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Abstract: Traumatic brain injury (TBI) occurs due to the disruption in the normal functioning of the
brain by sudden external forces. The primary and secondary injuries due to TBI include intracranial
hematoma (ICH), raised intracranial pressure (ICP), and midline shift (MLS), which can result in
significant lifetime disabilities and death. Hence, early diagnosis of TBI is crucial to improve patient
outcome. Computed tomography (CT) is the preferred modality of choice to assess the severity of
TBI. However, manual visualization and inspection of hematoma and its complications from CT
scans is a highly operator-dependent and time-consuming task, which can lead to an inappropriate
or delayed prognosis. The development of computer aided diagnosis (CAD) systems could be
helpful for accurate, early management of TBI. In this paper, a systematic review of prevailing CAD
systems for the detection of hematoma, raised ICP, and MLS in non-contrast axial CT brain images is
presented. We also suggest future research to enhance the performance of CAD for early and accurate
TBI diagnosis.

Keywords: traumatic brain injury (TBI); CAD; computed tomography; intracranial hematoma;
elevated ICP; midline shift

1. Introduction

Traumatic brain injury (TBI) arises when sudden and direct/indirect external forces,
such as a bump, blow to the head, or other kind of injury, result in neuropathological
damage and brain dysfunction. TBI can result in significant disruption in the normal
functioning of the brain, leading to temporary or permanent neurological deficits. This
silent epidemic [1] affects millions of people worldwide annually, with high morbidity and
mortality rates. It is estimated that 1.7 million people suffer TBI every year [2] in the United
States, with total lifetime TBI medical expenses that are expected to be approximately
$76.5 billion [3]. According to the Indian Head Injury Foundation (IHIF), India has the
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highest rate of brain injury in the world; one out of six TBI patients die, and most cases of
death ensue within two hours after the injury [4].

The brain damage due to TBI results in a heterogeneous group of injuries that can
distort normal brain function, resulting in cognitive, physical, emotional, and behav-
ioral disability [5]. The complications occur directly or indirectly after the trauma, and
hence, the injuries following TBI can be predominantly categorized as primary and sec-
ondary injuries [6]. Primary injuries are the result of the direct impact of trauma that
includes extradural, subdural, and intracranial hemorrhage (ICH) and diffuse axonal injury
(DAI) [5,7]. The abrupt external mechanical forces can rupture the blood vessels, and the
blood starts accumulating in various intracranial compartments of the brain, leading to
hemorrhage. The hematoma can be categorized as intra-axial hematoma and extra-axial
hematoma, respectively, based on its occurrence with respect to the brain substance. Intra-
axial hematoma includes intracerebral hemorrhage (ICH), subdural hematoma (SDH),
sub-arachnoid hematoma (SAH), and intraventricular hematoma (IVH), whereas extra-
axial hematoma consists of epidural hematoma (EDH) [8]. The mortality rate of ICH is
nearly 50% within the first year [9]. The primary injury can appear within a short period of
100 milliseconds [5], and the health status of the patient starts declining within the first few
hours after its onset.

Secondary injuries start developing from minutes to days after the primary brain
insult, which comprises a series of molecular, chemical, inflammatory, and metabolic
alterations [6]. Secondary injuries include elevated or raised intracranial pressure (ICP),
midline shift (MLS), herniation, ischemia, infarction, hydrocephalus, cerebral vasospasm,
etc. [5,8]. Some of the devastating and lethal consequences of intracranial hematoma are a
raised or elevated intracranial pressure and midline shift [10,11], as depicted in Figure 1.

Figure 1. Relationship between hematoma and secondary injuries in TBI.

The adult cranium is a stiff box of constant volume consisting of blood, brain, and
cerebrospinal fluid (CSF). The Monro–Kellie doctrine states that the sum of the volumes
of these three major components remains constant [12]. Therefore, in conjunction with
the increase in volume of any of the intracranial contents, the volume of at least one of
the two components should be reduced. Furthermore, this potential increase in volume
will in turn lead to elevated ICP levels. The displacement of CSF and blood into the
intracranial space will slowly occur owing to the expansion of the hematoma inside the
rigid cranium. During the initial phase of hematoma growth, the ICP levels remain low due
to effective management per the Monro–Kellie doctrine. When the progressive expansion
of hematoma approaches a certain limit, the compensatory mechanisms will get exhausted,
and further displacement of CSF or blood is not possible. Hence, the entire equilibrium
is disrupted, leading to raised ICP [11]. Exacerbated ICP levels have proven to result in a
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worse outcome [10,13], and can damage various brain structures, leading to midline shift,
brain herniation, and even death [10,14].

The unmitigated ICP levels due to the mass effect of hematoma can displace the
midline anatomical structures to the sides of the brain, leading to the condition termed
midline shift (MLS). Due to the symmetry of the brain structure, the midline can be consid-
ered as an imaginary central line, which is straight in normal, healthy subjects [15]. The
displacement of any of the three brain midline structures, namely the septum pellucidum
(SP), third ventricle (V3), or pineal gland (PG), from the ideal midline, is considered for the
computation of the degree of MLS. The mass effect of hematoma generates high intracranial
pressure, thereby shifting the brain from its central position, and results in the compression
of brain structures. This can eventually lead to death. Therefore, MLS is considered a
significant indicator of ICP, and a strong predictor of worst patient outcomes after TBI.
The degree of shifting of SP with respect to the ideal midline is widely used to quantify
MLS, and a shift in the midline greater than 5 mm [16] necessitates immediate surgery to
invasively remove the acute hematoma.

Non-contrast computed tomography (CT) is the preferred modality of choice for the
diagnosis and management of TBI in the acute setting, as it is fast, widely available, and
offers good contrast between blood and brain tissues [7,17]. Detection of hematoma in
the CT scans and assessment of three major determinants, namely location, volume, and
size [7,18], is crucial for prognosis and decision-making. The gold standard for monitoring
ICP involves the use of an external ventricular drain (EVD), an invasive procedure that is
highly susceptible to infections and complications [19,20]. Furthermore, the lack of invasive
ICP monitoring and trained neurosurgeons in various clinical settings necessitates the need
of CT scans to detect raised ICP [14]. Multiple signs in CT images, such as effacement of
basilar cisterns, midline shift, and hematoma volume, can be used to predict ICP [7,14,21].
Manual inspection and quantification is the current clinical practice to quantify MLS.

The patient outcomes after TBI can be greatly enhanced by the rapid and accurate
extraction and management of the information present in the CT images. However, lack of
reliable and efficient automated tools to analyse and interpret have limited the maximum
utilisation of details present in CT scans for prompt and early management of TBI. Various
research studies show that the proper visual inspection and manual estimation of TBI
outcome based on CT are time-consuming, subject to inter-observer and intra-observer
variabilities, and prone to inadvertent error and misdiagnosis [2,22,23]. Quick selection and
appropriate interpretation of CT slices requires high expertise, which may not be possible
for junior radiologists or emergency care physicians, especially in the case of review at
odd hours. The initial interpretation by inexperienced readers is often tedious, and results
in misinterpretation and clinical consequences [24,25]. Moreover, manual segmentation
of hematoma or midline structures from selected CT slices is challenging due to reasons
such as variation in pixel-wise intensity, uneven boundaries, high contrast of tissues, and
the presence of noise and artefact [26–28]. Furthermore, the set of features required for
CT-based ICP estimation cannot be readily identified by visual inspection, and is also
subject to intra-observer and inter-observer variability [29]. Moreover, the measurement of
MLS should be carried out at the level of the foramen of Monro based on clinical guidelines,
and hence, the selection of the appropriate CT slice is crucial [30]. MLS in smaller amounts
is difficult to detect from CT imagery. As the amount of shift is vital to assess the extent
of brain damage, the precision of quantification is important for decision-making and
further diagnosis. Therefore, the use of computer aided diagnosis (CAD) systems can bring
significant reduction in human error and provide quantitative and qualitative assessments
of TBI rapidly and accurately, thereby leading to improved clinical outcome.

The main aim of a typical CAD system is to decrease the false negative rates by identi-
fying the features that are normally used by the clinicians to detect the abnormality [31].
The ever-growing research initiatives have extended the CAD systems to perform various
image analysing techniques that enable clinicians to detect disease, plan treatment, predict
risk, and determine prognosis. The interpretation provided by the CAD systems can be
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utilised by radiologists as a supplementary tool for final decision-making. CAD systems
equipped with machine learning and deep learning techniques can quickly learn and
predict the abnormalities present in larger datasets. The CAD-assisted detection systems
are usually composed of various image processing techniques to perform pre-processing,
segmentation, feature extraction, feature selection, and classification. Several CAD-based
approaches are proposed to diagnose brain abnormality in imagery, as represented using
different modalities [32–34]. These semi-automated or fully automated approaches are
applied to detect either a single brain abnormality or multiple pathologies in a supervised
or unsupervised fashion [33,34], and deploy machine learning or deep learning techniques
to enhance accuracy and efficiency [32]. A general categorisation of various approaches
employed by CAD systems to assess TBI is shown in Table 1.

Table 1. General categorization of approaches employed by CAD systems to assess TBI.

Pathology
CAD

Approaches Techniques
TBI-Associated Abnormalities

ICH Detection ICH Volume
Estimation ICP MLS

TBI

Feature
learning based

Feature based 3 3 3 -

Segmentation as
pixel-wise/voxel-wise

classification task
3 - - -

Segmentation based on image
delineation 3 - - -

Landmark and symmetry based - - - 3

Deep learning
based

Classification 3 3 - 3

Segmentation 3 - - -

Segmentation and classification 3 - - -

2. Search Strategy and Organisation of the Review

The relevant research literature for the study was obtained by conducting searches in
PubMed, Scopus, Web of Science, IEEEXplore, ScienceDirect, and Google Scholar databases.
Figure 2 depicts the article selection process used in the study.

A three-phase analysis was conducted to select suitable articles from the initial search
results. In the first phase of analysis, 500 published articles were assessed based on the
title and abstract, and 280 publications were identified. The articles were re-assessed in the
second phase of analysis with respect to the publication type, datasets used, and outcomes
of the research study. Following the second phase of analysis, 180 articles remained.
The eligible articles for final review were identified in the third phase of analysis, which
involved the examination of the study design and methodology. A total of 83 articles were
shortlisted and included in the study.

The set of keywords used, individually or combined, included ‘traumatic brain injury’,
‘automated intracranial hematoma’, ‘automated intracranial haemorrhage’, ‘hematoma’,
‘segmentation’, ‘automated ICP prediction’, ‘MLS estimation’, ‘computer-aided diagnosis’,
‘intracranial pressure levels’, ‘brain midline shift’, ‘automatic detection and classification’,
‘CT images’, and ‘quantification’. The inclusion and exclusion criteria used in the article
selection process are outlined in Table 2.
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Figure 2. Flow diagram of the article selection process.

Table 2. Inclusion and exclusion criteria applied in the study.

Publication Category Inclusion Criteria Exclusion Criteria

Datasets used and
study outcomes

• Automated analysis of ICH, ICP, and MLS in
humans due to TBI.

• CT imaging to perform automated detection
and assessment of ICH, ICP, and MLS.

• Standard datasets for automated detection
and assessment of ICH, ICP, and MLS.

• Animal subjects.
• Treatment strategies related to ICH, ICP,

and MLS.
• ICH, ICP, and MLS caused by conditions

other than TBI.

Research design and
methodology

• Automated segmentation and
binary/multiclass classification of ICH, ICP
prediction and estimation, MLS detection and
estimation, and tracing the
deformed midline.

• Feature-based techniques or deep
learning-based architectures for automated
analysis and quantification of ICH, ICP,
and MLS.

• Statistical methods for detection for ICH, ICP,
and MLS.

• Biochemical research pertaining to ICH, ICP,
and MLS.
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Table 2. Cont.

Publication Category Inclusion Criteria Exclusion Criteria

Type Peer reviewed journals, conference proceedings,
and systematic reviews

Scientific abstracts, letters to the editor, and articles
without full text

Period 2007–2021 Before 2007

Language English Written in other languages

The year-wise distribution of the papers reviewed is shown in Figure 3. It can be
inferred that the research work related to MLS and ICP using CT images for assessing TBI
is still in its infancy, and hence, there is significant room for improvement.

Figure 3. Year-wise distribution of papers reviewed for assessing TBI based on ICH, ICP, and MLS.

The remainder of this review is organised as follows. In Section 3, the different publicly
available datasets to develop high-performance CAD systems are discussed. In Section 4,
the various approaches to develop CAD systems for TBI assessment are provided, with a
highlight of the characteristics of featured learning-based approaches for ICH, ICP, and MLS
detection. Section 4 also discusses the state-of-the-art deep learning models for diagnosis
and early management of hematoma and midline shift. Section 5 provides the discussion
of CAD systems for TBI diagnosis and the various avenues for future development for
automated TBI diagnosis. Finally, the conclusion of the review is presented in Section 6.

3. Open Source Datasets

In order to develop CAD systems to identify various pathologies associated with TBI,
most of the existing studies have used smaller datasets obtained from single institutions.
The two publicly available brain CT datasets that can assist in the development of machine
learning algorithms to identify and categorise various brain abnormalities includes the
Radiological Society of North America (RSNA) [35] and CQ500 [36]. These multi-centric
and heterogeneous datasets facilitate the development of generic, automated CAD systems
to assess the different types of abnormalities associated with TBI.

3.1. CQ500 Dataset

Chilamkurthy et al. [36] created a diverse CQ500 dataset comprised of 491 brain
CT scans, which were collected batch-wise from different radiology units and pooled by
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the Centre for Advanced Research in Images, Neurosciences and Genomics (CARING),
New Delhi, India. Each CT scan was annotated by three independent radiologists for the
presence or absence of (i) ICH and its five types, ICH age, and affected brain hemisphere,
(ii) midline shift, and (iii) calvarial fractures. Figure 4 shows a sample of normal and
abnormal images included in the dataset.

Figure 4. Sample CT images from CQ500 dataset.

3.2. RSNA Dataset

The RSNA dataset is the largest publicly available dataset, consisting of 874,035 an-
notated brain CT images for hematoma detection and classification. Each CT image in
this multi-national and multi-institutional dataset [35] is annotated by expert radiologists
for the presence or absence of each of the five types of ICH. The training and test data
consist of 752,803 and 121,232 CT images, respectively, with class imbalance among the
subtypes of hematoma. The research studies based on these two datasets are discussed in
the subsequent sections.

4. Generics of Computer Aided Diagnosis

Computer aided diagnosis is widely used as a part of day-to-day clinical work for the
early detection and diagnosis of various abnormalities in medical imagery obtained using
different imaging modalities [37]. The main focus of the CAD systems is to improve the
diagnostic accuracy and consistency of radiologists in assessing the severity of TBI. The
additional information about the injury that is obtained through the CAD systems will
aid clinicians in making a more accurate prognosis and clinical decision. CAD systems
can bring significant reduction in human error and provide quantitative and qualitative
assessments of TBI in a cost-effective and rapid fashion. Thus, CAD-assisted systems
facilitate the early management of TBI-related anomalies effectively and quickly, which can
subsequently reduce the high rates of morbidity and mortality.

The two major approaches that are used to develop CAD systems for TBI are as follows:

Feature Learning-Based Approach
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A typical feature learning-based CAD system consists of the following stages: pre-
processing, feature extraction, dimensionality reduction, and classification [38]. Pre-
processing techniques can significantly improve the performance of the TBI system. Pre-
processing is applied to remove noise and artefacts that are inherently present in the CT
imagery, and it enhances image quality for subsequent processing [39]. Feature extraction
focuses on extracting the underlying patterns of TBI in CT imagery, which is often quite
challenging to detect visually. Dimensionality reduction facilitates the selection of the
most pertinent features [40], which enable one to characterise the heterogeneous injuries
associated with TBI. The reduced feature set is utilised by various classifiers to detect
the presence of TBI-associated abnormalities and their severity. A detailed description
of various stages involved in CAD systems is furnished in subsequent sections. Figure 5
shows the schema of a typical feature learning-based approach for TBI [18,23,41–44].

Figure 5. Schema of a typical feature learning-based approach for TBI.

Deep Learning-Based Approach

The convolutional neural network (CNN) has recently gained rapid attention in
biomedical applications due to its self-organisation and self-learning features. As shown in
Figure 6, a typical CNN or deep learning model is composed of n number of convolution
layers and pooling layers, which are arranged in a successive fashion to address various
applications [45]. The convolutional layers consist of convolutional filters of a fixed size
to extract features from input images, and these features are accumulated and spatially
reduced by a pooling layer, either using max pooling or average pooling techniques [45,46].
Thereafter, the features are propagated through the fully connected layers to the output
units of the network [47,48]. The fully connected layers and the Softmax activation func-
tion are utilised for the classification of the inputs based on the reduced set of feature
vectors [45,47,48].
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Figure 6. General architecture of a deep learning model for TBI diagnosis.

4.1. Pre-Processing

Pre-processing is employed to remove the irrelevant information in the brain CT
images, such as from the skull, head holder, soft tissue edema, and background, which
can significantly introduce noise and degrade the performance of the CAD system. Tech-
niques, such as intensity based thresholding, morphological operation, and connected
component analysis, are used individually or combined to obtain the enhanced CT im-
ages [23,44,49–51]. Commonly used noise reduction techniques include median filtering
and gradient magnitude filtering [23,44,50,51]. Contrast limited adaptive histogram equali-
sation (CLAHE) is also utilised as a technique for enhancing image quality [51]. Moreover,
clustering techniques, such as K-means [52], Fuzzy c-Means (FCM) [53–56], and level-set
methods, such as the distance regularised level set evolution (DRLSE) [57–59], are used for
region of interest (ROI) extraction.

4.2. Feature Extraction

Various features are extracted from brain CT imagery to capture the underlying
nonlinear structure. Investigators have combined the common set of features with distinct
handcrafted features to improve the efficiency of the CAD system. The different methods
for feature extraction are as follows:

Texture: Texture analysis can be done to extract and quantify the relationship among
neighbouring pixels in an image. The grey level co-occurrence matrix (GLCM) [60], Gabor
and Laplacian of Gaussian filters [61], and local binary patterns [62] are used for the
identification of normal and abnormal images.

Shape: The shape of the features can play a crucial role in distinguishing the vari-
ous types of TBI imagery. The major characteristics of these features include statistical
independence, noise resistance, reliability, and invariance to translation, rotation, and
scaling [63,64].

Discrete Wavelet Transform (DWT): The DWT is an effective mathematical tool to
generate the localised time and frequency information present in CT images. The ap-
proximation and detail coefficients are generated by applying low-pass and high-pass
filtering to the input signal in a successive manner, and the approximation coefficients are
repeatedly used to compute wavelet features for the next scale based on the required levels
of decomposition [65].

Statistical: Statistical features are the image properties based on the intensities of
individual pixels in the CT images. As the different ranges of pixel intensity values
correspond to various brain anatomical structures, these features can be used to detect the
presence of abnormal components.

Location based: The various abnormalities associated with TBI are specific to certain
brain regions, and radiologists use locational information to categorise injury. Hence, the
incorporation of location-based features can aid in automated TBI diagnosis.

Entropy based: Entropy indicates the degree of randomness in the image pixel val-
ues [66], and a CT image with a high entropy value offers rich pixel intensity information
to identify morphological differences present in the brain.
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CNN based: Various CNN-based architectures are utilised to obtain a set of features
from the TBI images. The activations of the CNN layer before the final output layer are
considered as deep features for the assessment of TBI.

Texture feature extraction is widely used as a feature extraction technique, and the
inclusion of shape features [67] and statistical features have proven useful for improved
diagnosis of TBI [44,51,57,68,69]. Raghavendra et al. [70] extracted a set of nonlinear
features based on entropy to detect the presence of intracranial hematoma in CT images
and obtained an accuracy of 97.37%. Liu et al. [71] developed a classification model using
wavelet, statistical, and GLCM features to detect pathological CT slices. Sharma and
Venugopalan [43] have employed features based on texture, shape, and intensity to identify
the subtypes of hematoma. Tong et al. [51] presented a midline formation technique
to diagnose hematoma, in which LBP texture features and histogram features of both
hemispheres were extracted and compared, and a recall rate of 84.86 was achieved. Rajini
and Bhavani [44] proposed a model based on DWT featuring for the diagnosis of hematoma
in TBI patients. Li et al. [56] concluded that the distance transform with respect to five
different landmarks, along with the Bayesian classifier, can distinguish normal versus
subarachnoid hematoma (SAH). Chawla et al. [69] compared image intensity features in
both brain hemispheres to discriminate hematoma slices.

Another approach for detecting hematoma in CT imagery involves the segmentation
of hematoma regions, and a set of usual and handcrafted features are extracted to improve
the classification performance [28,34,37,72]. Shahangian et al. [42] applied a modified
DRLSE to segment hematoma regions, and used handcrafted shape and texture features to
classify the hematoma into four subtypes. Al-Ayoob et al. [67] developed a classification
model using shape features to categorise the hematoma into three classes, and achieved
an accuracy of 92%. Xiao et al. [73] proposed a different approach using primary and
secondary features based on long and short axes of the largest hyperdense region to
classify epidural and subdural hematoma. Yuh et al. [74] evaluated the presence of three
subtypes of hematoma in segmented blood clusters based on its location, shape, and size.
Zaki et al. [75] used symmetry-based location features and intensity features to classify
segmented intracranial regions as bleed areas. The complete information of feature-based
methods is shown in Table 3.

Table 3. Summary of different feature-based techniques for hematoma detection.

Authors CT Dataset Method Classifier Performance

Raghavendra et al. [70] 1603 Entropy-based nonlinear features PNN
Acc: 97.37
Sen: 96.94
Spec: 97.83

Liu et al. [71] 11011 DWT features, statistical features,
GLCM texture features SVM

Acc: 80
Precision: 80.32

Recall: 88.22
Five-class

Sharma and
Venugopalan [43] 100 Shape, intensity, and GLCM

texture features ANN Acc: 97
Three-class

Tong et al. [51] 450 LBP texture features and
histogram features SVM

Acc: 90
Precision: 0.8486

Recall: 0.9682
Five-class

Rajini and Bhavani [44] 80 DWT features SVM
Acc: 98
Sen: 98

Spec: 100
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Table 3. Cont.

Authors CT Dataset Method Classifier Performance

Li et al. [56] 129 Distance features based
on landmarks Bayesian Sen: 100

Spec: 89.7

Chawla et al. [69] 35 Dissimilarity of intensity features
in brain hemispheres -

Acc: 90
Precision: 91

Recall: 90

Shahangian et al. [42] 627 MDRLSE + texture and
shape features Hierarchical classifier Acc: 94.13

Four-class

Al-Ayoob et al. [67] 76 Thresholding + region growing +
shape features

Multinomial Logistic
Regression

Acc: 92
Precision: 92.5

Recall: 92.2
Three-class

Xiao et al. [73] 48

Multi-resolution thresholding +
region growing + primary and
derived features based on long

and short axes

C4.5 Acc: 0.975
Three-class

Yuh et al. [74] 273

Thresholding, spatial filtering, and
cluster analysis and classification
based on location, size, and shape

of clusters

-
Sen: 98
Spec: 59

Three-class

Zaki et al. [75] 720 FCM + multi-level thresholding +
location and intensity features - Sen: 82.5%

4.3. Segmentation

The hematoma segmentation in CT imagery can be realized using rule-based mod-
els [23,41,76] or machine learning models [18,27,57,58,69,77]. Chan [23] developed a
knowledge-based classification system from symmetry analysis to detect acute hematoma.
Ray et al. [41] combined knowledge of brain anatomy and pixel intensity distribution to
segment hematoma from whole CT scan images.

The machine learning approaches can implement segmentation as a pixel/voxel-
wise classification task or by combining various traditional image delineation techniques.
The classification task involves extracting a set of relevant features initially to classify
each pixel/voxel as hematoma, whereupon suitable post-processing techniques are then
applied to obtain fine segmentation. The post-processing techniques include thresh-
olding, morphological operations, smoothing, and active contours [18,27,57,58,69,77,78].
Farzaneh et al. [58] used handcrafted statistical, textural, and geometrical features to clas-
sify each super pixel as normal or SDH. The same research group [57] has incorporated
deep features in their recent study to improve segmentation performance. Scherer et al. [68]
extracted statistical and textural features to perform voxel-wise hematoma classification.
Muschelli et al. [18] applied a voxel selection method based on handcrafted intensity fea-
turing to detect ICH. Qureshi et al. [76] have tried a semi-automated approach using ANN
to perform initial pixel-wise categorization with an active contour for subsequent segmen-
tation. Yao et al. [59] generated super-pixels using the simple linear iterative clustering
(SLIC) algorithm, and extracted statistical and textural features to automate hematoma
segmentation. Gillebert et al. [77] performed a voxel-wise comparison of normalized CT
imagery with control images, and thresholded them to obtain the lesion map.

Various hybrid segmentation approaches have been proposed to detect hematoma
based on image delineation techniques, such as thresholding, region growing, FCM cluster-
ing, and active contouring [21,27,49,53,54,58,68,78]. Kumar et al. [54] explored the appli-
cation of FCM clustering and entropy-based thresholding to obtain the initial hematoma
image for the distance regularized level set evolution (DRLSE) method and achieved an
accuracy of 99.87%. Gautam and Raman [53] evaluated the performance of a segmentation
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model based on white matter FCM clustering (WMFCM) and wavelet-based threshold-
ing. Saenz et al. [50] reported a nonlinear technique that uses region growing to segment
hematoma in 3D CT datasets. Bhadauria et al. [55] showed that a combination of FCM
clustering and active contour modelling can lead to effective demarcation of hematoma,
with an accuracy of 99.10%. Prakash et al. [27] evaluated the speed and accuracy of
modified DRLSE (MDRLSE) for hematoma segmentation. Bardera et al. [78] presented a
semi-automated technique that applies region growing to segment hematomas in 3D CT
imagery. Zhang et al. [79] applied case-based reasoning to distinguish hematoma types
occurring within the brain space, and then adaptive thresholding was used to delineate the
hematoma regions. Liao et al. [80] showed that the application of several evolution rules
for the modified level set method in different resolutions can be used to segment subdural
hematoma (SDH).

Furthermore, Nag et al. [22] proposed a cost-effective approach that deploys an au-
toencoder as an unsupervised learning technique to delineate hematoma regions. The
autoencoder is trained to identify the hematoma slicing for initializing the active contour
Chan-Vese model, and the hematoma was segmented from the 3D CT volume with a sensi-
tivity of 0.71. A summary of the different studies reviewed for hematoma segmentation is
provided in Table 4.

Table 4. Summary of different techniques employed for hematoma segmentation.

Authors CT Dataset Method Performance

Chan [23] 62

Top-hat transformation and symmetry
detection for candidate detection +
knowledge-based classification of

normalised CT images

Sen: 100
Spec: 84.1

Liao et al. [80] 48 Multiresolution binary level set method +
decision rules

Overlap rate: 82
Sen: 0.81

Ray et al. [41] 590 Knowledge driven thresholding +
morphological operations + data fusion

Acc: 92.45
Sen: 93.95
Spec: 100

Farzaneh et al. [57] 110
SLIC + texture, spatial, and deep features +

random forest + morphological operations +
Gaussian smoothing

Precision: 76.12
Recall: 78.61

Dice coefficient: 75.35

Farzaneh et al. [58] 866
DRLSE + textural, statistical, and geometrical

features + tree bagger classifier +
multi-level thresholding

Sen: 85.02
Spec: 73.74

Scherer et al. [68] 58

First- and second-order statistics + texture
and threshold features + random forest

methodology + morphological operations +
Gaussian smoothing

Concordance correlation
coefficient = 0.98

Muschelli et al. [18] 10 Intensity-based predictors + random forest
classifier + thresholding DSI: 0.899

Qureshi et al. [76] 866 ANN and active contours Jaccard Index: 0.8689 ± 0.042
Dice coefficient: 0.9169 ± 0.02

Yao et al. [59] 2433 SLIC + texture and statistical features + SVM
+ active contour model

Acc: 97
Precision: 0.59

Recall: 0.60

Gillebert et al. [77] 500

Threshold-based clustering + voxel-wise
comparison of normalised and control Ct

images using Crawford–Howell parametric
t-test + thresholding

DSI: 0.89
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Table 4. Cont.

Authors CT Dataset Method Performance

Kumar et al. [54] 35 FCM clustering + entropy-based
thresholding + DRLSE

Acc: 99.87
Sen: 87.06
Spec: 99.98

Gautam and Raman [53] 20 WMFCM clustering +
wavelet-based thresholding DSI: 0.82

Nag et al. [22] 48 Fuzzy-based intensifier + auto encoder +
active contour Chan-Vese Model

Sen: 0.71
Jaccard Index: 0.55

Saenz et al. [50] 12 Hough transform + region growing Jaccard Index: 0.9005

Bhadauria et al. [55] 100 FCM clustering + region-based active
contour method

Sen: 79.48
Spec: 99.42

Dice coefficient = 0.8748

Prakash et al. [27] 200 Modified distance regularised level set
evolution (MDRLSE)

Sen: 79.6
Spec: 99.9
AUC: 0.88

Bardera et al. [78] 18 Region growing Matching ratio: 0.96

Zhang et al. [79] 10 Adaptive thresholding and
case-based reasoning

Acc: 0.950 ± 0.015
Recall: 83.5

4.4. Feature Dimensionality Reduction

Feature extraction results in a large amount of irrelevant and redundant data, which
can adversely affect the performance of the automated diagnosis system [81,82]. Hence,
dimensionality reduction techniques can be utilised to map the datapoints from an n-
dimensional space to a lower k-dimensional space, while preserving the major characteris-
tics. Rajini and Bhavani [44] have used principal component analysis (PCA) to select signifi-
cant wavelet coefficients for more accurate and efficient classification. Shahangian et al. [42]
introduced a synthetic dimensionality reduction technique by combining the Adaboost
classifier and a genetic algorithm (GA). The Adaboost classifier is trained for each fea-
ture in the feature set, and the GA is utilised to determine a subset of optimal features.
Raghavendra et al. [70] used Student’s t-test to rank the entropy-based nonlinear features
and to identify significant features. Liu et al. [71] employed entropy-based feature selection
to select optimal features for training the SVM classifier.

4.5. Classification

The aim of automated classification algorithms is to assign a class label to unknown
or unseen data. The performance of a classification model can be boosted by selecting a set
of powerful discriminant features that can clearly distinguish the underlying patterns of
the original data.

It is evident from Tables 3 and 4 that, in the existing studies for detection of hematoma
regions, the widely used supervised classifiers are: the support vector machine
(SVM) [42,51,71], random forest (RF) [18,57,69], artificial neural network (ANN) [41,76],
probabilistic neural network (PNN) [70], Bayesian [56], multinomial logistic regression [67],
tree bagger [58], and C4.5 [73].

In [44], various classifiers, including ANN, SVM, and k-NN, were used to detect
hematoma. Shahangian et al. [42] constructed a hierarchical classifier in which the first
classifier performs intraventricular hematoma (IVH) detection and the second classifier,
SVM, is used for the multi-class categorisation of EDH, SDH, and ICH. In [18], multiple
classification models were built to estimate the voxel-level probability of hematoma. The
classifiers are logistic regression, logistic regression with penalty, a generalised additive
model, and the random forest classifier. The random forest model performed well, with a
median DSI value of 0.89.
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4.6. Deep Learning for Hematoma Detection

Various machine learning methods have been applied for the detection and diagno-
sis of hematoma for the last two decades. It can be observed from Tables 2 and 3 that
various discriminant handcrafted features can be extracted from relatively small datasets
to perform localisation and classification of hematoma. Hence, the application of these
techniques for a wider, more generalised population can lead to significant error, and can
result in misdiagnosis and mismanagement. Moreover, the handcrafted features are also
subject to intra- and inter-observer variability, and hence, a more standardised interpre-
tation of CT images is required for accurate and reliable prognosis and risk stratification.
Moreover, some of the feature extraction techniques are complicated and computationally
intensive. Recently implemented deep CNNs have shown a superior generalisation ability
due to their high self-learning and self-organisation nature, without being programmed
explicitly [83,84]. This subsection discusses various deep learning methods for hematoma
detection in brain CT imagery.

Prevedello et al. [85] proposed a deep learning-based screening approach to identify
critical test findings that includes infarct, hematoma, and hydrocephalus, in a dataset
comprised of 76 images. Arbabshirani et al. [86] developed a deep learning architecture to
detect hematoma in CT studies, and tested their model as a radiology workflow optimisa-
tion tool. Titano et al. [87] devised another 3D CNN model based on ResNet-50 to categorise
critical and non-critical CT findings and optimise the triage workflow. Grewal et al. [88]
introduced a recurrent attention DenseNet (RADnet) that incorporates slice-level context
along with slice-level classification to simulate real-world hematoma detection. They have
also compared the performance of a CAD system with that of human experts, resulting in
an accuracy of 81.82%. Chilamkurthy et al. [36] proposed a combination of deep learning
algorithms to detect, validate, and clinically test the abnormalities on non-contrast head
CT using CQ500 and Qure2k datasets. A U-Net based architecture is used to localise IPH,
EDH, and SDH regions, and a modified ResNet18 is applied for five-class categorisation.
Dawud et al. [45] showed that a finely tuned and pre-trained AlexNet-SVM model can
enhance a deep learning model for hematoma detection. Majumdar et al. [89] proposed a
modified U-Net model to classify four subtypes of hematoma. Lee et al. [90] reported an
ensemble model comprised of VGG16, ResNet-50, Inception-v3, and Inception-ResNet-v2
for the localisation and classification of five hematoma types. The distinct features of
five-class classification include the generation of attention maps for reliable localisation
and the prediction basis that justifies the model prediction. Ye et al. [91] employed an
integrated approach consisting of a CNN and a recurrent neural network (RNN) to detect
five subtypes of hematoma. Kuo et al. [92] proposed a patch-based, fully convolutional
network (PatchFCN) that can segment and categorise hematoma with high rates of accu-
racy. Yao et al. [93] developed a modified U-Net based hematoma segmentation model that
consists of dilated convolution. In another recent study, Yao et al. [94] applied a multi-view
CNN to segment hematoma, and predicted six-month mortality using volume and shape
features of segmented regions and a random forest classifier. Cho et al. [26] developed a
joint approach that involves cascaded CNN to detect bleed area, and used dual FCN to
categorise and segment hematoma. He [95] presented a deep learning model based on
SE—ResNeXt50 and EfficientNet-B3 CNN architectures for feature extraction and five-class
labelling. Ko et al. [96] developed a CNN–LSTM model for ICH identification and classifi-
cation. Chang et al. [97] reported a hybrid 3D/2D mask ROI-based CNN framework with
efficient hematoma detection, classification, and segmentation capabilities in parallel. Arab
et al. [98] presented a deep learning model with deep supervision for quick and automated
segmentation of whole-head CT. Desai et al. [99] presented a deep learning model using
pre-trained Google Net to detect the presence of basal ganglia hematoma in a dataset
consisting of 170 CT images. Hssayeni et al. [100] proposed a fully automated U-Net model
for segmentation of hematoma regions from 82 CT scans. Irene et al. [101] developed a dy-
namic graph convolutional neural network model (DGCNN) to segment the bleed regions,
and achieved a sensitivity of 97.8%. Anupama et al. [102] combined the GrabCut-based
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segmentation method and synergic deep learning to detect and classify five subtypes of
hematoma. Watanabe et al. [103] developed a CAD system using U-Net to detect hematoma
and reduce the reading time consumed by the physicians. Sharrock et al. [104] constructed
a three-dimensional model based on VNet to segment the regions with both IVH and
SDH in CT images. Mansour et al. [105] developed an automated model for ICH classi-
fication with the aid of the Inception V4 network for feature extraction and Multilayer
Perceptron for five-class labelling. Kuang et al. [106] presented a semi-automated approach
for segmenting both hematoma and ischemic infarct simultaneously using three different
U-Net based models and multi-region contour evolution. The full details of the papers
reviewed for various deep learning models for hematoma segmentation and classification
are provided in Table 5.

Table 5. Summary of different deep learning models for hematoma segmentation and classification.

Authors CT Dataset Method Performance

Prevedello et al. [85] 76 AI-based deep learning approach
Sen: 90
Spec: 85

AUC: 0.91

Arbabshirani et al. [86] 46,583 DCNN
Sen: 71.5
Spec: 83.5

AUC: 0.846

Titano et al. [87] 37,236 3D-CNN AUC: 0.88

Grewal et al. [88] 77 Recurrent Attention DenseNet
(RADnet)

Acc: 81.82
Sen: 88

Precision: 81

Chilamkurthy et al. [36] 21,095 in Qure25k and
491 in CQ500

U-Net-based architecture + modified
ResNet18 + random forest classifier

Sen: 92
Spec: 70

AUC: 0.87
Five-class

Dawud et al. [45] 12,635 Modified pre-trained AlexNet SVM
model

Acc: 93.48
Sen: 95
Spec: 90

Four-class

Majumdar et al. [89] 134 Modified U-Net model Sen: 81
Spec: 98

Lee et al. [90] 904
Ensemble model comprised of

VGG16, ResNet-50, Inception-v3, and
Inception-ResNet-v2

Sen: 78.3
Spec: 92.9
AUC: 95.9
Five-class

Ye et al. [91] 76,621 3D CNN-RNN

Sen: 80
Spec: 93.2
AUC: 0.93
Five-class

Kuo et al. [92] 4396 PatchFCN AUC = 0.991 ± 0.006
Five-class

Yao et al. [93] 2433 Dilated CNN
Sen: 0.81

Spec: 0.96
Dice coefficient: 0.62

Yao et al. [94] 828 Multi-view CNN + volume and shape
features + random forest classifier Dice coefficient: 0.697
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Table 5. Cont.

Authors CT Dataset Method Performance

Cho et al. [26] 135,974 Cascaded CNN and dual fully
convolutional networks (FCNs)

Sen: 97.91
Spec: 98.76
Five-class

He [95] 874,039
(RSNA dataset)

SE—ResNeXt50 and EfficientNet-B3
CNN architectures

Logarithmic Loss = 0.0548
Five-class

Ko et al. [96] 5,244,234
(RSNA dataset) CNN-LSTM Logarithmic Loss = 0.075

Acc: 93

Chang et al. [97] 536,266 Hybrid 3D/2D mask ROI-based CNN

Sen: 95
Spec: 97

AUC: 0.97
Four-class

Arab et al. [98] 64 CNN—DS
Precision: 0.85

Recall: 0.83
Dice coefficient: 0.84

Desai et al. [99] 170 Pre-trained augmented Google Net AUC = 1.00

Hssayeni et al. [100] 82 U-Net

Sen: 97.28
Spec: 50.4

Dice coefficient: 0.31
Five-class

Irene et al. [101] 27 DGCNN Sen: 97.8
Spec: 95.6

Anupama et al. [102] 82
GrabCut-based segmentation and

synergic deep learning
(GC- SDL)

Acc: 95.73
Sen: 94.01

Spec: 97.78
Five-class

Watanabe et al. [103] 40 U-Net

Acc: 87.5
Sen: 89.6
Spec: 81.2

Reading Time: 43 sec

Sharrock et al. [104] 500 3D VNET 128 Median Dice coefficient: 0.919

Mansour et al. [105] 82
Kapoor’s thresholding + elephant
herd optimisation + Inception v4
network + multilayer perceptron

Acc: 95.06
Sen: 93.56
Spec: 97.56

Kuang et al. [106] 30 U-Net + multi-region contour
evolution Dice coefficient: 0.72

4.7. Hematoma Volume Estimation

Existing clinical studies suggest that hematoma volume is a crucial factor for predicting
severity and 30-day outcome [107,108]. A significant increase in hematoma volume can be
observed in the first two or three hours after inception due to neurological deterioration,
and the rate of growth will decrease every six hours after onset [108]. Moreover, the lesions
will take various shapes over the course of time from the initial circular or ellipsoid form.

The Tada formula is one of the most widely used approaches to calculate hematoma
volume in brain imagery [109]. It is given by:

V =
ABC

2
(1)

where A is the largest diameter of the hematoma layer, B is the hematoma diameter
perpendicular to A, and C is the layer thickness multiplied by the number of hematoma
layers. This method yields the most effective and accurate results for small and regular-
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shaped hematomas. The accuracy is reduced as the size increases or when lesion shapes
become more irregular [110,111]. Moreover, the Tada formula has resulted in the consistent
overestimation of hematoma volume, and is subject to both intra- and inter-observer
variability [112,113]. Even though manual estimation of hematoma volume appears to be
accurate, it is a time-consuming and arduous task, especially in the case of large clinical
settings, and it may introduce inadvertent errors. Hence, automated techniques can be used
as an alternative approach to facilitate rapid, accurate, and reliable quantification of ICH.
This section encompasses the different techniques used for hematoma volume estimation.

Bardera et al. [78] counted the number of voxels inside the hematoma boundary and
multiplied by the voxel volume to obtain the ICH volume. Scherer et al. [68] quantified the
hematoma volume by summing the volume of individual voxels present in the segmented ICH.
Saenz et al. [50] estimated the 3D volume of three different types of hematoma by considering
the voxel size and the number of voxels present in the segmented hematoma regions. Sun
and Sun [49] constructed Gengon and truncated pyramid approximation models to calculate
the 3D volume of hematoma in a single patient. Farzaneh et al. [57] used the 3D resolution of
the segmented ICH mask to estimate the SDH volume, resulting in underestimation of larger
hematoma and overestimation of smaller ones. Chang et al. [97] developed a novel hybrid ROI-
based CNN to estimate the 3D volumes of IPH, SDH, and EDH, respectively. Arab et al. [98]
presented a CNN model with deep supervision (CNN–DS) to perform hematoma quantifica-
tion on whole-head CT rapidly and more efficiently. Jain et al. [114] developed a U-Net based
CNN model to compute the volume of acute hematoma lesions, and validated their technique
using a multi-centre dataset. Irene et al. [101] combined the dynamic graph convolutional
neural network model (DGCNN) and SVM with the RBF kernel to compute the hematoma
volume, and achieved a mean absolute error of 99.95%. Sharrock et al. [104] used a modified
VNet framework to compute the hematoma volume, and achieved a volume correlation of
0.979. Table 6 summarises the different CAD models for ICH volume quantification, namely
using voxel resolution of segmented hematoma and the CNN.

Table 6. Summary of different CAD models for hematoma volume estimation.

Authors CT Dataset Method Performance

Farzaneh et al. [57] 110 3D resolution of the
segmented ICH mask

F1: 98.22
Recall: 98.81
Spec: 92.31

Sun and Sun [49] 20 Gengon and truncated
pyramid approximations Processing time <2 s

Saenz et al. [50] 12 Voxel size multiplied by the
number of voxels -

Scherer et al. [68] 58 Summing of voxel volumes
Concordance correlation
coefficient with manual

estimation = 0.99

Bardera et al. [78] 18
Individual voxel volume

multiplied by the number of
voxels

Mean correspondence
ratio = 0.74 and mean
matching ratio = 0.80

Deep Learning-Based Methods

Chang et al. [97] 536,266 Hybrid 3D/2D mask
ROI-based CNN

Pearson correlation
coefficients:
IPH = 0.999
EDH = 0.987
SAH = 0.953
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Table 6. Cont.

Authors CT Dataset Method Performance

Arab et al. [98] 64 CNN—DS Average disagreement
rate = 0.08 ± 0.02

Jain et al. [114] 39 U-Net based FCN Acc: 0.92
Sen: 0.75

Irene et al. [101] 27 DGCNN + SVM with RBF
kernel

Mean square
error = 3.67 × 104

Sharrock et al. [104] 500 3D VNET 128
Volume correlation of 0.979

Avg. volume
difference = 1.7 mL

4.8. Automated Intracranial Pressure Prediction

The current gold standard for estimating ICP involves a continuous calculation of
the mean value using an invasive procedure, which can result in further complications,
such as infection, meningitis, hematoma, and tissue damage [20,115]. Various non-invasive
approaches have been developed in the recent years that can avoid the risks associated with
invasive monitoring and the requirement of a specialised setting to measure ICP [115,116].
Existing studies related to automated non-invasive ICP (nICP) prediction and estimation
can be classified into two types, namely signal-based methods and image-based methods.
The signal-based methods either solely use ICP recordings or are combined with arterial
blood pressure (ABP) signals, and the extracted morphological features of ICP pulses, along
with other clinical data, can be employed to estimate ICP [117–124]. The inherent limitation
of obtaining a large number of ICP signals to propose generalised solutions necessitates
the use of widely available CT scans to evaluate ICP. The image-based methods make use
of several morphological features from the CT scans to automate ICP prediction. This
section presents the various machine learning-based methods applied to ICP prediction
and estimation using CT scans.

Chen et al. [29] presented a texture-based approach to categorize the ICP levels of
the CT scans into high versus normal using a threshold value of 15 mmHg. The proposed
study applied a machine learning technique that extracts a set of 10 optimized features,
and obtained a classification accuracy of 80% using SVM. Chen et al. [125] extended their
study by including additional features, such as MLS, hematoma volume, and patient data,
to improve the performance of two-stage ICP classification. Pappu et al. [126] designed a
novel semi-automated method that computes the ratio of CSF volume to whole intracranial
volume as a measure to co-relate CT features and ICP. Aghazadeh et al. [127] applied
the Morlet wavelet transform to acquire textural features, and used a genetic algorithm
with KNN as optimized feature selectors to label ICP as mild or severe. Qi et al. [128]
developed another machine learning technique that utilized multiple features along with
demographic information to categorize ICP. In another recent study by Chen et al. [129], a
hybrid approach that automatically estimates MLS initially to perform ICP classification
was reported. Table 7 provides a summary of the relevant CAD systems developed to
analyzed ICP. It can be observed from Table 6 that deep learning neural networks have not
been utilized to date to predict ICP.
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Table 7. Summary of different CT-based machine learning models to evaluate ICP.

Authors CT Dataset Method Performance

Chen et al. [29] 56 Texture features + SVM
Acc: 81.79
Sen: 82.25
Spec: 81.20

Chen et al. [125] 57 MLS, hematoma volume, textural patterns, and
patient medical data + SVM

Acc: 70.2
Sen: 65.2
Spec: 73.7

Pappu et al. [126] 20
Segmentation of brain parenchyma + ratio of CSF to

the size of intracranial vault computations
(CSFv/ICVv)

Acc: 67

Aghazadeh et al. [127] 59 Fully anisotropic Morlet wavelet transform + KNN Acc: 86.5

Qi et al. [128] 57 MLS, intracranial air cavities, ventricle size, texture
patterns, blood amount, and clinical data + SVM

Acc: 73.7
Sen: 68.6
Spec: 76.6

Chen et al. [129] 391 MLS, hematoma volume, texture features,
demographic information, and severity score + SVM

Acc: 70
Sen: 65
Spec: 73

4.9. Automated Midline Estimation

Existing studies related to midline shift can be categorized as symmetry-based meth-
ods and landmark-based methods [130]. The landmark-based methods depend on locating
specific anatomical structures or landmarks to measure midline shift. These methods can
iteratively seek certain landmarks within the initially identified structures. Symmetry-
based methods focus on generating a deformed midline (dML), a curve that connects all
the displaced midline structures of the brain, namely the SP, third ventricle, and pineal
gland. Limited deep learning-based methods are reported to date to estimate MLS. The
following sections discuss the various landmark-based, symmetry-based, and CNN-based
methods for MLS prediction.

Yuh et al. [74] designed a suite of algorithms to evaluate CT scans of patients with
suspected TBI. An MLS with greater than 5 mm is considered to be clinically significant,
and is computed by evaluating the symmetry of CSF pixels with respect to the symmetry of
the skull, achieving a sensitivity of 100%. Xiao et al. [80] employed a multiresolution binary
level set method and expert rules to identify the regions of frontal horn, and the Hough
transform was used to detect SP. Then, the distance between the most posterior location
in SP and the ideal midline (iML) was considered to estimate the MLS. Chen et al. [129]
developed a framework that estimates the dML based on the feature points identified
in the segmented ventricles, and the horizontal shift was computed from the distance
between iML and dML. Liu et al. [131] presented a technique that automatically generates
a set of five optimal candidate points from the selected anatomical landmarks. All of the
optimal candidate points are thus connected to form the dML, and the MLS is quantified
using two measurements, namely, the area ratio and the maximum shift distance. Hossh-
mand et al. [28] computed the dML based on the geometrical patterns of ventricles to
estimate the MLS.

Liu et al. [132] proposed a linear regression model termed H-MLS to relate the
hematoma and midline shift. The hematoma is segmented from the CT images initially
and using the calculated hematoma information, and the H-MLS model is used to generate
the dML. Liao et al. [30] developed a procedure using a Bazier curve and genetic algorithm
to automatically recognize the deformed midline (dML) in the selected CT slices at the
level of foramen of Monro and measure the degree of shift. Wang et al. [133] plotted the
weighted midline (WML) by assigning more weights to darker pixels in the images, and
quantified the shift as the distance between the iML and the WML.
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Most of the landmark-based symmetry methods failed to detect the MLS when the
ICH is sufficiently large enough to destroy the symmetry of the brain, or when anatomical
structures are highly deformed or missing. Very few deep learning-based methods are pro-
posed for MLS delineation in the case of high brain deformation. Chilamkurthy et al. [36]
adopted a modified ResNet18 architecture along with a random forest classifier to predict
the MLS in a CT scan. Wei et al. [15] proposed a multitask learning framework that can
perform skeleton extraction and regression to obtain the final midline. Nag et al. [134]
developed a 2D U-Net model to segment the deformed left and right hemispheres, and
various MLS indices are computed after detecting the ideal midline and the deformed
midline. The complete details of CAD systems for MLS prediction/estimation is provided
in Table 8.

Table 8. Summary of different CAD schemes for MLS estimation.

Authors CT Dataset Method Performance

Landmark-Based Methods

Yuh et al. [74] 273
CT density (Hounsfield units)

thresholds, spatial filtering, and
cluster analysis

Sen: 100
Spec: 98

Xiao et al. [80] 80 Multiresolution binary level set
method and Hough transform

Maximal error: 2 mm
Root mean square

error: 0.57 mm

Chen et al. [129] 391
Gaussian mixture model + EM +

multiple regions shape matching +
texture feature extraction

Acc: 70
Sen: 65
Spec: 73

Liu et al. [102] 7040
Anatomical marker model and

marker candidate selection using
spatial features

Area ratio: 0.0766
Maximum distance: 4.738

Hooshmand et al. [28] 170 Ventricular geometric patterns and
anatomical information

Acc: 68
Sen: 0.75
Spec: 0.65

Symmetry-Based Methods

Liu et al. [132] 11 H-MLS -

Liao et al. [30] 86 Bezier Curve and GA Acc: 95

Wang et al. [133] 41 Weighted midline +
maximum distance

Acc: 92.68
AUC: 0.9577

CNN-based Methods

Chilamkurthy et al. [36] 21,095 in Qure25k and
491 in CQ500

Modified ResNet18 + random forest
classifier

Sen: 0.9385
Spec: 0.907

AUC = 0.9697

Jain et al. [114] 38 U-Net based FCN Acc: 0.89

Wei et al. [15]
640

(CQ500 and external
dataset)

Regression-based line detection
network (RLDN)

F1 score: 0.78
Column distance error: 1.17

Max shift distance error: 2.27

Nag et al. [134] 80 U-Net

Average error by
location = 1.29 mm

area = 66.4 mm2

volume = 253.73 mm3

5. Discussion

Traumatic brain injury is a serious neurological emergency with high rates of morbidity
and mortality. A decline in patient health status begins within the first few hours after
onset, and hence, delayed diagnosis highly reduces the odds of medical recovery, often
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leading to loss of patient life. Hence, timely diagnosis and aggressive early management of
TBI is crucial. CT is the preferred modality of choice in the diagnosis of TBI due to its lower
cost, high availability, and speed. The gold standard currently in practice is to manually
select the required slices, delineate hematoma from the CT scanning, and quantify its
volume. Even though the quantification looks accurate, it is a time-consuming and tedious
task, especially in large clinical settings, and may introduce error.

The research studies that have utilized different feature-based classification models
and reported high accuracies (as outlined in Table 3) based on levels of hematoma classifi-
cation and the dataset size are compared, and the best performances of these classifiers are
shown in Figure 7. The deep learning models that are listed in Table 5 are also assessed
based on a similar strategy, and the highest accuracy is depicted in Figure 7. It can be
observed from Table 7 that the ICP classification based on SVM achieved an accuracy of
70% in a dataset consisting of 391 images, and its performance is also shown in Figure 7. As
evident from the figure, the feature learning-based methods perform better in the detection
and classification of hematoma with a smaller set of CT images compared to deep learning
methods. No deep learning methods have been reported to date for ICP prediction.

Figure 7. Accuracy of various automated techniques to classify ICH and ICP.

As the hematoma starts expanding, the volume of the intracranial contents will
increase, leading to raised intracranial pressure (ICP). Due to the increase in volume of
intracranial contents, the brain structures will begin compressing, leading to displacement
of midline structures. Hence, the MLS can be considered as a key indicator of elevated ICP.

Visual estimation of hematoma volume and midline shift by radiologists to predict
ICP is a challenging task, and may lead to inaccurate and inconsistent interpretation. A
CAD-assisted tool that can analyze CT images to quantify the clinical factors will surely
guide the clinicians to make better decisions and an accurate prognosis. However, very
few systematic studies have been reported that address the relationships between the
hematoma volume, MLS, and ICP from CT imagery. Moreover, none of these methods
have benchmarked their performance with radiologist-level accuracy.

5.1. Open Issues for Future Development

As TBI initiates a cascade of complex neurophysiological events at the cellular and
sub-cellular levels, prompt diagnosis and management can considerably reduce the high
rates of morbidity and mortality. Hence, various CAD schemes are developed to assist
radiologists in providing quality care to the patients quickly and effectively. However,
existing automated techniques to analyze the TBI-related pathologies require tremendous
improvement, and some of the important issues to be addressed are as follows.

5.1.1. CAD Models Based on Large and Diverse Datasets

There is a need for large, publicly available datasets that cover the diverse aspects
associated with TBI-related pathologies. Diverse datasets can enable the CAD-assisted
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approaches to generate more accurate, generalized, and unbiased predictions. The dataset
must incorporate five subtypes of hematoma of different sizes and the lesions that appear
close to base of the skull. The dataset must also consider cases with multiple hematoma
that will enable the study of the consequence of initial hematoma lesions of a specific
type. Furthermore, CT images with cases such as deformed or missing ventricles and
large hematoma, which destroys the brain symmetry, must be involved for the accurate
detection of the MLS. Moreover, novel and efficient algorithms that can create a powerful
and compact set of discriminative features from the heterogeneous datasets are required.
Hence, fully automated algorithms that can quickly capture the subtle changes present in
the diverse datasets using handcrafted and deep learning features are suggested.

5.1.2. CAD Models for Detection, Classification, and Estimation of TBI-Related Pathologies

The algorithms that can detect and classify a group of TBI-associated pathologies in a
single study require tremendous attention. The algorithms must focus on rapid detection
and multi-class classification of these pathologies without bias.

Novel and accurate ICH detection algorithms that can handle similarities with respect
to size, position, and textural content will enable clinicians towards early decision-making
and improved patient outcome. The classification techniques can be extended to cat-
egorize all five types of hematoma, with the effective management of class imbalance
problems. Moreover, very limited studies are done to automatically analyze CT images
with multiple hematoma.

One of the major factors for TBI severity assessment and treatment planning is the
3D volume estimation of ICH, which is still an open and challenging research issue. The
existing ABC/2 method has consistently overestimated the hematoma volume, and has
high inter-observer variability errors. Most of the automated methods to assess hematoma
volume are based on the ABC/2 method, and involve only 2D slices.

The gold standard procedure followed by clinicians to detect ICP elevation is external
ventricular drain (EVD), a highly invasive and expensive procedure that can lead to further
complications, including brain tissue damage and infections. Hence, a cost-effective,
non-invasive procedure could reduce complications and enable clinicians to evaluate ICP
beyond the regular ICU setup. Non-invasive procedures can also be used as a screening
tool by the clinicians to obviate the need for invasive monitoring. The development of
automated CAD systems to assess ICP from CT images requires the inclusion of key clinical
indicators in the feature selection scheme to obtain highly accurate results. The use of deep
learning techniques based on artificial intelligence is essential to estimate ICP with high
levels of accuracy and efficiency.

CAD models that can quickly estimate the midline shift in conjunction with ICH
and ICP can save the patient from lifetime disabilities and death. Existing CAD schemes
for MLS estimation are based on either significant anatomical landmarks or symmetry of
brain. These methods find limited application in real-time scenarios, particularly when the
brain is highly deformed so as to break the symmetry, or when the anatomical structure
is damaged and compressed. Hence, the application of CNN-based techniques to extract
powerful features for MLS estimation, especially for large brain deformations, is suggested.

However, very few systematic studies have been reported that address the relation-
ships between hematoma volume, MLS, and ICP from CT images. Moreover, very few
studies have compared their performance to the accuracy level of radiologists to assess
pathology. Furthermore, visual inspection and manual detection by radiologists is a hec-
tic and strenuous task, which is again subject to both intra-observer and inter-observer
variability. Thus, it is suggested to develop a robust, reliable, efficient, and fully auto-
mated CAD tool with radiologist-level accuracy to analyze real-time heterogeneous 3D CT
volumes for the detection, classification, and estimation of TBI-related abnormalities in a
single framework. This can provide in-depth information and guidance to make a more
accurate clinical prognosis and streamline the triage process.
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5.1.3. CAD Models Based on Clinical Guidelines

The automated approaches for assessing TBI severity must be based on widely ac-
cepted clinical guidelines, like Marshall and Rotterdam classification schemes [4,135]. These
schemes have grouped patients into various clinical outcome groups solely based on key
clinical features present in CT head recordings. As these schemes are part of international
guidelines for the management of severe TBI, the development of CAD tools for detection
and estimation of key significant pathological features per these schemes may assist radiol-
ogists to perform rapid, accurate, and more standardised evaluation in emergency clinical
settings. However, these classification schemes suffer from inter-observer variability errors
and poor generalisation. Therefore, the development of highly standardised and optimised
CAD techniques that combine qualitative and quantitative features, along with clinical
data to generate a TBI risk index score, is suggested.

5.1.4. Limitations of the Study

Some of the few limitations of the study include:

• Multiple research databases were searched to obtain the final set of papers for re-
view. The searching process was limited to the set of keywords and their synonyms.
Therefore, the study may have neglected some of the relevant works related to the
automated detection and assessment of TBI-related abnormalities, like ICH, ICP,
and MLS.

• The study consists of papers that are published in the English language. Hence, we
have not considered relevant studies in other languages.

• TBI can result in different kinds of primary and secondary injuries, and hence, the
paper is limited to CAD systems for the detection and assessment of hematoma,
intracranial pressure, and midline shift.

6. Conclusions

In this paper, we have summarised state-of-the-art methods for the detection of
hematoma, raised ICP, and midline shift. We have reviewed existing approaches based
on their characteristics and performance measures. The feature learning approaches for
the estimation of raised ICP using CT imagery performs reasonably well compared to
existing automated techniques. The anatomical marker model for MLS estimation managed
to handle difficult cases where previous algorithms have failed. Current deep learning
frameworks for MLS estimation look promising, with an AUC of 0.96. The automated
methods for hematoma detection and classification can be improved by incorporating
algorithms to identify small and widespread hematoma, especially when they are close to
the skull base. The inclusion of significant clinical featuring from CT imagery can optimise
the performance of ICP estimation techniques. Prevailing MLS estimation methods can be
optimised by automated selection of slices from 3D CT volumes.
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