Fuzzy Logic Strategy of Prognosticating TCP’s
Timeout and Retransmission

Zhongwei Zhang!, Zhi Li! and Shan Suthaharan?
! Dept of Mathematics and Computing
University of Southern Queensland
Toowoomba, QLD 4350, Australia
zhongwei, zhiliQusq.edu.au

Department of Mathematical Sciences
University of North Carolina at Greensboro
Greensboro, NC 27402, USA
ssuthaharan@uncg.edu

Abstract: The work presented in this paper is the design and implementation of
an intelligent strategy using fuzzy logic technology to gauge the TCP timeout and
retransmission value. The conventional algorithms, which are based on statistical
analysis, perform in a marginally acceptable way for estimating theses two values.
But they have been shown to be increasingly incapable of dealing with more com-
plicated TCP traffic due to ignorance of traffic complexity. Fuzzy logic technology
will be applied to estimate the TCP timeout and retransmission for the purpose of
utilising artificial intelligence, combining knowledge about the network traffic and
connection.

Keywords: TCP, timeout, retransmission, fuzzy logic.

1 Introduction

The size and the complexity of computer networks have grown in past years. To
achieve an efficient and reliable transmission, some protocols inevitably need to han-
dle complicated network traffics, and unexpected transmission losses. These prob-
lems usually are referred to as flow control and congestion control. The technologies
of managing complex computer networks need to be more circumspect not only in
the sending host and receiving hosts, but also the intermediate routers. One of these
protocols is the Transmission Control Protocol (TCP) that has a responsibility of
ensuring reliability.

Because TCP guarantees the reliable delivery of data, it retransmits each seg-
ment if an ACK is not received in a certain period of time. TCP sets this timeout
as a function of the round trip time (RTT) it expects between the two ends of the
connection. Unfortunately, given the range of possible RTTs between any pair of
hosts in the Internet, as well as the variation in RTT between the same two hosts

over time, choosing an appropriate timeout value is not very easy [1]. To address
this problem, TCP uses an adaptive retransmission mechanism.

An important improvement occurred in 1986 when a simple algorithm was de-
veloped. The idea is that every time TCP sends a data segment, it records the time.
When an ACK for that segment arrives, TCP reads the time again, and then takes
the difference between these two times as a SampleRTT . TCP then computes an
EstimatedRTT as a weighted average between the previous estimate and this new
sample.

The main problem with the simple algorithm is that it does not take the variance
of the sample RTTs into account. An improved algorithm was then developed. For
details about these conventional methods, refer to Section 2.

The conventional methods which have been used in the past years have largely
relied on statistical data analysis technology. However, the study of using fuzzy
logic to improve TCP performance has been proposed in [2] where a fuzzy logic
controller has been used to selectively drop in the cells in an unspecified bit rate
(UBR) service. This paper introduces a new method for calculating TCP’s timeout
and retransmission value.

This paper has been organized in four sections. Section 2 explain the TCP time-
out and retransmission problem and survey the relevant strategies. In Section 3, a
new approach is introduced based on fuzzy inference. The experiment results are
presented in Section 4. In the last section, we conclude our paper. In addition we
also outline some possible improvements for the future.

2 TCP Timeout and Retransmission

TCP is one of the most predominate transport layer protocols in the TCP/IP pro-
tocol suits. TCP provides a reliable transport layer, even though the service it uses
(IP) is unreliable. Every piece of TCP data that gets transferred around the Internet
goes through the IP layer at both end systems and at every intermediate router.
One approach for providing reliability is for each end to acknowledge the data it
receives from the other end. But data segments and acknowledgment can get lost.
TCP handles this by setting a timeout when it sends data, and if the data isn’t
acknowledged when the timeout expires, it retransmits the data.

Fundamental to TCP’s timeout and retransmission is the measurement of the
round-trip time (RTT) experienced on a given connection. The RTT is dynamic
over time, due to changes in routes and changes in network traffic, and TCP should
track these changes and modify its timeout accordingly.

In the early days of the Internet, a simple algorithm was used to determine the
timeout (RTO). This algorithm doubles an estimated RT'T; while an estimated RTT
is a weighted RTT and the previous estimated RTT. That is:

EstimatedRTT = a x EstimatedRTT + (1 —) X SampleRTT (1)
TimeOut = 2 x EstimatedRTT (2)

This algorithm has been proven to be rather conservative. It also has a flaw:
RTT might not be the time difference between the first acknowledgment or the
second with the data transmission. The Internet was suffering from high levels of
network congestion at that time. An improved algorithm was introduced in 1987 [9]

to mitigate the causes of congestion. The algorithm can at best fix some causes of
that congestion, but cannot completely eliminate it. Soon, another approach has was
proposed to battle congestion [4]. TCP calculates the round-trip time and then uses
these measurements to keep track of a smoothed RTT estimator and a smoothed
mean deviation estimator. These two estimators are then used to calculate the next
retransmission timeout value. The new algorithm folds the variance into the timeout
calculation as follows:

Dif ference = SampleRTT — EstimatedRTT (3)
EstimatedRTT = EstimatedRTT + (6 x Dif ference) (4)
Deviation = Deviation + d(|Dif ference| — Deviation) (5)

TimeOut = p x EstimatedRTT + ¢ x Deviation (6)

Where based on experience, § is a fraction between 0 and 1, p is typically set to
1 and ¢ is set to 4. Thus, when the variance is small, TimeOut is close to Estimat-
edRTT ; a large variance causes the Deviation term to dominate the calculation.

Apparently, the approaches of estimating the timeout and retransmission value
are conventionally based on statistical analysis. In the next section, we propose a
new approach [2, 3, 5] based on fuzzy logic. Nevertheless, the basis of the new
approach of computing the timeout and retransmission value is the same as the
Jacobson/Karns algorithm. More specifically, the new approach computing the next
timeout value is also based on the two smoothed estimators.

3 A Fuzzy Approach of Estimating the Timeout Value

Fuzzy logic looks at the world in imprecise terms, in much the same way that our
own brain takes in information [6, 7].

While considering the retransmission of a packet, it is important to estimate an
appropriate value for TCP to retransmit a packet (RTO). A big estimated RTO value
results in data transmission becoming idle and thus network resources being wasted,
while a small estimated RTO value results in unnecessary retransmission. In order
to keep the network running efficiently, we designed a fuzzy system to implement an
RTO setting which is capable of tracking the trend of RTTs and quickly mastering
the situation of the network according to previous RTTs.

We knew that the relationship between RTT and RTO is nonlinear. Fuzzy in-
ferencing systems perform well in the nonlinear dynamic systems. The fuzzy system
is designed as in Figure 1:

The input variables for the system contain:

(1) ARTT: the variance between the current RTT and the previous one;
(2) ARTORTT: the deference between the current RTO and the current RTT.

The output variable for the system contains:
ARTO: the variance between the next RTO and the current RTO.

Once we have the variance between the next RTO and the current one, it is
straightforward to calculate the next RTO as follows:

RTPnea;t = RTOpreu =+ ARTO (7)

SampleRTT ARTOQ_RTT TimeOut and

1 Retransmission ARTO

ARTT Estimator
i (Fuzzy System)

Fig. 1. Fuzzy inference system

Seven membership functions were used for each of the two inputs and for the
output. The membership functions of ARTT defined fuzzy sets for

NB: Negative Big,

NM: Negative Medium,
NS: Negative Small,
ZERO: A fuzzy set,

PS: Positive Small,

PM: Positive Medium and
PB: Positive Big.

The membership functions of ARTO_RTT defined fuzzy sets for

VH: Very High,

H: High,

MH: Medium High,
M: Medium,

ML: Medium Low,
L: Low, and

VL: Very Low.

The seven membership functions for the output are

NB: Negative Big,

NM: Negative Medium,
NS: Negative Small,
ZERO: A special fuzzy set,
PS: Positive Small,

PM: Positive Medium and
PB: Positive Big.

Although the input and output are similarly labeled, the membership functions
for the variables were independently specified and adaptable. The fuzzy estimator
thus comprised a total of 21 linguistic variables. Triangular and trapezium shapes are
adopted for both input and output membership functions. Triangular and trapezium
shapes are adopted for both input and output membership functions. The distribu-
tion of membership functions are related with the average of RTT and RTO.

Figure 2 shows the membership functions of the input variables and output lin-
guistic variables. Note that the memberships for ARTT and ARTO are symmetric,
but the membership function for ARTO_RTT is asymmetric.

The design of the fuzzy linguistic rules for the inference of RTO takes into
consideration the following conditions:

E} E)

Fig. 2. Membership functions for the input and output variables

e The timeout is related to congestion. If you timeout too soon, you may unnec-
essarily retransmit a segment, which only adds to the load on the network.

e The timeout is related to the network situation. The previous RTTs are a good
indicator of this; the network situation is well reflected by the average RTTs.

e The difference between the previous RTT and the mean RTT will contribute
significantly to the current RTT accordingly.

e The current RTO is heavily reliant on the difference between the previous RTO
and current RTT.

The fuzzy rules base consists of 7 rules, which are summarized in Table 1. For
instance,
if ARTT is NB OR ARTO_RTT is VH, then ART0O is NB

The principle of the fuzzy rules is following the track of the RTT of data trans-
mission and keeping the distance between the estimated RTO and practical RTT
around an ideal time interval (1 second).

Min-product inference was used, along with center of gravity defuzzification. For
more information about gravity defuzzification, refer to [6].

Table 1. Fuzzy rule base

ARTT RTO- |ARTO
RTT

1 NB VH |NB

2 NM H NM

3 NS MH |NS

4 ZERO M ZERO
5 PS ML |PS

6 PM L PM

7 PB VL |PB

4 Experiment Results

The fuzzy system has been tested on two different kinds of networks. It has been
used to estimate the RTO on a real network and on a simulated network. With
the simulated network, the fuzzy system has been used on a set of networks with
different congestion levels.

4.1 A Real Network

An experiment can be carried out on the Internet or a computer network which
constantly results in packet loss. We performed this experiment on our experimental
network consisting of three Linux boxes named as maximian, Gordian and valerian.
Basically, the timer for the connection is started when segment 1 is transmitted,
and turned off when its acknowledgement (segment 2) arrives. The timer usually
reports the clock ticks. We need to determine how many seconds the timeout value
is. Figure 3 shows the relations between the actual RTT and the counted clock ticks.

303
0.03 053 013 153 203 253
T [1 _
o.q 1.011 1.063 1.87i 872 2,ii7|
on
on off ¥ | ON of
-
1.061 sec, 3ticks 0.808sec, 1tick 1.015sec, 2ticks

Fig. 3. Measuring the Timeout

The proposed fuzzy system has been implemented in MATLAB. The measured
RTTs have been recorded by the tcpdump program [8]. In this experiment, 128
segments were transmitted, and 18 RTT samples were collected. Figure 4 shows the
measured RTT along with the RTO used by TCP for the timeout. Note that the
top one is calculated by using the Karn’s algorithm and the middle one is calculated
by the fuzzy estimator; while the bottom one are the measured RTTs.

This experiment has demonstrated that fuzzy inference can be applied in pre-
dicting the TCP timeout and retransmission value. Secondly, it is obvious that the
RTO calculated by the fuzzy estimator is less than that calculated by the Karn’s

T
RTT
—#= RTO using FL
| —#— RTO with conventional method

0 L L L L L L
0 5 10 15 20 25 30 35

Fig. 4. MeasuredRTT and RTOs calculated

algorithm. It indicates that the RTO calculated by using fuzzy inference is finer.
Also the fuzzy estimator can quickly get ready to predict the RTOs, meaning the
RTO drops so quick that it gives a much better estimation within 3 seconds.

The calculated RTO by our fuzzy strategy is more sensitive to the dynamics of
MeasuredRTTs, and RTO by the Karn’s method is less sensitive to the changes of
RTTs. This insensitivity might cause the inefficiency of TCP in sending packets and
possibly result in congestion in the routers.

4.2 Simulated Networks

All the simulations are conducted using the NS2 network simulator [10] as a plat-
form. TCP-Reno is adopted.

Simulation Topology

We simulate environments where a bottleneck link is between a premises on the
client side and an edge router on the ISP side, as in reality. In fact, such links
are among the most cost-sensitive and bandwidth constrained components in the
Internet, and remains the most concern of a ISP.

A dumbbell topology used in simulations is depicted in Figure 5. There are two
servers, two clients, and three Internet routers. The bottleneck link capacity, in our
simulations, is set as 2Mb, when the capacity of the other links is either 10Mb or
100Mb as shown in the figure. R1 is a core router, while R2 is an edge router and
R3 is a premises. One way TCP traffic has been used in the simulations. There
are two kinds of traffic, one from server sl to client c1, the other one from server
s2 to client ¢2. The propagation delays of these two traffic types are 44ms and
80ms, respectively. The AQM schemes are implemented in router R2 to conduct the
performance comparison with Droptail. The output queue buffer of router R2 is 300
packets. A dropping strategy is used to inform the TCP senders.

10Mbps 10Mbps
s1BEN2mS 100Mbps 2Mbps 2ms D cl
20ms ZOms
= Loneeeee:] o
52 R2 R3 20mS c2
Servers Clients

Fig. 5. Network topology

Traffic Pattern

It is well known [11] that Internet traffic tends to be made up of a large number of
quite small flows, a small number of very large flows, and nothing much in-between.
This observation follows from another well accepted model of Internet traffic — the
Poisson Pareto Burst Process (PPBP) model [12, 13].

In this paper, the PPBP traffic model is generated by setting the inter-arrival
time of two kinds of traffic subject to non-positive exponential distribution and file
sizes of each flow subject to the Pareto distribution. In our simulations, the Pareto
distribution has an average flow size of 12 packets (1000 bytes for each packet), and
with a shape parameter of 1.2. We vary the inter-arrival time to get different traffic
loads to the network. With the topology shown in Figure 5, for example, traffic
load is approximatively 80%, 100%, 125% of the bottleneck link capacity, when the
inter-arrival time variable A is 8, 10, 12.5 respectively by using the following formula:

(40 4+ afs x 1040) x 8 x n

traf ficioad = %o

)

We give the explanation for the above formula as follows. SYN control packets
are 40 bytes and each data packet is 1040 bytes with 1000 bytes of data and 40 bytes
of header. afs stands for average flow size. Variable n is the number of traffic types,
and in our case it is two, one from Server sl to client cl1, and the other from Server
s2 to client ¢2. Variable c is the bottleneck link capacity, and we have chosen ¢ as
2Mb.

traffic distribution with lamda=10.0, average_size=12, and gama=1.2

T
~ simulation duration: 400s —+—

01 fF ~ Bl

Probability

0.001 L L
1 10 100
Flow Length

Fig. 6. Traffic pattern with A = 10

Before conducting each simulation, the generated traffic based on the method

mentioned above has been checked to find a simulation duration long enough to get
PPBP traffic. For example, when variable A is 10, we have found 400s is an appro-
priate simulation time interval, and the generated traffic is approximately PPBP.
Figure 6 shows the traffic pattern using a log scale on the axes.

Simulation Results

The simulations have been carried out with three scenarios, including A = 8, A = 10,
and A = 12.5. We randomly choose one TCP connection as a sample to examine
the performance of the proposed fuzzy estimator with the comparison of Karn’s
algorithm in each scenario. The simulation results have been shown in Figure 7,
Figure 8, and Figure 9.

Scenario 1: With the parameter A = 8 in the network, the traffic load is 80%,
which indicates the network is relatively relaxed, not much congested. In this
case, there exists considerable oscillation in RTT caused by the bursty nature
of the Internet. The difference between the RTT and RTO is fairly big, though

6 T

RTT
| —#— RTO using FL
| —#— RTO with conventional method

360 370 380 390 400 410 420 430 440

Fig. 7. where A = 8

the TCP RTO predicted by Karn’s algorithm is converging at the late stage of
the experiment.

Scenario 2: With the parameter A = 10 in the network, the traffic load is heavy
in the network. In this case, the RTTs are larger than those in the previous
scenario, and with smaller oscillation. Like scenario 1, the difference between
the RTT and RTO is fairly big, and the RTO predicted by the Karn’s algorithm
is converging at the late stage of the experiment.

Scenario 3: With the parameter A = 12.5 in the network, the traffic load is very
heavy in the network. The output buffer in the bottleneck is full most of the
time. And thus, the RTTs keep steady. For a relatively congested network, the
RTTs and RTOs predicted by Karn’s algorithm are getting closer.

6 kil T T

—= RTT

| —#— RTO using FL

| —#— RTO with conventional method

22
=2 L M N o R A
o)

il [
B s

0
310 320 330 340 350 360 370 380 390 400 410

Fig. 8. where A = 10

T
&= RTT

—#— RTO using FL

—#— RTO with conventional method

0
140 160 180 200 220 240 260 280 300 320

Fig. 9. where A = 12.5

All the results indicate that the proposed fuzzy estimator is able to be consistent
with the tendency of RTT with a certain desired distance. In addition, for a con-
gested network where the parameter A = 12.5, the fuzzy estimator has also reduced
TCP timeout, which is obvious at the early phase of the experiment. In the later
phase, the fuzzy estimator performed not worse than the TCP-Reno on average,
although occasionally the TCP timeout is a little bigger.

5 Conclusion

This paper has presented a fuzzy estimator for TCP timeout and retransmission.
The main feature of this method is the application of fuzzy logic prediction. It has
shown that the performance of the fuzzy inference system is much finer than the
conventional methods. In particular the TimeOut calculated by our fuzzy estimator
is always less than that estimated by Karn’s algorithm.

The fuzzy estimator for TCP timeout has been also tested on a set of simulated

networks with different traffic loads. The fuzzy estimator produced favorable results,
although the improvement to the TCP timeout was so obvious as the one on the
real network.

1.

2.
3.

This research can be extended in the following directions:

The input variables for the fuzzy system can be more specific, which means we
can use the RTT directly.

The fuzzy rules can be refined using the max-product.

This fuzzy logic can be applied in other TCP algorithms such as the slow start,
fast recovery and congestion window control.

References

10.

11.

. Karn, P.,; and Partidge, C. (1987) Improving Round-Trip Time Estimates in

Reliable Transport Protocols, Computer Communication Reviews, vol. 17, no.
5 pp2-7 (Aug)

Lim, H. H., and Qiu, B. (2001) Performance Improvement of TCP using Fuzzy
Logic Prediction, Proceedings of 2001 International Symposium on Intelligent
Signal Processing and Communication Systems, Nashville, Tennessess, USA,
November 20-21, pp152-156.

Kosko, Bart, (1992) Neural Networks and Fuzzy Systems, Englewood Cliffs, N.
J.: Prentice Hall, Inc.

Comer, Douglas E. and Stenves, David L.: (1994) Internetworking with
TCP/IP: Design, Implementation and Internals, vol 3, Prentice-Hall, Inc.
Zadeh, L. A: (1973) Outline of a new approach to the analysis of complex sys-
tem and decision process, IEEE Transaction on Systems, Man and Cybernetics
SMC-2, pp28-44

Zimmermann, H.-J: (1996) Fuzzy Set Theory and Its Application, 3rd edition,
Kluwer Academic Publishers, Boston

Yager, R. and Filev, D. P.: (1994) Essentials of fuzzy modeling and control,
John Wiley & Soms, Inc.

Van Jacobson, Caraig Leres and Steven McCanne: Freeware tcpdump,
ftp://ftp.ee.1bl.gov

Larry L. Peterson and Bruce S. Davie (2000) Computer Networks, Morgan
Kaufman Publishers

S. McCanne and S. Floyd, (1997) Network simulator ns-2,
http://www.isi.edu/nsman/ns.

V. Paxson and S. Floyd: (1995) Wide-area traffic: The failure of poisson mod-
eling, IEEE/ACM Transaction on Networking, 3(3), pp226-244

12.

13.

N. Likhanov, B. Tsybakov, and N. D. Georganas: (1995) Analysis of an ATM
buffer with self-similar (“fractal”) input traffic, In Proceedings, IEEE Infocom
1995, ppl-15, April

R. G. Addie, T. M. Neame, and M. Zukerman: (2002) Performance evaluation
of a queue fed by a Poisson Pareto burst process, Computer Networks, 40:377-
397, October.

