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ABSTRACT 
 

Some waves in nature behave parasitically when they interfere with another one. Such waves as 
the name implies have the ability of transforming the initial characteristics and behavior of the host 
wave to its own form and quality after a period of time. Under this circumstance, all the active 
constituents of the host wave would have been completely eroded and the resulting wave which is 
now parasitically monochromatic will eventually attenuate to zero, since the parasitic wave does 
not have its own physical parameters for sustaining a continuous independent existence. If the 
vibration of anything is known, then its characteristics can be predicted and be destroyed by an 
anti-vibrating component. In this work, we calculated the latent Human vibration and that of the HIV 
vibration. We also show quantitatively how regulated dose of electromagnetic (EM) wave, can be 
used for the control and possible eradication of HIV/AIDS infection from the Human system. The 
spectrum of the interception of the applied EM wave with the HIV vibration in the Human system 
shows a zero amplitude and frequency in the interval when the raising multiplier [0, 892] with a 
corresponding time interval [0, 0.008897s]. It is shown in this study that the actual time of exposure 
of the HIV/AIDS patient to EM radiation therapy is about 0.56 seconds. This study also shows that 
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the time it takes the applied EM wave to destroy the HIV vibration completely from the human 
system is also determined by the path difference between the phase angle of the applied oscillating 
EM wave and the phase angle of the HIV latent vibration. It is pertinent to note that radiation 
therapy is already being applied in treatment of HIV/AIDS patients, but more with regards to 
associated cancer morbidity. What this study is bringing to focus is that electromagnetic radiation 
may potentially eradicate HIV. 
 

 
Keywords: EM wave; human vibration; HIV vibration; ‘host wave’; ‘parasitic wave’; carrier wave and 

the raising multiplier. 
 

1. INTRODUCTION 
 
The role of Human-Immunodeficiency Virus (HIV) 
in the normal circulating blood system of man 
(host) has in general been poorly understood. 
However, its role in clinical disease has attracted 
increasing interest. Anything that has life and 
performs the characteristic of existence is not 
permanent. It is constrained by space and time. 
Scientists, therefore, seek to investigate what 
could be responsible for the non-permanent 
behaviour of every living matter. The HIV fatal 
effect stems from the attack on a person’s CD4 
cell counts. This attack of the HIV on the human 
system result to the progressive depletion of the 
CD4 cell counts which play a pivotal regulatory 
role in the immune response to infections and 
tumours [1,2].  
 
The human immunodeficiency virus (HIV) is 
among the most pressing health problem in the 
world today. Since its discovery, AIDS has 
caused nearly 30 million deaths as of 2009. It 
has been estimated that as of 2010 
approximately 34 million people have contracted 
HIV globally and greater proportion of the 
population coming from Africa and Asian 
countries [3,4].  
 
In addition to the knowledge of the medical 
experts about HIV/AIDS, is the understanding 
that Man and the HIV are both active matter, as a 
result, they must have independent peculiar 
vibrations in order to exist. It is the vibration of 
the HIV that interferes with the vibration of Man 
(host) in the human blood circulating system after 
infection. The resultant interference of the two 
vibrations is parasitically destructive and it slows 
down or makes the biological system of Man to 
malfunction since the basic intrinsic parameters 
of the ‘host wave’ would have been altered and 
destroyed after a specified time [5]. 
 
In physics, a wave is a disturbance or oscillation 
that travels through matter and space, 
accompanied by a transfer of energy. Wave 

motion transfers energy from one point to 
another, often with no permanent displacement 
of the particles of the medium, that is, with little 
or no associated mass transfer. Instead, they 
consist, of oscillations or vibrations around 
almost fixed locations [6].  

 
If a wave is to travel through a medium such as 
water, air, steel, or a stretched string, it must 
cause the particles of that medium to oscillate as 
it passes. For that to happen, the medium must 
possess both mass (so that there can be kinetic 
energy) and elasticity (so that there can be 
potential energy). Thus, the medium’s mass and 
elasticity property determines how fast the wave 
can travel in the medium [7]. Every material 
contains particles. When a wave travels     
through a material, the oscillating field in the 
wave will set some of these particles into forced 
vibration, and the vibrating particles will generate 
new waves of their own. The initial energy of the 
propagating wave is attenuated due to 
absorption and scattering by the medium as it 
passes [8]. 
 
Electromagnetic (EM) wave is a transverse wave 
and which as the name suggests is made up of 

the electric field ( E


), which is radial and 
perpendicular to the direction of propagation and 

the magnetic field ( B


), which is circumferential to 
the direction of propagation. For simplicity, we 
shall assumed that the electric field and the 
magnetic field always lie in the same plane, that 

is, it is linearly polarized. Both E


and B


lie in the 
same plane perpendicular to the direction of 
propagation. The character of the EM wave 
depends on the nature of the amplitudes in this 
plane; we can concentrate on the electric field 
since the magnetic field can always be found 
from the electric field [9,10]. 

 
The Navier-Stokes equations are always solved 
together with the continuity equation. The Navier-
Stokes equations represent the conservation of 
momentum, while the continuity equation 
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represents the conservation of mass. In that 
case, the density is assumed to be constant and 
the continuity equation reduces to divergence

0.  u . The motion of a non-turbulent, 

Newtonian fluid is governed by the Navier-Stokes 
equation [11,12]. The Navier-Stokes equations 
are only valid as long as the representative 
physical length scale of the system is much 
larger than the mean free path of the molecules 
that make up the fluid. The Navier-Stokes 
equations govern the motion of fluids and can be 
seen as Newton's second law of motion for 
fluids. The Navier-Stokes equations are a set of 
nonlinear partial differential equations that 
describe the flow of fluids. They model weather, 
the movement of air in the atmosphere, ocean 
currents, water flow in a pipe, as well as many 
other fluid flows [13,14]. 
 

The aim of this present work is to determine the 
biomechanics of human blood circulating system 
and to report the methodology developed in our 
laboratory to characterize the dynamics of the 
resident host wave and those of HIV parasitic 
wave in the human blood circulating system. 
Finally, we also want to compare our present 
result where we applied Navier-Stokes approach 
with those of the previous work where we used 
Newtonian mechanics approach [15].   
 

The organization of this paper is as follows. In 
section 1, we discuss the nature of the work 
under study. In section 2, we show the 
mathematical theory of fluid dynamics and 2D 
Navier-Stokes equation. The results emanating 
from this study and discussion of the results     
are shown in section 3. Conclusion of this work   
is presented in section 4. The paper is          
finally brought to an end by a few lists of 
references.    
 

1.1 Research Methodology 
 
In this work we first superpose a parasitic wave 
on a host wave. The parasitic wave represents 
the HIV latent vibration while the host wave 
represents the human latent vibration all resident 
within the human system. The constitutive carrier 
wave produced by the two superposed waves is 
effectively studied using 2D Navier-Stokes 
equation. Consequently, the attenuation process 
of the parasitic wave as one of the constituents 
of the constitutive carrier wave is eventually 
studied by discriminately subjecting it to a 
regulated dose of electromagnetic EM     
radiation. 

 

2. MATHEMATICAL THEORY AND 
SCIENTIFIC RESEARCH PROCEDURE 

 
 If the wave characteristics of any given 

active system are known, then its 
behaviour can be predicted, altered and 
destroyed by means of anti-vibratory 
component. 

 That the HIV kills slowly with time shows 
that the wave-functions of the HIV and that 
of the host were initially incoherent. As a 
result, the basic features of the Human 
vibration were initially greater than those of 
the HIV.  

 The wave properties of HIV are 
independent of intrinsic variables such as 
the number, size, mass and of course 
mutation.  

 Since the immune system of AIDS patient 
is almost zero, the measured wave 
function shall depend entirely on the 
vibrating property of the HIV only as every 
other active wave characteristics of the 
Human blood system would have been 
completely eroded.  

 The wave characteristic of HIV infected 
candidate is the same everywhere within 
the resident host (Man). That is, 
irrespective of the occupation of the HIV in 
the host system, the activity is the same. 

 The wave properties of HIV cannot be 
directly measured since it does not have its 
own independent existence outside the 
host system. As a result, the wave function 
of HIV can only be deductively measured.  

 If HIV exists it must have its own peculiar 
vibration which must be independent of the 
vibration of the Human (host) system.  

 The wave and vibrating characteristics of 
blood in the circulating system of a normal 
individual free from HIV/AIDS infection 
shall be assumed to be measured and the 
four independent variables following the 
observations about the wave recorded 
function are: (i) the amplitude, a (ii) the 
phase angle,   (iii) the angular frequency, 
nand(iv) the wave number, k .  

 The wave and vibrating characteristics of 
blood in the circulating system of HIV/AIDS 
infected candidate, whose immune count 
rate is very low or almost zero is also 
assumed to be measured and the four 
independent variables following the 
observations of the recorded wave 
functions are: (i) the amplitude, b  (ii) the 
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phase angle, ' (iii) the angular frequency, 

'n and (iv) the wave number, k  .  

 Now, suppose we consider the wave 
function of the human vibration as the ‘host 
wave’ which can be described by the 
cosine sinusoidal function 

 








   tnrkatry


.cos),(1
                    

(2.1) 

 

Where kjkik 


 and the position vector 

yjxir 


 are two dimensional (2D) vectors and 

t is the time. Although, in 2D polar coordinate 

system cosrx  and sinry  . The equation 

contains an inbuilt raising multiplier   which is 

capable of raising the intrinsic wave 
characteristics of the host wave. Thus  (  = 0, 1, 

2 max,,  ) and )sincos(.   rkrk


.Also, suppose we consider the wave function of 
HIV vibration as the ‘parasitic wave’ which we 
can also described by the cosine sinusoidal 
function 
 

   tnrkbtry


.cos),(2                  
(2.2) 

 

As it is from the equation, the ‘parasitic wave’ 
has an inbuilt raising multiplier  (  = 0, 1, 2

max,,  )and )sincos(.   rkrk


. The 

inbuilt multiplier is dimensionless and as the 
name implies, it has the ability of gradually 
raising the basic intrinsic parameters of the HIV 

‘parasitic wave’ with time. Let ),( try


be the 

resultant of 21 yy  , that is 
 

 ),(),(),( 21 trytrytry









   tnrka


.cos +

   tnrkb


.cos                                
(2.3) 

 

After a lengthy algebra the superposition of the 
parasitic wave on the host wave yields the 
equation below.  
 





 









tnn
babay

)(

)(
cos2

2222






 Etnrkk  


.)(cos                            
(2.4) 

 















))((coscos

))((sinsin1
tan

tnnba

tnnba
E




(2.5) 

 

Hence (2.4) is the resultant wave function which 
describes the superposition of the ‘parasitic 
wave’ on the ‘host wave’. Equation (2.4) 
represents a resultant wave equation in which 
the effects of the constitutive waves are additive 

in nature. However, without loss of dimension we 
can recast (2.4) as  
 















)(

)(
cos)(2)(

22222






tnn
babay














 Etnnrck )(.cos 



                             
(2.6) 

 

Here the wave number and the position vector 
are 2D in character and respectively given as 

yx kikk  , yx kikk  and )sincos( jirr  


, where )(    and eventually

)sincos()(.   rkkrk


, )(    

where kkk yx  . However, with the assumption 

that the effects of the resultant waves are 
subtractive and with the view that the basic 
parameters of the ‘host wave’ are constant with 
time, that is, 1  and leave its variation for 

future study, then we get 
 

     ()(cos2)(),( 2222 tnnbabatry









  )()(.cos tEtnnrkc 


                                
(2.7) 

 

 
 













tnnba

tnnba
tE

)(coscos

)(sinsin
tan)(

1





         

(2.8) 

 

 Equation (2.7) is regarded as the 
constitutive carrier wave (CCW) necessary 
for our study. It is the equation that 
governs the dynamical behaviour of the 
coexistence of the HIV parasite in the 
human micro-vascular blood circulating 
system. It is a corrupt wave function, in 
which it is only the variation in the intrinsic 
parameters of the parasitic wave that 
determines the life span of the physically 
active system which it describes. This 
equation describes a propagating carrier 
wave with non-stationary and frequency 
dependent amplitude modulated by a 
spatial oscillating cosine function. Note that 

na ,,   and k  are assumed to be   

constant with time in a normal human 
system, except for some fluctuating 
factors, e.g. illness, which of course can 
only alter them slightly and temporarily.  
 

The wave mechanics of HIV in the Human 
Blood circulating system is two 
dimensional (2D) in character since it is      
a transverse wave, the position vector       
of the whole blood (particles and fluid)       
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in motion can be represented as 
)sincos( jirr  


and hence the motion 

of the CCW in the human system is 
constant with respect to the z -axis, hence

jkkikkkc )()(  


. 

 While on interpretation that

  sincos)(.  rkkrkc


 is the 

coordinate of two dimensional (2D) 
position vector, the azimuthal angle

)(   ,the total phase angle of the 

CCW is represented by )(tE . By definition,

)( nn   is the modulation angular 

frequency, the modulation propagation 
constant is )( kk  , the phase difference 

 between the two interfering waves is 
)(   , and of course we have that the 

interference term is 

     ()(cos2
2

tnnba , while 

waves out of phase interfere destructively 

according to  2
ba  , however, waves in-

phase interfere constructively according to 

 2
ba  .  

 Driving forces in anti-phase )(    

provide full destructive superposition and 
the minimum possible amplitude; driving 
forces in phase )(    provides full 

constructive superposition and maximum 
possible amplitude.   

 

The total phase angle of the CCW given by (2.7) 
is not constant with time. The variation as a 
function of time is 
 


dt
tEd )(































12

))cos((cos

))sin((sin
1





tnnba

tnnba














))cos((cos

))sin((sin





tnnba

tnnba

dt

d

            

(2.9) 


dt
tEd )(  

 

 

































2

2

2

))sin((sin

))cos((cos

)cos((cos







tnnba

tnnba

tnnba

 
 
 


















tnnba

tnnba

dt

d

)(coscos

)(sinsin
         (2.10) 

)(
)(

tZ
dt
tEd


                                             

(2.11) 

 
Where we have introduced a new variable 
defined by the symbol )( tZ to simplify our work. 

That is 
 

 
 


















)()(cos2

)()(cos
)()(

222

22




tnnbaba

tnnbab
nntZ

                                     

(2.12) 

 
This is the characteristic angular velocity of the 
constitutive carrier wave. It has the dimension of 
rad./s. Note that we used the trigonometric 
identity yxyxyx sinsincoscos)(cos  to 

reduce the work.  Also for the purpose of further 
application we may also determine the variation 
of the characteristic angular velocity of the 
constitutive carrier wave )(tZ  with respect to 

time. Thus   

 

 )(
)(

tQ
dt
tZd

 

 
2

222

3332

)()(cos2

)()(sin)(



























tnnabba

tnnbaabnn

   

(2.13) 

 
Hence )(tQ is the characteristic group     

frequency of the CCW and it has the dimension 

of 2/srad . 

 
2.1 The Pressure-force Law Obeyed by 

the CCW in 2D Navier – Stokes   
Equation 

 
The Navier-Stokes equation can be viewed as an 
application of Newton’s second law, amf  , 

which states that force is the product of the   
mass of an object times its acceleration. (Note, 
we will now be using f to represent forces, not 

scalar or vector fields). The Navier-Stokes 
equations are the fundamental partial 
differentials equations that describe the flow of 
incompressible fluids. Using the rate of stress 
and rate of strain tensors, it can be shown that 
the components of a viscous force f in a non 

rotating frame are given by the Navier-Stokes 
equation 
 

fuu
t

u


















 ..

                         

(2.14) 
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Where� denotes the density of the fluid and is 

equivalent to mass, uu
t

u





. is the 

acceleration and u is velocity, and ∇∙� + � is the 

total force, with ∇∙� being the shear stress and f

being all other forces. The Navier-Stokes 
equations are always solved together with the 
continuity equation:  

 

0)(. 



u

t




                                 
(2.15) 

 
Now consider the irrotational Navier-Stokes 
equations in a particular coordinate systems. In 
Cartesian coordinates with the components of 
the velocity vector given by ),,( wvuu  , the 

continuity equation is 
 

0






























z

w

y

v

x

u

                              

(2.16) 

 
In cylindrical coordinates with the components of 
the velocity vector given by ),,( zr uuu u  , the 

continuity equation is 
 

0
1






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In spherical coordinates with the components of 
the velocity vector given by ),,(  uuuru , the 

continuity equation is 
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We may also write equation (2.13) as 
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 (2.19) 

 
Where p  is pressure and   is dynamic viscosity. 

Viscosity is defined as the measure of               
the resistance of a fluid which is being deformed 
by the shear stress. The different terms 
correspond to: (i) the inertial forces (ii), pressure 
forces (iii), viscous forces and (iv), external 
forces applied to the fluid. In unidirectional flows 
such as blood, all nonlinear terms in the Navier-
Stokes equations vanish: the convective term

0. uu . 

Navier-Stokes explicitly models changes in the 
directional velocity using four components: (i) 
The first of these is −(�∙∇)∙�, which is the 
divergence on a velocity, or in simpler terms, it is 
how the divergence affects the velocity.(ii) The 
factor p  may be thought of as how the 

particles move as pressure changes, specifically, 
the tendency to move away from areas of higher 

pressure.(iii) Next we consider the term u2  . 

The two key parts are viscosity (  ) and 

Laplacian 2 . It may be a little hard to make 
sense of this part, but think of it as the difference 
between what a particle does and what its 
neighbours do. (iv) finally we have f, which again, 
is any other forces acting on the substance. 
 
Here, u and p are the time-averaged velocity 

and pressure respectively. However, in this work 
we shall only focus on the cylindrical coordinate 
system since we assume that the Human blood 
vessels have a similar geometry with that of the 
cylinder. Now in cylindrical coordinate system, 
the radial pressure and the angular pressure in 
Navier-Stokes representation are respectively 
given by 
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Since our work is restricted to 2D we have to ignore the z - axes or assume that the motion of the 
CCW is constant with respect to the z - axes. We also take the body forces rF = F = 0. Consequent 

upon this the Navier-Stokes equation becomes 
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Both equations (2.20) and (2.21) eventually reduces to 
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(2.24) 

 

Thus the bulk pressure of the CCW as it propagates in the human micro-vascular blood circulating 

system is the addition of the radial pressure and the angular pressure. Hence 
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(2.25) 

 

The reader should note that we have ignored the terms in the brackets of the left hand side of (2.20) 
and (2.21) since they are equal to zero base on the continuity equation of (2.17) as compare with 
(2.15). Hence we have two independent pressure gradients, the radial pressure gradient and the 
angular pressure gradient associated by the propagation of the CCW in the Human micro-vascular 
blood circulating system. However, if the pressure gradients are zero then 0P and (2.25) becomes 
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(2.26) 

 

2.2 Determination of the Bulk VelocityU , Radial Velocity rU and the Angular Velocity

U of the CCW 
  

The bulk velocity is related to the constitutive carrier wave (2.7) according to the equation below. 
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The radial velocity and the angular velocity of the CCW as it propagates in the micro-vascular blood 
circulating system are given by the equation below.  
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The radial velocity and the angular velocity of the CCW as it propagates in the micro-vascular blood 
system are related to each other according to the equation below. That is the radial and angular 
velocities components of the CCW are related to each other by the stream-function given below. 
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Thus radial velocity of the constitutive carrier wave rU has a unit of srad / .  Also  
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Thus the angular velocity of the constitutive carrier wave U has a unit of srad / .
 

 

2.3 Determination of the Latent Wave 
Characteristics Man (Host) ( a , n  ,   
k )contained in the CCW 

 

Now let us subject the constitutive carrier wave 
given by equation (2.7) to the 2D constant 
velocity-pressure gradient of Navier-Stokes 
equation given by (2.26). The differential 
equations we have derived for the conservation 

laws are subject to boundary conditions in order 
to properly formulate any problem.  
 

After a careful operation with the various 
derivatives of U with respect to r  and  in the 

radial and angular pressure equation of (2.26) by 
applying (2.7), the resulting equation can further 
be simplified and rearranged by eliminating equal 
and oppositely related terms. However, we have 
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also imposed the following boundary conditions 
to reduce the complexity of the resulting 
equation. Now the boundary conditions require 
that at, 0t , 0 , and for even and symmetric 
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To make our work easy we may need to adopt the “third world approximation” to linearize (2.34) by 

removing the term  
n )(cos21  . The “third world approximations is the differential minimization of 

the resulting binomial expansion of a given variable function. The approximations have the advantage 
of converging results easily and also producing expected minimum value of results. Now the ‘third 
world approximation’ states that  
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                      cossin)(cos21 2/1                                                                                (2.38) 
 

Equations (2.36), (2.37) and (2.38) can now be substituted into (2.34). After rearrangement we have 
that 
 




 )(coscossin2)(sincossin6 23223  rkkanrkkan rr  

 )(coscossin4  rkkan )(coscossin3 22  rkrkan   )(sincossin4 2  rkrkan                 
 )(sincossin6 233  rkrkan  

 )(sincossin3 22  rkrkan )(coscossin  rkrkan   



  )(sincossin15 322  rkrkan )(sincossin3 222  rkrkan   

 )(coscossin6 222  rkrkan  )(sincossin22  rkrkan
 

 )(sin)(cos)(sin3 232  rkrkan )(sincossin15 332  rkrkan   

)(coscossin6 232  rkrkan 


 )(sincossin32  rkrkan 0                                (2.39) 
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 Calculation of the phase angle (  ) of 
the latent Human vibration (host wave) 

 
From the clinical literature, blood leaves the 
Human heart at a rate of about 5 litres per minute 
(0.08333 litres per second or 0.00008333 cubic 

meters per second) since litresm 10001 3  . Also 

from clinical literature, it is given that the cross-

sectional area A ( 2rA  ) of the Human Aorta is 

about 253 cm [16]. In this work, we used the 

maximum value of the radius from the given 

range which is 25cm ( 20005.0 m ). Now            

from these data mr 01262.0 where r is the 

radius of the Human Aorta assumed to                
be a circular cylinder. Now, we know from the 
clinical literature that the elasticity   of the 
Human blood is domicile in the red blood cells. 
Therefore the quantity of blood that leaves the 
Human heart can be found from the equation 
below.  

 
)()/()( 3 stimesmratevolumeQuantity    (2.40) 

 

35

3

10333.8

1/000083333.0)(

m

ssmvolumeQuantity






                        (2.41) 
 
Thus the Human heart pumps a volume of 

3510333.8 m or 510333.8   cubic meter of 

blood per second. 
 
Now there are several possible ways of 
determining the wave characteristics of the host 
vibration, although, the results obtained may also 
be different. However, the careful choice we 
make must be relevant and applicable to the 
problem under study. Suppose we select our 
choice from the first, second and the forth terms 
of the equation with coefficient  then we get 

 

0)(tan

cossin

cossin3cossin15

22

222322



























rk

rkan

rkanrkan

                 
  

 

(2.42) 
 

0)(tan1cos3sin15 2  






  rk
          

(2.43) 

 

1)
2

1(315
2

2 














 
                                (2.44) 

 

.4924.0 rad                                             (2.45) 

 
Where we have used the fact that at the critical 
point, which is at time 0t the critical value of 

any time dependent variable at the origin is given 
by 
 

 sin ; 















2
1cos

2


;  tan        
(2.46) 

 
 Calculation of the spatial frequency ( k ) of the 

latent Human vibration (host wave) 
 
Now to determine the spatial frequency or the 
wave number of the host vibration we can also 
combine the first four terms of the coefficient of 
 in equation (2.39). 

 

 )(sincossin15 322  rkrkan

 )(sincossin3 222  rkrkan  
 )(coscossin6 222  rkrkan

)(sincossin22  rkrkan 0                 (2.47) 

 

 )(tancossin15 3  rk

 )(tancossin3 2  rk  cossin6 2

)(tancossin  rk 0                              (2.48) 

 

 sin6)(tan1cos3sin15 2  






 rk          (2.49) 

 




 sin6)(tan1
2

1315
2

2 


































rk          (2.50) 

 

 sin12)(tan23630 22  






 rk
        

 (2.51) 

 

1091.5342
00110608.0

9088.5

8)4924.0(33

)4924.0(12
)(tan

2



rk

                                    (2.52) 
 

570609.1)1091.5342(tan)( 1  rk          (2.53) 

 

mradk /.4714.163                                      (2.54) 
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 Calculation of the angular frequency ( n ) of the latent Human vibration (host wave) 
 

In other to calculate the angular frequency or the angular velocity of the host wave we select the first 
two terms from coefficient of  (viscosity of blood) and the first four terms from the coefficient of 

(density of blood). 
 

 






 )(coscossin2)(sincossin6 23223  rkrkanrkrkan  




  )(sincossin15 322  rkrkan )(sincossin3 222  rkrkan   

 )(coscossin6 222  rkrkan 


 )(sincossin22  rkrkan                                      (2.55) 

 

 






 22 2)(tansin6 krkk  


  )(tansin15 2  rkn  )(tancos3  rkn  sin6n   

                                            )(tan rkn                                                                            (2.56) 

 

 








 




)(tansin6)(tancos3)(tansin15

2)(tansin6
2

2





rkrkrk

krk
n

                            

(2.57) 

 

 
 

 
 95352.2/1060

/.)4714.163(6401806.2/004.0

95352.2

6401806.2
3

222

mkg

mradsmkgk
n






 srad /.09014.0    (2.58) 

 
 Calculation of the amplitude ( a ) of the latent Human vibration (host wave) 

 
It is not very possible to calculate the amplitude or the maximum displacement a  of the host wave 
from the available equation (2.39). As a result, we are going to use a slightly different approach to 

calculate it. Now, the radial acceleration has a unit of 2/. srad and the angular acceleration has a unit 

of 2/ sm . These two concepts can be verified from the density  part of (2.39) respectively so that the 

units are at variant with one another. However, we are going to calculate the amplitude from the radial 
acceleration. Now, if we multiply the radial acceleration by mass m  then the result is radial force which 
produces a change in the motion of the CCW along the radius of the cylindrical blood vessels.  The 
radial force will cause a change in the elasticity  of the blood which is stored in the red blood cell. 

Accordingly, we shall select the first four terms in the coefficient of  (density) in (2.39) that has no 

radial term so that the equation becomes 
 

                                      



















t
rUm                                                                              (2.59) 

 

 











2/3

22

)(cos21

)(sin)(sin



 rkkan
m

 





2/1

2

)(cos21

)(sin)(cos



 rkkan    )(sin)(cos21 2/12  rkkan  

                    



















2/1

2

)(cos21

)(cos)(sin2 rkkan
                                                                     (2.60) 

 



  )(sincossin15 32  rkkanm )(sincossin3 22  rkkan 

 )(coscossin6 22  rkkan  

                     
 



)(sincossin2 rkkan

                                                                  
(2.61) 
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

  )5706.1(sin)4924.0cos)4924.0(sin15 3m )5706.1(sin)4924.0(cos)4924.0(sin3 2   

)5706.1(cos)4924.0(cos)4924.0(sin6 2  kan2)5706.1(sin)4924.0(cos)4924.0(sin
    (2.62) 

 

  47164.2m 79166.1  123408.1  kan2679608.0                                                (2.63) 

 

                        123036.1123036.1 22 kVnknm
a






                                                  

(2.64) 

 

 123036.14714.163)09014.0(10333.81060

1092.6
122353

27










msmmkg

skg
a              (2.65) 

 

ma 610252.5                                                                                                               (2.66) 
 

The reader should note that we have also used 
the critical value equations as stipulated by 
(2.46). 

 
2.4. Determination of the Latent Wave 

Characteristics HIV/AIDS (b , 'n , ' ,  'k

) and the Raising Multiplier 

contained in the CCW 
 
Let us now determine the basic parameters of 
the ‘parasitic wave’ which were initially not known 
before the interference from the calculated 
values of the resident ‘host wave’ using the 
below method. We can do this by understanding 
that the gradual depletion in the physical 
vibrating parameters of the Host system would 
mean that after a sufficiently long period of time 
all the active constituents of the resident ‘host 
wave’ would have been completely attenuated 
and the residual of the constituents CCW is the 
predominance of the destructive influence of the 
‘parasitic wave’. On the basis of these 
arguments, we can now write as follows. 
 



























kkk

nnn
bba

4714.1630
4924.00
09014.00

10252.50 6

         

 (2.67) 

 
Upon dividing the sets of relations in (2.67) with 
one another with the view to eliminating  we get 
 

      







































k
nk
n

bk

b

bn

00301214.0
00055141.0
1830625.0

1021279.3

10066612.1

10826492.5

8

5

5

                   (2.68) 

Suppose we equate the forth and the fifth terms 
of (2.68), then based on simple proportion rule it 
shows that 

 

mradk /.1831.0 : .0005514.0 rad  :

sradn /.0001009.0 :   mb 910881.5           
(2.69) 

 
Any of these values of the ‘parasitic wave’                   
shall produce a corresponding value of                    
lambda 892max  upon substituting it into                     

(2.67). Hence the interval of the multiplier is
8920   .  

 
2.5 Interception of Electromagnetic Wave 

with the 2D Navier-Stokes Equation 
 
Now let us intercept the pressure gradient 
equation (2.25) responsible for the propagation 
of the CCW in the Human micro-vascular blood 
circulating system by an electromagnetic EM 
wave or radiation. However, the nature of the EM 
radiation should also be two-dimensional so that 
it can easily be applied to solve the 2D Navier-
Stokes equation.  

 
Let us assume that the external intercepting EM 
radiation or force be given by 

 

).(sin2 0   trkEE


                   (2.70) 

 
Where we have defined the wave number as a 

2D vector of the form jkikk yx 


, and the 

position vector of any quantum particle of the EM 

wave as having 2D coordinate jir  sincos 


and we get that the product   
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)sincos(sincos).sincos(.)(.   rkrkrkjirjkikrk yxyx


                (2.71) 

            

                 
   trkEE sin(cos.sin2 0


                                                            (2.72) 

 

The displacement of the EM wave E


comprises of the amplitude 0E  , wave number or spatial 

frequency k , radial distance expected to travel by the EM wave r , the angular frequency , the phase 

angle  and the total time of exposure t , and where )(   . Thus the radial distance has its 

own independent angular displacement. Now let us equate the EM wave with the 2D Navier-Stokes 
equation.  
 

                
   trkEP )sincos(.sin2 0                                                           

(2.73) 

 
















































 U

r
U

r
U

r
U

r
U

rr
U

r
U

rr
U

rr
U

r
Ur 2121111

322

2

2

2

222

2

2

2
                                         

 
























t

U
r

t

U
    trkE )sincos(.sin2 0                                                       (2.74)

                                             
 

Equation (2.74) is a second order inhomogeneous differential equation whose general solution is 
expected to have both complementary function CF ( cy ) and particular integral PI ( py ). 

 

2.6 Determination of the Complementary Function (CF) of the 2D Navier-Stokes 
Equation 

 
Now to solve for the complementary function we assume that the 2D Navier-Stokes equation is equal 
to zero and after that we disengage the equation to become  
 






























r
U

r
U

rr
U

rr
U

r
Ur 11

22

2

2

2
 

































 U

r
U

r
U

r
U

r
U

r
21211

322

2

2

2

2
  

                               

0






















t

U
r

t

U
                                                                                    (2.75) 

 
Now we invoke the method of separable variables to make the function independent of one another. 
Hence let us assume that a solution U  to the second order differential equation (2.75) is of the form

Ucy  , that is 

 

                               )()()( tTrRU                                                                                 (2.76) 

 
Where R a function of only r ,  is a function of only and T is a function of only t . 

 


















T
dr

dR
T

dr

dR

r
T

dr

dR

r
T

rd

Rd
T

rd

Rd
r 

11
22

2

2

2

 

















 TR
d

d

r
TR

d

d

r
TR

d

d

r
TR

d

d

r
TR

d

d

r 




















232

2

2

2

2

21211
0














R

dt

dT
rR

dt

dT
  (2.77) 

 
Now that we have done the substitution we can now re-divide through (2.77) by TR  . 
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
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d
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d
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2
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2

2
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










dt
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T

r
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T


          

(2.78) 

 
Since the function in (2.78) are independent of one another we can simply equate them separately to 
some constant say:  ,  and   respectively. Accordingly, this condition will yield  

 

 













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Rdr
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rRdr
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Now let us use some simple algebra to simplify (2.79). When this is carefully done the result is as 
follows. 
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Equation (2.82) can be solved by using any known and applicable method for solving 2D order 
homogeneous differential equation. However, any intended applicable method should                     
take cognizance of the fact that the coefficients are also functions of the variable R .The solution is 
given as 
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Also from equation (2.80) after a careful rearrangement we get  
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We may use a different approach but similar in principle to the one above since the coefficients        
are not connected to the variables  and  . Thus we can solve (2.84) directly by quadratic        

method. 
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Finally, we recall equation (2.81) and also with further simplification and rearrangement we get.  
 

0
















T

dt

dT
r

dt

dT

                                                                                 

 (2.86) 

 
The solution to (2.86) is trivial and very direct since the coefficients are also not connected to the 
variables T and t . Thus we can solve (2.86) directly. 
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Thus the complementary function cy which is given by the general solution (2.76) can now be found by 

direct substitution of (2.83), (2.85) and (2.87) into (2.76). The substitution will yield  
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Now let ),,( trU  be the steady state time at any point ),,( trP  which is satisfied by ),,( trU  . The 

boundary conditions are 0),,( trU  when, 0r , 0 and 0t . That is, most generally, 

0)0,0,0( U as a result 
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 (2.89) 

 

     
ACC  21 ;  BCC  43   ;  15 C .                                                            (2.90) 
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Let us use some method of approximation to minimize the first two terms in the right side of (2.91). 
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Basically we have succeeded in reducing the initial six constants of integration to two, which is A and
B . However, from the nature of the problem under investigation the amplitude must be equal to one 

another BA  since 21 CC  . The reader should note that we did not bother to use 2A  if BA  but 

just A . Hence, by applying hyperbolic function we get 
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Now let us try to eliminate the constants ,  and which we have compulsorily introduced at the 

beginning of the solution. This can be done by simply comparing equation (2.96) with the constitutive 
carrier wave CCW given by (2.7). The comparison is meaningful and tolerable since it is the equation 
of motion of the constitutive carrier wave that is under study. From the comparison it can be argued 
that 
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Now by substituting (2.87) – (2.100), that is the values of A , ,  and  into equation (2.96) we shall 

get  
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However, the exponential part of the velocity-pressure gradient solution of the CCW may impose 
complications particularly as the power index becomes very large. As a result there is need for us to 
expand it in power series, that is 
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 (2.102) 
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Where we have neglected higher powers of x in the expansion. Hence 
 

),,( trU     )()(cos2 2222   






 tnnbaba   exp 

  tnn )(exp    

 













 rrkk )sincos(cosh    
























  rkk )(41

2

1
cos   

 























  rkk )(41

2

1
sin

                                                                                           

(2.104) 

 
Thus equation (2.104) is the complementary function cy of the 2D homogeneous Navier-Stokes 

equation. The unit is metres m . The azimuthal angle   is given by )(   and mr 01262.0 . 

We want to state that the values of the square root terms are sometimes imaginary and in the 
circumstance where they are imaginary, we used the absolute values. 
 

2.7 Calculation of the Particular Integral PI  
 
Now to solve for the particular integral PI  we assume that the 2D Navier-Stokes equation is not 
equal to zero but equal to the assumed applied EM wave. For the particular integral we assume a trial 
wave of the form 
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Now let us subject the trial wave function to solve the 2D inhomogeneous Navier-Stokes equation. 
The first operation is to determine the bulk velocity or the average velocity of the trial wave function. 
This can be found from the equation below. 
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(2.107) 

 
All these sets of equations emanating from the action of (2.107) when substituted into (2.74) may be 
very difficult to handle at the same time. As a result we need to do some approximation in other to 
limit the space of our work and also to minimize the chance of running into unnecessary error during 
computation. Now we would like to consider a situation when the radial distance is large then most of 
the terms in the resulting equation will go to zero. Also for the amplitude of the interception of the EM 
wave with CCW to be maximum, the azimuthal angle 0 .  
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Again let us discuss some possibilities associated with (2.108) since we know that stochastic or 
random variables are bound to come into the differential equation thereby creating inconsistent units.  
 

Case1: The first 6 terms have the unit of 1m and 2m such that even if we multiply it by the unit of the 

dynamic viscosity  which is 11  smkg we may still have irregular combination of units. 

 

Case 2: The 7
th
, 8

th
 , 9

th
 and 10

th
 terms have a units of 12  sm so that when we multiply it by the unit of 

the dynamic viscosity  which is 11  smkg  we get 23  smkg and this unit corresponds with the first two 

terms of the density part.  
 

Case 3: The 11th – 22nd terms have a units of 11  sm so that when we multiply it by the unit of the 

dynamic viscosity  which is 11  smkg we get 22  smkg and this unit does not correspond with the unit 

of the rest two terms of the density part which is 13  smkg .  

 
Generally, with these cases at hand it will be justified to work with only case 2 since the applied 
electromagnetic EM radiation will not depend on the radial distance associated with the Human blood 
circulating system. 
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Suppose we now equate coefficients of like terms on either side of the equation (2.110) to one 
another, then 
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We have from (2.111) and (2.112) respectively that by making A  and B the change of the subject 

formula, then  
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(2.115)
     

 

 
Thus equation (2.115) is the solution of the 2D inhomogeneous Navier-Stokes equation. Hence the 
general solution will now be the sum of theCF and the PI . 
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(2.117) 

 
However, equation (2.117) still contain the parameters of the Human vibration which is not supposed 
to be since we are subjecting only the HIV wave characteristics to the electromagnetic EM radiation 
and not the wave characteristics of the Human vibrating system. This is so because we do not want 
any of the wave properties of the Human system to be damaged by the EM radiation. Thus in 
equation (2.117) we have to neglect the wave characteristics of the Human system by putting them 
equal zero ( a = n =  = k =0) and work with only the absolute values of the HIV vibration or wave 

characteristics which we are exposing to the danger of the EM radiation.  
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In this case the azimuthal angle is   . The reader should also note that )(cos)(cos xx  since 

cosine is an even and symmetric function. Steady-state flow Characteristics of the general equation of 
motion of the interception of the EM wave and the HIV parasitic wave. Now let us vary the general 

solution of equation (2.119) with respect to time. Now at a steady- state
dt
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= 0, and 
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Let us now apply the addition formula for trigonometric identity to redefine the denominator of 
equation (2.121). That is 
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 (2.122) 

 
Where  is the epoch of the motion or the period of the motion of the applied EM wave. 
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(2.124) 

 
Thus equation (2.124) gives the amplitude of the applied electromagnetic (EM) radiation in 
combination with the vibration of HIV. Thus the amplitude has a dimension of length which is mmetres .  
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Thus equation (2.125) gives the applied 
oscillating electromagnetic (EM) radiation in 
combination with the vibration of HIV. Thus the 
EM wave has a dimension of length which is

mmetres .  
 

2.8 Determination of the Parameters of 
the Applied EM Wave 

 
It can also be argued that the applied EM wave 
does not take cognizance of the radial distance 
r  of the Human Aorta or the nature of the 
Human blood vessels since the HIV is not 
centred only along the radial cylindrical blood 
vessels but even in the Human brain and bone 
marrow. In other words the radial distance 
cannot hinder the interception of the EM wave. 
As a result, we are still in good position to set 

xr  and assume any arbitrary value for it during 

computation. Here x  will represent the linear 
distance between the output of the EM wave 
electronic device and the HIV/AIDS patient who 
is undergoing the radiation therapy.  

 
Note that the assumed azimuthal angle which 
was initially )(    is now  

because 0 , since we are not tempering with 

the Human vibration but exposing only the HIV 
vibratory characteristics to EM radiation. 

 
We can set the spatial frequency k  of the 
applied EM radiation to be equal to that of the 
HIV spatial frequency or any arbitrary value since 
we know that it is the path difference that is 
basically responsible for complete destructive 
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interference between any two waves. Hence we 
can set k = 150  rad/m a value that is less than 
the Human vibratory spatial frequency but 

greater than the HIV/AIDS vibratory spatial 
frequency. 

 
Case 1: Determination of the angular frequency or angular velocity  of the applied oscillating EM 
wave. 
 
Now one of the reliable possibilities that would make the oscillating amplitude of the EM wave given 
by(2.124) to be zero is when the numerator of the first term is zero. That is 
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Case 2: Determination of the epoch of the motion associated with the amplitude of the applied EM 

wave. 
 
The epoch of the motion  which appears in (2.125)can be calculated by applying (2.122). This is 

given by 
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rad7853.0)99973.0(tan 1                                                                                         (2.132) 

 
Case 3: Determination of the exposure time t  and the actual time of exposure   of the applied EM 
radiation.  
 
It is evident from (2.125) that another reliable possibility that would make the oscillating amplitude of 
the EM wave to be zero is when the term 
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However, the raising multiplier is quantized, 892,,3,2,1,0  or 8920   . The exposure time is 

related to the several values of the raising multiplier by the given equation below. 
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 (2.135) 

 



 
 
 
 

Enaibe et al.; JSRR, 15(2): 1-31, 2017; Article no.JSRR.34834 
 
 

 
24 

 

At the critical value: xx )(sin and
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x                                                           (2.136) 
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Thus equation (2.136) is quadratic in t and for positive values of the time corresponding to various 

values of the raising multiplier 8920   ( 892,,2,1,0  ) we get  

 
055411.0max t seconds    and 0000713.0min t seconds;  055411.00  t                        (2.139) 

 
The reader should note that the raising multiplier does not have a constant value but varies between

8920   ,as a result the time must also vary according to the varying multiplier. Thus the total 

time of exposure is  max3210 tttttt  62.26 seconds or the total time of exposure must be in 

the interval 270  t . 

 
Case 4: Determination of the phase angle (  ) of the applied oscillating EM wave from the path 
difference.  
 
The oscillating phase of the applied electromagnetic EM wave may not depend on the azimuthal 
angle  or the radial distance r  associated with the Human blood circulating system.  Upon this 

argument we can set mxr 2  (arbitrary value) in the oscillating phase of the EM wave. Let the 

path difference of the oscillating EM wave be 1 and the path difference of HIV vibration is 2 , then for 

complete destructive interference between the applied EM wave and the HIV/AIDS their path 

difference   must be equal to )(1800  . 

 

From the CCW equation given by (2.7), it is obvious that the oscillating phase of the CCW is of the 

form 
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Please do not confuse the symbol k to that of the applied EM wave. Now we can equate to zero the 
wave characteristics of the Human system since that is not our region of interest, that is:

0 kna  . Hence, 

 
 )()()sincos()()( 2 tEtnrkf                                                         (2.141) 
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
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
                                        (2.142) 

 

    tntntE )()(tantan)( 1                                                                           (2.143) 

 
 tntnrkf )()()sincos()()( 2                                             

(2.144) 
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  )sincos()( 2 rkf    
(2.145) 

 

Note that mr 01262.0 and   . Now the 

oscillating phase of the applied EM wave is given 
by 
 

   trk )sin(cossin1      (2.146) 

 

Now to differentiate the radial distance r  
covered by the applied EM wave from that of the 
HIV vibration resident in the Human blood 
circulating system we simply set xr  . The 

reader should also understand that the HIV/AIDS 
patient that is undergoing the radiation therapy 
will either stand on the electronic machine that is 
generating the EM wave or stand at a distance x

away from the generating EM wave machine.  
Hence this argument will enable us to write 
 

   txk )sincos(1        
 (2.147) 

  

Now from the knowledge of geometrical optics or 
physical optics that for complete destructive 
interference to occur between any two interfering 
waves then the path difference between them 

must be equal to )(1800  . 

 

  21                                    (2.148) 

 

   txk )sincos( 

   )sincos(rk           (2.149) 

 
  trkxk )sincos()(                                                                    

(2.150) 
 

304407                                   (2.151) 
 

Consequently, the HIV/AIDS candidate that is 
undergoing the radiation therapy may either 
stand on or stay away from the EM radiation 
device. As we all know the height of an individual 
cannot exceed 2 metres. Hence, in this work we 
are going to set or assume the value of x = 2 
metres as the expected radial distance covered 
by the EM wave, mr 01262.0 (the radius of the 

aorta of the Human heart) 
 

3. RESULTS AND DISCUSSION 
 
In consideration of Figs. 1 and 2 the frequency 
and the amplitude of the human latent vibration 
(host wave) are much greater than those of the 
HIV latent vibration (parasitic wave). Actually 
both spectrum shows that they are from the 
same source having a common origin. However, 

at the origin both latent waves are oppositely 
related and they are out of phase, while the host 
wave has a crest at the origin, the parasitic wave 
has a trough. This factor satisfies the fact that 
both vibrations are actually incoherent. It is the 
phase difference in their respective source 
function that causes the carrier wave to attenuate 
to zero after a specified time when they interfere 
with one another. The spectrum of the bandwidth 
of both waves increases proportionally as they 
progresses away from the origin. The reader 
should understand that we used the conditions 
for the two raising multipliers. 
 

The spectrum of the constitutive carrier wave as 
shown in Fig. 3 is similar to that of the host 
vibration. However, the edges of the amplitude 
show irregular non-smooth behaviour at various 
intervals and reduced frequency. This anomalous 
behaviour is due to the effect of the destructive 
interference of the HIV vibration on the human 
vibration. The reader should understand that 
based on the value of the raising multiplier  = 0 
–892and the computing time t  = 0 – 26.62 s 
used in the various equations, that is why the 
Host wave also go to zero around 26.62seconds 
as shown in Fig. 3. Note that this is not the 
expected age of Man. However, the expected 
age or life span of Man can be predicted or 
determined if the values of the raising multipliers 
are suitably adjusted in (2.6). 
 

Fig 5. Shows the spectrum of the interception of 
the applied oscillating EM wave with the HIV 
vibration which is resident in the human system. 
It is obvious from the spectrum that the 
interference between the applied EM wave with 
the HIV vibration show a-zero frequency in the 
coordinate interval ]127,0[  with a 

corresponding coordinate time interval of
]008897.0,0[ s . The total time taken for the zero 

amplitude and frequency is
5612.0008897.0210  ttttt  seconds. 

This is the region of destructive interference 
between the applied oscillating EM wave and the 
HIV vibration. 
 

Hence when the EM wave interferes with the HIV 
vibratory characteristics in the Human micro-
vascular system, all the formation of the 
HIV/AIDS vibration will be completely destroyed 
within 0.5612 seconds from the human system. 
After this time the applied EM wave now 
oscillates with a well behaved increasing 
frequency and spectral bandwidth to a maximum 
value of  5.5 x 10

-11
 m. The coordinates of this 

maximum value attained as a function of time 
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and the raising multiplier are 
)03897.0,578(),( t and the total time to attain 

this maximum value is about 
5515.1103897.0210  ttttt  seconds. 

After this time, the monochromatic          
frequency dependant – EM radiation finally 
attenuates to zero after a period of 26.62 
seconds. 

 
Table 3.1. shows the summary of the calculated values of the latent Human vibration (host 

wave) and latent HIV vibration (parasite wave). The table also show comparison of our present 
work with a previous one 

 
S/N    Physical 

  Quantity 
Symbol Navier-Stokes Approach 

(Present work) 
Value / unit 

Newtonian Approach 
(Previous work) 
Value/units Human wave 

characteristics 
1 Amplitude a  610252.5  m  6101.2  m  
2 Angular velocity n  09014.0 srad /  71051.2  srad /  
3 Phase angle   4924.0 rad ( radians ) 6109.0 rad ( radians ) 

4 Spatial frequency k  4714.163 mrad /  166 mrad /  

S/N HIV Parasitic wave 
characteristics 

Symbol Value Value 

1 Amplitude b  910881.5  m  10106.1  m  
2 Angular velocity n  0001009.0 srad /  111091.1  srad /  

3 Phase angle    0005514.0 rad ( radians ) 0000466.0 rad ( radians ) 

4 Spatial frequency k  1831.0 mrad /  0127.0 mrad /  

Raising Multiplier   892 )8920(  

Dimensionless constant 

13070 )130700(  

Dimensionless constant 

 
Table 3.2. Shows how the generating EM wave device should be calibrated based on the 

present work of Navier-Stokes approach 
 

Physical Quantity 
 

Symbol Range / Unit 
Present work 
Navier-Stokes approach 

Previous work 
Newtonian Approach 

The phase angle of the Applied 
EM wave 

  304407    
(radians) 

-457   373 

(radians) 
The spatial frequency of the 
Applied EM wave 

k  150 radian/m 150radian/m 

Angular frequency of the applied 
EM wave 

  0.0849 rad./m 0.00003267 rad./s 
 

The total time of exposure 
Before EM goes to zero 

t  0  t 27 s 

 

0  t 1500 s 

 

Actual time of exposure   0.5612 seconds 0.0208 seconds 
Total distance to be covered by 
the EM wave 

x  2 metres 2.5 metres 

Spatial oscillating phase of the 
Applied EM wave 

 and  10    11    

The applied EM wave 
 

E


 -6 x 10
-11  

 E


+6 x 10
-11

 

(metres) 
-120  E


 +120 

(metres) 

).(sin   trk


   txk )sincos( and )(sin   txk  

Note that the total value of the raising multiplier  and time t  can be found from the addition of successive values. That is

max210max210 ;    tttt . Hence,

sttttt 62.26;398278 055411.0210892210     
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Fig. 1. Shows the spectrum of the latent human vibration(host wave) as a function of time and 
the multiplier. The initial and final coordinate ),( t are respectively, ]0,0[ and ]055411.0,892[ s . 

The total time taken is sttttt 62.26055411.0210   .  The graph represents equation (2.1). 

Note that r =0.01262 m (radius of the human Aorta) 
 

 
 

Fig. 2. Shows the spectrum of the latent HIV/AIDS vibration(parasitic wave) as a function of 
time and the multiplier. The initial and final coordinate ),( t are respectively, ]0,0[ and

]055411.0,892[ s . The CCW lasted for a total time of about sttttt 62.26055411.0210   .        

The graph represents equation (2.2). Note that r =0.01262 m (radius of the human                    
Aorta) 
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Fig. 3. shows the spectrum of the CCW (combination of the host and parasitic wave) as a 
function of time and the multiplier. The initial and final coordinate ),( t are respectively, ]0,0[

and ]055411.0,892[ s . The CCW lasted for a total time of about sttttt 62.26055411.0210   .  

The graph represents equation (2.6). Note that r =0.01262 m. and in the circumstance         
where the square root of the oscillating amplitude is imaginary, then the absolute value           

is used 

 

 
 

Fig. 4. Shows the spectrum of the raising multiplier  as a function of time t . The spectrum is 
parabolic in shape and the multiplier increases as the time is increased and it tends to 

stabilize beyond 800 .  The stabilization is as a result of the highly reduced values of the 

constituents of the host wave contained in the CCW after a long period of time. The CCW is 
almost becoming monochromatic with the predominance of the parasitic wave in                   

this region 
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Fig. 5. Shows the spectrum of the interception of the applied oscillating EM wave with the HIV 
vibration 

 

3.1 Medical Practice Implication 
 
Perhaps, it is worth acknowledging or bringing to 
focus the fact that radiation therapy is already a 
major valid treatment option for patients with HIV, 
but mainly for associated cancer, and the toxic 
side-effects of radiation remains a concern [17] 
There is fact that such radiation therapy 
attenuates CD4 count without changing CD4% 
[18], but this seems yet to be likened to use 
radiation therapy in liver diseases [19] [20] with 
their own associated side-effects. 

 
4. CONCLUSION 
 

It is evident from this work that when the HIV 
vibratory characteristics within the human system 
are undergoing attenuation due to the influence 
of the applied EM wave, the HIV vibration 
instantaneously goes to zero without putting or 
posing and resistance to the incoming EM 
radiation. It is clear from this study that the actual 
exposure time for the HIV/AIDS patient who is 
undergoing the radiation therapy is about 0.56 
seconds. Thus this study has to some extent 
provided the means of determining the basic 
activity and performance of HIV/AIDS infection in 
the human system. Consequently, when the 
HIV/AIDS vibratory characteristics are known, it 
can then be selectively destroyed from the 

human system by anti-vibrating component. This 
work thus identifies the matrix of scientific 
priorities that should bring us measurably                   
closer to our vision of developing a permanent 
cure to HIV/AIDS infection which has                            
been the global problem for several decades 
running. 
 
5. SUGGESTION FOR FURTHER WORK 
 
The general technique advanced in this work can 
also be extended for assessing and 
understanding the formation process of other 
related diseases that affects the Human system 
whose activity is either localized or non-localized. 
For instance, HIV/AIDS and Ebola are non-
localized diseases while Syphilis, Gonorrhea and 
Tuberculosis are localized diseases of the 
Human system.  

 
6. MAJOR CHALLENGES AND TASK OF 

THE RESEARCH 
 

The great task remaining in this research work 
on the permanent cure to HIV/AIDS disease is as 
follows: 
 
 To confirm by laboratory measurement the 

classical values of the independent 
characteristic vibrating variables for both 
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Man - the resident host; a , n ,  , k  and 
those of the HIV ‘parasitic wave’ which are;

b , n ,   , k  . 

 The possibility of fabricating an electronic 
device that will generate the 
electromagnetic EM wave whose output 
will obey the given equation.  

 To establish the effect of electromagnetic 
EM wave on the Human tissues, if at all, 
during and after the exposure of the 
HIV/AIDS infected person to the regulated 
dose of the EM radiation.   
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