotyping, allowing 
breeders to explore and assess diverse combinations of genotypes and 
environmental scenarios. These models facilitate the identification of 
optimal traits for future climatic conditions, allowing researchers to 
bypass resource-intensive field experiments (Ababaei and Chenu, 2020; 
Collins et al., 2021; Collins and Chenu, 2021; Deihimfard et al., 2023; 
Semenov and Halford, 2009; Semenov et al., 2014). For example, 
Semenov and Stratonovitch (2015) used Sirius to design wheat ideo
types under future climate scenarios.

Despite their utility, crop models face challenges in assisting ideo
typing. The vast number of trait-environment combinations that must be 
tested—along with the need to simulate these interactions under diverse 
management practices—poses computational challenges. Wang et al. 
(2019), for instance, explored over 16,000 genotypic parameter com
binations to optimise wheat traits under future climate scenarios. Con
ducting such large-scale simulations is both time- and energy-intensive, 
necessitating innovative methods to streamline the process (Ababaei 
and Ullah, 2020).

This is where model-assisted envirotyping emerges as a promising 
solution. By characterising environments through the analysis of his
torical and simulated data, envirotyping enables the classification of 
environmental conditions into manageable clusters, reducing the 
complexity of G × E interactions (Chapman, 2008; Chenu, 2015; Collins 
and Chenu, 2021). Envirotyping allows breeders to focus on represen
tative environments, thereby minimising redundant simulations while 
capturing key stress patterns relevant to breeding targets (Chauhan 
et al., 2021; Chenu et al., 2011). Clustering-based methods, in partic
ular, offer an effective means of delineating homogeneous stress envi
ronments, enhancing the precision and efficiency of crop improvement 
programs (Chenu et al., 2013). Ababaei and Ullah (2020) demonstrated 
how clustering-based envirotyping can significantly reduce simulation 
requirements by focusing on key weather patterns.

Our study aims to highlight the value of envirotyping in model- 
assisted ideotyping. By integrating crop models with advanced envir
otyping techniques, we seek to demonstrate how an innovative 
approach leveraging envirotyping can significantly cut down the 
computational demands of ideotyping, while still maintaining yield 
improvements. This approach not only addresses the computational 
challenges associated with model-aided ideotyping but also offers a 
scalable framework to accelerate developing resilient crop cultivars 
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tailored to diverse and changing environments.

2. Material and methods

2.1. Study locations and simulation setup

Australian environments were chosen for this study due to their year- 
to-year variability in environmental conditions, which provide a wide 
spectrum of both stressed and non-stressed scenarios that can result in 
diverse yield outcomes (Wu et al., 2022). Potgieter et al. (2002) cat
egorised the target population of Australian environments into six main 
types (i.e., mega-environments) using principal component analysis of 
long-term production variability at the shire scale. This study defines the 
target population of environments (TPE) as six distinct locations, each 
representing a specific mega-environment (Table 1).

Four Australian commercial spring wheat cultivars with contrasting 
maturity habits (Grains Research and Development Corporation, 2023) 
were selected to represent a broad spectrum of maturity patterns and 
season durations: Emu Rock (very quick to quick), Scepter (quick to 
medium), Scout (medium), and Trojan (medium to slow). Phenology 
parameters were derived from the publicly available the Agricultural 
Production Systems sIMulator (APSIM; Holzworth et al., 2018, Holz
worth et al., 2014) cultivar database, which contains cultivar parame
ters that have been calibrated and validated (https://github.com/APSI 
MInitiative/ApsimX; version 2024.12.7641.0).

Historical daily weather data, including maximum and minimum 
temperatures, solar radiation, and rainfall, were sourced from the SILO 
patched point dataset (Jeffrey et al., 2001) for the simulation period 
(1971–2024). At each location, soil characteristics and fertilisation 
levels were adjusted to reflect local soils and farming practices (Table 1; 
Wu et al., 2022). For all simulations, soil initial conditions were reset 
annually, 30 days before the sowing date. Initial nitrogen contents were 
determined based on Chenu et al. (2013). Initial soil moisture (ISM) was 
set at either 25 % or 75 % of soil plant available water content (PAWC) 
to reflect anticipated variability in available soil moisture at sowing. 
Initial soil nitrogen was assumed to comprise 95 % NO3-N and 5 % NH4- 
N. A wide range of sowing dates were simulated, from March 15 to July 
15 at two-week intervals. Simulation outputs (see below for details) 
from all the selected sowing dates were used to cluster the seasonal 
water-deficit patterns into major environment types.

2.2. Identification of environment types

The APSIM-Wheat model calculates a daily water supply/demand 
ratio index (SDR), which indicates the extent to which the extractable 
soil water meets the potential transpiration. SDR varies between 1.0 (i. 
e., no water stress) and 0.0 (i.e., no water available to the crop). For each 
simulated environment (i.e., a location × year × cultivar × sowing date 
× ISM), daily SDR values were centred on the flowering stage and 

averaged over 100 ◦Cd intervals from 1200 ◦Cd before flowering to 600 
◦Cd after flowering. Beyond this period, senescence markedly reduces 
plant transpiration, leading to a sharp rise in water-deficit stress, while 
the effects of water stress are predominantly observed as reduced 
biomass accumulation and resource retranslocation among plant organs 
(Chenu et al., 2013).

The ‘kmeans’ clustering function in the R programming environment 
(R Development Core Team, 2024) was utilised to classify the seasonal 
SDR patterns into major environment types (ETs). Then, an average 
water-deficit index pattern was calculated to represent each ET. The 
occurrence frequency (OF) of the identified ETs were analysed across 
different locations considering optimal plating windows at each location 
(see below).

2.3. Optimal sowing windows

For each location × cultivar combination, a two-month optimal 
sowing window (OSW) was identified. Simulations for all location ×
sowing date × cultivar combinations were used to calculate long-term 
average yields for every two-month sowing window between 15 
March and 15 July. The sowing window with the highest long-term 
average yield was designated as the OSW for each location × cultivar 
combination. The highest-yielding cultivar (HYC) at each location was 
then identified. Subsequent analyses focused on simulations where 
HYCs were planted at each location within the identified OSWs. This 
approach ensured that findings were not biased by adopting suboptimal 
cultivars and/or sowing outside the OSW.

2.4. Designing high-yielding Ideotypes

Fourteen cultivar parameters were selected as promising for 
improving wheat yield potential and selected for optimisation (Table 2). 
In APSIM-Wheat, these parameters directly influence phenology, canopy 
development, morphology, resource use, and yield components and are 
implemented to model key aspects of wheat growth and development. 
This set of parameters collectively provide a comprehensive framework 
to optimise underlying processes to maximise yield across diverse 
environmental conditions.

2.4.1. Phenology
Optimising phenology is crucial for enhancing crop performance by 

aligning critical growth stages with favourable environmental condi
tions. Early or optimal timing of flowering can maximise yield, partic
ularly in dry environments, by avoiding late-season water stress (Herndl 
et al., 2007; Rezzouk et al., 2022; Richards, 1991), although it might 
increase the probability of frost damage if early flowering cultivars are 
planted (Zheng et al., 2015). Yield increases of 30–50 % have been 
recorded in Australian regions susceptible to post-heading frosts when 
early flowering cereal crops successfully avoided frost events (Frederiks 

Table 1 
Study locations along with representative management scenarios and soil initial conditions. Locations are arranged according to latitude. Data from Chenu et al. 
(2013). PAWC: plant available water capacity (mm). PAW: plant available water (expressed as percentage of PAWC). Initial and applied nitrogen (NRules) are denoted 
as ‘x-y-z-a’, where x represents initial soil N, uniformly distributed across soil layers at sowing. y refers to N applied at sowing at 50 mm depth as nitrate. z and a denote 
N applications as nitrate (NO3-N) at the ‘beginning of stem elongation’ and ‘mid-stem elongation’ stages, respectively.

Location Lat Long PAWC (mm) Initial PAW (%) Row Spacing (mm) Population (plants/m2) NRules

Dalby − 27.16 151.26 203 25, 75 250 100 30–130–0-0
Dookie − 31.48 118.28 114 25, 76 250 150 50–40-40d-40c

Dubbo − 32.52 148.52 134 25, 77 250 100 50–50-50d-0
Katanning − 33.69 117.61 96 25, 78 250 150 45–20-30-30a

Merredin − 35.12 142.00 88 25, 79 250 100 30–20-20-30a

Walpeup − 35.91 145.64 134 25, 80 250 100 50–20-30b-30c

a If soil PAW at ‘mid-stem elongation’ exceeds 60 mm.
b If rainfall from sowing to ‘beginning of stem elongation’ surpasses 80 mm.
c If soil PAW at ‘mid-stem elongation’ is greater than 60 % of PAWC.
d If rainfall from sowing to ‘beginning of stem elongation’ exceeds 100 mm.
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et al., 2011). On the other hand, adjusting traits such as phyllochron 
(Phyll, oCd) and grain filling duration (GFDur, oCd) can improve radi
ation interception, harvest index, and grain yield (Arnaiz Sánchez et al., 
2007; Garg et al., 2013; Gebeyehou et al., 1982), provided crops 
maintain a green area index until the end of grain filling (Evans and 
Fisher, 1999; Semenov and Stratonovitch, 2013; Wang et al., 2019). 
Longer grain filling periods allow for greater biomass translocation and 
grain weight accumulation, although terminal water and heat stress- 
induced senescence can reduce yield through interrupting carbon sup
ply (Ababaei and Chenu, 2020; Aggarwal et al., 1997; Borrell et al., 
2001; Brisson et al., 2001; Semenov and Halford, 2009). Vernalisation 
and photoperiod sensitivity also influence yield, with reduced sensitivity 
enabling earlier flowering and better adaptation to dry or warm envi
ronments as it helps to avoid terminal stress (Herndl et al., 2007; 
Steinfort et al., 2017). Thus, fine-tuning phenological traits is key to 
improving crop resilience and productivity under diverse environmental 
conditions.

The selected phenological parameters are crucial for aligning crop 
growth stages with environmental factors, particularly photoperiod and 
temperature. In APSIM-Wheat, the CAMP model integrates molecular 
and physiological representations of flowering time by modelling the 
expression levels of genes such as Vrn1, Vrn2, and Vrn3 based on tem
perature, photoperiod, and Haun stage progression. MinLN defines the 
minimum number of leaves under optimal vernalisation and long pho
toperiods, while PpLN and VrnLN quantify the genotype’s sensitivity to 
photoperiod and vernalisation, respectively. Manipulation of these pa
rameters allows precise adjustments of flowering time under varying 
conditions (Gouache et al., 2017; Richards, 1991). The parameter 
VxPLN accounts for the relative contributions of Vrn2 and Vrn3 genes, 
refining crop responses to short-day and long-day conditions. Head
EmergLD (oCd) refers to the thermal time required for the plant to 
transition from the emergence of the flag leaf ligule to heading under 

long-day conditions. HeadEmergPpSens is the factor with which Head
EmergLD is adjusted under short-day conditions. Adjusting these pa
rameters can lead to well-synchronised flowering and grain filling to 
mitigate the risk of stress during these critical growth stages (Semenov 
and Stratonovitch, 2013; Steinfort et al., 2017).

2.4.2. Morphology
Phyll and PhyllPpSens regulate leaf emergence rates, therefore affect 

canopy expansion and light interception. In APSIM-Wheat, Phyll de
termines the thermal time required for the appearance of each leaf, 
while PhyllPpSens adjusts this rate based on photoperiod. Using these 
two parameters, optimal canopy expansion can be achieved for light 
interception during critical growth phases. Similarly, LagDuration and 
GFDur control the longevity of green leaf area (aka, ‘stay-green’) and the 
length (in oCd) of grain-filling phase, respectively. By prolonging grain 
filling and maintaining green leaf area, the interception of radiation and 
conversion to biomass can be maximised to achieve higher harvest 
indices (Borrell et al., 2001; Christopher et al., 2016; Wang et al., 2019). 
HeadEmergLD further enhances crop synchrony by fine-tuning the 
duration from flag leaf ligule appearance to flowering, ensuring devel
opmental transitions align with environmental cues.

2.4.3. Resource use and yield components
Optimising radiation use efficiency (RUE) is critical for improving 

crop performance, as it directly influences the conversion of intercepted 
solar radiation into biomass. Increased RUE has been identified as a key 
driver of yield improvements in wheat and other crops, especially in 
regions with abundant solar radiation (Semenov and Stratonovitch, 
2013; Sylvester-Bradley et al., 2012). Wang et al. (2019) demonstrated 
that ideotypes with higher RUE and faster potential grain filling rates led 
to significant yield increases in wet environments. Additionally, im
provements in Rubisco specificity for CO2 over O2 could enhance carbon 
assimilation by up to 10 %, further optimising RUE under current at
mospheric CO2 concentrations (Zhu et al., 2004). Although these ad
vancements highlight the significance of optimising RUE for sustainable 
yield improvements across varying environments, increased photosyn
thesis can shift the timing and severity of water and nitrogen stress in 
crops, potentially causing unforeseen seasonal dynamics and yield 
fluctuations (Wu et al., 2022).

In APSIM-Wheat, potential daily water uptake rate (KL) plays a 
pivotal role in soil moisture uptake. This parameter is critical for miti
gating stress during dry periods, enhancing water use efficiency and 
yield stability (Manschadi et al., 2006; Rezzouk et al., 2022). APSIM 
includes a parameter (KLModifier, default value 1) that regulates the 
daily water uptake rate. In this study, the model was tailored so that any 
modification to KLModifier is concurrently reflected in the root biomass 
demand (assuming a higher KL is achieved by a larger root system).

GrainPGS (grains/g) governs the number of grains per gram of stem- 
and-spike biomass at anthesis, while GrainPotSize (mg) represents the 
maximum individual grain size. For a constant GFDur, a larger Grain
PotSize results in a larger potential grain filling rate. Optimising these 
traits, as key drivers of yield potential, can help maximise grain number 
and size under a range of environments (Collins and Chenu, 2021; Ullah 
and Chenu, 2019; Ullah et al., 2019).

2.5. Optimisation algorithm

A scalable optimisation pipeline was developed in the R program
ming environment using a Genetic Algorithm, aimed to maximise 
NWAY. Genetic Algorithms are stochastic search methods inspired by 
the principles of biological evolution and natural selection (Liepins and 
Hilliard, 1989). These algorithms emulate the evolutionary processes of 
living organisms, where the fittest individuals prevail through mecha
nisms such as selection, crossover, and mutation. A customised version 
of the ‘ga’ function from the ‘GA’ package (Scrucca, 2013) was inte
grated into the optimisation pipeline. The minor customisation allowed 

Table 2 
APSIM-Wheat cultivar parameters selected for ideotyping, along with their 
default values and the ranges used for optimisation (see sections 2.4.1–2.4.3). 
MinLN: final leaf number (FLN) when fully vernalised before HS1.1 and then 
grown in long-day conditions; PpLN: Increase in FLN when fully vernalised 
before HS1.1 then grown at >18oC in short-day conditions; VrnLN: Increase in 
FLN when un-vernalised and grown in short-day conditions; VxPLN: Change in 
VrnLN when unvernalised and grown in long-day conditions; Phyll: The thermal 
time between the emergence of leaf tips; PhyllPpSens: The sensitivity of Phyll to 
short-day lengthening impact on Phyll; HeadEmergLD: The thermal time for the 
plant to go from flag leaf ligule appearance in long-day conditions; Head
EmergPpSens: The number of Phyll to go from flag leaf ligule appearance in 
long-day conditions compared to the number of Phyll for the same phase in 
short-day conditions; GFDur: The duration of grain-filling phase in thermal time 
units; RUE: Radiation use efficiency; StayGreen: The modifier of the thermal 
time that the leaf will remain at maximum area for in the absence of stress; 
KLModifier: The modifier of the rate of soil moisture extraction by roots, which 
also affects root biomass demand; GrainPGS: The number of grains per gram of 
stem and spike biomass; GrainPotSize: The potential size of individual grains.

Parameter Group Parameter Default Lower Upper Unit

Phenology MinLN 8 5 15 leaves
Phenology PpLN 3.8 0 6 leaves
Phenology VrnLN 5 0 9 leaves
Phenology VxPLN − 2 − 4 2 leaves
Phenology Phyll * 120 96 144 oCd
Phenology PhyllPpSens * 0.6 0.48 0.72 –
Phenology HeadEmergLD * 240 192 288 oCd
Phenology HeadEmergPpSens 2 1 3 –
Phenology GFDur * 545 436 654 oCd
Resource Use RUE * 1.5 1.2 1.8 g/MJ/d
Resource Use KLModifier * 1 0.8 1.2 –
Morphology StayGreen * 1 0.8 1.2 –
Yield Component GrainPGS * 26 20.8 31.2 grains/g
Yield Component GrainPotSize * 0.05 0.04 0.06 mg

* The range spans from 80 % to 120 % of the default value.

B. Collins et al.                                                                                                                                                                                                                                  Agricultural Systems 229 (2025) 104430 

4 



the algorithm to run in a vectorised manner to leverage APSIM’s multi- 
core capability and enhance computational performance. The proba
bility of crossover between chromosome pairs (‘pcrossover’) and the 
probability of mutation in a parent chromosome (‘pmutation’) were set 
to 0.8 and 0.1, respectively. The number of best-fit individuals to survive 
each generation (‘elitism’) was set at 2 % of the population. The popu
lation size and the maximum number of iterations before halting the 
search were set to 500 and 400, respectively, resulting in 200,000 
simulations conducted under each optimisation scenario.

2.6. Ideotyping scenarios

Three ideotyping scenarios were analysed: (1) ‘Optim-Global’: opti
misation was performed using a single environment (location × year ×
HYC × ISM) representative of each identified ET, with the occurrence 
frequencies of ETs serving as weights to estimate average yield (here
after, ‘nominal weighted average yield’, NWAY) during optimisation. 
Representative environments were identified as those with seasonal SDR 
patterns exhibiting the smallest Euclidean distance from the average 
pattern of the corresponding ET; (2) ‘Optim-ET3+’: followed a similar 
approach to ‘Optim-Global’ but focused exclusively on high-stress ETs 
(ET3–6); and (3) ‘Optim-Local’: optimisation was conducted similarly to 
‘Optim-Global’ but independently for each location, using location- 
specific ET occurrence frequencies as weights to calculate NWAY. In 
this context, representative location-specific environments were deter
mined and adopted for optimisation.

After the conclusion of the optimisation process, the optimised 
values for the selected cultivar parameters were applied to simulations 
while location-specific OSWs were adopted. Simulation outputs were 
then compared against benchmark simulations (‘Pre-Optim’) where the 
HYCs were planted within the location-specific OSWs.

3. Results

3.1. Global drought environment types

A cluster analysis of simulated crops based on 54-year simulations 
identified six global drought patterns (‘environment types’, ETs) within 
the TPE (Fig. 1) corresponding to varying levels of stress over the 
growing season. The ETs were sorted based on their corresponding 
average yield across the TPE (i.e., all combinations of location × year ×
cultivar × sowing date × ISM; Fig. 2). Without adopting OSWs and 
HYCs, ET1 aligned with the upper-range average grain yield across the 
TPE. With their adoption, ET3 achieved the highest average yield, while 
ET1, ET2, and ET4 exhibited similar yields, albeit with significant 
variation across study locations. ET5 and ET6 consistently produced the 
lowest average yields across the TPE, regardless of OSW and HYC 
adoption.

Approximately 23,200 drought patterns were categorised into six 
classes. Therefore, each ET encompassed a wide spectrum of water- 
deficit conditions while collectively explaining 61 % of the total vari
ability. When the OSWs and HYCs were adopted, the most common ET 
was determined to be ET4 (29 %) followed by ET1 (26 %) and ET2 (19 
%). ET3, ET5, and ET6, which represent earlier incidence of mild stress, 
represent 7, 9, and 11 % of the simulated seasons, respectively (Fig. 1).

Each identified cluster represents a unique temporal pattern of daily 
SDR. ET1 characterises environments with little to no stress before 
flowering, followed by mild stress during early to mid-grain filling, 
which gradually subsides towards maturity. ET2, ET3, and ET5 share a 
similar trajectory but experience stress accumulation earlier in the 
season. ET4 generally maintains consistently low stress levels 
throughout the season that gradually increases towards maturity, 
whereas ET6 follows a distinct pattern, with mild stress at the onset of 
the season that diminishes around 500 ◦Cd before flowering.

Fig. 1. Water supply/demand ratio (SDR) patterns for the six identified environment types (ET1–6). The lines show the average SDR values across all simulated 
environments (location × year × cultivar × sowing date × ISM). For each simulated environment, daily SDR values were centred on the flowering stage and averaged 
over 100 ◦Cd intervals from 1200 ◦Cd before flowering to 600 ◦Cd after flowering. Beyond this period, senescence markedly reduces plant transpiration. In-set 
numbers (from left to right) indicate the occurrence frequency (OF) of ETs across the target population of environments (TPE) for the benchmark scenario (‘Pre- 
Optim’) and the ideotyping scenarios ‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-Local’, respectively, when optimal sowing windows (OSWs) and highest-yielding 
cultivars (HYCs) were adopted. Refer to section 2.6 for detailed information on ideotyping scenarios.
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3.2. Ideotyping affects occurrence frequency of ETs

Ideotyping significantly changes the occurrence frequency (OF) of 
the identified ETs across the TPE (Fig. 3 and Fig. 4). The OF patterns in 
the ‘Optim-Global’ and ‘Optim-ET3’ ideotyping scenarios followed 

similar trends, characterised by a substantial 9–10 % point (pp) reduc
tion in ET1’s OF, a 4 pp. increase in ET4’s OF, a 3–7 pp. rise in ET5’s OF, 
and a slight decrease in ET6’s OF. In contrast, the ‘Optim-Local’ scenario 
presented a distinct pattern with the most significant increase being in 
ET2’s OF (8 pp), while ET1’s OF declined by 5 pp., compared to the 10- 

Fig. 2. Average grain yield for the six identified environment types (ET1–6) across the target population of environments (TPE) for the benchmark scenario (‘Pre- 
Optim’) with all simulated seasons (top) and when optimal sowing windows (OSWs) and highest-yielding cultivars (HYCs) were adopted (bottom).

Fig. 3. The occurrence frequency (OF) of the identified environment types (ETs) across the target population of environments (TPE) for the benchmark scenario 
(‘Pre-Optim’) and the ideotyping scenarios ‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-Local’. Refer to section 2.6 for detailed information on ideotyping scenarios.
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pp drop in the other two scenarios. Compared to the ‘Pre-Optim’ sce
nario, ET3’s OF rose by 5 pp., offset by a 4 pp. decrease in ET4’s OF. 
ET5’s OF increased by 4 pp., whereas ET6’s OF dropped sharply from 11 
% to just 2 %.

The influence of ideotyping on ETs’ OFs primarily stems from two 
types of shifts in water-stress dynamics: (1) moving from late-season 
accumulation (represented by ET1), when grain-filling reaches its 
peak, to either an earlier onset of water-stress (i.e., pre-flowering) that 
subsides shortly after flowering (represented by ET2, ET3, and ET5) or 
low stress levels throughout the seasons (ET4). This transition reduces 
plant stress during the critical grain-filling phase and provides a more 
favourable growth environment during this sensitive phase; (2) reduced 
occurrence of early-season water stress (represented by ET6), which 
substantially affected canopy expansion and radiation interception 
throughout the season.

3.3. Ideotyping improved average and stability of yield

Fig. 5 illustrates yield response to different optimisation strategies 
across the six study locations and all sowing dates when the location- 
specific HYCs were adopted. In Merredin, Dubbo, ideotyping led to 
the highest yield improvements when early sowing (March–April) was 
adopted, where increases exceed 30 % in some cases. However, in Dalby, 
Walpeup, and Dookie, this benefit was higher with later sowing dates, 
especially from 01-Jun onwards. These findings reinforce the impor
tance of early sowing and the optimisation objective in different regions.

Notably, yield gains under the ‘Optim-Global’ and ‘Optim-ET3+’ 
strategies typically exceeded those of the ‘Optim-Local’ strategy when 
sowing occurred outside the OSWs (except in Katanning). In most cases 
where the local strategy performed better, sowing occurred within the 
OSWs. This indicates that global ideotyping strategies offer greater po
tential for broad adaptability.

The performance of the three optimisation strategies varied by 

Fig. 4. The occurrence frequency (OF) of the identified environment types (ETs) across the study locations for the benchmark scenario (‘Pre-Optim’) and the 
ideotyping scenarios ‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-Local’. Locations are arranged according to latitude. Refer to section 2.6 for detailed information on 
ideotyping scenarios.
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Fig. 5. Change in long-term average yield for the ideotyping scenarios ‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-Local’ relative to the benchmark scenario (‘Pre- 
Optim’) for each simulated sowing date when highest-yielding cultivars (HYCs) were adopted at each location. Locations are arranged according to latitude. Optimal 
sowing windows (OSWs) are indicated with ‘X’ symbols. Refer to section 2.6 for detailed information on ideotyping scenarios.
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location. ‘Optim-ET3+’, which focuses on high-stress, low-yielding en
vironments, consistently delivered the highest yield improvements in 
most location × sowing date combinations. ‘Optim-Local’ scenarios 
showed superior performance in Katanning but was less effective in 
other locations compared to the other two strategies. Meanwhile, 
‘Optim-Global’ provided steady but generally slightly lower improve
ments than ‘Optim-ET3+’.

Fig. 6 summarises the findings presented in Fig. 5 when the OSWs 
were adopted. The three ideotyping strategies led to ~18 % improve
ments in grain yield averaged across the TPE. All three strategies led to 
yield improvements across all study locations, with the highest increases 
observed in Katanning, where yield gains exceeded 29 %. Dalby and 
Dookie also experienced notable increases, while Merredin and Walpeup 
showed relatively smaller improvements. The consistency of yield gains 
across locations suggests that ideotyping has considerable potential to 
enhance productivity, though the extent of improvement varied by 
location and climate. Among the three strategies, ‘Optim-Local’ achieves 
the highest yield increases only in Katanning, while ‘Optim-ET3+’ 
performs slightly better in Dalby, Dubbo, and Dookie, indicating that 
localised approach and the approach focusing on high-stress environ
ments may offer region-specific advantages.

In addition to yield improvements, the changes in yield stability 
(expressed as coefficient of variation, CV) highlight the value of ideo
typing strategies. Most locations exhibited a significant reduction in CV, 
indicating enhanced yield stability when optimised cultivars were 
adopted. The ‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-Local’ strate
gies led to 15.5, 14.8, and 9.1 % reduction in CV, respectively. Katan
ning, in particular, showed a sharp decrease in CV across all three 

strategies, with ‘Optim-Local’ achieving the greatest reduction of over 
40 %. This suggests that while this location may benefit the most in 
terms of average yield, it would also experience a significant reduction 
in variability, making the yield gains more reliable over the long term. 
Conversely, Dubbo presents an exception, where ‘Optim-Local’ resulted 
in a notable increase in CV, showing increased yield variability despite 
the improvement in long-term average yield.

The overall trend across the TPE reinforces the idea that ideotyping 
strategies not only boost yield but also enhance yield stability. The re
ductions in grain yield CV suggest that ideotyping effectively mitigated 
risks linked to climate variability. However, the magnitude of these 
benefits varied by location, which highlights the need for region-specific 
strategies. While ‘Optim-Global’ and ‘Optim-ET3+’ achieved a 6 % 
greater reduction in CV than ‘Optim-Local’, the differences among the 
three approaches across the study locations indicate that no single 
strategy is universally optimal. Instead, selecting an ideotyping 
approach should balance yield improvement and stability and be 
tailored to site-specific conditions.

3.4. Key physiological drivers

Fig. 7 highlights the contributions of cultivar parameters to the 
variability of NWAY across the three ideotyping strategies and six lo
cations. A high Main Effect (ME) value for a parameter indicates a strong 
direct effect on yield and small changes in that parameter can signifi
cantly alter productivity. Under the ‘Optim-Global’ and ‘Optim-ET3+’ 
strategies, six key parameters—MinLN, GrainPotSize, RUE, KLModifier, 
StayGreen, and GrainPGS—had the highest Main Effect (ME) values and 

Fig. 6. Change in long-term average yield (top) and change in seasonal yield coefficient of variation (bottom) for the ideotyping scenarios ‘Optim-Global’, ‘Optim- 
ET3+’, and ‘Optim-Local’ relative to the benchmark scenario (‘Pre-Optim’) when optimal sowing windows (OSWs) were adopted. Locations are arranged according 
to latitude. Refer to section 2.6 for detailed information on ideotyping scenarios.
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exerted the most direct influence on NWAY. Additionally, PpLN became 
influential under ‘Optim-ET3+’. Among these parameters, MinLN 
consistently showed the highest ME, indicating that variations in mini
mum leaf number have a substantial direct impact on NWAY. Similarly, 
GrainPotSize and RUE exhibited relatively high ME values. In contrast, 
under ‘Optim-Local’ strategies, the influence of key parameters shifts, 
with VrnLN, VxPLN, Phyll, and HeadEmergPpSens gaining prominence, 
particularly in regions like Dalby, Walpeup, and Dubbo. This suggests 
that local adaptation depends more on phenology-related traits rather 
than other physiological characteristics such as RUE.

The higher ME values of MinLN, GrainPotSize, RUE, KLModifier, 
StayGreen, and GrainPGS (as well as PpLN in ‘Optim-ET3+’) under 
global strategies suggests that these traits are fundamental to cultivar 
performance and are largely independent of environmental fluctuations. 
In contrast, mostly lower ME values in ‘Optim-Local’ strategies suggest 
that no single parameter overwhelmingly determines yield. Instead, site- 
specific optimisation requires a more balanced adjustment of multiple 

traits rather than a strong reliance on a few dominant ones.
The Total Effect (TE) panel in Fig. 7 reveals the overall influence of 

parameters, accounting for both direct effects and trait interactions. 
High TE values under ‘Optim-Global’ and ‘Optim-ET3+’ for MinLN, 
GrainPotSize, RUE, KLModifier, StayGreen, GFDur, and PpLN indicate 
that these traits do not act in isolation but significantly interact with 
other parameters to shape crop performance. That is, these traits 
contribute both individually and through complex interactions and are 
crucial for broad adaptation strategies. The persistence of high TE values 
under these global approaches suggests that cultivars optimised for wide 
adaptability rely on traits that exhibit strong synergistic effects to ach
ieve stable performance across different environments.

Under the ‘Optim-Local’ strategy, however, TE values for Phyll, 
HeadEmergLD, HeadEmergPpSens, VrnLN, VxPLN, and GFDur often 
increased, indicating that in specific environments, their contribution is 
amplified by interactions with other traits. For example, in Dalby and 
Dubbo, HeadEmergPpSens showed elevated TE values. This contrast 

Fig. 7. Main effect (ME) and total effect (TE) of selected cultivar parameters (Table 2) contributing to simulated crop yield variance for the ideotyping scenarios 
‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim-LocationX’. In the ‘Optim- LocationX’ scenarios, optimisation was conducted separately for each of the six locations. 
Locations are arranged according to latitude. Cultivar parameters are ranked according to their main effect (ME) in the ‘Optim-Global’ scenario. The ME of ‘Residuals’ 
is not shown. Refer to section 2.6 for detailed information on ideotyping scenarios and to Table 2 for parameter definitions and ranges adopted for optimisation.
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between global and location-specific approaches highlights a funda
mental distinction: global ideotyping strategies favoured traits with 
strong standalone effects and broad adaptability, while site-specific 
strategies depended more on complex interactions tailored to local 
conditions. Consequently, ‘Optim-Global’ and ‘Optim-ET3+’ are well- 
suited for generalised breeding efforts, whereas ‘Optim-Local’ empha
sise on targeted genetic improvements aligned with specific climate and 
agronomic requirements.

Table 3 presents the optimised values for the selected cultivar pa
rameters under various ideotyping scenarios and Fig. 8 illustrates the 
relationship between parameter values (200,000 parameter values 
chosen during optimisation) and NWAY (calculated during optimisa
tion) under the ‘Optim-Global’ scenario. Overall, our findings un
derscores the complexity of trait interactions in determining yield 
outcomes, where some parameters benefit from minimisation or max
imisation while others require more nuanced adjustments. Across pa
rameters, the highest yields (>95th percentile) were often associated 
with specific parameter ranges rather than parameter values uniformly 
distributed across the entire spectrum. For instance, MinLN exhibited a 
concentration of high-yielding scenarios at the lower end of its range, 
suggesting that lower minimum leaf number favours increased NWAY 
across the TPE. Similarly, parameters like KLModifier and GFDur 
exhibited a tendency for high-yield scenarios when their values 
remained in the lower to mid-range.

Conversely, increased values of some parameters led to an upward 
trend in NWAY. GrainPotSize, RUE, StayGreen, and GrainPGS demon
strated a strong positive correlation with yield, with the highest-yielding 
cases clustering at the upper extremes of their respective ranges. In 
contrast, most phenology-related parameters, except for MinLN, fav
oured mid-to-low or mid-to-high values for achieving highest NWAY. 
While optimal values for VrnLN, Phyll, PpLN, and VxPLN were generally 
concentrated around the middle of their ranges, those for Head
EmergLD, HeadEmergPpSens, and PhyllPpSens were more widely 
distributed. On the other hand, GFDur values linked to high yields were 
predominantly concentrated in the mid-to-lower range. These findings 
underscore the greater significance of grain-related (i.e., sink) and 
photosynthesis-related (i.e., source) traits over a majority of phenology- 
related parameters in maximising yield potential while a global ideo
typing strategy is adopted.

4. Discussion

The integration of envirotyping and ideotyping provided a powerful 
and scalable optimisation framework by leveraging environmental 
characterisation to guide targeted ideotype development. By classifying 
drought environments into distinct ETs, envirotyping reduced the need 
for exhaustive simulations across all possible climate × management 

scenarios, allowing ideotyping to focus on the most relevant stress pat
terns. This minimised computational demands by narrowing the solu
tion space and significantly cutting (by a factor of approximately 1/1000 
in the ‘Optim-Global’ strategy and 1 / 1500 in ‘Optim-ET3+’) the 
number of genotype × environment (G × E) interactions that needed to 
be explored. Additionally, by structuring ideotype optimisation around 
predefined ETs, our approach reduced data volume requirements, as 
trait optimisation could be performed within clearly defined environ
mental contexts rather than relying on vast, undifferentiated datasets. 
The synergy between these methods resulted in a highly efficient opti
misation process, enabling robust ideotype design without the compu
tational burden of traditional large-scale simulations, making the 
approach feasible for widespread application in data-limited and 
computationally constrained settings.

This study identified six distinct global drought ETs within the TPE 
for wheat, each representing a unique temporal pattern of water stress 
(defined by water supply/demand ratio, SDR). These ETs accounted for 
a significant proportion (61 %) of total yield variability across the TPE. 
The first four ETs that were identified in this study align with the ETs 
identified by Chenu et al. (2013), despite that study incorporating a 
significantly higher number of simulated seasonal drought patterns 
(185,000 vs 23,200). ET6, though recognised by Chenu et al. (2013) in a 
single location in South Australia, was ultimately excluded from the 
final set of global patterns as it occurred infrequently throughout the 
TPE. This omission may arise from Chenu et al. (2013) adopting (1) 
different cultivars, (2) a longer simulation period (1889–2011), poten
tially biasing results towards the cooler conditions crops experienced in 
the early-mid 20th century, in contrast to the present, warmer climate 
with more frequent heat and drought events (Collins, 2022), or (3) 
clustering the TPE based on locally representative sowing dates, 
whereas the current study considered a broader range of sowing dates 
(Fig. 5).

The six identified ETs provide an up-to-date, valuable framework for 
understanding the range of drought conditions affecting wheat crops 
across Australian cropping systems. The shift in ET distribution 
following ideotyping implies that optimised cultivars effectively alle
viate drought stress during the grain-filling period. This aligns with the 
established principle that minimising water deficit during this critical 
stage is essential for maximising yield in dry environments (Collins 
et al., 2021; Messina et al., 2015; Richards, 1991; Sinclair et al., 2005). 
The decline in the occurrence of early-season stress (ET6) further un
derscores the importance of ensuring sufficient canopy development and 
radiation interception throughout the growing season (Donald, 1968).

The substantial yield improvements achieved through ideotyping, 
particularly with early sowing (March–April), illustrates the potential of 
this approach for enhancing wheat productivity. Consistent yield gains 
across diverse climates suggest that ideotyping can improve resilience 

Table 3 
Final optimised values of APSIM-Wheat cultivar parameters selected under various ideotyping scenarios. Refer to section 2.6 for detailed information on ideotyping 
scenarios and to Table 2 for parameter definitions and ranges adopted for optimisation.

Ideotyping Scenario (Optim-)

Param Global ET3+ Dalby Merredin Dubbo Katanning Walpeup Dookie

MinLN 6.14 5.44 5.77 6.32 8.19 7.42 7.39 6.07
GrainPotSize 0.059 0.059 0.059 0.059 0.059 0.058 0.059 0.059
RUE 1.72 1.67 1.55 1.72 1.71 1.71 1.65 1.74
KLModifier 0.87 0.81 0.85 0.82 0.85 0.84 0.84 0.81
StayGreen 1.14 1.13 1.01 1.03 1.08 1.12 1.06 0.99
GrainPGS 30.9 29.5 29.3 28.5 30.2 30.2 29.9 28.3
VrnLN 4.78 4.99 2.11 3.91 3.18 3.53 2.22 3.10
Phyll 119 132 104 122 122 127 123 129
HeadEmergLD 243 240 205 236 222 266 239 229
GFDur 459 439 591 451 497 518 466 478
HeadEmergPpSens 1.91 1.95 1.09 1.96 1.60 2.48 2.08 2.07
PpLN 3.14 1.37 3.93 3.45 2.87 2.95 3.25 2.20
VxPLN − 0.88 − 0.54 − 2.66 − 0.83 − 0.81 − 1.25 − 1.77 − 0.81
PhyllPpSens 0.59 0.58 0.62 0.59 0.60 0.62 0.59 0.63
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against environmental variability. The varied performance of the three 
ideotyping strategies (‘Optim-Global’, ‘Optim-ET3+’, and ‘Optim- 
Local’) underscores the need to tailor ideotype designs to regional 
conditions. While ‘Optim-ET3+’ (targeting high-stress environments) 
generally delivered the greatest yield gains, ‘Optim-Local’ excelled in 
specific locations such as Katanning. These findings are in line with 
those by Wang et al. (2019), who highlighted the importance of 
matching ideotypes and sowing dates to local environments.

Beyond average yield gains, the significant reduction in yield CV 
through ideotyping highlights its potential to improve yield stability
—an essential factor for mitigating climate-induced risks. However, the 
magnitude of CV reduction varied across locations, reinforcing the ne
cessity for region-specific ideotyping approaches. Notably, the increased 
CV in Dubbo under ‘Optim-Local’ despite yield improvements serves as a 
reminder that maximising yield should not compromise stability.

The analysis of key physiological drivers revealed distinct trait 

Fig. 8. Values of the selected cultivar parameters vs simulated nominal weighted average yield (NWAY) for the ideotyping scenarios ‘Optim-Global’. Each point 
indicates the value of a corresponding parameter from a single run among 200,000 simulations performed during the optimisation process. Parameter values were 
normalised using the pre-defined ranges so that they range between 0 and 1, with 0 designated as ‘Low’, 0.5 as ‘Mid’, and 1 as ‘High’. Cultivar parameters are ranked 
according to their main effect (ME) in the ‘Optim-Global’ scenario. Simulated grain yields are categorised into three groups based on yield quantiles: 10-75th, 7595th, 
and above the 95th quantile. The lowest 10 % of simulated yields are excluded. Refer to section 2.6 for detailed information on ideotyping scenarios and to Table 2
for parameter definitions and ranges adopted for optimisation.
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importance patterns under different ideotyping strategies. Under 
‘Optim-Global’ and ‘Optim-ET3+’, traits associated with sink capacity 
(GrainPotSize, GrainPGS), source strength (RUE and KLModifier), and 
canopy longevity (GFDur and StayGreen) emerged as dominant yield 
determinants. This confirms the previous findings that these traits are 
fundamental to crop performance and relatively stable across environ
ments (Semenov and Stratonovitch, 2013; Sylvester-Bradley et al., 
2012).

The significance of RUE corroborates the conclusions of Wang et al. 
(2019) and Sylvester-Bradley et al. (2012), who identified radiation use 
efficiency as a key driver of yield potential. We used RUE as an aggregate 
indicator of photosynthetic rate, recognising that direct measurement of 
its individual components—such as carboxylation efficiency, stomatal 
conductance, or mesophyll conductance—is often impractical at scale. 
Despite its complexity and environmental dependence, RUE remains a 
widely adopted proxy for photosynthetic capacity in crop modelling and 
ideotyping studies, offering a feasible and scalable means of comparing 
genotypic performance across diverse environmental conditions. RUE 
and its equivalent, light use efficiency (LUE), have been employed in 
previous ideotype design studies to assess yield potential and genotype 
adaptability under varying environmental conditions—for instance, in 
wheat (e.g. Martre et al., 2015a), sorghum (e.g. Hammer et al., 2010), 
and rice (Yin and Struik, 2017).

The influence of GrainPotSize and GrainPGS further underscores the 
role of grain number and size in determining yield in the context of 
Australian cropping. Our results align with Wang et al. (2019), who 
found that ideotypes with larger maximum grain size and a faster po
tential grain filling rate, when sown at the optimal date, led to an 
average yield increase of 20–24 % under future climate conditions. They 
also support Semenov and Stratonovitch (2013) findings, who argued 
that wheat yield may be limited by both grain number and grain size, 
suggesting that improving these traits could enhance overall grain yield.

In contrast, under ‘Optim-Local’, phenology-related traits (VrnLN, 
VxPLN, Phyll, HeadEmergPpSens) gained prominence, suggesting that 
local adaptation hinges on optimal developmental timing. This aligns 
with extensive literature emphasising the role of phenology in 
environment-specific adaptation (Herndl et al., 2007; Rezzouk et al., 
2022; Richards, 1991; Semenov and Stratonovitch, 2013; Zheng et al., 
2015). Eliminating the vernalisation requirement in winter crops has 
been proved a promising strategy for adapting to future warming con
ditions (Anwar et al., 2015; Wang et al., 2015). Herndl et al. (2007)
demonstrated that vernalisation requirement and photoperiod response 
significantly influenced yield in the North China Plain, with lower 
sensitivity to these factors linked to higher yields compared to stronger 
responses. They argued that reduced sensitivity led to earlier maturity, 
helping crops evade late-season water stress. Calderini et al. (1997)
associated increases in wheat yield with shortening of the duration of 
vegetative development phases. On the other hand, extending the grain 
filling period has been proposed as a potential trait for enhancing grain 
yield in wheat (Evans and Fisher, 1999). (Semenov and Stratonovitch, 
2013) also demonstrated that at two contrasting European sites, an 
extended grain-filling period (leading to a higher harvest index) along 
with optimal phenology, enhances yield only if wheat sustains its green 
area index until grain filling concludes. Our findings, however, suggest 
that a balanced sensitivity to vernalisation and photoperiod, coupled 
with a moderate to short grain-filling duration, slightly higher RUE, and 
an extended period of maximum leaf area retention under non-stress 
conditions (i.e., stay-green), could improve yield potential across the 
Australian grain belt.

Numerous studies have supported Donald’s assessment of a wheat 
ideotype, showing that traits such as reduced leaf area can enhance yield 
potential (Parry et al., 2011; Srinivasan et al., 2017). In 2011, the Wheat 
Yield Consortium introduced an updated set of physiological traits 
aimed at improving yield. These traits include increased photosynthetic 
efficiency, maximised spike fertility, enhanced grain filling and size, 
optimised grain partitioning, and improved lodging resistance (Parry 

et al., 2011; Reynolds et al., 2011). Ullah et al. (2024)demonstrated that 
under well-watered conditions, natural heatwaves significantly affected 
grain number when temperatures exceeded 28 ◦C and individual grain 
weight beyond 32 ◦C. With the expected rise in the frequency of such 
extreme events in Australia (Collins, 2022; Collins and Chenu, 2021; 
Lobell et al., 2015), enhancing both grain number and size is essential to 
sustain current yield potential. These studies align with our findings, 
highlighting the significance of improved photosynthetic efficiency 
(RUE), enhanced grain filling and size (GrainPotSize and GrainPGS), and 
reduced leaf area (MinLN) in optimising wheat performance.

The shift in trait importance between global and local ideotyping 
highlights the distinction between broad and specific adaptation strat
egies—global approaches favour traits with strong direct effects and 
broad applicability, while local strategies rely on complex trait in
teractions tailored to particular conditions. The optimised parameter 
values (Table 3 and Fig. 8) further illustrate the intricate relationships 
between traits and yield. The finding that peak yields are associated with 
narrow ranges for high-impact parameters and more uniformly distrib
uted values for other parameters (Fig. 8) underscores the need to opti
mise trait combinations rather than isolating individual traits, which 
aligns well with the potentials of the proposed integration of envir
otyping and ideotyping.

While the parameters selected for optimisation in this study provide 
valuable insights into wheat ideotype design, it is essential to recognise 
the broader range of traits (beyond phenology, radiation use efficiency, 
grain components, and stay-green) that can enhance yield outcome. For 
instance, refining root architecture and function (e.g., specific root 
length; Rezzouk et al., 2022) is critical for optimising resource acquisi
tion, particularly under water-limited conditions. This also confirms our 
results that indicated a reduced soil moisture extraction rate (KLModi
fier; Fig. 8) can be advantageous. Likewise, nitrogen dynamics, 
including uptake, assimilation, and remobilisation, are key de
terminants of grain yield. Semenov and Stratonovitch (2013)highlighted 
the significance of post-anthesis nitrogen uptake and storage, while 
Rezzouk et al. (2022) underscored the role of nitrogen metabolism ef
ficiency under water-limited conditions. However, a recent study (Liu 
et al., 2025) showed that model simulations fail to adequately represent 
the strong correlations between root traits and N losses observed in 
experiments. Consequently, new functions are required to link root traits 
with key N-cycling processes. Morphological traits such as height, leaf 
angle, stem strength, and ear morphology (Donald, 1968), influence 
light interception, lodging resistance, and grain formation. Additionally, 
stress tolerance mechanisms extend beyond stay-green; drought resil
ience through osmotic adjustment and stomatal regulation (Rezzouk 
et al., 2022; Semenov and Stratonovitch, 2013, 2015; Stratonovitch and 
Semenov, 2015) and heat tolerance (Semenov and Stratonovitch, 2013; 
Ullah et al., 2024) are vital for maintaining yield stability in variable 
climates. Even seemingly minor physiological adjustments, such as 
optimising the Rubisco specificity factor for present-day CO2 levels (Wu 
et al., 2022; Zhu et al., 2004), can enhance photosynthetic efficiency.

Therefore, an effective ideotyping strategy must encompass a broad 
range of traits while carefully considering their interactions and trade- 
offs to maximise synergistic gains in wheat performance. This be
comes even more complex when accounting for influences beyond 
physiological traits. For instance, our study did not directly examine the 
interaction between ideotyping and other adaptation strategies, such as 
adjusting the sowing date (Collins et al., 2021; Collins and Chenu, 2021; 
Qin et al., 2018; Wang et al., 2019), which influences the timing and 
occurrence of plant phenological stages. Furthermore, our study did not 
evaluate how ideotyping strategies influence other facets of cropping 
systems, including resource use efficiency and environmental footprints. 
Hence, adopting a holistic approach that accounts for a broader spec
trum of parameters, environments (climate × soil), management sce
narios, and performance criteria (in addition to productivity) requires 
considerable computational power. This requirement can be signifi
cantly reduced through the proposed integration of model-assisted 
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ideotyping and envirotyping.

5. Conclusion

This study successfully showcased the potential of model-assisted 
envirotyping to advance wheat breeding for climate resilience. By 
clustering simulated water supply/demand ratios, we identified distinct 
environment types (ETs) based on seasonal water deficit patterns. 
Optimising key cultivar parameters through a genetic algorithm—using 
global, high-stress ET, and location-specific strategies—led to substan
tial improvements in predicted wheat yields and stability across the 
target population of environments. Our results highlight the power of 
model-assisted ideotyping in shifting ET occurrence frequencies towards 
less stressful conditions and enhancing wheat productivity.

These findings carry important implications for plant breeders. The 
ability to pinpoint and target specific ETs enables a more strategic and 
efficient breeding process. By identifying key physiological drivers 
linked to superior performance in different ETs, breeders can prioritise 
the selection and development of cultivars with optimal trait combina
tions. This targeted approach can contribute to greater food security by 
accelerating the creation of climate-resilient cultivars adapted to spe
cific regions and environmental stresses.
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Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., 
Wolf, J., 2015b. Multimodel ensembles of wheat growth: many models are better 
than one. Glob. Chang. Biol. 21, 911–925. https://doi.org/10.1111/GCB.12768.

Messina, C.D., Sinclair, T.R., Hammer, G.L., Curan, D., Thompson, J., Oler, Z., Gho, C., 
Cooper, M., 2015. Limited-transpiration trait may increase maize drought tolerance 
in the US corn belt. Agron. J. https://doi.org/10.2134/agronj15.0016.

Parry, M.A.J., Reynolds, M., Salvucci, M.E., Raines, C., Andralojc, P.J., Zhu, X.G., 
Price, G.D., Condon, A.G., Furbank, R.T., 2011. Raising yield potential of wheat. II. 
Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62, 453–467. https:// 
doi.org/10.1093/jxb/erq304.

Potgieter, A.B., Hammer, G.L., Butler, D., 2002. Spatial and temporal patterns in 
Australian wheat yield and their relationship with ENSO. Aust. J. Agr. Res. 53, 
77–89. https://doi.org/10.1071/AR01002.

Qin, W., Zhang, X., Chen, S., Sun, H., Shao, L., 2018. Crop rotation and N application rate 
affecting the performance of winter wheat under deficit irrigation. Agric Water 
Manag 210, 330–339. https://doi.org/10.1016/J.AGWAT.2018.08.026.

Ray, D.K., Gerber, J.S., Macdonald, G.K., West, P.C., 2015. Climate variation explains a 
third of global crop yield variability. Nat. Commun. 6, 5989. https://doi.org/ 
10.1038/ncomms6989.

R Core Team, 2024. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Reynolds, M., Bonnett, D., Chapman, S.C., Furbank, R.T., Manés, Y., Mather, D.E., 
Parry, M.A.J., 2011. Raising yield potential of wheat. I. Overview of a consortium 
approach and breeding strategies. J. Exp. Bot. 62, 439–452. https://doi.org/ 
10.1093/JXB/ERQ311.

Rezzouk, F.Z., Gracia-Romero, A., Kefauver, S.C., Nieto-Taladriz, M.T., Serret, M.D., 
Araus, J.L., 2022. Durum wheat ideotypes in Mediterranean environments differing 
in water and temperature conditions. Agric Water Manag 259, 107257. https://doi. 
org/10.1016/J.AGWAT.2021.107257.

Richards, R.A., 1991. Crop improvement for temperate Australia: future opportunities. 
Field Crop Res 26, 141–169. https://doi.org/10.1016/0378-4290(91)90033-R.

Rötter, R.P., Carter, T.R., Olesen, J.E., Porter, J.R., 2011. Crop–climate models need an 
overhaul. Nat. Clim. Chang. 1, 175–177. https://doi.org/10.1038/nclimate1152.
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