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 42 
Abstract 43 
 44 

The benefits of tracking, identifying, measuring features of interest from structure responses have 45 
endless applications for saving cost, time and improving safety. To date, structural health 46 
monitoring (SHM) has been extensively applied in several fields, such as aerospace, automotive, 47 
and mechanical engineering. However, the focus of this paper is to provide a comprehensive up-48 
to-date review of civil engineering structures such as buildings, bridges, and other infrastructures. 49 
For this reason, this article commences with a concise introduction to the fundamental definitions 50 
of SHM. The next section presents the general concepts and factors that determine the best strategy 51 
to be employed for SHM. Afterward, a thorough review of the most prevalent anomaly detection  52 
approaches, from classic techniques to advanced methods, is presented. Subsequently, some 53 
popular benchmarks, including laboratory specimens and real structures for validating the 54 
proposed methodologies, are demonstrated and discussed. Finally, the advantages and 55 
disadvantages of each method are summarized, which can be helpful in future studies.  56 

Keywords: Structural Health Monitoring (SHM); Damage Detection Methods; SHM 57 
Benchmarks; Anomaly Detection; Structural Safety; Reliability 58 

 59 

1 Introduction 60 
In general, ‘damage’ is defined as a significant factor influencing the structural behaviour in such 61 
a way that leads to degradation in the current or future performance of a structure. Therefore, a 62 
clear description of damage requires comparing two distinct conditions of a structure: the status of 63 
being either ‘healthy’ or ‘damaged’(1). The former describes the base or ‘healthy’ condition of the 64 
structure, and the latter indicates the current or the deteriorated state. As a definition, a healthy 65 
structure functions efficiently and preserves its integrity throughout its lifetime (2). On the other 66 
hand, in the field of structural identification, damage is associated with changes first in the material 67 
and then in the geometry and topology of the structure, e.g., changes to the boundary conditions 68 
and connections (3).  69 

Existing techniques for identifying damage cover a wide range, from conventional inspection 70 
methods carried out by experts to cutting-edge automated techniques using smart sensors and 71 
Artificial Intelligence (AI). The latter identification procedure integrates different fields, namely 72 
computer science, data science, electronics, mechanics, material sciences, and civil engineering, 73 
which shape the foundation of the interdisciplinary field called Structural Health Monitoring 74 
(SHM).  75 



From a general perspective, monitoring the response of structures and detecting probable damages 76 
to enhance their performance level and reduce upkeep costs are considered the prime target in 77 
SHM. Consequently, structures that benefit from an SHM system commonly experience prolonged 78 
service life. In contrast, those that have no such system in place face notably higher risks of 79 
structural failures. SHM also guarantees the system’s integrity to some extent and can prevent 80 
possible failures in the future by sounding a pre-emtive alarm regarding abnormal behaviors. 81 

Over the past two decades, a wide array of inspection approaches have been examined, developed, 82 
and established by scientists and engineers to identify, locate, and assess different types of damage. 83 
Accordingly, researchers have published many papers to shed light on the fundamentals and 84 
applications of those methods. Herein, the authors have attempted to provide a comprehensive 85 
perspective on definitions of SHM and damage detection techniques that are described in the 86 
following four sections. First, the SHM is defined briefly and its principal objectives are explained. 87 
Second, the general concepts within this scope are summarized. In the third part, several damage 88 
detection approaches are discussed, and the last section highlights some important SHM 89 
benchmarks.  Subsequently, conclusions, recommendations, and prospects are provided for future 90 
use.  91 

2 Structural Health Monitoring (SHM) 92 
Structural Health Monitoring (SHM) yields precious details regarding a system’s behavior by 93 
analyzing its responses and evaluating its current mechanical state. A system may include a high-94 
rise building, a bridge, an infrastructure system, or a simple beam. Initially, SHM was employed 95 
for damage identification of aircraft in the realm of aerospace engineering and industry.  In the late 96 
1970s (4), however, it was implemented to investigate offshore platforms. At the beginning of the 97 
1990s, SHM was extended to civil engineering and infrastructure systems. Just to name some of 98 
its applications in this particular field, Beck and Katafyglotis (5) designated a probabilistic 99 
identification approach for global health monitoring of a structure by detecting any significant 100 
changes in its stiffness distribution. Additionally, Mita (6) presented an overview of the rapidly 101 
emerging SHM in Japan’s civil engineering in late 1999. In 1997, Al-Khalidy et al. (7) presented 102 
one of the earliest studies on the health monitoring of linear systems using wavelets; they discussed 103 
the need for promoting SHM for damage detection in infrastructure systems.   104 

With the emergence of new Sensing Technologies, significant breakthroughs in computers, and 105 
incorporating structural control methods(8, 9), SHM has expanded extensively in the past two 106 
decades. The general idea of SHM can be described through an analogy with the human nervous 107 
system (Figure 1) (10). In an intelligent structure embedded with a network of sensors, the sensing 108 
function is similar to the nervous system. Also, sensors receive various signals such as vibration, 109 
strain, stress, or temperature similar to the human nervous system, which forms a transmission unit 110 
that sends different signals to the brain, functioning as a processing and interpretation/diagnostic 111 
unit.  112 



Figure 1 Comparison between the human body and the SHM system (adopted from (10)) 114 

By and large, a conventional SHM system consists of three major elements (11):  115 

• Contact or non-contact sensors 116 
• Processing unit (composed of data acquisition, transmission, and storage) 117 
• Data interpretation system (made of diagnostic methods and information management) 118 

Interpretation includes diagnosis (assessment) and prognosis (prediction) of structural changes. 119 
The diagnosis notifies the onset of damage, its location, or its severity. This procedure is conducted 120 
either by passive diagnosis (i.e., by a passive sensor such as strain gauges) or by active diagnosis 121 
(i.e., by an actuator and intelligent sensors) (12). The fusion of these components leads to a fitting 122 
SHM system in a particular civil engineering project. 123 

SHM is considered as an inverse problem wherein the structural defects are recognized through 124 
the measured data of known inputs. Also, this process is a system identification problem (12). 125 
Based on research by Rytter (13), damage identification levels in SHM can be categorized into the 126 
following levels according to the extent/scope of the information acquired from the structure: 127 

• Level 1: Identification: determining the existence of a defect on a global scale. 128 
• Level 2: Localization: determining the location and coordinates of the damage. 129 
• Level 3: Assessment: determining the intensity of damage in various components. 130 
• Level 4: Lifetime prediction: estimating the structure’s remaining life. 131 

Specifically, the first stage involves monitoring the desired properties of the structure over time, 132 
and it provides answers regarding the overall presence of damage in a structure.  Comparatively, 133 
the second level appears to be more complicated as it requires determining the location of damage 134 
and its orientation(12). 135 



In general, the first two levels are defined as diagnosis steps and the next ones as prognosis levels. 136 
Importantly, levels 1 and 2 can be evaluated without using any model, but level 3 requires 137 
numerical modeling. The last level requires using processes such as breakdown mechanics, 138 
fatigue-life analysis, reliability analysis, or structural design assessment (14). In addition, level 4 139 
stems from level 3, wherein the assessment of fracture parameters is utilized to achieve fatigue life 140 
analysis to specify the structure’s remaining life (12). 141 

It seems that among a large number of publications, a significant portion of studies found in the 142 
existing literature is targeted at levels 1-3 (15-17), and relatively small number of papers seek to 143 
address level 4 (18, 19). Herein, most of the existing research is concerned with applying damage 144 
detection strategies to either laboratory tests or analytical models, not real structures (20). A 145 
growing number of researchers have concluded that to assess the risk and the severity of the 146 
damage as the necessary information for making a proper decision about the safety of the structure 147 
and prevent potential catastrophic failure, there is a need to recognize the type of damage. For 148 
instance, in the case of a building under fire, it is crucial to have an SHM system that can detect 149 
the severity of existing damage and hence determine if the plan for emergency evacuation is safe 150 
to be carried out. Consequently, a new level called ‘classification’ has been recently presented, 151 
aiming to designate the type of damage and bridge the existing gap (21) (See Figure 2).   152 

 153 

 154 
Figure 2 Damage identification levels 155 

 156 

3 General Concepts for SHM 157 
The development of a methodology or a technique for structural health monitoring depends on 158 
several factors. They include the complexity of the dynamic response, whether the system behaves 159 
linearly or nonlinearly, the scale and dimension of the structure, how easily the physical system 160 
can be modeled or its behavior be simulated, the nature of the excitation, or how easily a feedback 161 
mechanism can be identified to assess the behavior.  Some of the crucial factors determining the 162 
effective strategy for SHM are depicted in Figure 3 and are elaborated in the following paragraphs. 163 
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Figure 3 Common concepts for SHM 

 164 

3.1 Inspection Scale: Global or Local  165 
According to prior research by Doebling et al. (22), detecting damage is performed by global or 166 
local methodologies. Global methods are used to spot the existence of damage and assess the state 167 
of the entire structure. In contrast, local methods assist in locating damage or monitoring a specific 168 
relevant parameter/metric in the system (23). Visual inspection or non-destructive tests, including 169 
ultrasonic, radiography, and acoustic emission, are some practical tools for pinpointing the 170 
damage. Since minor faults, such as cracks and delamination, may not show up in global 171 
measurements unless they are large, localized measurements are also necessary (24). 172 

Generally, local methods are more common for small and non-complex structures since data is 173 
required about the initial state of the structure and such methods designate the vicinity of the 174 
damaged member (18). Hence, they are time-consuming and, most likely, quite expensive (25). 175 
Consequently, to overcome those limitations, specialists take advantage of global methods, which 176 
provide valuable  information based on vibration characteristics, such as natural frequencies and 177 
mode shapes, especially in complicated structures. Notably, an efficient strategy is applied to 178 
identify the structural characteristics of a small area by using global methods, then implementing 179 
the local damage assessment methods to zoom in on the damage location (24). 180 

3.2 Response type: Static or Dynamic 181 
A vast majority of damage detection methods are based on assessing the response of the structure 182 
due to an excitation source. In this respect, these strategies form two main groups: static response 183 
assessment (strain or stress) and dynamic responses (frequencies, mode shapes, or modal 184 
damping). Compared to dynamic measurements, measuring static responses is more 185 
straightforward but less sensitive to changes resulting from damages (22). Accordingly, using 186 
dynamic responses is more efficient for detecting both abrupt and gradual changes, such as 187 
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detecting deterioration. Nonetheless, dynamic measurement of responses requires controlling 188 
environmental and operational effects to attain accurate data. In earlier research in this area, 189 
dynamic-based methods relied on frequency measurements., This was principally due to the 190 
greater accuracy of devices measuring frequency compared to devices measuring mode shape or 191 
geometrical shape. With the advancement of instrumentation, other methods, such as vibration-192 
based methods, were also considered.  193 

Since measuring static responses is more reliable than measuring dynamic ones, some researchers 194 
deployed static data in their study cases (displacement and strain) for damage detection (26-30). 195 
The occurrence of measurement errors in damage detection data by static response measurement 196 
is relatively negligible compared with dynamic responses. While the dynamic matrix requires 197 
stiffness, mass, and damping matrixes, the structure’s stiffness matrix is solely needed in static 198 
concepts. For this reason, static methods generally have simpler equations. 199 

3.3 Behaviour: Linear or nonlinear 200 
The presence of damage induces more complex behavior and causes nonlinear changes. Moreover, 201 
damage may cause a structure with a typically linear behaviour to develop nonlinear reactions such 202 
as cracking, impacts and/or rattling, delamination, stick/slip, rub, or loosened connections (31, 32). 203 
To illustrate these phenomena, Gudmundson (33) proved via experimental tests on a cantilever 204 
beam that natural frequencies may increase instead of decline due to breathing phenomena. This 205 
behavior confirms the fact that the crack alternately opens and closes during experimental tests. 206 
There are different methods for considering nonlinear effects, for instance, nonlinear output 207 
frequency response functions (NOFRFs) and/or Higher-Order Frequency Response Functions 208 
(HOFRF). In this regard, Sinou (34) classified and reviewed linear and nonlinear methods 209 
comprehensively.  210 

3.4 Computation: Model-based or Signal-based  211 
Anomaly identification can be conducted using a model (also called physics-based approaches),   212 
or by signal-based methods (also called data-driven approaches). In the former concept, the 213 
damage is recognized through tracking variations in the simulated measurements from the 214 
structural model (24).  Basically, a model is a mathematical abstraction that connects and correlates 215 
the input and the output parameters of a structure using (known or assumed) properties (35).  In 216 
some cases, it requires a post-process response to predict the damage location and severity. For 217 
this reason, various mathematical models have been established, such as finite difference methods 218 
(FDMs), finite element methods (FEMs), spectral finite element methods (SFEMs), and boundary 219 
element methods (BEMs).  In particular, FEM is the most widely used approach due to its 220 
versatility in modeling of complex geometries (12). 221 

When utilizing the model-based approach, specific parameters of a finite element model simulating 222 
the system are updated under the system’s responses by studying the dynamic behavior of the FEM 223 
model (36-41).  Through that process, the FEM model needs to be updated to account for the 224 
system changes that occur due to the damage.  Model updating includes the optimization of 225 
problem solution to seek the optimum set of matrices (mass, stiffness, and damping), leading to 226 
the minimization of variances between empirical and computed responses (24). These approaches 227 
have some drawbacks because they require prior knowledge of the boundary conditions, damage 228 



location, and material properties (14). Moreover, an optimization problem faces challenging issues 229 
such as ill-conditioning, which affects the existence, uniqueness, and stability of a solution of an 230 
inverse problem, i.e., it is not possible to fully guarantee the determination of the system 231 
characteristics based on the given response. Hence, incorporating uncertainty quantification 232 
measures such as probabilistic, non-probabilistic, and hybrid methods would be an appropriate 233 
alternative (35). 234 

It is also important to point out that FEM methods are not quite suitable when dealing with minor 235 
or invisible damages. The preferred mathematical model seems to be relying on wave propagation 236 
techniques such as SFEM (42). In contrast, signal-based methods rely on statistical analysis and 237 
assess the system’s response independently; therefore, they do not require additional information 238 
concerning the structure’s physical properties and parameters (43-47). 239 

3.5 Feedback: Active or Passive 240 
As for the diagnosis, procedures include two classes; passive and active diagnosis (12). Active 241 
schemes excite the structures with a guided-wave (GW) or various ultrasonic waves, Lamb waves, 242 
shakers, or piezoelectric transducers (32). Piezoelectric materials and devices can be employed as 243 
both actuators and sensors (48).  244 

On the other hand, when measuring input signals is complicated, passive approaches are employed 245 
instead. Passive SHM means embedding various types of passive sensors such as stress, strain, 246 
loading, environmental condition, or temperature measurement sensors, which are tracked over 247 
time, and the collected data is fed back into a structural model. To put it simply, passive SHM 248 
systems  ‘listen’ to the responses yet do not engage with the structure, nor does it affect its dynamic 249 
behavior (49). A promising passive method is Acoustic Emission (AE), which uncovers acoustic 250 
events associated with the occurrence and extension of defects. Other passive techniques include 251 
pieces of equipment that are placed in contact with the structure or on the ground to analyze the 252 
dynamic response under ambient excitations, such as the dynamic response of a bridge structure 253 
under passing traffic or due to wind and ground motions (42). 254 

 255 

3.6 Excitation: Forced or Ambient excitation 256 
Dynamic responses of any structure are usually due to two types of excitations;  ambient and forced 257 
vibrations (50). Ambient excitations are described as stochastic processes such as random white 258 
noise. Herein, Random Decrement Technique (RDT) as an effective signal processing method is 259 
utilized to measure crosscorrelation functions and free-response decays (51). It is important to note 260 
that the use of forced vibration for seismic assessment requires special equipment like eccentric 261 
mass shakers to generate the required response magnitude (14). Moreover, using forced vibration 262 
testing on existing structures should be done through a well-controlled process as it may cause 263 
damage to the structure.  Thus, the use of ambient vibration tests as a practical and relatively 264 
inexpensive way has increased over the past few years (52-55). 265 

3.7 Domain: Time, Frequency or Time-Frequency 266 
Signal processing techniques have been carried out in different domains, namely time, frequency, 267 
or time-frequency domains. Practical vibration analysis begins with acquiring an accurate time-268 



varying signal from vibrometers or accelerometers. Various options and procedures are available 269 
to analyze the signal to extract the desired dynamic characteristics that have the potential to 270 
illuminate the nature of changes in a structure.  Restoring force curves and autoregressive moving 271 
average (ARMA) models are a few examples of time-domain methods.  In ARMA models, time 272 
histories of structural responses are fitted to a model, then the coefficients and residual errors are 273 
evaluated as damage-sensitive characteristics. 274 

The most commonly used tool for signal processing in the frequency domain is the Fourier 275 
Transform (FT) that takes a real-world time-varying signal and splits it into its harmonic 276 
components to deliver information about their amplitude, phase, and frequency. By associating the 277 
frequencies with the system characteristics and looking at the amplitudes, it is possible to pinpoint 278 
changes caused by incurred damages with relative accuracy. This transformation is carried out 279 
using Fast Fourier Transform (FFT) algorithms, which are the most popular ones in practical SHM 280 
analyses.   281 

The time-frequency presentation of a signal makes it possible to recognize transient behaviors 282 
induced either by damage (desired) or environmental noise (undesired) overlapping within the 283 
frequency of the original signal (56). In contrast to FT, abrupt changes due to damages can be 284 
identified with the aid of zooming and focusing on the characteristics of wavelets. Wavelet 285 
transforms (WTs), Wigner-Ville distribution (WVD), short-time Fourier transform (STFT), 286 
pseudo-WVD (PWVD), empirical mode decomposition (EMD) or ensemble empirical mode 287 
decomposition (EEMD), as well as Hilbert-Huang transform (HHT) are some of the common 288 
approaches (57, 58). 289 

3.8 Solution: Forward (Direct) or Inverse (Indirect)  290 
Parameter estimation solutions, or system identification, are inverse problems since they focus on 291 
inverting the standard ‘forward’ relationship between the parameters and output of a model; the 292 
target is to obtain the parameters generating a specific output. Practically, deterministic parameter 293 
estimation aims to extract the optimal mathematical model parameters so that the most feasible fit 294 
is obtained between the model output and the observed data (35). 295 

4 Traditional Inspection  296 
Traditional inspections can be conducted depending on the value and importance of a structure, 297 
repair costs, and failure consequences (12). The most preliminary approach is visual inspections 298 
conducted by experienced technical specialists (Figure 4). It is noteworthy to point out, however, 299 
that visual inspection is not necessarily the most economical solution.  For example, in 2004, 300 
bridge inspection expenses were roughly 20M Australian Dollars (AUD) annually in the state of 301 
Queensland, Australia (14). Moreover, a visual inspection cannot be practically used in some 302 
conventional, especially large and complex structures. 303 

Visual inspection techniques can be combined with different types of experimental tests, which 304 
are typically categorized as either destructive testing (DTs), primarily used to determine the 305 
material properties, or Non-destructive testing (NDT). NDTs aim to inspect the nature of the 306 
damage or control its propagation in a member, joint, or various connections. As a result, NDTs 307 
mainly point out the variation of physical values of defects and are deployed for Quality-Control 308 



(QC), material properties determination, and damage detection (59). There are some differences 309 
between NDTs and SHM. First, regarding the sensing methodology, in SHM, the sensors are 310 
permanent and in fixed positions, while in NDTs, they are brought to the point of investigation. 311 
Secondly, some specialists articulate that SHM should be carried out online or in an automated 312 
fashion, while NDT is conducted via another inspection (60).   313 

Although using NDTs may seem feasible for inspecting small structures, they have some 314 
drawbacks. First, employing these techniques usually involves a temporary interruption of the 315 
functionality of the structure.  This problem makes them time-consuming and costly. Additionally, 316 
on many occasions, due to the inaccessibility or the invisibility of the location of the damaged area 317 
for the inspector, it may be difficult or impractical to perform a satisfactory damage inspection 318 
(61). Lastly, the characteristics of the material also affect the results. Table 1 summarizes several 319 
NDTs and the principal characteristics of the material that should be measured (62). 320 

Overall, these methods are appropriate when the initial information about the vicinity of the failure 321 
is available. Likewise, they are not practical if the member is not accessible or is covered by other 322 
structural components (14). Accordingly, most of these methods are limited to only simple 323 
members such as beams, columns, or plates; and they are not practical in detecting damage in 324 
complex structures, such as multi-story buildings or large bridges (63). A list of commonly used 325 
non-destructive methods is provided in the ASM Handbook (62). 326 

Table 1. NDTs and their relative material characteristics (62) 327 

Method Important Characteristics 
Liquid penetrant Defects must intercept surface 
Magnetic particle Requiring magnetic materials 

Eddy current Requiring conductive or magnetic materials 
Radiography and x-ray Changes in thickness, density, or elemental composition 
Neutron radiography Changes in thickness, density, or elemental composition 
Optical holography Surface optical properties 

 328 

 
Figure 4 Visual inspection on a bridge girder (64) 



5 Anomaly Detection Methods 329 
The SHM literature shows six commonly used structural assessment methods (Figure 5), namely, 330 
response-based techniques, reliability-based methods, Acoustic Emission (AE), feature extraction 331 
methods, computer vision, and machine learning in data-driven methods. In the following, each 332 
technique and its subcategories are described, and relevant papers are reviewed. 333 

 334 

 335 
Figure 5 Anomaly detection approaches in SHM 336 

 337 

5.1 Response-Based Techniques 338 
5.1.1 Displacement-based approach 339 
Measuring static responses is easier and more reliable in comparison with dynamic response 340 
measurements. Therefore it is the interest of a large proportion of researchers. For example, Xu et 341 
al. (65) deployed non-contact laser displacement sensors to measure dynamic displacements on a 342 
frame structure model, searching for baseline states and joint connection defects. They utilized 343 
displacement time series with two neural networks to find damage and assess its extent. 344 

Huang et al. (66) proposed a displacement-based damage assessment method that utilized nodal 345 
displacements on a steel beam that combined analytical and numerical models with some 346 
experiments. Their methodology was practical since it required a few sensors, and there was no 347 
need to have a baseline condition assessment of the structure.  348 

Ono et al. (67) used influence lines of the road to detect damage on a full-scale finite element 349 
bridge slab. Different parameters, such as damaged positions and boundary conditions, were 350 
examined to investigate their impacts on the performance of the presented methodology. 351 
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Huseynov et al. (68) studied numerical analysis to find an index on the basis of rotation 352 
measurements. To this end, they proposed a sensitive index using the difference in rotation 353 
influence lines of damage and healthy states. It was concluded that this parameter could 354 
successfully identify damages on an experimental bridge model. 355 

5.1.2 Strain-based approach 356 
Monitoring strain is possible by employing Fiber-optic strain gauges, Fiber Bragg grating (FBG) 357 
sensors, and piezoresistive sensors such as microelectromechanical systems (MEMS) (69, 70). 358 
Usually, a large number of sensors are needed for measuring strain because the strain is a localized 359 
quantity. Thus, piezoelectric polymers, polyvinylidene fluoride (PVDF) patches (71, 72) are more 360 
recent tools that are suggested to measure strain (32). 361 

Jang et al. (73) employed the damage locating vector (DLV) method with static strain 362 
measurements to localize damage on 2D and 3D planar truss models. It was shown that the 363 
proposed method required fewer strain sensors without needing to measure the damaged members. 364 
In this context, Zhao et al. (74) introduced the basic theory of modal macro strain-based using long 365 
gauge distributed sensing technology and deep learning theory for the first time. 366 

Rageh et al. (75) utilized strain outputs induced by unknown, nonstationary external inputs on a 367 
steel railway bridge. A coupled Proper Orthogonal Modes (POM) and ANN methodology were 368 
used to assess stringer–floor beam connection deterioration on the bridge in a noisy environment. 369 

5.1.3 Vibration-based methods 370 
Structures are subjected to a variety of loading types during their lifetime. Forced or ambient 371 
vibrations might generate these excitations. Regardless of the type of excitation, when the 372 
vibratory motion threshold exceeds a certain level, it might cause damages such as structural 373 
fatigue damage, cracks, strength or stiffness degradation, and other types of deformations.  374 
Environmental loads may also induce noise, which adversely affects the signals (76). Ambient 375 
excitations seem less risky and may not cause severe damage. Furthermore, the evaluation of 376 
structural response under ambient excitations is more straightforward.  377 

The response of a system is related to its inherent dynamic characteristic, namely inertia (mass), 378 
damping, and stiffness. These dynamic characteristics are unique for each structure and can change 379 
as a result of damage. Accordingly, any structural damage can be traced and correlated with the 380 
subsequent changes in these dynamic structural characteristics (stiffness, mass, or energy 381 
dissipation).  In that case, changes in natural frequencies, mode shapes, and damping properties 382 
inherently related to stiffness, mass, and damping indicate the incurred structural damages  (14, 383 
77). Vibration-based methods aim to incorporate and integrate the experimental vibration data, 384 
e.g., acceleration, velocity, or displacement, with vibration models for damage evaluation and 385 
develop damage models for prediction. These models range from pure lumped parameter models 386 
to complex finite element models (32).  387 

It is important to note that the low-frequency examination carried out by these techniques typically 388 
involves the structural components throughout, along with boundary conditions. Consequently, 389 
these methodologies usually are considered global diagnostic tools (12). Therefore, they are 390 
commonly integrated with the sensitivity of local tools such as Scanning Laser Doppler 391 



Vibrometers (SLDVs), guided waves, or Ultrasonic methods with the frequency range of kHz to 392 
MHZ. A summary review of vibration-based methods can be found in (35, 78, 79). In the following 393 
sub-sections, the most commonly used vibration-based, namely Modal Based approaches, are 394 
discussed.  395 

5.1.3.1 Natural frequencies 396 
Monitoring changes of natural frequencies was among the earliest work carried out by researchers 397 
for damage detection, and numerous attempts have been made in this regard (32). Generally, 398 
frequency-based techniques are based on the fact that when a structure undergoes any type of 399 
damage, this damage results in a change in the structure’s natural frequencies. These approaches 400 
are practical and helpful only when a global assessment is needed.   401 

Tracing shifts of frequencies cannot provide detailed information about damage characteristics 402 
(80, 81). Therefore,  techniques solely dependent on changes in frequency are usually limited to 403 
the first level of damage identification and, as stated, are considered as global detection methods. 404 
What’s more, most frequency-based techniques, which can identify and localize defects, are 405 
heavily dependent on the existence of a precise FEM model of the actual structure (82).  406 
Furthermore, frequency information by itself is not practical since several combinations of damage 407 
phenomena, such as cracks in different locations,  can produce the same changes in the natural 408 
frequencies (20). Hence, the implementation of natural frequencies as the sole technique for 409 
anomaly identification can lead to unrealistic damage assessments and evaluations (83).  410 

Many researchers have deployed frequency approaches on simple structures like beams or plates 411 
(84-88). For instance, Kim et al. (89) compared frequency-based damage detection (FBDD) vs. 412 
mode-shape-based damage detection (MBDD) on a simple beam and two sets of modal 413 
parameters. They concluded that through FBDD, the damage could be identified with a much 414 
smaller error, and by applying the MBDD, the damage could be located more accurately. More 415 
recently, Nguyen et al. (90) employed a vector of first few frequencies as the multivariate input of 416 
a statistical distance-based damage identification study using experimental data from two real 417 
benchmark structures. 418 

Mohan et al. (91) designated a frequency change correlation for detecting damage in a cantilever 419 
beam. They studied four different damage scenarios and located the corresponding damages by 420 
Damage Location Assurance Criterion (DLAC), based on Modal Assurance Criterion (MAC) 421 
established by Messina et al. (92). The DLAC measures the correlation of a vector of experimental 422 
natural frequency change ratios instead of mode shapes (23). However, few researchers have 423 
applied the frequency method to complex structures such as space frame structures (93). In order 424 
to cope with the obstacles mentioned above, research studies have exhibited inclinations towards 425 
concentrating on the implementation of mode shapes (94-96) and derivatives (97) since changes 426 
in these parameters are more sensitive to local damage than changes in natural frequencies (98). A 427 
concise review of these methods is noted in (99, 100).  428 

 429 



5.1.3.2 Mode-shapes   430 
Measuring mode shapes is more laborious than measuring frequencies, and also, a significant 431 
number of sensors is required to specify mode shape vectors accurately (101). This technique 432 
typically utilizes mode shapes and compares the measured mode shapes either directly or the 433 
various features of mode shapes, such as curvature or modal strain energy, to improve the 434 
sensitivity (20). The occurrence of singularities in the mode shape due to the existence of defects 435 
is the critical factor that reveals damage. In other words, the higher the extent of damage, the more 436 
singularities in the mode shape (102).  437 

Mode shape methods primarily required both data from the intact and damaged structure. The 438 
baseline data is obtained from either an experimental test or a finite element analysis. Broadly, 439 
these methods are sensitive only to limited areas within a structure  (e.g., mid-span of a clamped 440 
beam), and the reported work in this area has been mainly limited to laboratory experiments.  441 
Furthermore, reported cases indicate that the approach has been more effective for preliminary 442 
damage localization than more accurate localization (103). 443 

Nevertheless, recently developed model-based methods have shown promising prospects for either 444 
mode shape data or mode shape changes identification of damaged structures. The most popular 445 
technique in this regard is MAC (104-107), a statistical index that is more sensitive to substantial 446 
variations while relatively insensitive to slight differences in the mode shapes, taking values 447 
between 0 (i.e., uncorrelated) and 1 (i.e., perfect correlation). Values larger than 0.9 indicate 448 
correspondence, whereas small values signify low similarity between the two shapes. (108). Some 449 
of the popular mode shape-based techniques are compiled in (100, 109). 450 

 451 

5.1.3.3 Modal curvature 452 
Derivatives of mode shapes appear more sensitive to defects since the reduction in stiffness causes 453 
an abrupt change in the mode shape’s first or second derivatives (slope, curvature, or strain) (25, 454 
110). In short, occurrence of damage leads to a decline in stiffness that subsequently causes an 455 
increase in curvature. Thus, damage identification is performed by comparing differences in the 456 
pre and post-damage curvature mode shapes near the vicinity of the damaged region. This 457 
procedure implements multiple modes and is summed up in a damage parameter for a particular 458 
location (23). 459 

Pandey et al. (111) presented mode shape curvature methods for detecting and localizing damage 460 
in a cantilever and a simply supported beam. They employed a central difference estimation to 461 
derive the curvature mode shapes from the displacement mode shapes using a numerical equation. 462 
It was concluded that changes in the displacement of mode shapes were unable to locate the 463 
damage region. In addition, it was proved that MAC and coordinate modal assurance criteria 464 
(COMAC) were not sensitive enough for detecting slighter damages. 465 

Wahab et al. (112) confirmed that detection is possible using multiple modes in the case of multiple 466 
damages. Therefore, they presented the Curvature Damage Factor (CFD), providing clear 467 
identification of multiple damages occurring and using classical mode shape curvature obtained 468 
from only one mode. They also applied modal curvature techniques to measured data on a concrete 469 



bridge and achieved promising results in terms of damage identification and localization. In 470 
addition, by using measured data on the aforementioned bridge, it was demonstrated that the modal 471 
curvatures of the lower modes were more precise compared to those of the higher ones.   472 

Roy and Chaudhuri (113) found that variation in the fundamental mode shape and derivatives were 473 
associated with the location of the defect. Thereby, mode shapes might not indicate damage in 474 
contrast with mode shape derivatives in some cases. Roy (114) put forward a robust localization 475 
technique through the derivatives of mode shapes related to undamaged and damaged states of a 476 
structure. He noted that the difference in mode shape slopes resulted in a Dirac delta function for 477 
damage location. It was observed that the difference in mode shape curvature was discontinuous 478 
at the position of the defect. Accordingly, that approach was effective in identifying and localizing 479 
damage due to slight changes despite the existence of noise-contaminated data. 480 

Janeliukstis et al.(115) developed a square curvature procedure to measure the damage on pre-481 
stressed railway sleepers. Although their method revealed efficiency in detecting damage on the 482 
mid-span of the rail, no accuracy was noted in finding damages on the edges. The effects of 483 
environmental conditions, including temperature and humanity, on the dynamic properties (natural 484 
frequencies, mode shapes, and mode shape curvature) for a wind turbine blade were investigated 485 
by Ou et al. (116). The authors offered thorough documentation regarding the configuration of the 486 
experimental benchmark, sensor types, and the nature of excitations. 487 

5.1.3.4 Modal strain energy 488 
Shi et al. (117) proposed Modal Strain Energy (MSE) in damage localization for the first time. 489 
Therein, Modal Strain Energy Change Ratio (MSECR) was established as an indicator of damage 490 
location. This approach was verified through a numerical model and an experimental specimen 491 
with a two-story portal steel frame. The results revealed that the method was efficient in the single 492 
damage quantification with a 7% noise. However, in the case of multiple damages, results were 493 
not satisfactory at the same noise level.  494 

Cornwell et al. (118) implemented a strain energy approach on a beam and a plate. The authors 495 
proposed fractional strain energy for the healthy and damaged beam, which required the structure's 496 
mode shapes in damage and baseline condition. Although this approach showed some errors near 497 
the nodes, it was advantageous while using ambient excitation.  In addition, the algorithm was 498 
able to locate even slightly damaged areas employing a few modes. Hu et al. (119) extended the 499 
previous work by developing a non-iterative exact solution methodology called cross-modal strain 500 
energy (CMSE), which used only a few modes of damaged structure for estimating damage 501 
severity. The method was verified on a three-dimensional five-story structure by assessing single-502 
damage and multiple-damage scenarios under an ordinary noise environment. In a recent study, 503 
Nguyen et al. (120) proposed a correlation method using change in the ratio of modal strain energy 504 
to eigenvalue directly estimated from the experimental modal information, which is powered by a 505 
sensitivity-weighted search space scheme incorporated with genetic algorithm to overcome the ill-506 
posed problem that causes false detection errors. The improved method is shown to be effective 507 
in locating and assessing damage in a complex steel truss structure. 508 



Wahalathantri et al. (121) proposed a modification function according to mode shape curvature, 509 
which could enhance the previous approach and qualify damage to some extent.  Tan et al. (122) 510 
presented a modal strain energy damage index as the input of an Artificial Neural Network (ANN). 511 
This method simply used the first mode of vibration and was preferable in detecting, locating, and 512 
quantifying single and multiple damage scenarios on steel beams. In an effort to extend to large-513 
scale building structures, Wang et al. (123) proposed a component-based MSE damage index 514 
method and combined it with the modal flexibility method to locate damage in three-dimensional 515 
asymmetrical building frames. On the side of bridges, Jayasundara et al. (124) studied modified 516 
modal flexibility and strain energy indices as the input of an ANN to assess deficiencies on full-517 
scale arch-type bridges. The proposed strategy was promising, even in the presence of noise-518 
contaminated data along with the accumulation of multiple damages. The modified indices are 519 
formulated by decomposing the traditional modal flexibility and strain energy into vertical and 520 
lateral indices, extracting the larger values for each type and normalizing them to get a fix on the 521 
location of the damage very effectively (125). 522 

5.1.3.5 Damping  523 
Arising damage in a structure can cause an increase in damping. However, this structural 524 
characteristic is not sensitive enough to indicate damage. As a case in point, Hearn and Testa (126) 525 
explored the use of modal parameters, including frequency, mode shape, and damping values, for 526 
detecting damages in a welded steel frame subjected to cyclic load. It was observed that after the 527 
accumulation of damage, the damping level might decrease due to cumulative deterioration. 528 

Salawu and Williams (127) conducted a full-scale test on a concrete bridge prior to repairing 529 
actions. It was demonstrated that the repairs led to a slight change in the natural frequencies, but 530 
no identifiable trend could be established in the modal damping ratio.  531 

Frizzarin et al. (128) recommended applying the nonlinear damping ratio as a damage index for 532 
reinforced concrete structures. By that, they were able to identify anomalies without any reference 533 
to the baseline condition. Moreover, they observed a significant correlation between the increase 534 
in the nonlinear damping and a decrease in the structural stiffness connected with the escalation in 535 
seismic damage intensity.  536 

Montalvão et al. (129) developed a modal damping factor to identify delamination on composite 537 
materials such as Carbon Fiber Reinforced Plastics (CFRP). This low-cost method required either 538 
FEM or experimentally measured mode shapes and presented a geometrical probability definition 539 
of the damage vicinity for any bi-dimensional structure. Similar researches on the application of 540 
damping ratio as a damage index are compiled in (130, 131). 541 

5.1.3.6 Frequency response functions (FRFs) 542 
In essence, a frequency response function is defined as a mathematical representation between 543 
input and output of a system derived from the Fourier transform (132).  Having the general 544 
equation of motion, the displacement response in the frequency domain is given by  545 

X(ω) = (−ω2M + jωC + K)−1F(ω) = Hd(ω)F(ω) (1) 

Ẋ(ω) = ωX(ω) = Hv(ω)F(ω) (2) 



Ẍ(ω) = −ω2X(ω) = Ha(ω)F(ω) (3) 

where Hd(ω) indicates the displacement Frequency Response Function (FRF) matrix and  j =546 
√−1 (132). FRFs require installing a smaller number of sensors, and the corresponding 547 
measurements efficiently fulfill local detection (133). Among the different dynamic characteristics 548 
of the structure, it is relatively easier to obtain the structure’s frequency response. Furthermore, 549 
since these data can be, for instance, derived from seismic tests on a structure, FRFs express the 550 
actual behavior of the structure and can be more reliable. Consequently, different FRF-based 551 
damage detection techniques can be obtained using displacement frequency response (DFRF), 552 
velocity frequency response (VFRF), or acceleration frequency response (AFRF), as presented by 553 
equations (1-3) (134).  554 

Esfandiari et al. (135, 136) established an FRF-based parameter assessment approach using 555 
incomplete measured responses derived through a quasi-linear sensitivity equation. To cater to this 556 
need (employing incomplete measurements in the derivation of the sensitivity equation), they 557 
proposed an approximation of the damaged structure’s transfer function via the measured 558 
frequencies coupled with modal damping ratios of the damaged structure and the analytical mode 559 
shapes of the healthy structure. Likewise, numerical simulations were adopted to validate the 560 
robustness of the model updating for extended damage scenarios through highly noise-561 
contaminated data. The authors also formulated methodologies in terms of picking subsets of 562 
measured responses and suitable weighting of sensitivity equations. Staszewski and  Wallace (137) 563 
concluded that the wavelet ridge algorithm could effectively derive and visualize data out of 564 
wavelet-based FRFs. 565 

Bandara et al. (138) used DFRF along with an ANN pattern recognition for localization and 566 
quantification of damage in a frame. In that research, the authors deployed a finite element model 567 
of a two-story frame structure to train the neural network, which could identify even slight damages 568 
with reasonable accuracy under 10% noise. Liu-Sheng and Jun (139) used AFRF for detecting and 569 
localization of damage in a planar truss. They demonstrated that the method made accurate 570 
predictions about the damaged member but could not exclude the damage probability of 571 
circumference members. 572 

The accuracy of FRF methods depends on using raw data in measuring frequencies. However, a 573 
massive amount of data leads to more significant data processing demands. To deal with this 574 
problem, data compressing methods such as fuzzy clustering algorithms or principal component 575 
analysis (PCA) could be practical in this scope. Data compression methods can also reduce 576 
environmental effects (140, 141). Moreover, in a complex structure, variations in natural 577 
frequencies are the same for both damaged and undamaged cases (141). Hence, the solution is 578 
reading damage and healthy data simultaneously (142). 579 

5.1.3.7 Matrix-based (stiffness and flexibility) 580 
Changing the stiffness and flexibility matrices induced by damage and comparing them with the 581 
undamaged state devises another damage identification strategy. Zimmerman and Kaouk (143) 582 
considered damage as changes in stiffness using an eigenvalue problem derived from a general 583 
equation of motion for a finite element model. Sivico et al. (144) proposed a method considering 584 



changes in stiffness and damping parameters in the time domain. It was observed that higher modes 585 
contribute more than lower ones to the structure stiffness (145, 146). Accordingly, a precise 586 
estimation of the stiffness matrix needs to measure all modes of the structure. However, measuring 587 
higher frequencies is quite tricky due to the apparent limitations of the experimental apparatus. To 588 
this end, the flexibility matrix method was proposed for estimating the changes in system stiffness 589 
by means of first mode shapes and modal frequencies, which have the most significant influences 590 
on the structure’s response (147). In this aspect, Pandey and Biswas (147) developed a novel 591 
algorithm that was capable of localizing damage in three types of beams using the first several 592 
modes and measuring flexibility changes. Reich and Park (148) utilized strain-based sub-structural 593 
flexibility matrices for detecting damage in a reinforced concrete model.  594 

Park et al. (149) compared the predicted position of damage obtained via damage index methods 595 
with visual inspection results in a reinforced concrete box-girder bridge. They proved that 596 
environmental conditions, such as the atmospheric moisture and the dry summer months in the 597 
region, could affect the damage index results. 598 

Tomaszewska (150) attempted to detect damage on a simple beam and a FEM model of a real-599 
world tower through structural flexibility and mode shape curvature. He tested the modal 600 
identification errors by an absolute damage index. It was pointed that ignoring modal errors in the 601 
damage detection process could distort results. Additionally, using the flexibility and curvature 602 
indices improved the accuracy of detection when erroneous modal data was collected. 603 

Grande and Imbimbo (151) put forward a new technique by combining the classical flexibility 604 
method and a multi-stage procedure relying on Dempster's rule discussed in (152, 153). That 605 
approach was applied to two case studies, including a fixed-end beam and a three-dimensional 606 
structure benchmark model. Overall, the method effectively detected damage in both cases, even 607 
with a limited number of parameters and noise measurements. 608 

Wickramasinghe et al. (154) confirmed the applicability of modal flexibility to detect and locate 609 
single, multiple, and complex damage scenarios. The authors developed two damage indices that 610 
used only the first four modes to detect defects on a real suspension bridge simulated using a FEM. 611 

5.2 Reliability-based Methods 612 
Engineers have always tended to use SHM for optimizing the cost of maintenance based on the 613 
remaining service life of a structure. However, numerous uncertainties exist in current procedures. 614 
Thus, to consider these uncertainties, a probabilistic approach, such as reliability-based methods, 615 
is used to overcome existing gaps.  Many researchers have developed reliability-based methods as 616 
a quantitative tool to scan the health state of the structure for deterioration or damage (17, 155-617 
157) 618 

Soyoz et al. (158) deployed structural parameters, stiffness, and damping values according to 619 
seismic response measurements obtained from shaking table tests as indexes. Some scholars have 620 
also introduced a probability-based framework for estimating the performance of the structure. 621 
Others developed reliability-based assessment methods using strain-monitoring data to develop 622 
deterioration indices (159, 160). Notably, those methods have also been investigated for damage 623 
detection in various infrastructures (17, 161-163). Nonetheless, some limitations cast doubts on 624 



practical implementation (164). A large number of methods mentioned above that are based on the 625 
reliability approach have solely utilized strain as input data (159, 160). Strain measurements have 626 
some drawbacks; for instance, they might not be stable, especially over a long time. This approach 627 
may also be expensive and require complex signal processing systems (165). 628 

In addition, recent studies have revealed that reliability-based procedures are prone to an 629 
inaccurate estimation of the structural failure probability due to the sensitivity of the results to the 630 
accuracy of the input data and require making assumptions for numerous input parameters (165, 631 
166). 632 

5.3 Acoustic Emission (AE) 633 
Acoustic emission (AE) has been studied as a non-destructive evaluation (NDE) and structural 634 
health monitoring method over the last six decades (167). It is defined as propagating transient 635 
elastic waves in the materials, which are generally propagated from internal energy sources due to 636 
damage initiation (168). The primary components consist of the structure, AE sensors, amplifiers, 637 
acquisition, and recording unit coupled with the data processing system (169). Signal 638 
characteristics that are commonly utilized include rise time, peak frequency (PF) or average 639 
frequency (AF), duration, and ringdown count (4).  640 

In practice, AE is helpful for global monitoring, real-time assessment, and remote monitoring to 641 
discriminate different sources of damages (170). AE has been deployed broadly to assess fracture 642 
mechanisms and characterize structural damages, especially for composite materials and for 643 
complex damage mechanisms such as matrix cracking, delamination, fiber fracture, pull-out, and 644 
gross material faults (171). Moreover, a large percentage of the papers that have reported this 645 
approach concern concrete material and structures (172). 646 

Hamdi et al. (173) introduced a real-time method through random AE signals obtained from a 647 
static bending test on a cross-ply Glass Fiber Reinforced Plastic (GFRP) composite material. They 648 
concluded that the Hilbert–Huang transform (HHT) was efficient for nonstationary AE signals 649 
feature extraction. Moreover, instant frequencies could provide applicable descriptors in terms of 650 
in-situ health monitoring. 651 

Behnia et al. (168) investigated steel fiber reinforced concrete beams under pure torsional loading 652 
to find different damage mechanisms, including micro and macro-cracking and fiber tension 653 
softening. They introduced an unsupervised pattern recognition approach and a novel technique, 654 
referred to as Spatial Intelligent b-value Analysis, to quantify fault levels for each loading state. 655 
Some practical reviews regarding AE damage detection are available in (169, 174, 175) 656 

5.4 Feature-Based 657 
The analysis of measured signals searching to reveal hidden features related to the structure’s 658 
condition has recently attracted a lot of interest. Signal processing techniques derive features from 659 
time, frequency, or time-frequency (176). Some of the most practical tools for extracting 660 
information from each domain are presented in the following sub-sections. 661 



5.4.1 Time-domain 662 
Time series is a statistical tool for creating mathematical models that simulate the dynamic 663 
characteristics using measured data, divided into two categories, namely parametric and 664 
nonparametric time series. In the first group, the observation is simulated using nonparametric 665 
time series such as frequency response function (FRF), binned power spectral density (PSD), etc. 666 
In this approach, dynamic variations caused by damage are recognized through changes in 667 
statistical parameter characteristics (14). In the second group, the input-output relationship of a 668 
system is presented through an Average model with exogenous inputs (ARMAX) with the 669 
following equation: 670 

𝐴𝐴(𝑞𝑞)𝑦𝑦(𝑡𝑡) = 𝐵𝐵(𝑞𝑞)𝑢𝑢(𝑡𝑡) + 𝐷𝐷(𝑞𝑞)𝜀𝜀(𝑡𝑡)                    (4) 671 

where 𝑦𝑦(𝑡𝑡) denotes the response of the system to the input excitation 𝑢𝑢(𝑡𝑡) and 𝜀𝜀(𝑡𝑡) is the residual 672 
term. The terms 𝐴𝐴, 𝐵𝐵 , and 𝐶𝐶 are the coefficients or parameters in polynomials with the delay 673 
operator 𝑞𝑞. The polynomial order defines the time-series model order, which is an unknown term 674 
and is determined through different techniques, namely Akaike's information criterion (AIC), 675 
Minimum description length (MDL), Root Mean Squared Error (RMSE), and best model order 676 
(BMO) (14)(177). Skewness, crest factor, kurtosis analysis, and RMS amplitudes are some of the 677 
popular features that apply to time series (178). 678 

In a general sense, changes in a system lead to changes in the coefficients and residuals of the time 679 
series, which form the main criteria for damage diagnosis in the parametric time series. Since 680 
measuring input vibrations is challenging, and it is costly to apply this approach to real-world 681 
structures, output-only time-series, which utilize ambient excitation, are more desirable and 682 
practical. Thus, various types of output-only parametric time-series have been established in the 683 
realm of SHM, including but not limited to AR, ARMA, Vector Autoregressive (VAR), and Vector 684 
Autoregressive Moving Average (VARMA) (14). 685 

Monavari et al. (179) proposed a signal-based approach utilizing autoregressive (AR) time-series 686 
residuals. In this paper, a novel AR model order estimation algorithm was established that was 687 
capable of enhancing the sensitivity of the AR model prediction concerning deterioration. As a 688 
result, the authors were successful in qualifying slight changes like deterioration on a high-rise 689 
FEM concrete building excited by real ambient excitations. AR model residuals can also be 690 
combined with test statistics such as the T-values of statistical hypothesis of chi-square variance 691 
test to locate crack-induced deterioration in a complex lab test of a box girder structure (54) 692 

Time series is one of the tools implemented in statistical pattern recognition applications for SHM 693 
(180). Since the method is based on a partial structural dynamics model,  it can identify even a 694 
small number of variations (181). As an illustration, Gharehbaghi et al. (55) employed AR time-695 
series along with a robust algorithm that was able to select sensitive uncorrelated features. 696 
Afterward, they established a pattern, which they then employed in a super vector machine (SVM) 697 
algorithm to classify different deterioration scenarios within an analytical model.  Following this 698 
approach, they could locate and qualify deterioration under the effect of environmental 699 
variabilities, such as high noise and operational errors.  700 



 701 

5.4.2 Frequency-domain 702 
Fourier spectra, cepstrum analysis, difference frequency analysis, and the high-frequency 703 
resonance technique are appropriate tools for damage identification, especially for gear faults and 704 
roller bearings (182). Fourier transform (FT) and fast Fourier transform (FFT) are considered the 705 
principal anomaly detection concepts. As a case in point, in a study conducted by Melhem and 706 
Kim (183), FFT and CWT were compared for detecting damage in real prestressed concrete beams 707 
and concrete slabs. Results proved that FFT could identify the progression of damage in the beam 708 
but not in the slab. Contrarily, CWT could differentiate the initial and damaged states for both 709 
structures. 710 

Ngo et al. (184) developed an FFT-based correlation coefficient approach to evaluate damages on 711 
a beam and bridge.  It was deduced that FFT used fewer calculation steps than FT, and the proposed 712 
method could locate structural decline through crosscorrelation matrices. 713 

5.4.3 Time-Frequency domain 714 
The time-frequency presentation of a signal allows for the recognition of transient behaviors 715 
induced either by damage (desired) or environmental noise (undesired) overlapping with frequency 716 
within the original signal (56). The capability of wavelets through multi-scale analysis of transient 717 
events induced by damage (desired) or environmental noise (undesired) generated considerable 718 
attention for SHM. In contrast to Fourier Transform, wavelet analysis can describe any type of 719 
signal both in time and frequency domain simultaneously, while FT can map a signal from the 720 
time domain to the frequency domain.  Moreover, through a  flexible window location and scale, 721 
wavelets can identify abrupt changes due to damage with the aid of zooming and focusing. This 722 
can be achieved through multiresolution analysis (MRA) from discrete wavelet transform (DWT) 723 
and Wavelet packet transform (WPT) or the wavelet spectra from continuous wavelet transform 724 
(CWT) (58, 185).  725 

Noori et al. (186) applied data obtained via long-gage FBG strain sensors into a  modified wavelet 726 
packet energy rate index to quantify damage in a steel bridge under a noisy environment. Zhao et 727 
al. (187) used the structural mode shapes extracted from the finite element model of a simply 728 
supported reinforced concrete beam that is employed for damage identification using different 729 
types of wavelets. They concluded that the maximum curve reaches a peak value at a specific scale 730 
for a specific case, based upon which a new mode shape-based algorithm and damage index were 731 
proposed for damage identification. Haq et al. (188) investigated the use of DWT and CWT for  732 
Fatigue damage mounting and estimating the residual life of RC frames. 733 

Huang et al. (189) established a new local and adaptive method for analyzing stationary and 734 
nonstationary signals called the Hilbert–Huang transform (HHT). HHT relies on empirical mode 735 
decomposition (EMD) and can decompose the original signals into a series of basic functions and 736 
almost mono-component called implicit mode functions (IMFs). Through IMFs, one can identify 737 
all the instantaneous frequencies, which are then utilized to calculate the Hilbert spectrum and 738 
enlighten distinctive chrematistics of the original signal (190). Sanchez et al. used empirical 739 



wavelet transform and HHT to calculate the three structures’ natural frequencies and damping 740 
ratios (191). 741 

Yang et al. (192) proposed a modified EMD for the identification of modal parameters on a four-742 
story steel frame. AE signals of 3D braiding composite shafts under tensile and torsion were 743 
analyzed by HHT in (193). It was shown that HHT could do modal separation of AE signals to 744 
identify matrix damage types on composite materials. 745 

Babajanian et al. (176) analyzed cable-bridge responses and extracted features using STFT. A 746 
support vector machine (SVM) and a filter-method approach called ‘ReliefF’ were used to find the 747 
sensitive subset of features for detecting damage. 748 

 749 

5.5 Computer Vision 750 
Computer vision is a sub-set of artificial intelligence that tries to derive information from digital 751 
data, including images or videos, by pairing computers and machines (194). The ultimate target of 752 
this methodology is to automatically convert the image or video data into inferable information 753 
(195). Computer vision consists of a vision system, a computer, and an image processing software 754 
platform (see Figure 6) (196). Vision sensors typically include digital cameras, smartphones, 755 
infrared cameras, optical lenses, and laser scanners. In addition, image acquisition utilizes 756 
customary cameras, camera tracking vehicles, and robotic systems such as UAVs and drones. In 757 
this regard, displacement, temperature field distribution, and superficial defects are the most 758 
common data recorded by non-contact vision cameras. The processing unit includes image 759 
processing techniques that extract features from digital data. In this regard, various types of low-760 
level and high-level features such  as shape, texture lines, pixel intensity are utilized in image 761 
processing algorithms. 762 

Computer vision is mainly deployed for assessing damages on surfaces and visible parts of 763 
structures, including different types of cracks, steel corrosion, or concrete spalling. It consists of 764 
two main groups, including image processing-based and deep learning-based approaches. Various 765 
image/video processing techniques that use features extracted from acquired images are utilized 766 
regarding the first group. These consist of edge detection filters (197, 198), morphological features 767 
(199), and bottom-hat transform (200). Herein, different machine learning classification methods 768 
are used, such as SVMs, Naive-Bayes, and K-Nearest Neighbors (KNN).  Moreover, in the case 769 
of big data, deep learning techniques can be applied to image features. 770 

With respect to the first group, Shan et al. (201) used two cameras to retrieve coordinates of the 771 
crack edge using the Canny-Zernike algorithm. The width of the crack was identified via a minimal 772 
edge detection approach. Qiang et al. (202) proposed an adaptive canny edge detection algorithm 773 
for crack identification using a Gauss filter and Otsu method. They segmented cracks from the 774 
background by applying an iterative threshold algorithm. Sari et al. (203) classified and segmented 775 
asphalt pavements by deploying the SVM and Otsu methods, respectively. Some of the popular 776 
crack detection algorithms are reviewed in (204). 777 



Motion magnification is another trending technique that deploys high-speed cameras to amplify 778 
small displacements and lead to model identification in structures. As a case in point,  Chen et al. 779 
(205) calculated the mode-shaped curvature of a beam to identify damage. Accelerometer and laser 780 
vibrometer measurements were deployed for validation of the technique. In a paper by Sarrafi et 781 
al. (206), phase-based motion estimation (PME) and video motion magnification were employed 782 
to perform operational analysis on a wind turbine blade and extract resonant frequencies and 783 
operating deflections. A single camera captured the sequential images, and the MAC criterion 784 
detected damage scenarios applied to the blade. It was concluded that the use of phase-based 785 
motion could be efficient in a noisy environment. PME was applied on a laboratory and real bridge 786 
by Cabo et al. (207). The results indicated that PME had a good performance in comparison to 787 
traditional sensing methods (e.g., LVDT). Furthermore, natural frequencies are not enough for 788 
classifying damage, and other information regarding mode shapes is required. 789 

Regarding the learning-based methods, it should be noted that they have broadly improved the first 790 
group’s ability via different detection approaches, including image classification, object detection, 791 
and semantic segmentation (195). Furthermore, thanks to the rapid developments of technology, 792 
graphics processing units (GPUs) paired with Field Programmable Gate Arrays (FPGAs) as fine-793 
grained programmable devices are the most suitable platforms for implementing convolutional 794 
neural networks (CNNs) since they offer super performance for the sake of pure computation 795 
(194).  796 

German et al. (208) proposed a damage index for concrete columns to quantify the damage, such 797 
as cracks and spalling, based on computer vision for rapid inspection after earthquakes. Chen et 798 
al. (209) used aerial images captured by UAVs to evaluate the degrees of damage to buildings after 799 
earthquakes. Various image texture features were used to identify ground targets (building, road, 800 
mountain, riverway, and vegetation). An SVM classifier was used to evaluate the extent of the 801 
damage, and a new damage degree evaluation (DDE) index to identify the damage potential and 802 
intensity of the earthquake was devised..   803 

Zhang et al. (210) established a CNN called CrackNet, able to classify different cracks on 3D 804 
asphalt surfaces, with the explicit objective of pixel-perfect accuracy. For training, two GPU 805 
devices were deployed on 1800 images of asphalts. 806 

Liang (211) exploited deep learning and Bayesian optimization by examining a reinforced concrete 807 
(RC) bridge after an earthquake on three sequential stages, including the system stage, component 808 
stage, and damage localization. Yang et al. (212) deployed thermal imaging to combine a rolling 809 
electric heating rod with a horizontal thermal excitation methodology to generate a temperature 810 
gradient on the side of the crack. An improved Fast R-CNN was implemented to learn temperature 811 
gradient and to detect cracks of different depths on a steel plate. 812 

Oudah and El-Hacha (213) conducted damage and deformation evaluation of a large-scale that 813 
was tested on two new RC connection systems using digital image correlation (DIC). Ni et al. 814 
(214) proposed a deep‐learning‐enabled data compression and reconstruction framework, divided 815 
into two phases: (a) a one‐dimensional CNN; (b) a new SHM data compression and reconstruction 816 
method based on Autoencoder structure. To validate the approach, acceleration data from the SHM 817 



system of a long‐span bridge in China was employed. In the abnormal data detection phase, the 818 
results showed that the proposed method could detect anomalies with high accuracy.   819 

Chen and Jahanshahi (215) proposed a method for detecting cracks on the pixel level. In this study, 820 
a rotation-invariant fully convolutional network (FCN) called ARF-Crack was established that 821 
explicitly used the rotation-invariant characteristic of cracks. The architecture of the FCN named 822 
DeepCrack for pixel-level crack detection was adopted and revised where active rotating filters 823 
(ARFs) were utilized for encoding the rotation-invariant characteristic into the network. 824 

Comprehensive reviews on new advances and computer vision applications for SHM are available 825 
in (195, 196). 826 

 827 

 828 

 829 
Figure 6 Schematic of computer vision SHM(196) 830 

Figure 7 Image processing based architecture (204) 832 
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 833 

5.6 Data-driven based machine learning 834 
As mentioned, signal-based (or data-driven) methods utilize the information obtained from 835 
monitored structures in order to reveal features reflecting the state of a system without any 836 
knowledge of the physical properties of the structure. These approaches are practical when (216): 837 

• Sufficient numbers of sensors are available. 838 
• Computational operations are costly in the SHM project 839 
• Physical properties of the structure are unknown or complicated to be modeled. 840 

It should be noted that methods based on extraction of features can identify damages independently 841 
via using different damages indices directly (54, 217-219) or by combining them with machine 842 
learning techniques for the purpose of pattern recognition (55).  Herein, machine learning methods 843 
are applied to the features extracted from measured data to classify and predict the structural 844 
patterns obtained from sensors. Supervised, semi-supervised, and unsupervised are the categories 845 
for the different learning schemes in this scope. Three major issues are considered in the scope of 846 
machine learning, namely classification, regressions, and density estimation (60).  847 

Kim and Philen (220) developed a machine learning algorithm called Adaboost that had the 848 
potential to identify corrosion and cracks on metals. Four signal processing techniques were 849 
examined, and the spectrogram based on short-time Fourier transform was chosen as the reliable 850 
damage diagnosis approach. They used the FE model of damages as training samples and 851 
examined the performance of the Adaboost on experimental specimens.  852 

Three sets of experimental steel pipelines were investigated through 365 features extracted from 853 
ultrasonic signals in a study carried out by Ying et al. (221).  Two feature selection methods using 854 
adaptive boosting algorithms automatically recognized suitable features for damage identification. 855 
Five classifications, namely adaptive boosting, modified adaptive boosting, SVM, and two 856 
methods combining adaptive boosting and SVMs, showed good performance for determining 857 
different damage scenarios. 858 

A supervised method based on redundant information of the structure was introduced by Smarsly 859 
et al. (216).  The algorithm used the inherent correlations among the amplitudes at peaks of the 860 
frequency spectra of accelerations from different sensors and deployed an ANN to map the 861 
relationship between the modal peak amplitudes of correlated sensors. 862 

In a study done by Gui et al. (222), three optimization-based  machine learning methods, including 863 
grid-search, partial swarm optimization, and the genetic algorithm were used for optimizing the 864 
penalty coefficient and kernel  function parameter for the SVMs. Two damage features detected 865 
the damage scenarios of a scaled metal building model. They concluded that the genetic algorithm 866 
had better performance compared to the other optimization techniques. In a more recent study, Yu 867 
et al. (223) employed five different machine learning techniques, namely SVM, ANN, adaptive 868 
neuro-fuzzy inference system, regression tree model called M5P, and genetic expression 869 
programming to quantify Alkali-Silica Reaction (ASR)-induced elastic modulus degradation of 870 
unrestrained concrete. The study shows the proposed methods outperform three commonly-used 871 
empirical models in a wide range of statistical indices.  872 



 873 
 874 

Gharehbaghi et al. (55) applied the AR time-series on acceleration signals for extracting sensitive 875 
features. In addition, an SVM algorithm was used in order to classify the different conditions of 876 
two specimens under environmental variations. The authors extracted features through statistical 877 
indices that were applied on coefficients and residuals of AR models then deployed a novel 878 
algorithm to find the sensitive features relating to deterioration and damage. 879 

 880 

6 Popular SHM Benchmarks: 881 
In a broad sense, a laboratory benchmark model provides an experimental study platform to 882 
validate the proposed methodology for anomaly detection (224). For expository reasons, SHM 883 
benchmark structures are divided into four regions of Europe, North America, East Asia, and 884 
Australia in this paper.  885 

The majority of research projects in the USA, in this regard, have been supported by National 886 
Science Foundation (NSF), the Federal Highway Administration (FHWA), or other universities 887 
and laboratories such as LANL (Los Alamos National Laboratory), National Aeronautics, and 888 
Space Administration (NASA), United States Air Force (USAF), California Department of 889 
Transportation (CALTRANS), and Pacific Earthquake Engineering Research Center (PEER) 890 
among others. 891 

In Europe, some collaborative projects on SHM have been organized.  For instance, by the Ministry 892 
of Scientific Research and Technology (MURST) in Italy, and the Department of Trade and 893 
Industry (DTI) and Engineering and Physical Sciences Research Council (EPSRC), in the UK 894 
(225). Two primary schemes for cooperative research are the EC Framework Program projects 895 
and the EUREKA projects.  896 

The Australian Network of Structural Health Monitoring (ANSHM) executes SHM projects in 897 
Australia on three projects: ARC Discovery, ARC Linkage, and CRC/CSIRO Projects. In the 898 
following sub-section, some of the important benchmark studies conducted around the world are 899 
summarized. A comprehensive review of SHM benchmarks is provided in (226). 900 

6.1.1 P-block building 901 
The P-block building is located at the Queensland University of Technology (QUT).  It has been 902 
recently constructed at the Gardens Point campus of QUT, Australia, costing around AU$230M. 903 
The P-block has been awarded a 5-star Green Star rating from the Green Building Council of 904 
Australia (14). This concrete structure has ten floors equipped with accelerometers across four of 905 
its six above-ground stories (227). The most important part is that this benchmark utilizes an 906 
integrated vibration-sensing concept that has a software-based synchronization method, and it 907 
appears to be a promising choice for deployment in vibration monitoring of civil engineering 908 
structures.  909 



On the first instrumented floor of this structure (i.e., level 4), six analog tri-axial sensors coupled 910 
with two single-axis accelerometers have been installed to record the vibration signals. As depicted 911 
in Figure 8, the sensors are positioned on the upper part of the structure (i.e., at levels 4, 6, 8, and 912 
10) that appear to be more sensitive to the ambient vibrations originating from occupants’ activities 913 
or environmental loads, such as wind load (228). Known as the testbed of Australia’s first-ever 914 
long-term full-scale SHM system, P block building has interestingly hosted the 8th International 915 
Conference on Structural Health Monitoring of Intelligent Infrastructures (SHMII-8) on the first 916 
time this prestigious conference in the SHM field was organised in Oceania (229). More details 917 
regarding the P-block are presented in (230, 231)  918 

Figure 8 P-block building(227) 920 

6.1.2 ASCE SHM Benchmark 921 
Ventura (232) introduced this 4-story laboratory model at the 15th International Modal Analysis 922 
Conference. This structure is placed in the Earthquake Engineering Research Laboratory at the 923 
University of British Columbia (UBC) and is 2.5 meters wide and 3.6 meters high. Each level of 924 
this structure has two diagonal braces on each exterior face, as shown in Figure 9. The mass of 925 
each story is simulated with steel plates of various weights. Some of the braces can be removed to 926 
model different damage scenarios, and the connections between columns and beams can be 927 
loosened (224). 928 



Figure 9 ASCE SHM Benchmark (224) 930 

6.1.3 Bookshelf Frame Structure 931 
The Los Alamos National Laboratory (LANL) has provided some experimental data sets, such as 932 
datasets, for bridges and buildings in the public domain (233). A bookshelf is one of the most 933 
popular datasets that is used as a damage detection testbed.  This model is a three-story bookshelf 934 
with bolted joints and is constructed of metal columns and aluminum floor plates, as depicted in 935 
Figure 10 (233) (234). Moreover, four isolators allow the structure to sway in horizontal directions 936 
with the aid of a hydraulic shaker. Piezoelectric single-axis accelerometers equip the structure. 937 
Different damage simulations can be conducted by replacing the masses and changing the stiffness 938 
of the columns. 939 

 940 

 
Figure 10 Bookshelf Frame Structure (233) 



 941 

6.1.4 18-Story Steel Moment Frame 942 
A one-third scale model of an 18-story steel high-rise and a protective frame was built and installed 943 
on the E-Defense shake table (Figure 11) (235). The model shows the behavior of a typical steel 944 
high-rise and responds to the earthquake as a steel moment-resisting frame. The model is similar 945 
to steel high-rise buildings constructed in the 1980s to 90s, where the column-to-beam strength 946 
ratio of 1.5 is provided to simulate a weak-beam strong-column mechanism. The building can be 947 
excited in one direction solely. The input ground excitation is a simulated ground vibration with 948 
long-period properties for a Tokai-Tonankai-Nankai subduction-zone earthquake. 949 

Moreover, different types of sensors have been installed, and 879 data channels are recorded. 950 
Acquired signals of all channels can be obtained for all loading cases, composed of primary 951 
earthquake loadings and white-noise vibration. Notably, images from digital cameras record the 952 
overall model’s condition vividly and the fracture at the beam ends. 953 

Figure 11 18-Story Steel Moment Frame(235) 955 

 956 

6.1.5  I-40 bridge 957 
This bridge was constructed over a highway in the Rio Grande River in Albuquerque, New Mexico 958 
(see Figure 12 a). The concrete deck was about 13.3 m wide and 18 cm thick, supported by two 959 
steel plate girders with a 3.05 m height (224). A number of modal tests were conducted after it had 960 
been closed in 1993. To this end, 13 accelerometers were installed to each of the two plate girders 961 
of the three spans and recorded 26 response measurements. The bridge was excited via a hydraulic 962 
actuator placed on the deck of the middle span closest to the abutment. Four levels of damages 963 
were introduced so as to simulate fatigue cracking by cutting the web and flange of the girder, as 964 
shown in Figure 12 b. More elaborated information on the modal experimental of this bridge is 965 
explained in (236). 966 



 
 

a) Picture of the bridge b) damage scenarios 
Figure 12 I-40 Bridge in New Mexico. (224) 967 

6.1.6 Z24 bridge: 968 
This bridge was located in Canton Bern, Switzerland, as shown in Figure 13. It was a prestressed 969 
two-span bridged with two lanes and approximately 60m in length (237). In 1998, different 970 
progressive damages scenarios were implemented on this bridge, including settlement of piers, 971 
spalling f concrete, cutting of concrete hinges, landslide, ruptures of tendons, and failure of anchor 972 
bolts. However, the settlement was the central scenario that significantly impacted on the 973 
degradation of bending stiffness. The settlement was simulated by cutting the Koppigen pier and 974 
removing 0.4m of concrete to use six hydraulic jacks. Full details regarding this benchmark are 975 
illustrated in (238) 976 

  
a) Overall view of the bridge b) Pier settlement using hydraulic jacks 

Figure 13 Z24 bridge benchmark (237) 977 

6.1.7 Tamar bridge: 978 
The bridge is situated in the United Kingdom and used to be one of the longest suspended 979 
structures in England (239) (Figure 14). Firstly, in 1961 the structure had a 335 m span and a side 980 



span of 114 m. The anchorage and approach together amount to the total length of 643 m. Two 981 
concrete towers with a height of 73 m support the bridge. After a significant upgrade in the 1990s, 982 
several sensors were installed to assess the bridge’s performance. These sensors recorded the data 983 
regarding cable tensions, wind velocity, temperature, and deflections. After years, in 2006, the 984 
engineers from the University of Sheffield installed an additional set of sensors consisting of eight 985 
accelerometers on orthogonal pairs to four cables and three sensors on the deck to extract 986 
vibrational data. The data had a 64 Hz sampling frequency at 10 minutes intervals. More details 987 
about this benchmark are provided in (240). 988 

 
Figure 14 The Tamar suspended bridge 

7 Conclusions 989 
This paper has presented a review of the most promising and significant work reported in the 990 
literature regarding SHM and related methodologies developed over the past three decades.  991 
Additionally, a comprehensive categorization for anomaly detection was presented, and related 992 
studies in each subset were summarized and discussed. Moreover, the most widely studied SHM 993 
benchmarks were introduced at the end. The key findings of the literature review regarding the 994 
advantages and disadvantages of each anomaly detection method, as discussed in this paper, are 995 
summarized below: 996 

Method Pros. Cons. 

Displacement 
• Detecting damage up to level 

3 
• Requiring a few sensors 

• Insensitive to minor 
damage 

• Difficult to measure bridge 
structures over water using 
traditional displacement 
transducers. 

Strain • Detecting damage at levels 1 
and 2 

• Requiring large numbers of 
sensors 



• Capable of detecting damage 
in the presence of noise 

• Strains are not reliable for 
long periods 

Natural 
Frequencies 

• Easy implementation 
• Relatively low cost 
• Require a limited number of 

sensors 

• Sensitive to noise and 
vicinity of sensor or 
actuator 

• Usually  limited to level 1 
• Detect severe and single 

damage only 

Mode-Shape 

• More sensitive to damage 
than the natural frequency 

• More effective in noisy 
environments than 
frequencies 

• Requiring large numbers of 
sensors 

• Having errors in locating 
damages in some areas 

• Insensitive to minor 
damage such as concrete 
cracks 

Modal 
Curvature 

• Able to detect slight damages 
 

• Requiring many sensors 
• Existing errors in central 

difference approximation 

MSE 

• Requiring first few models 
• Addresses the levels 2 and 3 

damage detection 
• Detecting multiple damages 
• Effective in noisy 

environments 

• Accuracy decreases as the 
mode shape complexity 
increases 

Damping • Relatively low cost 
 

• Having large standard 
deviations 

• Can be affected by 
operational effects 

• Damping levels may rise 
or fall depending on the 
damage 

FRF 

• Easy implementation 
• Relatively low cost 
• Multi damage case detection 
• Efficient in the existence of 

noise 

• Mainly limited to level 2 
• Sensitivity to numbers of 

modes 
• Sensitivity to frequency 

ranges 

Matrix-based 

• Addresses the levels 2 and 3 
• Requiring few modes 
• Sensitive to faults through 

incomplete modal 
measurements 

• Sensitive to local defects 
 

• Not sensitive to slight 
damages  

• Requiring well-distributed 
sensors 

• Requiring mass normalized 
mode shapes 

• Affecting the performance 
by using incomplete modal 
measurements 



• The precision relies on the 
mode shape data 

• Requiring higher-order 
modes for precise damage 
detection 

Reliability • Can be applied to complex 
structures 

• The sensitivity of the 
results depend on the 
accuracy of the input data 

AE 

• Practical for complex damage 
mechanisms like composite 
materials 

• Can be deployed for real-time 
damage detection 

• Effective for global 
monitoring 

• Sensitive to slight damages 

• Expensive 
• Requires skillful operator 

Time-domain 

• Detecting damage at levels 1 
and 2 

• Capable of detecting damage 
in the presence of noise 

• Sensitive to local damage 
• Not require a solving system 

of equations in finite element 
method 

• Capable of solving complex 
systems hard to model 
operating on partial models 
with a limited number of 
measurable 

excitation and/or response signals 
• Identifying dynamic 

characteristics of a system under 
ambient vibration 

• Inherent accounting for 
uncertainty through statistical tools 
 

• Limit information about the 
location and severity of damage in 
the presence of noise 
• False-positive/negative results 

Time-Frequency 
domain 

• Effective in noisy 
environments 

• Addresses the levels 2 and 3 
 

• Computationally expensive 

Computer 
Vision 

• Easy implementation 
• Low cost 
• Addresses the levels 2 and 3 
• Ability to be automated 

 

• Computationally expensive 
• Images quality degrades by 

environmental conditions 



 
 

Data-Driven 
based Machine 

learning 

• Ability to be automated 
• Addresses the levels 2 and 3 

 

• Computationally expensive 
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