
Autumn Precipitation Trends over Southern Hemisphere Midlatitudes
as Simulated by CMIP5 Models

ARIAAN PURICH AND TIM COWAN

CSIRO Marine and Atmospheric Research, CSIRO Water for a Healthy Country Flagship, CSIRO Wealth

from Oceans Flagship, Aspendale, Victoria, Australia

SEUNG-KI MIN

School of Environmental Science and Engineering, Pohang University of Science and Technology,

Pohang, Gyungbuk, South Korea

WENJU CAI

CSIRO Marine and Atmospheric Research, CSIRO Water for a Healthy Country Flagship, CSIRO Wealth

from Oceans Flagship, Aspendale, Victoria, Australia

(Manuscript received 18 December 2012, in final form 22 March 2013)

ABSTRACT

In recent decades, Southern Hemisphere midlatitude regions such as southern Africa, southeastern

Australia, and southern Chile have experienced a reduction in austral autumn precipitation; the cause of

which is poorly understood. This study focuses on the ability of global climate models that form part of the

CoupledModel Intercomparison Project phase 5 to simulate these trends, their relationshipwith extratropical

and subtropical processes, and implications for future precipitation changes. Models underestimate both the

historical autumn poleward expansion of the subtropical dry zone and the positive southern annular mode

(SAM) trend. The multimodel ensemble (MME) is also unable to capture the spatial pattern of observed

precipitation trends across semiarid midlatitude regions. However, in temperate regions that are located

farther poleward such as southern Chile, the MME simulates observed precipitation declines. The MME

shows a strong consensus in twenty-first-century declines in autumn precipitation across southern Chile in

both the medium–low and high representative concentration pathway (RCP) scenarios and across southern

Africa in the high RCP scenario, but little change across southeastern Australia. Projecting a strong positive

SAM trend and continued subtropical dry-zone expansion, the models converge on large SAM and dry-zone-

expansion-induced precipitation declines across southernmidlatitudes. In these regions, the strength of future

precipitation trends is proportional to the strength of modeled trends in these phenomena, suggesting that

unabated greenhouse gas–induced climate change will have a large impact on austral autumn precipitation in

such midlatitude regions.

1. Introduction

Over the latter part of the twentieth century and the

first decade of the twenty-first century, midlatitude re-

gions of the Southern Hemisphere (SH) have experi-

enced a marked drying trend during austral autumn

(March–May) (e.g., Cai and Cowan 2008a; Nicholls

2010; Cai et al. 2012). While the cause of this pre-

cipitation decline is not well understood, it has been

suggested that the expanding tropics (e.g., Seidel et al.

2008; Johanson and Fu 2009; Cai et al. 2012) and a

poleward shift in extratropical weather systems (e.g.,

Thompson and Solomon 2002; Fyfe 2003; Cai and

Cowan 2013) might play a role in driving these trends.

Since the late 1970s the tropics have expanded

poleward in all seasons, with the strongest SH trends of

around 28–4.58 being observed during autumn (Hu and

Fu 2007; Hu et al. 2011), although the impact on re-

gional SH midlatitude rainfall has not been uniform

(Cai et al. 2012). The subtropical ridge has been used as

an indicator of the descending branch of the Hadley

circulation in studies of subtropical dry-zone expansion
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(e.g., Timbal and Drosdowsky 2013). Whereas pole-

ward shifts in the edge of the Hadley cell have been

detected in streamfunction-based metrics (e.g., Johanson

and Fu 2009), a discernible shift in the subtropical ridge in

the eastern Australian region has not been detected

(Drosdowsky 2005). The reasons for this apparent dis-

crepancy are not known; however, a strengthening of the

subtropical ridge has been observed and has been linked

with the autumn–spring rainfall decline in southeastern

Australia (Timbal and Drosdowsky 2013).

The poleward expansion of the tropical belt and

subtropical dry zone are consistent with a poleward shift

in the storm tracks and westerly wind belt (e.g., Yin

2005), associated with recent trends toward the positive

polarity of the southern annular mode (SAM), the

dominant mode of atmospheric variability in the extra-

tropical SH (Thompson and Wallace 2000). In recent

decades the SAM has exhibited pronounced tropo-

spheric trends toward its positive phase during austral

summer and autumn in various fields (e.g., sea level

pressure, 500-hPa geopotential height, surface temper-

ature, and zonal wind) (Thompson and Solomon 2002;

Marshall 2003). The associated wind changes have in-

duced an intensification and poleward shift of the oce-

anic gyre circulations (Cai and Cowan 2007) and

a poleward shift in the extratropical eddy-driven west-

erly jet and associated storm tracks (Frederiksen and

Frederiksen 2007). The trend is consistent with circu-

lation changes associated with both a decrease in

stratospheric ozone and an increase in greenhouse

gases (Shindell and Schmidt 2004; Arblaster andMeehl

2006; Son et al. 2010), although ozone depletion is

thought to dominate SH surface climate changes only

during austral summer (Perlwitz et al. 2008; Son et al.

2009; Polvani et al. 2011).

Observed variability in the SAM has been linked

with variability in precipitation over southern Africa

(Reason and Rouault 2005), southwestern and south-

eastern Australia (Hendon et al. 2007; Meneghini et al.

2008; Murphy and Timbal 2008; Risbey et al. 2009; Cai

et al. 2011), New Zealand (Kidston et al. 2009; Purdie

et al. 2011), and southern South America (Silvestri

and Vera 2003; Haylock et al. 2006). Observed de-

creases in annual-mean precipitation linked to the

positive tendency of the SAM are centered around

458S and are associated with increased geopotential

height, subsidence, and reduced cloudiness (Gillett

et al. 2006).

The simulation of the subtropical dry-zone expansion

and SAM trends by coupled climatemodels has been the

focus of many detection and attribution studies. Such

studies havemade use of the wide range of model output

available through phase 3 of the Coupled Model

Intercomparison Project (CMIP3). For example, the

widening of the Hadley cell in response to increasing

greenhouse gas concentrations and stratospheric ozone

depletion was found to be replicated in the CMIP3

twentieth-century simulations; however, the widening

was significantly smaller than that observed (Johanson

and Fu 2009). In the extratropics, the CMIP3 models

showed better skill in capturing the positive SAM trends

in austral summer (Fogt et al. 2009), with ozone de-

pletion attributed as the dominant mechanism driving

these trends (e.g., Miller et al. 2006; Cai and Cowan

2007). The most significant trends in the observed SAM

index occur during austral autumn (over 1957–2005;

Fogt et al. 2009); however, CMIP3 models tend to sim-

ulate weak autumn SAM trends, differing largely from

the observations. Based on SAM variability analysis

from reconstructions, Fogt et al. (2009) concluded that

the observed autumn trend in the SAM was primarily

a result of natural climate variability, with anthropo-

genic forcing contributing to a lesser portion of the

trend.

The annual relationship between the SAM and pre-

cipitation variability in the CMIP3 models has also

been investigated: the models capture the observed

negative relationship in the 358–508S latitude band over

regions such as New Zealand and southern Chile, and

the observed positive relationship in the regions farther

north such as southern Africa and southern Australia

(Karpechko et al. 2009). However, they fail to capture

the observed negative relationship in southeastern

South America (La Plata basin region) (Karpechko

et al. 2009).

With the recent availability of the next generation of

global climate models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5), we assess the

ability of these models to capture the observed trends in

austral autumn precipitation across the SH midlatitude

regions. This season is chosen because it is when many

midlatitude regions exhibit their largest precipitation

trends (Fig. 1a; other seasons not shown), and because

such trends can have important implications for water

resource management annually. For example, Cai and

Cowan (2008b) showed that for southeastern Australia,

autumn rainfall plays an important role in wetting the

soil and preparing catchments for runoff generation

during austral winter and spring; declines in autumn

rainfall have thus had significant impacts on annual

streamflow in the Murray-Darling basin. The dynamics

of what has driven recent declines, however, still re-

main poorly understood (Murphy and Timbal 2008);

a poleward shift of the subtropical dry zone has been

offered as one explanation for southeastern Australia

(Cai et al. 2012). How well CMIP5 models simulate
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the recent subtropical dry-zone expansion and posi-

tive trends in the SAM during austral autumn, what

changes are projected into the future, and the impact

on precipitation across the SH midlatitude regions

are investigated.

2. Data and methods

In investigating factors responsible for trends in pre-

cipitation we make use of monthly observations and

CMIP5 climate model data, averaged over austral au-

tumn. The historical analysis period is 1961–2005, chosen

to capture the periods of strongest precipitation changes

(Cai et al. 2012) and to make a fair comparison to the

climate model simulations. The future analysis period

is 2006–50, chosen for continuity and to match the

historical period in length. Linear trends in autumn

precipitation, the SAM index, and the SH Hadley cell

edge (HCE; subtropical dry zone) are calculated over

these periods.

In our analysis, the SAM is calculated using empirical

orthogonal function (EOF) analysis so that variations

in the spatial patterns among different models are

accounted for. The SAM index is defined as the principal

component time series of the first EOF ofmean sea level

pressure (MSLP) from 208 to 908S. To test sensitivity to

the SAM definition, two alternate indices are also in-

vestigated: the difference between zonal-meanMSLP at

408 and 658S [a nonnormalized version of the Gong and

Wang (1999) definition] and the difference between

normalized proxy zonal-meanMSLP estimated from six

locations at approximately 408S and six locations at ap-

proximately 658S, as described by Marshall (2003). Re-

sults obtained using all three SAM definitions are very

similar (not shown), indicating that they are not sensi-

tive to the choice of SAM index definition. Hereafter,

the SAM index refers to the first EOF of MSLP, unless

specified otherwise.

The HCE is calculated using the meridional mass

streamfunction definition (as in Johanson and Fu 2009),

with the position described as the subtropical latitude

where the meridional mass streamfunction at 500 hPa

becomes zero (;308–408S). This definition has been

extensively used in observational and modeling studies

(Hu and Fu 2007; Son et al. 2009; Hu et al. 2011; Cai

et al. 2012; Min and Son 2013). The subtropical ridge

is not used as a measure of HCE here, as it is re-

gionally defined (Timbal and Drosdowsky 2013),

whereas the streamfunction definition encompasses

the entire hemisphere.

Precipitation observations gridded at a resolution of

0.58 3 0.58 are utilized from the Global Precipitation

Climatology Centre (GPCC) version 6 monthly pre-

cipitation dataset (Beck et al. 2005). This dataset is

chosen because, although it only contains land surface

precipitation data, it is based on in situ rain gauge data

interpolated on to a grid, and is available over the full

period of analysis. Statistical significance of observed

trends is determined using a two-sided Student’s t test.

Results are similar when other station-based gridded

FIG. 1. Austral autumn trends in precipitation over 1961–2005: (a) GPCC precipitation and (b) CMIP5 historical MME. Trends are

expressed as a percentage change of climatology per 45 years and note that the two color bars have different limits. Stippling in (a)

indicates that the observed trend is significant at the 95% confidence level as determined by a two-sided Student’s t test and in (b) where

$80% of the 34 models agree on the sign of the ensemble-mean trend.
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precipitation datasets are used,1 as per Cai et al. (2012).

Satellite- and observation-based land and ocean pre-

cipitation data over 1979–2005 from the Global Pre-

cipitation Climatology Project (GPCP) version 2 dataset

(Adler et al. 2003) and from the Climate Prediction

Center (CPC)MergedAnalysis of Precipitation (CMAP)

dataset (Xie and Arkin 1997) are used to assess trends

over the oceans, albeit over a shorter time scale.

To calculate the observational SAM index, based on

the period of interest (1961–2005), MSLP is taken from

the National Centers for Environmental Prediction–

National Center for Atmospheric Research reanalysis

(NNR) (Kalnay et al. 1996) and bilinearly interpolated

to a 18 3 18 grid. However, it is known that spurious

trends exist in NNRover the SH high latitudes (Marshall

2003): to correct for this, prior to EOF analysis, we re-

gress the linearly detrended NNR MSLP (MSLPjdt)
onto the linearly detrended Marshall (2003) observa-

tional station-based SAM index (stationjdt) to obtain

a regression equation between MSLP and the station-

based SAM index at each grid point (reg-equn):

reg-equn(x, y)5 regression[stationjdt(t),MSLPjdt(x, y, t)] ,
(1)

where

reg-equn(x, y)5 slope(x, y)1 y-int(x, y) . (2)

We then multiply the regression slope field by the SAM

index (containing the trend; station) to obtain a cor-

rected MSLP dataset (MSLPjcorr):

MSLPjcorr(x, y, t)5 [slope(x, y)3 station(t)]

1 y-int(x, y) , (3)

which is used in all further analysis.

For consistency, the observed HCE is also calculated

from NNR meridional winds. For comparison, the

National Oceanic and Atmospheric Administration–

Cooperative Institute for Research in Environmental

Sciences Twentieth Century Reanalysis (20CR) version

2 (Compo et al. 2011) is also used. Both SAM and HCE

time series are calculated in the same manner as for

NNR. 20CR results are only shown in Figs. 2 and 4 and

are referred to only when there are notable differences

from NNR.

We utilize model output of precipitation, MSLP, and

meridional wind from the CMIP5 historical experiment

(34 models; see Table 1, which provides all expansions)

and the representative concentration pathway (RCP)

4.5 (medium–low global anthropogenic radiative forcing

scenario; 16 models) and 8.5 (high global anthropogenic

radiative forcing scenario; 21 models) experiments

(Taylor et al. 2012). For eachmodel and experiment, the

first simulation (r1i1p1) is used in analysis.

All precipitation and MSLP datasets are first bilin-

early interpolated to a standard 18 3 18 grid. Trends are
calculated for each model individually and multimodel

ensemble (MME) trends for each experiment are then

calculated by averaging the trends of eachmodel equally

(Figs. 1b and 6b and 6c). The intermodel relationship

between precipitation trends and SAM (HCE) trends is

analyzed by calculating the correlation coefficient be-

tween all model trends at each grid point, with statistical

significance determined using a two-sided Student’s t

test (Figs. 3 and 6d and 6e). The SAM-congruent

precipitation trend [pr-trendjSAM(x, y)] is determined

for each model by calculating the regression co-

efficient between the linearly detrended SAM index

[SAMjdt(t)] and the linearly detrended precipitation

[prjdt(x, y, t)] at each grid point and multiplying by the

SAM trend (SAM-trend),

pr-trendjSAM(x, y)

5 regression[SAMjdt(t), prjdt(x, y, t)]3 SAM-trend,

(4)

and then averaging across all models (Fig. 5b). The same

procedure is carried out for precipitation trends con-

gruent with the HCE trend (Fig. 5d).

3. Results

a. Observed and modeled precipitation trends

The observed trends in SH austral autumn pre-

cipitation, expressed as a percentage change in clima-

tology per 45 years, are shown in Fig. 1a. A decreasing

trend is seen across many of the midlatitude regions:

southern Africa, southeastern Australia, southern New

Zealand, and southern Chile. In contrast, an increasing

trend in precipitation is seen across much of western

Australia and southeastern South America.

Observed trends in precipitation over the ocean are

not available for the full time period analyzed here.

Trends over 1979–2005 from CMAP and GPCP (not

shown) are somewhat inconsistent over the southern

and midlatitude oceans. CMAP shows a strong dipole

pattern in the trends with increased precipitation at

1Climate Prediction Center global land precipitation, University

of East Anglia Climatic Research Unit precipitation (version 3.1)

and University of Delaware interpolated precipitation (version

3.01).
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;608S and decreased precipitation at ;458S: these
trends are much less pronounced in the GPCP. Previous

studies have found inconsistencies between CMAP and

GPCP in detecting changes in ocean precipitation (e.g.,

Zhou et al. 2008), likely due to the different algorithms

used to retrieve rainfall from satellite measurements

(Gruber et al. 2000). The disagreement between these

two observational products, along with the limited time

period over which analysis is possible, makes assessment

of model performance over the oceans difficult.

To a large degree, many of the observed midlatitude

trends are not captured by the CMIP5 MME (Fig. 1b).

Except in a very small part of southeastern South

America, across no landmass region do at least 80% of

the models agree on the sign of the ensemble-mean

trend (as indicated by stippling). The magnitude of

trends in the MME is also much less than that of the

observations over all regions, in part due to the high

intermodel variation exhibited in the trend spatial pat-

terns and the nature of multimodel averaging.

Comparing Figs. 1a and 1b, the models fail to capture

and in fact show opposite trends (increasing precipi-

tation) over the southeastern tip of Africa and south-

eastern Australia. However, the models do capture the

negative trend over southern New Zealand, the strong

negative trend in southern Chile (although this trend is

broader than that in observations, extending both to the

east coast and farther north, likely a result of varying

resolution and orography among the models and multi-

model averaging), and the positive trend across south-

eastern South America. When the analysis is extended

over 1950–2005, 80% of the models agree on the de-

creasing trend across southern Chile.

As well as considering the MME trends, it is worth

assessing the spread in modeled trends. Trends in re-

gionally averaged land precipitation for individual

models are assessed for three regions of observed pre-

cipitation decline: southeastern Africa, southeastern

Australia, and the southernChile region (these trends are

shown inFig. 4, discussed in section 3c). It is apparent that

the majority of models do not reasonably simulate the

observed trends across all three regions. In both south-

eastern Africa and southeastern Australia, only 16 out of

34models simulate a negative trend in precipitation; in the

southern Chile region 24 out of 34 models simulate

a negative trend. In southeastern Australia, the region of

strongest observed autumn precipitation decrease across

the SH (Fig. 1a), no models simulate a precipitation de-

cline greater than that observed; in fact, only one model

(HadGEM2-ES) simulates a decline at least half as strong

as that observed. In southeastern Africa, one model

(IPSL-CM5A-MR) shows a stronger decline in precipitation

than that observed, and three models (HadGEM2-CC,

HadGEM2-ES, and IPSL-CM5A-LR) show trends at

least half as strong as that observed. In the southern

Chile region,model representation is somewhat improved,

with two models (GFDL-ESM2G and HadGEM2-CC)

showing very similar trends to those observed, and five

models (BNU-ESM, CCSM4, GFDL-ESM2M, GISS-

E2-H, and INM-CM4) showing declines at least half as

strong as observed. No model is able to capture the

observed precipitation declines (simulating trends at

least half as strong as those observed) in all three regions.

HadGEM2-CC and HadGEM2-ES capture the pre-

cipitation decline in two regions each, although

HadGEM2-CC also shows a strong precipitation increase

in southeasternAustralia, andHadGEM2-ES only shows

a very weak precipitation decline in the southern Chile

region. Based on the assessment of regional land pre-

cipitation trends, it is clear that no model is able to cap-

ture the hemispheric pattern of change. Consistent with

findings drawn from trends in theMME,models have the

most skill in simulating trends in the southern Chile re-

gion, and the least skill over southeastern Australia.

In summary, during autumn the CMIP5 models ap-

pear to have more skill in simulating past trends in the

extratropical midlatitude regions than in the subtropical

midlatitude regions. The ability of CMIP5 models to

simulate historical trends over the latter part of the

twentieth century in autumn precipitation seems largely

unchanged compared to that of the CMIP3 models (not

shown). MME trends over southern Africa seem

somewhat less well represented in CMIP5 models, but

there is a slight improvement in CMIP5 models, relative

to CMIP3 models, over southeastern South America.

b. Observed and modeled SAM and HCE trends

To assess their influence on austral autumn pre-

cipitation, trends in the observed SH circulation indices

and the models’ representation of these must first be

assessed. The spatial pattern of the first EOF of MSLP

for each model is found to reasonably represent a SAM-

like pattern when compared to the observations (not

shown). The uncorrected NNR SAM pattern (i.e., the

spatial pattern of the first EOF of NNR MSLP that has

not been regressed onto the Marshall SAM index) ac-

counts for ;39% of the variance, while the first EOF in

the models accounts for between;24% and 61% of the

variance. Observed2 and modeled SAM time series are

2Note that here we refer to the NNR SAM index; because both

datasets are regressed onto the Marshall SAM index before EOF

analysis, the observed 20CR SAM trend is very similar to the NNR

SAM trend.
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TABLE 1. CMIP5 models and simulations from the historical, RCP4.5 and RCP8.5 experiments used in this study.

Model Modeling group Country Hist. RCP4.5 RCP8.5

AustralianCommunityClimate andEarth

System Simulator version 1.0

(ACCESS1.0)

Commonwealth Scientific and Industrial

Research Organization, and Bureau of

Meteorology

Australia y y y

AustralianCommunityClimate andEarth

System Simulator, version 1.3

(ACCESS1.3)

Commonwealth Scientific and Industrial

Research Organization, and Bureau of

Meteorology

Australia y y y

Beijing Climate Center, Climate System

Model, 1-1 (BCC-CSM1–1)

Beijing Climate Center, China

Meteorological Administration

China y y y

Beijing Normal University—Earth

System Model (BNU-ESM)

College of Global Change and Earth

System Science, Beijing Normal

University

China y

Canadian Climate Model version 4

(CanCM4)

Canadian Centre for Climate Modeling

and Analysis

Canada y

Canadian Earth System Model, version 2

(CanESM2)

Canadian Centre for Climate Modeling

and Analysis

Canada y y y

Community Climate System Model,

version 4 (CCSM4)

National Center for Atmospheric

Research

United States y

Community Earth System Model version

1, with Biogeochemistry (CESM1-BGC)

National Science Foundation,

Department of Energy, National

Center for Atmospheric Research

United States y

Community Earth System Model version

1, with CommunityAtmosphereModel,

version 5 (CESM1-CAM5)

National Science Foundation,

Department of Energy, National

Center for Atmospheric Research

United States y

Community Earth System Model

version 1, with Fast Chemistry

(CESM1-FASTCHEM)

National Science Foundation,

Department of Energy, National

Center for Atmospheric Research

United States y

Centre National de Recherches

M�et�eorologiques Coupled Global

Climate Model, version 5

(CNRM-CM5)

Centre National de Recherches

M�et�eorologiques, Centre Europ�een de

Recherche et Formation Avanc�ee en

Calcul Scientifique

France y y y

Commonwealth Scientific and Industrial

Research Organisation Mark, version

3.6.0 (CSIRO-Mk3.6.0)

Commonwealth Scientific and Industrial

Research Organization, and

Queensland Climate Change Centre of

Excellence

Australia y y y

Flexible Global Ocean–Atmosphere–

Land SystemModel gridpoint, version 2

(FGOALS-g2)

Institute of Atmospheric Physics, Chinese

Academy of Sciences, and Tsinghua

University

China y y

Flexible Global Ocean–Atmosphere–

Land System Model gridpoint, second

spectral version (FGOALS-s2)

Institute of Atmospheric Physics, Chinese

Academy of Sciences

China y y

First Institute of Oceanography Earth

System Model (FIO-ESM)

The First Institute of Oceanography, State

Oceanic Administration

China

Geophysical Fluid Dynamics Laboratory

Climate Model, version 3

(GFDL-CM3)

National Oceanic and Atmospheric

Administration Geophysical Fluid

Dynamics Laboratory

United States y* y y

Geophysical Fluid Dynamics Laboratory

Earth Science Model 2G (GFDL-

ESM2G)

National Oceanic and Atmospheric

Administration Geophysical Fluid

Dynamics Laboratory

United States y

Geophysical Fluid Dynamics Laboratory

Earth Science Model 2M

(GFDL-ESM2M)

National Oceanic and Atmospheric

Administration Geophysical Fluid

Dynamics Laboratory

United States y y

Goddard Institute for Space Studies

Model E, coupled with the HYCOM

ocean model (GISS-E2-H)

National Aeronautics and Space

Administration Goddard Institute

for Space Studies

United States y

Goddard Institute for Space Studies

Model E, coupled with Russell ocean

model (GISS-E2-R)

National Aeronautics and Space

Administration Goddard Institute

for Space Studies

United States y y y
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shown in Figs. 2a and 2b, respectively. Both SAM

time series show a positive trend, although the trend

in the MME is about half (53%) the magnitude of

the observed NNR SAM trend. This agrees with pre-

vious findings using CMIP3 models, which also

failed to simulate the strength of the observed positive

SAM index trend during austral autumn (Fogt et al.

2009).

The spread of SAM trends simulated by the models

can be seen in Fig. 2e: 27 out of 34 models simulate

an increasing trend in the SAM index, although only

13 models simulate a trend at least half as strong as

the corrected NNR SAM trend, and two of these

models simulate trends that are much too strong com-

pared to that observed (over twice the NNR trend;

FGOALS-s2 and IPSL-CM5A-LR). Thus, out of the

TABLE 1. (Continued)

Model Modeling group Country Hist. RCP4.5 RCP8.5

Third climate configuration of the Met

Office Unified Model (HadCM3)

Met Office Hadley Centre United Kingdom y

Hadley Centre Global Environmental

Model 2, Carbon Cycle

(HadGEM2-CC)

Met Office Hadley Centre United Kingdom y y y

Hadley Centre Global Environmental

Model 2, Earth System

(HadGEM2-ES)

Met Office Hadley Centre United Kingdom y y

Institute of Numerical Mathematics

Coupled Model, version 4.0

(INM-CM4)

Institute for Numerical Mathematics Russia y y y

L’Institut Pierre-Simon Laplace Coupled

Model, version 5, coupled with NEMO,

low resolution (IPSL-CM5A-LR)

Institut Pierre-Simon Laplace France y y

L’Institut Pierre-Simon Laplace Coupled

Model, version 5, coupled with NEMO,

medium resolution (IPSL-CM5A-MR)

Institut Pierre-Simon Laplace France y y y

Model for Interdisciplinary Research on

Climate, Earth System Model

(MIROC-ESM)

Japan Agency for Marine-Earth Science

and Technology, Atmosphere and

Ocean Research Institute (The

University of Tokyo), and National

Institute for Environmental Studies

Japan y y y

Model for Interdisciplinary Research on

Climate, Earth System Model,

Chemistry Coupled

(MIROC-ESM-CHEM)

Japan Agency for Marine-Earth Science

and Technology, Atmosphere and

Ocean Research Institute (The

University of Tokyo), and National

Institute for Environmental Studies

Japan y y y

Model for Interdisciplinary Research on

Climate, version 4h (MIROC4h)

Atmosphere and Ocean Research

Institute (The University of Tokyo),

National Institute for Environmental

Studies, and Japan Agency for

Marine-Earth Science and Technology

Japan y

Model for Interdisciplinary Research on

Climate, version 5 (MIROC5)

Atmosphere and Ocean Research

Institute (The University of Tokyo),

National Institute for Environmental

Studies, and Japan Agency for

Marine-Earth Science and Technology

Japan y y Y

Max Planck Institute Earth System

Model, low resolution (MPI-ESM-LR)

Max Planck Institute for Meteorology Germany y

Meteorological Research Institute

Coupled General Circulation Model,

version 3 (MRI-CGCM3)

Meteorological Research Institute Japan y y y

Norwegian Earth System Model,

intermediate resolution (NorESM1-M)

Norwegian Climate Centre Norway y y y

Norwegian Earth System Model,

intermediate resolution with Carbon

Cycle (NorESM1-ME)

Norwegian Climate Centre Norway y

*Historical MSLP ends at 2004.
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34 models analyzed here, 11 models generate SAM

trends reasonably well (at least half the strength, and

not exceeding twice the strength) compared to the

observations.

The expansion of the subtropical dry zone as mea-

sured by HCE trends is shown for the reanalysis and

CMIP5 models in Figs. 2c and 2d, respectively. The

NNR expansion rate of;2.18 per 45 years and the 20CR

expansion rate of ;1.08 per 45 years are both slightly

lower than trends reported elsewhere [e.g., ;28–4.58
per 32 years over 1979–2010 in Cai et al. (2012)], likely

because here the first portion of analysis is outside of the

period of largest observed expansion. The weaker trend

in the 20CR compared to the NNR agrees with pre-

vious findings (e.g., Stachnik and Schumacher 2011).

The MME trend shows a poleward shift of 0.468 per

45 years, only;22%of themagnitude of the NNR trend

and ;46% of the magnitude of the 20CR trend. This is

similar to previous studies of subtropical dry-zone ex-

pansion in CMIP3 models, which were found to sig-

nificantly underestimate expansion rates compared to

observations (e.g., Johanson and Fu 2009; Son et al. 2009).

Min and Son (2013) found a similar underestimation of

HCE trends in CMIP5 models, with modeled trends dur-

ing autumn in particular being weaker than reanalysis.

As for SAM trends, the spread among HCE trends as

simulated by the models is depicted in Fig. 2e. For this

metric, 29 out of 34 models simulate an expansion of the

HCE. Only FGOALS-s2 (for which the simulated SAM

trend is too strong compared to observations) simulates

an expansion rate similar to that in NNR. However, 14

out of 34 models simulate a trend at least half as strong

as that observed in 20CR.Of the 14models that simulate

a somewhat reasonable HCE expansion, seven of these

also simulate reasonable SAMtrends (CCSM4,CanESM2,

GFDL-ESM2G, GISS-E2-H, GISS-E2-R, HadGEM2-

CC, and IPSL-CM5A-MR).

Figure 2e also shows the relationship between the

strength of simulated and observed trends in the HCE

and the SAM. It is clear that there is a strong negative

intermodel relationship among the models (correlation

of 20.77, statistically significant at the 99% confidence

FIG. 2. Time series and trends of austral autumn (top) SAM and (middle) HCE over 1961–2005: (a),(c) NNR and (b),(d) CMIP5

historicalMME.Note that the vertical scales in (a),(c) are twice those in (b),(d), respectively. In (a)–(d) a black line shows the linear trend

and the trend value and standard error are indicated. (e) Trends in the HCE vs trends in the SAM for individual models (blue circles), the

MME (large hollow blue circle), NNR (red cross), and 20CR (green triangle). The model line of best fit (blue line) and intermodel

correlation coefficient are also shown. To calculate the observed SAM index both reanalyses are first corrected against theMarshall (2003)

SAM index.
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level). This relationship is not surprising, given previous

studies using CMIP3 models have shown linkage be-

tween these subtropical and extratropical modes of

circulation (e.g., Previdi and Liepert 2007; Kang and

Polvani 2011). Although not shown, the relationship

among HCE trends, trends in the observed station-

based SAM index of Marshall (2003), and the simulated

SAM index calculated in the same manner (by in-

terpolating modeled MSLP to station locations) yields

the same conclusions: a strong negative relationship be-

tween the HCE and SAM trends persists, and the ma-

jority of models still underestimate the magnitude of the

observed SAM trend. This provides confirmation that the

underestimation of SAM trends by the models compared

to the Marshall-corrected NNR SAM trend is not an

artifact of spurious trends in the NNR, and that cor-

recting the NNR against the Marshall SAM index al-

lows the NNR to be used appropriately in such analysis.

c. Observed andmodeled SAMandHCE interactions
with precipitation

In regions of SAM influence, under the assumption

that the spatial configuration of the SAM does not

change so much over time so as to cause a response

disconnection (e.g., Silvestri and Vera 2009), it may be

expected that a greater SAM trend will be associated

with a larger precipitation change. To test this hypoth-

esis, Fig. 3a shows the intermodel relationship between

precipitation trends and SAM trends during austral

autumn. The SAM-signature dipole pattern over the

Southern Ocean with a positive relationship (increased

precipitation with a positive SAM trend) at 608S and

a negative relationship at 458S is prominent, with good

model agreement. In these SAM-affected regions, the

strength of modeled precipitation trends is closely

linked to the strength of the SAM trends, with regions

significant at the 95% confidence level indicated by

stippling. The intermodel coherence is weaker farther

north ;308S, although a negative relationship over

southeastern Africa and a positive relationship over

much of southern Australia and southeastern South

America are seen. Figure 3b shows the intermodel

relationship between precipitation trends and HCE

trends. In these panels the color bar has been reversed to

account for the fact that subtropical dry-zone expansion

is associated with a positive SAM trend. Relationships

are similar to Fig. 3a, as expected, given the strong

correlation between modeled trends of the HCE and

SAM as seen in Fig. 2e.

Figure 4 provides further insight into the intermodel

spread between trends in precipitation and trends in the

SAM and HCE. In this figure, precipitation is averaged

over southeastern Africa, southeastern Australia, and

the southern Chile region. Note that the regions selected

for this figure are based on those with the strongest

observed precipitation declines (Fig. 1a). Figure 4 re-

inforces the conclusions drawn from Fig. 3: that the in-

termodel relation between precipitation trends and trends

in the SAM and HCE are strongest in the extratropics

(;458S) and weaker farther equatorward (;308S).
Expanding upon the relationship between the SAM

and precipitation in the models, a combination of the

influences of interannual variability and trends of the

SAM on precipitation during austral autumn is also

FIG. 3. Austral autumn intermodel correlation coefficients for theCMIP5 historicalMMEover 1961–2005, between precipitation trends

and (a) SAM trends and (b) HCE trends. Stippling indicates where the correlation coefficients are significant at the 95% confidence level

as determined by a two-sided Student’s t test. Black boxes indicate the regions shown in Fig. 4.
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investigated, with Figs. 5a and 5b showing precipitation

trends congruent with trends in the SAM [refer to Eq.

(4)] for the observations and models, respectively. The

patterns of the trends in the observations and in the

MME are similar, although trends in the MME are

weaker as a consequence of the weaker SAM trends

present in the models (cf. Figs. 2a and 2b). As expected

based on the SAM’s influence, the modeled trends are

largely zonal, with a broad pattern of weak precipita-

tion increase across the high latitudes (;608S), reduced
precipitation across the midlatitudes (;458S), and in-

creased precipitation in the subtropics (;308S).A strong

negative MME trend is seen over southern Chile: in the

observations this trend is a result of a poleward shift in

storm tracks (Haylock et al. 2006). Weak positive MME

trends over southern Africa and southern Australia are

also seen. Observational analysis has shown the positive

phase of the SAM during austral spring and summer to

be associated with increased precipitation in southeast-

ern Australia as a result of increased convection in

the Tasman Sea region and moisture-laden anomalous

easterly flow impinging on the east coast (Hendon et al.

2007). However, little relationship between the SAM

and autumn precipitation in the observations is seen,

both in this study (Fig. 5a) and in previous analysis

(Hendon et al. 2007), differing from the MME (Fig. 5b).

Comparing Figs. 5a and 5b, the models fail to capture

the two regions that exhibit weak precipitation declines,

;208S inwesternAfrica and northeasternAustralia, and

the SAM-congruent drying trend in southeastern South

America (a region of observed rainfall increase). This

latter disagreement between observations and models

was also noted in the annual relationship of precipita-

tion and the SAM in CMIP3 models (see Figs. 2e and 2f

FIG. 4. Relationships over 1961–2005 between simulated austral autumn regional land precipitation trends and (a)–(c) SAM trends

and (d)–(f) HCE trends. Regional land precipitation trends are averaged over southeastern Africa (258–358S, 238–338E), southeastern
Australia (328–408S, 1388–1528E), and the southern Chile region (428–508S, 708–768W), as shown by the boxes in Fig. 3. These regions are

selected based on regions of observed precipitation decline (Fig. 1a) of comparable size. Each panel shows trends in individual models

(blue circles), the MME (hollow blue circle), NNR (red cross), and 20CR (green triangle). The model line of best fit (blue line) and

intermodel correlation coefficient are also shown. Correlation coefficients are statistically significant as determined by a two-sided Stu-

dent’s t test in (c) at the 99% level and (f) at the 95% level indicated by an asterisk (*).
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in Karpechko et al. 2009). Silvestri and Vera (2003)

noted that the rainfall response to the SAM in this re-

gion is present in autumn and spring and is caused by the

positive SAM-induced maintenance of an anomalous

anticyclone over the region, which reduces cyclonic ac-

tivity and thus precipitation. Karpechko et al. (2009)

thus suggested that this mechanism may be missing in

the CMIP3 models. Based on these results, this also

appears to be the case for the CMIP5 models. Further-

more, Silvestri and Vera (2009) suggest that during

austral spring, the relationship between the SAM and

precipitation in southeastern South America may vary

on decadal time scales, as the relationship is found to

depend on the period of analysis. This suggests the

SAM-precipitation response in this region has strong

temporal variability, and if a similar nonstationarity

exists in austral autumn, it may contribute to the models

poor simulation of the response here.

Precipitation trends congruent with HCE trends are

shown in Figs. 5c and 5d. In both the observations and

MME, there is a very strong similarity to the corre-

sponding SAM-congruent precipitation trends (cf. Figs.

5a and 5b). This suggests that within CMIP5 models, it is

not just the relationship between the strength of pre-

cipitation trends and the strength of the trends in both

the SAM and HCE that are similar, but also the re-

lationship between precipitation variability with both

SAM and HCE variability. This finding is consistent

with analysis of CMIP3 models, which exhibit strong

relationships between SAM and HCE interannual

FIG. 5. Austral autumn trends in precipitation congruent with trends in the SAM and HCE over 1961–2005: (a),(c) observations and (b),(d)

CMIP5 historical MME. Trends are expressed as a percentage change of climatology per 45 years and note that the color bars have different

limits. Stippling in (a),(c) indicates where the regression coefficient between the SAM–HCE and precipitation is significant at the 95% confidence

level as determined by a two-sided Student’s t test and in (b),(d) where$80% of the 34 models agree on the sign of the ensemble-mean trend.
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variability during austral summer (Kang and Polvani

2011). The notable exception in the MME HCE-

congruent precipitation trends (compared to the SAM-

congruent precipitation trends) is the stronger and more

significant relationship over Australia. The reason for

the greater coherence in this region is unknown. Cai

et al. (2012) found a stronger coherence between the

HCE and rainfall over Australia than in other SH

landmass regions; however, they also found the sub-

tropical dry-zone expansion to be linked with the ob-

served April–May rainfall decline in southeastern

Australia. Here, results suggest the subtropical dry-zone

expansion should have led to increased precipitation

over southeastern Australia. These seemingly conflict-

ing results may be a result of the different time periods

and/or seasons analyzed [Cai et al. (2012) analyzed

April–May over 1948–2010] or climatological biases in

the models.

Comparing Figs. 5a and 5c with Fig. 1a, it appears that

the observed austral autumn subtropical dry-zone ex-

pansion and positive SAM trend may have contributed

to the observed precipitation decrease in southernChile,

as well as potentially offsetting the observed drying

across southeastern Africa and southeastern Australia.

Likewise, comparing Figs. 5b and 5d with Fig. 1b, it

appears that the modeled subtropical dry-zone ex-

pansion and positive SAM trend may have accounted

for the MME precipitation decreases in southern mid-

latitude regions (e.g., southern New Zealand and

southern Chile). That the modeled trends in circulation

indices are much weaker than observed may have con-

tributed to the MME precipitation trends also being

weaker than observed. However, Cai et al. (2012) have

recently suggested that in southern Chile the observed

April–May precipitation reduction cannot be explained

by the subtropical dry-zone expansion; this reflects the

fact that the observed zonally averaged HCE has shifted

poleward in recent decades, while the region of impact

of the HCE on precipitation andMSLP in the vicinity of

southern Chile has shifted equatorward (Cai et al. 2012).

As emphasized above for southeastern Australia (and

also applicable for southern Chile), these seemingly

conflicting findings may be a result of the different time

periods and/or seasons analyzed. This suggests that such

results are sensitive to seasonal definitions and de-

cadal variability, such as the Pacific decadal oscilla-

tion, which has recently been shown to influence SAM

and HCE variability in austral summer (Wang and

Cai 2013). However, the MME results imply that re-

moving the influence of multidecadal variability

(through multimodel averaging), an impact from the

subtropical dry-zone expansion can be manifested in

southern Chile.

Considering the intermodel spread (not shown) in

SAM- (HCE)-congruent precipitation trends over south-

easternAfrica, southeastern Australia and the southern

Chile region, not surprisingly, models that simulate

reasonably strong SAM (HCE) trends also tend to sim-

ulate stronger SAM- (HCE)-congruent precipitation

trends. CanESM2 and GFDL-ESM2, which simulate

trends in both the SAM and HCE well, are the only

models besides FGOALS-s2 (which simulates an overly

strong SAM trend) to also capture the strength of the

congruent precipitation trends in all three regions rea-

sonably well. However, there is an overall improvement

in the number of models able to simulate congruent

precipitation trends in the same direction as that ob-

served, compared to precipitation trends alone. For south-

eastern Africa, southeastern Australia, and the southern

Chile region, 23 (28), 24 (29), and 26 (30) models re-

spectively simulate a SAM- (HCE)-congruent precipi-

tation trend of the observed sign.

d. Future SAM and HCE interactions with
precipitation

In the first half of the twenty-first century, increasing

concentrations of greenhouse gases are expected to

continue to contribute to the positive trend in the SAM

in all seasons, although recovery of stratospheric ozone

is expected to force a negative trend in the tropospheric

SAM during austral summer (Shindell and Schmidt

2004; Perlwitz et al. 2008; McLandress et al. 2011).

Further expansion of the subtropical dry zone is also

anticipated as atmospheric greenhouse gas concentra-

tions increase (e.g., Seidel et al. 2008).

The modeled trends in the SAM and HCE during

austral autumn over 2006–50 are shown in Fig. 6a

(RCP4.5 in blue, RCP8.5 in red). As expected, the

MMEs for both experiments show a continuation of the

positive trend in the SAM and subtropical dry-zone

expansion, with stronger trends for both metrics in the

RCP8.5 MME, although there is considerable overlap

between modeled trends for the two experiments. As

with the historical experiment, there is a strong inter-

model coherence between the strength of SAM and

HCE trends: within the RCP4.5 experiment the inter-

model correlation is 20.63, within the RCP8.5 experi-

ment the intermodel correlation is 20.64, and across

both sets of experiments the intermodel correlation is

20.63 (significance for all cases exceeding the 99%

level). The effects of these trends on midlatitude pre-

cipitation trends in future projections thus need to be

assessed.

Figures 6b and 6c show the MME-projected twenty-

first-century precipitation trends for the two RCP ex-

periments. The large-scale patterns of change are similar
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across the two experiments: an increase in precipitation

is seen across the SouthernOcean, decreasing trends are

seen over southern Africa and over the eastern Pacific

extending over southern Chile, and an increasing trend

is seen in southeastern South America. In general,

trends are slightly stronger in the RCP8.5 MME, with

the greatest change over southern Africa (;15%–20%).

However, a reversal of trends occurs over southern

FIG. 6. Future austral autumn projections from the RCP4.5 and RCP8.5 experiments over 2006–50: (a) trends in the HCE vs trends in the

SAM for RCP4.5models (blue circles), RCP8.5models (red triangles), and theMMEs (hollow blue circle and red triangle). The lines of best fit

and intermodel correlations are also shown. (b) RCP4.5 and (c) RCP8.5 MME trends in precipitation, expressed as a percentage change of

climatology per 45 years, with stippling indicating where$80% of the 16 and 21 models, respectively, agree on the sign of the ensemble-mean

trend. Combined RCP4.5 and RCP8.5 intermodel correlation coefficients of precipitation trends vs (d) SAM trends and (e) HCE trends, with

stippling indicating where the correlation coefficients are significant at the 95% confidence level, as determined by a two-sided Student’s t test.
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Australia when comparing the RCP4.5 MME (increase

in precipitation) to the RCP8.5 MME (reduction in pre-

cipitation). For southern Africa and southern Chile, the

models show a stronger consensus that in the near future

precipitation is likely to continue to decline; however, for

southern Australia the direction of future precipitation

trends is uncertain. This suggests that unforced climate

variabilitymay dominate such changes, at least up to 2050.

The intermodel correlations between the strength of

precipitation trends and trends in the SAMandHCEare

shown in Figs. 6d and 6e, respectively. Despite the

continuation of SAM and HCE trends in the same di-

rection as in the historical experiment, the intermodel

relationships are less coherent than the corresponding

historical experiment correlations (Fig. 3). For both the

strength of SAM and HCE trends, projected relation-

ships with precipitation trends are less zonally oriented,

although a positive (negative) relationship between

SAM (HCE) trends and precipitation trends is seen at

high latitudes over the Southern Ocean and a statisti-

cally significant negative (positive) relationship at mid-

latitudes (;458S), extending from south of Australia

across the Pacific to southern Chile. This supports find-

ings from analysis of the historical experiment: pre-

cipitation trends in southern Chile are strongly affected

by the strength of trends in both the SAM and sub-

tropical dry-zone expansion, which are in turn forced by

anthropogenic climate change. Thus, future emissions

could have a large impact on austral autumn pre-

cipitation in southern Chile.

Results for southern Africa and southern Australia

are less conclusive. In southern Africa, the strength of

precipitation trends in the western part of this region

show a negative (positive) relationship with the strength

of SAM (HCE) trends. Although these relationships

are fairly localized, they suggest that part of this region,

like southern Chile, may experience impacts on pre-

cipitation dependent on the strength of anthropogenic

forcing. Relationships are essentially absent in south-

eastern Africa, suggesting that the SAM and subtropical

dry-zone expansion may have little impact in this region

in the future.

Over southern Australia, relationships with a positive

trending SAM suggest decreasing precipitation at the

very southern edge of the continent, a thin band of in-

creasing precipitation farther north, and decreasing pre-

cipitation north of 308S, although the relationships are

not statistically significant. This increasing precipitation is

more obvious in the relationship with the subtropical dry-

zone expansion, which suggests increasing precipitation

over the entire southeastern portion with a stronger ex-

pansion of the subtropical dry zone. Since precipitation

trends over southern Australia vary between RCP

scenarios, and the SAM and HCE influences are most

varied in this region, this suggests that future trends in

austral autumn precipitation in this region are un-

certain. CMIP3models have been shown to have a poor

representation of key southeastern Australian rainfall

processes such as cutoff lows and atmospheric blocking

(Grose et al. 2012). Detailed analysis of such de-

ficiencies in CMIP5 models is beyond the scope of this

study, but incorrect rainfall generation mechanisms

may contribute to the questionable projections of pre-

cipitation for the region.

Future precipitation trends congruent with SAM and

HCE trends are not shown here: spatial patterns are

very similar to those seen in the historical experiment

(Figs. 5b and 5d), with the strength of precipitation

trends increasing for the RCP8.5 experiment, where

SAM and HCE trends are stronger. Such results sug-

gest the interannual relationship between pre-

cipitation and both the SAM and HCE remain similar

in the future scenarios.

4. Conclusions

The ability of CMIP5 models to capture the observed

trends in austral autumn precipitation across SH mid-

latitude regions is investigated. The SH subtropical dry-

zone expansion and trends in the SAM as simulated

by the models are also assessed. On the whole, CMIP5

models are unable to capture many of the observed

trends in precipitation during autumn, notably failing to

simulate observed declines in southern Africa and

southeastern Australia. Trends in extratropical re-

gions such as southern Chile are better simulated. The

majority of models simulate positive trends in the SAM

(27 out of 34 models) and subtropical dry-zone expan-

sion (29 out of 34 models). The positive trend in the

MME SAM index is only about half the strength of that

observed, although 11models are considered to simulate

the SAM trend reasonably well. The large range in the

subtropical dry-zone expansion rates estimated from

NNR and 20CR makes assessment of the models’ per-

formance difficult.

Nevertheless, regions where austral autumn precipi-

tation trends are simulated more accurately tend to

correspond to regions strongly influenced by the SAM,

with precipitation trends found to be congruent with

SAM trends in both the models and the observations, in

agreement with previous studies (e.g., using CMIP3

models; Karpechko et al. 2009). The strength of mod-

eled precipitation trends in these regions is also found to

be proportional to the strength of the modeled SAM

trends. A strong coherence between the strength of

SAMandHCE trends in themodels is noted and regions
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of strong SAM influence tend to also be strongly influ-

enced by subtropical dry-zone expansion.

As the subtropical dry-zone expansion and positive

SAM trend are projected to continue in the first half of

the twenty-first century, it is likely that the autumn de-

cline in precipitation in extratropical midlatitude re-

gions will also continue. The strength of the futureMME

precipitation trends in midlatitude regions is found to be

proportional to the strength of themodeled trends in the

SAM and HCE. Thus, results suggest that unabated

greenhouse gas–induced climate change will have a

large impact on precipitation in regions under the in-

fluence of the SAM and subtropical dry-zone expansion,

such as southern Chile. Future trends during austral

autumn in southern Australia are less clear and the au-

tumn SAM trend and subtropical dry-zone expansion

cannot account for them, and in fact may have offset

other climate variability modes that have contributed to

the observed precipitation decline. To assist in reducing

the uncertainty in future precipitation projections, fur-

ther work investigating the limited ability of climate

models in simulating observed historical trends in pre-

cipitation over many SH regions is required.
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