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ARTICLE INFO ABSTRACT

Editor: Guangming Jiang Predicting water quality indicators accurately is vital for the sustainable management of aquatic ecosystems,
particularly in dam reservoirs that are highly vulnerable to environmental phenomena. Dissolved oxygen (DO)

Keywords: and chlorophyll-a (Chl-a) are essential indicators for evaluating ecosystem stability and water quality. In this

Feature selection study, an innovative and robust intelligent framework is designed using integrated uncertainty quantification

Hybrid modeling
Reservoir management
Spatial analysis

Bloom risk detection

and feature selection to predict DO, Chl-a, and bloom risk evaluation of dams. First, the individual machine
learning and deep learning models, including Extreme Gradient Boosting (XGBoost), Convolutional Neural
Networks (CNNs), Gated Recurrent Units (GRUSs), Least Square Support Vector Regression (LSSVR), and Multi-
Layer Perceptron (MLP) were assessed. Subsequently, the most effective models are then integrated to
enhance predictive accuracy. The Boruta Feature Selection Approach (BFSA), Gamma Test, and Shapley Additive
Explanations (SHAP) are used to select the most suitable and relevant features. Then the Monte-Carlo simulation
is implemented for uncertainty analysis to evaluate the reliability of models’ prediction by determining proba-
bility distribution functions. The hybrid XGBoost-CNNs achieved the highest performance in terms of R%=0.923,
RMSE = 0.547 pg/1 for Chl-a prediction, and CNNs obtained R? = 0.995, RMSE = 0.143 ppm for DO prediction.
The 95 % Prediction Uncertainty (95PPU) varied from 79.37 to 100, which shows strong predictive reliability.
Also, d-factor values lower than 0.77 confirmed the model uncertainty is low. Furthermore, water bloom risk was
assessed using the predicted Chl-a concentration. The analysis indicated no risk levels at reservoir depths of
0-5.5 m and 13.5-32 m, while low-risk levels were identified between 5.5 and 13.5 m. The maximum risk
probability was 20.66 % when Chl-a concentrations were below 40 pg/1. The results highlight the effectiveness of
hybrid artificial intelligence frameworks in enabling real-time water quality monitoring, early detection of
harmful algal blooms, and promoting sustainable reservoir management.

1. Introduction aquatic species that enhance and sustain ecosystem services and
contribute to the economic stability [1,2]. Freshwater ecosystems are

Managing water quality in dam reservoirs is essential for ecological facing significant environmental challenges, including algal blooms
preservation, ensuring public water supply security, and promoting caused by global warming, industrialization, increasing pollutant
economic and recreational opportunities. These water bodies are trends, and various human activities [3-6]. Dissolved oxygen (DO) and
essential sources of drinking water and provide habitats for various chlorophyll-a (Chl-a) are two key indicators of water quality,
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representing the amount of oxygen available for aquatic life and
reflecting the abundance of algae and cyanobacteria, reflecting the
reservoir’s trophic status and potential eutrophication [7,8]. The
occurrence of blooms can pose significant ecological risks, such as
lowering oxygen levels in water bodies, and can lead to the death of
aquatic organisms, including fish [9].

Monitoring DO and Chl-a is crucial, yet challenging due to their
temporal and spatial variability driven by complex interactions among
physical, chemical, and biological processes [10]. Conventional moni-
toring techniques require manual sampling and laboratory testing,
which are resource-intensive, time-consuming, and expensive. More-
over, these methods often lack the resolution and scalability required for
comprehensive monitoring, particularly in large reservoirs with limited
access [11]. Additionally, these conventional approaches fail to capture
rapid changes in water quality caused by sudden environmental events,
such as storms or nutrient influxes, which can significantly impact DO
and Chl-a levels [12]. Therefore, accurate prediction of these water
quality parameters is necessary for effective reservoir management,
early detection of harmful algal blooms, and mitigation of eutrophica-
tion risks [13]. Over the years, the empirical models have been devel-
oped to predict Chl-a concentrations and analyze phytoplankton
dynamics in natural ecosystems [14]. However, the interactions within
algal communities, which are significantly affected by nutrient influx
and temperature variations, complicate efforts to make precise ap-
proximations [15,16]. Process-based models often face challenges due to
their intricate structure, suboptimal predictive accuracy, extensive
calibration demands, and limited capacity to integrate dynamic input
variables influencing the target outcome [17].

Recent developments in artificial intelligence (AI), particularly ma-
chine learning (ML) and deep learning (DL), have significantly enhanced
the ability to address these challenges. These Al driven methods are
beneficial for examining extensive datasets to detect the complex and
nonlinear relationships in water quality parameters. Several studies
demonstrated the effectiveness of integrating traditional water quality
index (WQI) models with ML techniques for real-time monitoring and
management of aquatic ecosystems. Kim et al. [18] suggested that the
British Columbia Water Quality Index (BCWQI)-based assessment
framework can be effectively replaced by long short-term memory
(LSTM) models driven by in-situ measurable parameters. Zare et al. [19]
analyzed extensive water quality datasets using ML algorithms to
identify key water quality variables (WQVs). The model’s robustness
was confirmed to support data-driven decision-making in reservoir
management. In addition, by applying ML/DL techniques, the DO and
Chl-a variables can be predicted with greater accuracy and efficiency as
compared to the other computational models, which provides a cost-
effective solution for managing water quality [20,21]. For example,
Kim et al. [7] showed that Random Forest (RF) is effective in predicting
Chl-a concentrations in the Han River basin, highlighting the signifi-
cance of feature selection for improving model accuracy. Likewise, Tian
et al. [22] utilized Convolutional Neural Networks (CNNs) to model
temporal variations of Chl-a, demonstrating the capability of DL models
to capture complex patterns in time-series data. Huang and Zhang [23]
found that nonlinear models, such as Multi-Layer Perceptron (MLP) and
Support Vector Regression (SVR), are significantly accurate in predict-
ing Chl-a concentrations compared to linear models. These studies
highlight the increasing dependence on data-driven methods for moni-
toring and managing water quality.

Over the past few decades, remote sensing has become a powerful
tool for monitoring water quality and eutrophication in inland and
coastal waters. For instance, Mozafari et al. [24] employed MODIS-Aqua
Level 3 chlorophyll-a (Chl-a) data to assess the trophic state of the
Caspian Sea. Their findings showed acceptable agreement with in situ
measurements, reinforcing the utility of satellite data for large-scale
water quality assessment. Further advancements have been made
through machine learning techniques. Shamloo and Sima [25] evaluated
the performance of Landsat-8 (L8) and Sentinel-2 (S2) data, combined
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with multiple linear regression (MLR) and ANN models, to predict Chl-a
in Lake Urmia. Their results indicated that L8-based models out-
performed those using S2, with ANN achieving the highest accuracy.
Similarly, Mozafari et al. [26] integrated MODIS-Aqua and ERA5
climate data into a generalized additive model (GAM) to predict Chl-a in
the Caspian Sea, identifying photosynthetically active radiation (PAR)
and sea surface temperature (SST) as key drivers of phytoplankton
biomass. Despite these advancements, challenges remain in applying
remote sensing and ML/DL methods across different water depths and
optical conditions. Fooladi et al. [27] highlighted persistent un-
certainties in predicting water quality parameters at varying reservoir
depths, emphasizing the need for further refinement of algorithms and
validation with in situ data. Expanding on these studies, this research
aims to address existing gaps by predicting Chl-a and DO concentrations
in the depth of the reservoir.

Hybrid modeling frameworks that integrate various ML and DL al-
gorithms provide a promising opportunity to further enhance prediction
accuracy and reliability. Hybrid approaches can leverage the strengths
of individual models to overcome their limitations and provide more
reliable predictions. A relevant study by Fooladi et al. [27] presented a
hybrid clustering technique for predicting DO and Chl-a concentrations
in the Wadi Dayqah Dam in Oman. The study used advanced clustering
methods to segment the dataset into uniform groups, allowing for pre-
cise model training and validation for each cluster. By combining ge-
netic algorithms (GA) with Bayesian Ridge Regression in a hybrid
framework, the researchers enhanced prediction accuracy and included
uncertainty quantification to evaluate model reliability. This method
highlighted the significance of integrating clustering with advanced
hybrid models to effectively tackle the spatial and temporal variability
present in water quality data. Another study by Abbas et al. [20]
introduced a hybrid model combining Long Short-Term Memory (LSTM)
networks and CNNs, effectively integrating temporal and spatial fea-
tures. These studies highlight the evolving nature of ML and DL appli-
cations in water quality modeling, with an increasing focus on hybrid
approaches that combine the strengths of individual models.

Feature selection is a vital process in predictive modeling, as it en-
sures that only the most relevant variables are included in the predic-
tion, thereby enhancing its interpretability, accuracy, and
computational efficiency. In the context of DO and Chl-a prediction,
selecting optimal input variables is essential to accurately represent the
underlying environmental and water quality variables that influence
these parameters [28]. Advanced feature selection techniques, such as
the Boruta Feature Selection Approach (BFSA) and Shapley Additive
Explanations (SHAP), have shown great potential in identifying key
variables that influence predictions. The BFSA is a robust algorithm that
determines the importance of features by comparing them to randomly
shuffled shadow features, ensuring only statistically significant variables
are retained for predictive modeling [29]. The SHAP framework offers a
clear interpretation of how each variable contributes to model pre-
dictions, helping to understand the factors influencing DO and Chl-a
levels [30,31]. Zhou et al. [31] compared traditional methods like
Principal Component Analysis (PCA) with modern approaches such as
SHAP and concluded that SHAP offers superior interpretability and
performance in identifying critical variables. SHAP provides model-
agnostic, interpretable feature importance scores, even for nonlinear
interactions. While PCA reduces dimensionality by capturing maximum
variance, it assumes linearity and does not inherently rank features by
predictive importance [32]. Furthermore, Park et al. [33] highlighted
the limitations of Tree-based Feature Importance (Tree-FI) and recom-
mended incorporating SHAP to mitigate variable correlation challenges.
The Gamma Test (GT) directly quantify the predictability of input fea-
tures, identify those with the strongest nonlinear influence on the target
variable. Unlike mutual information (MI), BFSA and SHAP account for
feature dependencies and model-specific contexts. MI is scalable and
robust to noise but evaluates features independently, potentially over-
looking synergistic interactions [34]. The selection of BFSA, SHAP, and
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GT was based on their strengths in handling nonlinear relationships,
interpretability, and robust feature importance assessment, which are
key requirements for water quality prediction. These methods separately
applied and compared their selected features using XGBoost perfor-
mance, ensuring the most robust subset was retained for modeling. In
the current study, the selection of BFSA, SHAP, and GT was based on
their strengths in handling nonlinear relationships, interpretability, and
robust feature importance assessment, which are key requirements for
water quality prediction. These methods were applied separately and
compared their selected features using XGBoost performance, ensuring
the most robust subset was retained for modeling.

Uncertainty analysis is essential in environmental modeling for
evaluating the reliability of predictions and facilitating informed
decision-making. Analyzing the uncertainty of predictions is essential
for ensuring the robustness of water quality models, particularly when
they are used to guide management interventions [106]. Busari et al.
[106] applied different sampling periods to develop LSTM models
enhanced with a Monte-Carlo dropout technique for predicting Chl-a
concentrations in a freshwater lake. Their findings indicated that
hourly data supported 7-day ahead predictions, surpassing the accuracy
of daily data. In the current study, the uncertainty analysis using the
Monte-Carlo simulation technique is applied to predictive models for
providing probabilistic insights into the reliability of DO and Chl-a
predictions.

In addition, assessing the risk level of water blooms using the best-
selected model for predicting Chl-a is crucial for effective lake and
reservoir management. Bloom risk assessment involves evaluating algal
blooms’ likelihood and potential impact on a water body. This
comprehensive approach ensures that the model provides accurate
predictions and supports effective and timely decision-making for water
quality management [23]. By integrating risk assessment into the
modeling framework, the study provides actionable insights for reser-
voir management to reduce environmental and ecological risks.

1.1. Research gap and motivation

Despite recent advancements in predictive modeling, research gaps
in DO and Chl-a prediction still exist especially for bloom risk evalua-
tions. First, most studies have focused on rivers, with limited exploration
of shallow or deep dam reservoirs. These reservoirs pose distinct chal-
lenges due to their climatic variability and hydrological dynamics,
which require strong and innovative modeling approaches. Second,
predicting DO and Chl-a at different depths of dam reservoirs in arid and
semi-arid regions, such as Iran, is currently limited. Third, despite the
proven benefits of advanced feature selection techniques like Boruta and
SHAP, many studies rely on traditional feature selection methods for
finding input variables of ML/DL models. Fourth, hybrid models that
combine the strengths of tree-based ML (e.g., XGBoost) and DL (e.g.,
CNNs, GRUs) are still underexplored for DO and Chl-a prediction which
can effectively capture spatial patterns and nonlinear interactions. Fifth,
integrating advanced feature selection techniques (BFSA and SHAP) and
hybrid ML/DL models remains underutilized for predicting water
quality parameters of DO and Chl-a. Finally, few studies have incorpo-
rated comprehensive uncertainty analysis and bloom risk assessment to
help decision-makers for managing dam reservoirs.

1.2. Research objectives

This work aims to address the aforementioned gaps by (1) identifying
the optimal input variables for predicting DO and Chl-a using advanced
feature selection techniques, including BFSA, GT, and SHAP; (2)
developing and evaluating state-of-the-art ML and DL models, such as
XGBoost, MLP, GRUs, and CNNs, for accurate water quality prediction;
(3) incorporating Monte Carlo-based uncertainty analysis and risk
assessment to quantify the confidence in model predictions and support
decision-making; and (4) applying the proposed framework to a dam
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reservoir in Iran for contributing to the limited body of research in this
region.

2. Material and methods
2.1. Study area

The studied Dam reservoir is situated in southeastern Iran in a
mountainous area with a semi-arid climate. Water resources in this re-
gion are limited, and the landscape is characterized by uneven forma-
tions. Agriculture significantly contributes to the economy of this region
by cultivating crops like wheat, barley, pomegranates, and almonds that
are suited to the cooler mountain climate. Livestock farming, particu-
larly with sheep and goats, is a crucial economic activity in this region.
The mountainous setting provides a distinctive natural environment,
including valleys and streams nourished by seasonal rains and snowmelt
from higher elevations. Climatic data indicate an average yearly tem-
perature of 14.2 °C, a humidity level of 33 %, and a total precipitation of
256 mm.

The dam reservoir (Fig. 1), with a 40 million cubic meters storage
capacity is the crucial source of drinking water around cities. The dam
operation was started in 2009 and is responsible for downstream water
demands, including 120 1/s for agriculture, 30 1/s for environmental
needs, and 10 I/s for industry activities. The reservoir of dam has unique
characteristics that impact its water quality. These include the inflow of
floodwaters from rural areas and agricultural lands carrying organic
materials, wastewater, plant residues, leaf litter, fertilizers, and pesti-
cides. Additionally, factors such as local temperature fluctuations, the
lake’s depth, evaporation, and prolonged residence time due to carry-
over contribute to water quality challenges.

2.2. Measurement data in dam reservoir

In this research, three measurement sections were established within
the Dam reservoir (Fig. 1). In-situ data were collected using a combi-
nation of personnel, a boat, and a rapid optical sensor (CTD 310-Idro-
naut, Fig. S1). The depths recorded at measurement sections of Bl,
B2, and B3 were 48.30 m, 39.41 m, and 28.02 m, respectively. The CTD
310-Idronaut device with integrated sensors can measure multiple var-
iables in aquatic environments. It enables automatic continuous vertical
profiling, saving data within or transmitting it to a connected computer
in real-time. Specifically, the CTD 310-Idronaut multiparameter device
features a fast-optical DO sensor. It can measure detailed vertical dis-
tributions of DO (ppm), depth (m), temperature (°C), electrical con-
ductivity (EC) (mS/cm), salinity (PSU), Chl-a (ug/1), and pH. The study’s
data were collected at various depths, ranging from the surface to
approximately 32 m, on 8 May 2023. Given the significance of DO and
Chl-a as water quality indicators, this study focuses on modeling these
two parameters within the Dam reservoir.

2.3. Multicollinearity test on the variables

Due to strong interconnections, or collinearity, among predictor
variables, the accuracy and reliability of predictions for the target var-
iable can be significantly diminished. Therefore, it is essential to conduct
a collinearity test on datasets before selecting variables for modeling.
Collinearity arises when independent variables are highly correlated,
significantly obscuring the individual contributions of each predictor
and leading to misleading results. Multiple methods have been devel-
oped to detect and quantify collinearity in order to address this issue.
Among these, the Variance Inflation Factor (VIF) has emerged as a
widely adopted and robust technique for evaluating the degree of cor-
relation between independent variables and their collective impact on
the model’s outcomes [35,36]. The VIF is calculated using the following
equation:
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Fig. 1. The location of the study area, including Dam reservoir, and the measurement points.
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where R2J represents the coefficient of determination obtained by
regressing the j independent variable against all other predictors in the
dataset.

This metric measures how much the variance of an estimated
regression coefficient increases due to multicollinearity. According to
Bui et al. [37], a VIF value >10 strongly indicates problematic collin-
earity, suggesting that the associated variable may be redundant or
overly dependent on other predictors. High VIF values require further
investigation as they may affect the model’s stability and interpret-
ability. Addressing collinearity early in the modeling process can
improve the predictive power and robustness of analyses.

2.4. Feature selection

To enhance model interpretability and predictive performance,
advanced feature selection techniques namely BFSA, SHAP, and GT
were applied in this study.

2.4.1. BFSA method

Feature selection is critical in developing predictive models for water
quality assessment, as it enhances model interpretability, reduces
overfitting, and improves computational efficiency. The BFSA is a
robust, wrapper-based method designed to identify the most relevant
features by comparing them with their randomized counterparts, known
as shadow features. This method ensures that only the most significant
predictors are retained, contributing to more reliable and interpretable
models in environmental studies [29].

BFSA operates by iteratively evaluating feature importance using a
classification algorithm, typically a Random Forest (RF), and deter-
mining whether a given feature provides information beyond what is
expected from random noise. Features demonstrating significantly
higher importance than shadow features are deemed relevant, while
those with lower importance are discarded. This rigorous process makes
Boruta particularly effective in handling complex, high-dimensional
datasets, such as those encountered in water quality prediction [38].

The algorithm consists of eight essential steps aimed at systemati-
cally assessing and improving the significance of variables within the
dataset. To begin the process, all variables are duplicated to enhance the
information system and create a comprehensive foundation for analysis.

Next, the newly added attributes are shuffled to break existing correla-
tions with the target variables (DO and Chl-a). A random forest algo-
rithm is used to calculate Z-scores, which assess the significance of each
variable. The algorithm identifies the highest Z-score among shadow
variables (artificial attributes) and retains only those variables that
exceed this benchmark. For variables whose importance remains
ambiguous after this step, an equality analysis is conducted to assess
their relevance further. Subsequently, variables with lower importance
are discarded, while those with higher Z-scores are preserved. Having
served their purpose, shadow variables are removed from the dataset to
streamline the evaluation process [39].

2.4.2. SHAP method

ML models are essential for assessing water quality because they can
effectively manage complex, non-linear relationships among different
environmental parameters. However, the interpretability of these
models remains a significant challenge, often limiting their practical
application in environmental management. To address this issue, the
SHAP method has been employed as a robust method to explain and
interpret the contributions of individual features in ML prediction [30].

SHAP, based on cooperative game theory, assigns an importance
value to each feature by evaluating all possible feature combinations,
thus providing a thorough understanding of each feature’s influence on
the model’s output. This method ensures that the impact of each
parameter is accurately assessed, promoting transparent and interpret-
able ML models in water quality research [40,41].

2.4.3. Gamma Test method

The GT is a non-linear modeling analysis tool used to estimate the
noise variance in a dataset, which helps determine how much an output
variable can be represented as a smooth function of input variables. This
approach is particularly effective in identifying and quantifying non-
linear relationships between inputs and outputs, which is essential for
constructing accurate predictive models [42].

The key idea behind the GT is that when two input vectors are close
together in the input space, their corresponding output values should
also be similarly close in the output space, provided that there is a
smooth underlying function. Any differences from this expectation are
considered to be due to noise. The GT estimates the noise variance in the
data by examining the relationship between the distances of nearest
neighbors in the input space and the corresponding differences in the
output space. This estimation helps in understanding the data’s



A. Seifi et al.

suitability for modeling and the potential accuracy of predictive models
[43].

2.5. Machine learning and deep learning models

Several models, including MLP, XGBoost, LSSVR, GRUs, and CNNs,
are considered to predict Chl-a and DO in the dam reservoir. The
selected ML/DL models are particularly effective when dealing with
complex and nonlinear relationships between input and output vari-
ables. The selection of these specific techniques was driven by a
comparative analysis of their strengths and suitability for the problem at
hand. Each technique brings unique advantages in handling different
aspects of the data complexity, such as nonlinearities, generalization,
computational efficiency, dependencies, and overfitting. Each model
contributes uniquely to addressing the complexities inherent in water
quality prediction.

(a) Training set

v

Feature combinations

tree | tree 2 tree N
b 4 R 4
Learning ‘ Learning Learning
Weight Weight Weight
Predictor 1 Predictor 2 Predictor N
7= A00 V=1 + f(X) ?Nt =?Nt_1+th(X)

\ 4

Summation

A

Predictions
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2.5.1. XGBoost model

XGBoost is an advanced version of gradient-boosting algorithms that
focuses on speed and performance. It constructs an ensemble of decision
trees in sequence, with each new tree correcting the errors made by the
previous one. This iterative process aims to minimize a specific loss
function, which improves the model’s predictive accuracy [44].

A unique aspect of XGBoost is its regularization framework, which
imposes penalties on model complexity to avoid overfitting. This is
accomplished by incorporating regularization terms into the objective
function, which controls the model’s complexity and enhances gener-
alization. Additionally, XGBoost introduces a sparsity-aware algorithm
capable of handling missing values and optimizing memory usage,
making it efficient for large-scale datasets.

The algorithm supports parallel and distributed computing, enabling
accelerated training across multiple cores or machines. This scalability is
especially beneficial when working with large datasets and complex
models. Additionally, XGBoost utilizes a unique tree learning method
based on quantile sketching, which allows for the handling of weighted
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Fig. 2. The schematic diagram of (a) XGBoost, (b) MLP [48], (c¢) GRUs [53], and (d) CNNs [61] models.
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data and enhances the process of finding splits in decision trees [45].
The schematic representation of the XGBoost algorithm is shown in
Fig. 2a. Trees are built sequentially, with each tree correcting errors

from the previous one. The output (Yy,) can be written as following
equation

Ne
equal?N, = Z fie(X) (2)
k=1

where N, is the number of decision trees and f; is the k™ decision tree.
To gain insight into this model’s structure and mathematical foun-
dations, see Chen and Guestrin [21] and Lee et al. [46].

2.5.2. MLP model

The MLP is a type of artificial neural network (ANN) that was chosen
due to its ability to learn complex patterns and relationships from data,
which is essential when dealing with the multidimensional and
nonlinear nature of input and output data. MLP excels at capturing
intricate dependencies in data through hidden layers of neurons. In
water quality prediction, MLPs are employed to analyze multiple envi-
ronmental and hydrological parameters, such as temperature, pH, DO,
and nutrient concentrations, to accurately forecast water quality indices
[471.

An MLP consists of an input layer, one or more hidden layers, and an
output layer. Each layer is made up of interconnected neurons, with
each neuron applying a weighted sum of its inputs, followed by a non-
linear activation function. Common activation functions include the
Rectified Linear Unit (ReLU) and sigmoid functions, which add non-
linearity to the model, allowing it to capture complex patterns within
the data. The training process involves optimizing the weights and
biases from the input to the hidden layer (W; and /)’j) and from the
hidden to the output layer (Wy and g). This is done by minimizing the
error function that measures the difference between the predicted out-
puts and the actual outputs [48]. This study applied the Rectified Linear
Unit (ReLU) activation function, and the loss function was optimized
using the Optuna optimization algorithm. The overall structure of the
MLP model is presented in Fig. 2b.

2.5.3. LSSVR model

The LSSVR is an extension of the traditional Support Vector Machine
(SVM) framework, tailored for regression tasks. Unlike standard SVMs,
which solve a quadratic programming problem with inequality con-
straints, LSSVR simplifies the optimization process by transforming it
into a set of linear equations. These equations utilize equality constraints
along with a least squares cost function. This reformulation improves
computational efficiency, particularly when working with large datasets
[49]. The methodology involves transforming input data into a high-
dimensional feature space through the use of kernel functions, allow-
ing for the detection of complex patterns that linear models may over-
look. This study employs the Radial Basis Function (RBF) kernel. The
LSSVR training process involves minimizing a cost function that bal-
ances model complexity and fitting error. This is accomplished by
introducing a regularization parameter that balances the smoothness of
the regression function with the tolerance for deviations from the actual
data points. The solution to this optimization problem is found by
solving a system of linear equations, which is computationally simpler
than the quadratic programming used in SVMs. This efficiency makes
LSSVR a practical choice for real-time water quality monitoring and
prediction systems [50].

2.5.4. GRUs model

The GRU is a recurrent neural network (RNN) designed to handle
sequential data and capture temporal dependencies. The GRUs tackle
issues found in traditional RNNs, like vanishing and exploding gradients,
by using gating mechanisms to manage information flow. This archi-
tecture allows GRUs to effectively capture long-term dependencies in
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time-series data, making it especially suitable for applications such as
water quality prediction [51].

The training process for a GRUs model involves feeding time-series
data into the network, where the gating units adjust the influence of
previous states and current inputs. This mechanism enables the model to
learn complex temporal patterns without explicitly defined time lags or
external feature engineering. The ability of GRUs to manage de-
pendencies over extended time periods allows it to capture the dynamic
and non-linear relationships inherent in environmental data. The
model’s structure includes reset and update gates that control the
incorporation of new information and the retention of past data, facili-
tating accurate predictions based on historical water quality measure-
ments [52]. The GRUs model can be expressed using the following
equations [53]:

re = 6(W,x; + Uh,_1 +b;) 3
2 = 6(WyX; + Uzhe_y +b,) Q)
e = tanh[Wix, + Up(r: ® he_q) + b,] 5)
h=(1-2)0h 1+ ®h 6)

where W and U represent the weight matrices, b represents bias vector,

2: shows the update gate, r; is the reset gate, Ht represents the candidate
state, and h, shows the hidden state.
The structure of the GRUs model is illustrated in Fig. 2c.

2.5.5. CNNs model

CNNs have become a powerful deep learning architecture for man-
aging spatially structured data, making them particularly effective for
various environmental modeling tasks, including water quality assess-
ment. The basic structure of CNNs includes three key layers: convolu-
tional, pooling, and fully connected layers, each with a distinct role in
feature extraction and classification [54].

The architecture of CNN models consists of several convolutional
layers, each followed by an activation function (typically ReLU) and
pooling layers that reduce dimensionality and improve computational
efficiency [55,56]. The high-level features extracted are passed through
fully connected layers to generate final predictions. Additionally,
dropout layers are incorporated to mitigate overfitting, as recommended
in previous studies [56].

One of the key advantages of CNNs in water quality prediction is
their ability to process raw sensor data with minimal preprocessing,
thereby reducing reliance on domain-specific feature engineering [107].
This characteristic makes CNNs adaptable to diverse environmental
datasets, including those collected from reservoirs, rivers, and coastal
regions. Additionally, CNN models can be integrated with other ML and
DL architectures.

In water quality estimation, CNNs have been employed to identify
spatial patterns within datasets, utilizing their capacity to automatically
detect relevant features [58-60]. The study by Zamani et al. [61]
highlighted the effectiveness of CNNs in estimating key water quality
indicators (WQIs), such as Chl-a and DO. Their CNNs model was
designed to process multidimensional data inputs, including spatial at-
tributes (latitude, longitude, and depth), to extract meaningful features
contributing to accurate predictions. The structure of the CNNs model is
illustrated in Fig. 2d.

The models and all simulations were developed and implemented in
Python, utilizing its comprehensive libraries and tools for computational
modeling and analysis. It should also be noted that data from sections B1
and B3 were used for modeling, including training and testing, while
data from section B2 were used for assessing best-selected models.
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2.6. Uncertainty analysis

Monte Carlo simulation was used to assess the uncertainty of the
models. It is considered one of the most effective techniques for uncer-
tainty analysis and has gained considerable popularity in recent years,
especially in hydrological modeling studies. The modeling process be-
gins by identifying the optimal probability distribution function for the
model’s output. A Kolmogorov-Smirnov (KS) test was employed to select
the best-fitting distribution from a set of 20 candidate distributions,
including normal, gamma, beta, exponential, lognormal, Weibull
(minimum and maximum), Pareto, Cauchy, chi-squared, Student’s t,
uniform, triangular, logistic, exponentially modified normal, skew-
normal, Gumbel (right and left), Laplace, and power-law distributions.
Next, the selected probability distribution function was used to simulate
the model’s output. For each prediction, a random value was drawn
from the respective distribution and converted into a feasible value
using the distribution’s mean and variance. This sampling process was
repeated 1000 times, and the resulting data were analyzed to assess
variations in the model’s results [62].

This method uses the 95 % predicted uncertainties (95PPU) factor to
establish a range of model outputs, defining the bounds for uncertainty
analysis. The 95PPU is calculated by determining the cumulative dis-
tribution of prediction values at the 97.5 % and 2.5 % limits based on
1000 predictions. For the uncertainty level to be considered appropriate,
the 95PPU range should include “most of the model’s prediction”.
Specifically, an acceptable uncertainty level is achieved when the
95PPU covers 80-100 % of the data. In more complex scenarios with
lower estimation accuracy, having 50 % of the measured samples within
the 95PPU range is deemed satisfactory. Also, to determine the reli-
ability and predictive capability of the models, the degree of uncertainty
(dy) is used as an assessment tool. The percentage of the model’s pre-
diction data falling within the 95 % confidence interval of Monte Carlo
simulations and d-factor are calculated as [63]:

_ Count(Q\X; < Q < Xy)

95PPU(%) - % 100 @)

_ 1 &

dx = E ; (XU - XL)i (8)
d,

d — factor = o (C)]

where k is the total number of samples, o, is the standard deviation of

the DO or Chl-a variables, and d, is the mean distance between the upper
and lower bounds.

2.7. Risk of water blooms

Water blooms, characterized by the rapid proliferation of algae in
eutrophic water bodies, are a significant environmental concern. Four-
level classification system has been established, aligned with nation-
ally recognized eutrophication standards including no risk (Chl-a < 10
mg/m?, indicating poor or medium nutrition), low risk (Chl-a 10-20
mg/m°, slight eutrophication), medium risk (Chl-a 20-40 mg/m?,
moderate eutrophication), and high risk (Chl-a > 40 mg/m?, severe
eutrophication) [23].

Current methods for evaluating bloom risk are mainly data-driven,
which makes them vulnerable to variations in data quality and un-
certainties in factor relationships. To address this, the risk probability
(R) has been calculated using the following equation:

R=PxKXxE (10)

where P represents the average probability of water bloom occurrence, K
denotes to monitor data accuracy, and E signifies model prediction
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accuracy. For P, it is assumed that when Chl-a exceeds 40 mg/m? (severe
eutrophication), P = 100 %; for Chl-a concentrations (C) below 40 mg/
m3, P can be calculated as follows:

C
P=|— 100 11
(40) * an

This probabilistic approach provides a practical framework for water
bloom risk assessment, moving beyond traditional methods’ rigid clas-
sifications and better reflecting real-world scenarios’ complexities [23].

2.8. Models evaluation criteria and diagrams

The performance of various models was assessed using multiple
statistical evaluation metrics, such as the root mean square error
(RMSE), the coefficient of determination (Rz), mean absolute error
(MAE), and (PBIAS). The mathematical formulations for these criteria
are provided below:

RMSE = \/%ZN: (o —yire)? a2
N 2
(v —7) (" - )
R% — i=1 (13)
N _.o |N —2
S0 o)
1w re bs
N
> (Y™ — Y) x 100
PBIAS == (15)

ud b.
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where N is the total number of observations, Y*'* is the predicted value,
and Y is the observed value.

In addition, models were evaluated using two plots including Taylor
diagram and the error box plot. The Taylor diagram is a powerful
graphical method integrating three essential statistical metrics,
including standard deviation (SD), centered root mean square difference
(RMSD), and the R? into a comprehensive visualization. This diagram
offers a straightforward method to evaluate the alignment between
model predictions and observed data. Plotting these metrics together
allows for a straightforward comparison of model performance, high-
lighting how closely the predicted results match the observed values in
terms of variability, error magnitude, and correlation strength. Error box
plots provide a visual summary of error distributions, highlighting in-
sights into consistency, spread, and potential outliers in model pre-
dictions. These tools work together to create a strong framework for
evaluating the accuracy and reliability of models, allowing researchers
to identify their predictive strengths and weaknesses.

2.9. Model overview and framework development

The framework of the model consists of a series of essential steps,
which are described in detail as follows and shown in Fig. 3.

Step 1. Data preprocessing and evaluation using Pearson correla-
tion coefficient heatmap, density plot, and VIF analysis

The density distribution plots of water quality variables are given in
Fig. S2. The x-axis represents the measured values of these parameters,
while the y-axis denotes the density of occurrences, providing insights
into the frequency distribution of the data. It is necessary to note that the
depths recorded at measurement sections of B1, B2, and B3 were 48.30
m, 39.41 m, and 28.02 m, respectively. The density distributions of
temperature across the three sections (B1, B2, and B3) indicate relatively
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Fig. 3. Flowchart of modeling process for predicting DO and Chl-a.

similar trends, with an unimodal distribution in each case. There are no
extreme deviations, indicating stable thermal conditions across sam-
pling sites. The EC distributions exhibit multimodal patterns at all three
locations. While the overall trends are similar, B1 shows a slightly
broader distribution, suggesting more variability in conductivity. In this
section, multiple peaks may indicate influences from inflows or
anthropogenic activities. The salinity density distributions in B1 and B2
display a right-skewed pattern, peaking at lower salinity values with a
gradual decline toward higher salinity levels. This trend indicates that
the reservoir primarily contains freshwater, with only minor saline in-
trusions. The pH density plots indicate that the reservoir conditions are

neutral to slightly alkaline. The broader distribution observed in B3 may
suggest more significant fluctuations in pH levels, potentially due to
biological activities or localized inputs. The density plots for DO indicate
a multimodal distribution, particularly in B1 and B2. The variation
suggests possible differences in aeration, photosynthetic activity, and
water column stratification across the reservoir. The broader distribu-
tion in B3 is affected by the lower depth of measurements. It may reflect
localized mixing or external inputs influencing DO concentrations. Chl-a
density distributions exhibit variations between sections. The right-
skewed nature of the distributions suggests episodic algal blooms or
localized eutrophication processes, potentially driven by nutrient
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availability and hydrodynamic factors.

The Pearson correlation coefficient heatmaps for B1, B2, and B3
datasets are given in Fig. S3. The Chl-a shows a moderate positive cor-
relation with pH and a weak correlation with other parameters, sug-
gesting pH levels might influence Chl-a concentrations. Ibelings and
Maberly [64] found that elevated surface pH facilitates the uptake of
atmospheric CO; into aquatic systems through a mechanism known as
chemical enhancement, which subsequently enhances algal photosyn-
thesis and leads to increased Chl-a concentrations. Han et al. [10]
confirmed this result when investigating the correlation between vari-
ables in the Namhan River watershed in South Korea.

The correlation between Chl-a and Temperature in the B3 section
differs from that observed in B1 and B2, potentially due to variations in
hydrological characteristics, the shallower depth of B3, and anthropo-
genic influences. The correlation of Chl-a with other water quality pa-
rameters in the B3 section, located upstream of the dam reservoir, is
lower than in the B1 and B2 sections. This emphasizes the need to
monitor upstream Chl-a levels to better predict and manage changes in
downstream water quality. Different research has confirmed that water
temperature is crucial in regulating algal bloom dynamics in aquatic
ecosystems [65,66]. Also, a study on rivers by Kim et al. [67] and
another on rivers and marginal lakes by Casanova et al. [68] found a
strong positive correlation between EC and Chl-a. However, our findings
do not fully align with these results, as we observed relatively weak
correlations between Chl-a and two variables of EC and Temperature.
The current study results are similar to those of Yang et al. [13], who
applied correlation analysis to reveal the Chl-a concentration pattern in
the Fuchun River, China. They presented that the precise relationship
and the extent of the impact remain uncertain, as the correlations be-
tween variables are highly intricate due to their strong dependence on
spatiotemporal variability, climate dynamics, and anthropogenic
influences.

The DO strongly correlates with all input variables of depth, tem-
perature, EC, salinity, and pH. Notably, the strong correlation of dis-
solved oxygen with depth in datasets B1 and B2, as well as with salinity
in section B3, underscores the impact of these factors on oxygen levels.
The strong correlations between DO and other variables indicate reliable
relationships that can be utilized for predictive modeling and environ-
mental monitoring. However, strong correlations also indicate potential
multicollinearity, which should be addressed in multivariate analyses to
avoid biased estimates.

The VIF test was conducted on the dataset to identify and eliminate
variables exhibiting strong collinearity. Table 1 illustrates the collin-
earity relationships among the independent variables for predicting Chl-
a and DO. The results revealed that nearly all variables demonstrated a
low risk and acceptable degree of collinearity (1 < VIF < 5) in prediction
Chl-a. However, from the results of VIF values for DO predicting, Depth
and Temperature variables show strong multicollinearity (VIF > 10),
and two variables of Salinity and pH show moderate collinearity (5 <
VIF < 10) with DO. Given these findings, all variables for Chl-a and two
variables of EC and Salinity are selected for further analysis to ensure
multicollinearity did not significantly impact the analytical process.

Step 2. Feature selection using BFSA, SHAP, and GT techniques

Table S1 presents the five best feature combinations identified
through the GT for predicting Chl-a and three feature combinations for

Table 1
VIF values to assess the degree of multicollinearity among the independent
water quality variables of the dam reservoir.

Variable R-squared VIF (Chl-a) R-squared VIF (DO)
Depth 0.165 1.197 0.936 15.566
Temperature 0.165 1.198 0.903 10.272
EC 0.053 1.056 0.315 1.460
Salinity 0.168 1.202 0.829 5.839
pH 0.310 1.450 0.887 8.878

Journal of Water Process Engineering 77 (2025) 108341

predicting DO in the dam reservoir. The GT was employed to evaluate
the predictive relevance of different input variables, minimizing noise
and maximizing the accuracy of predictive models. Two key metrics,
Gamma and V.o, were used to assess the performance of selected
variables. Lower Gamma and V4, values indicate better predictive
capability with minimal uncertainty.

For Chl-a prediction, the Temperature, EC, and pH combination
yielded the lowest Gamma value (1.098) and Viqatio (0.221), indicating
that these parameters have the highest predictive power for Chl-a con-
centration in the reservoir. Expanding the selection to include Salinity
resulted in a marginal increase in Gamma (1.102) and Viqato (0.222),
suggesting a slightly reduced predictive efficiency.

The best-performing variable combination for DO prediction was EC
and Salinity, which recorded the lowest Gamma (0.031) and Viatio
(0.007). Considering only Salinity as the input vector resulted in a
slightly higher Gamma value (0.500), which indicates that the Salinity
variable contributes meaningfully to improving prediction accuracy.

The results from the BFSA emphasize Temperature, pH, and EC as the
most critical predictors for Chl-a. Based on the BFSA, the importance of
EC and Salinity variables were almost similar. The pH (Z-score = 1.29) is
the most important variable for Chl-a prediction. These findings un-
derscore the need for continuous monitoring of these key variables to
improve the accuracy of machine learning-based water quality models.
Since the Z-score values of all variables were lower than the critical
threshold, all variables are selected for further modeling of Chl-a.

Fig. S4 illustrates the impact and importance of different water
quality parameters in predicting Chl-a concentrations in the dam
reservoir, as determined by the SHAP method. SHAP values quantify the
contribution of each input variable to the model’s predictions and help
to identify the most influential features. The distribution of SHAP values
and mean absolute SHAP values show that the pH and Temperature
variables have the highest variation in SHAP values, indicating their
strong influence on model output for predicting Chl-a. Higher pH values
tend to have a positive impact on Chl-a predictions. Increased pH levels
may be associated with enhanced algal growth. Depth has relatively
lower SHAP values and indicates a weaker but still notable influence on
Chl-a predictions. Therefore, based on the SHAP analysis, two optimal
feature combinations of (1) Temperature and pH, and (2) Temperature,
pH, and Depth are selected for further modeling and prediction of Chl-a
concentration in the dam reservoir. These findings align with estab-
lished ecological and hydrological processes. For instance, Saravani
et al. [69] emphasized that water temperature and pH regulate
biogeochemical processes, including photosynthesis and nutrient
cycling. Specifically, temperature directly affects algal growth, with
15-30 °C being optimal for many species [70,71]. Han et al. [10] further
highlighted the interaction between pH and temperature: higher tem-
peratures amplify pH’s effect on Chl-a, while stratification may create
localized depth-specific conditions where cooler temperatures and
elevated pH still promote algal growth—possibly due to enhanced CO4
influx in stratified layers [72]. Water depth and surface area influence
sediment resuspension, altering inorganic suspended solids (ISS) and
light availability [73,74]. Elevated ISS reduces light penetration,
inhibiting algal growth [75,76], while depth-driven variations in the N:P
ratio can disrupt nutrient-Chl-a relationships [77]. These mechanisms
underscore why reservoir-specific traits (e.g., depth, stratification) must
be considered in predictive models [78]. As noted by Zou et al. [79],
integrating reservoir morphology (e.g., depth, area) and stratification
effects could refine predictions of water bloom outbreaks.

In addition, Salinity has the highest SHAP value distribution, indi-
cating that it is the most significant predictor of DO (Fig. S5). Therefore,
based on this analysis, two input vectors of (1) EC and Salinity, and (2)
Salinity are considered for further modeling. DO dynamics in aquatic
systems are shaped by both biological production (primarily through
photosynthesis) [80] and consumption processes (respiration and
organic matter decomposition) [81], with salinity and EC serving as
critical regulators. Salinity directly reduces oxygen solubility and
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promotes stratification that can isolate bottom waters, exacerbating
hypoxia [82], while EC reflects ionic nutrient concentrations that drive
microbial activity—high EC (e.g., from NHs" or PO.>") stimulates
oxygen-consuming heterotrophic respiration [83], and low EC may limit
algal oxygen production. These features interact with temperature and
physical aeration, where elevated EC and salinity collectively signal
increased organic loads or reduced mixing potential, aligning with their
identified importance in predicting DO declines through oxidative
decomposition [84,85] and stratification-linked respiration of algal
biomass [82].

Table 2 presents five different input variable combinations for pre-
dicting Chl-a and DO, selected using BFSA, SHAP, and GT techniques.
Each method identifies the most influential water quality parameters to
improve predictive accuracy. The selected feature sets vary, with
embedded-based BFSA including all variables, while SHAP focuses on
the most impactful ones, such as Temperature, pH, and Depth. GT-
selected combinations emphasize EC and Salinity as critical factors for
Chl-a and DO. These feature combinations will be further evaluated
using XGBoost to determine their effectiveness in predictive modeling.
Uddin et al. [86] applied eighteen feature selection techniques,
including Boruta, to identify key water quality parameters for predicting
the water quality index (WQI) in Ireland. The findings suggest that
embedded-based approaches outperform traditional filter methods, such
as Principal Component Analysis (PCA) and Pearson Correlation
(PCOR), in identifying the most significant water quality indicators.

Step 3. Evaluating various combinations of input variables from
step 2 to determine the most effective configuration

The XGBoost model is utilized to assess the various combinations in
this stage. The model was fine-tuned using the Optuna optimization
algorithm, a hyperparameter optimization framework. The dataset was
randomly divided into two subsets, with 70 % allocated for training and
30 % reserved for testing. This partitioning ensured the model was
trained on a substantial portion of the data. After testing multiple var-
iable combinations, the optimal configuration was selected based on
performance metrics to ensure the best predictive capability.

Step 4. Develop comparing models

The performance of the XGBoost model was evaluated in comparison
with several other individual models, including MLP, LSSVR, GRUs, and
CNNs. The assessment used multiple evaluation criteria, error box plots,
uncertainty analyses, scatter plots, and Taylor diagrams. Based on these
assessments, the most effective model was selected for further analysis.

Step 5. Development of hybrid models

In this step, hybrid models are developed by combining the best-
performing model from Step 4 with other applied models. The pri-
mary objective of this hybridization process is to enhance predictive
performance by leveraging the strengths of multiple algorithms. A
regularized XGBoost model (optimized via Optuna with L1/L2 regula-
rization) was trained to predict the target variable of Chl-a. Its output
predictions were then treated as an additional engineered feature,
capturing non-linear relationships and feature importance from tabular
data. The XGBoost predictions were used as standalone inputs and fed
into MLP, LSSVR, GRUs, and CNNs models to form hybrid frameworks
[87]. Therefore, XGBoost-MLP, XGBoost-LSSVR, XGBoost-GRUs, and
XGBoost-CNNs models were developed to explore potential improve-
ments in predictive capabilities through hybridization.

Table 2
The best-selected feature combinations of variables based on BFSA, SHAP, and
GT techniques.

Method  Selected variables for predicting Chl-a Selected variables for
predicting DO
BFSA F1 Depth, temperature, EC, Salinity, pH 11 EC, Salinity
SHAP F2  Temperature, pH 12 EC, Salinity
F3  Temperature, pH, Depth I3 Salinity
GT F4  Temperature, EC, pH 14  EC, Salinity
F5 Temperature, EC, Salinity, pH 15 Salinity

10

Journal of Water Process Engineering 77 (2025) 108341

Step 6. Validation of the selected model on the B2 dataset

The datasets obtained from two distinct locations, B1 and B3, were
utilized for training and testing the model. In contrast, data from the
third location, B2, were exclusively allocated for the validation. This
approach ensures that the final model is evaluated on an independent
dataset, thereby assessing its generalization capability and performance
in predicting water quality parameters under different spatial
conditions.

Step 7. Risk assessment of water bloom in dam reservoir

This process analyzes potential risks to water quality, aquatic life,
and reservoir usability. The assessment aims to identify early warning
indicators to prevent or minimize the adverse effects of water blooms on
the ecosystem and human activities.

3. Results and discussion
3.1. Evaluation of the selected input features using the XGBoost model

Fig. 4 illustrates the XGBoost model’s evaluation results optimized
with the Optuna algorithm for predicting Chl-a and DO concentrations
in the dam reservoir. The selected feature combinations, derived from
BFSA, SHAP, and GT methods, were tested to determine the best input
variables for accurate prediction. In the Chl-a prediction, R? values are
consistently high (above 0.91) in the training phase and between 0.88
and 0.92 in the testing phase. Based on the R? values in the testing phase,
feature combinations of F1, F2, and F3 can be considered as the best.
RMSE and MAE values vary among the selected feature sets, with F1 and
F3 demonstrating the lowest errors in the testing phase and suggesting
these feature combinations can enhance model precision. Also, the
minimum value of PBIAS and maximum value of 95PPU in the testing
phase were observed for F1. The results confirm that using carefully
selected features, the XGBoost model can effectively predict Chl-a. The
feature combination of F1 demonstrated the highest accuracy and lowest
error rates.

In the case of DO prediction, the R? values are >0.94, demonstrating
exceptional model reliability in capturing DO variations. RMSE and
MAE values are notably low, and I1 shows the best performance. PBIAS
analysis reveals minor deviations and the lowest value is attained for the
I1 (0.043) feature combination in the testing phase. The values of 95PPU
are obtained equal to 98.2 % for I1 and 88.8 % for I3 in the testing phase.
This result highlights a good level of predictive confidence and uncer-
tainty handling. Therefore, the results confirm the capability of the I1
feature combination, selected by the BFSA method, for predicting DO in
dam reservoirs.

3.2. Individual and hybrid models performance

Fig. 5 presents the comparative performance evaluation of models
(MLP, LSSVR, GRUs, and CNNs) in predicting Chl-a and DO concentra-
tions. The evaluation uses the best-performing feature sets, F1 and I1,
which include Depth, Temperature, EC, Salinity, and pH for F1, and EC
and Salinity for I1, as selected by the BFSA method. Among individual
models, XGBoost consistently outperformed all others in prediction Chl-
a (R2 = 0.977, RMSE = 0.339, MAE = 0.237, and PBIAS = —0.094 in
training phase and R? = 0.921, RMSE = 0.553, MAE = 0.405, and PBIAS
= 0.245 in testing phase). Zhu et al. [88] stated that increasing the
complexity of a model’s structure may enhance its capacity, but it can
also lead to instability and may not necessarily improve accuracy. In this
study, CNNs and GRUs models were less effective than XGBoost in
accurately identifying the patterns of Chl-a and DO concentrations that
contributed to the suboptimal performance of these models. In addition,
XGBoost’s superior performance in predicting Chl-a and DO in dam
reservoirs can arise from its ability to handle structured datasets, cap-
ture complex interactions, and provide computational efficiency with
high interpretability. Deep learning models, including CNNs and GRUs,
require large datasets for practical training. However, data availability is
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Fig. 5. Performance evaluation of machine/deep learning models for Chl-a and DO Prediction.

often limited in environmental modeling, especially for dam reservoirs,
due to continuous monitoring and sampling constraints. XGBoost per-
forms exceptionally well by efficiently capturing relationships between
water quality parameters (e.g., Temperature, pH, EC, Salinity, and
Depth) without requiring vast training data. Deep learning models, on
the other hand, can overfit small datasets, leading to inconsistent pre-
dictions in test cases. Additionally, XGBoost employs gradient boosting
with decision trees, allowing it to model complex, non-linear relation-
ships between water quality parameters effectively. The lower RMSE

11

values achieved by XGBoost are due to their enhanced ability to mitigate
generalization errors, primarily through bootstrap aggregation [21].
Deep learning models rely heavily on neural network architectures and
may require extensive tuning to recognize such interactions effectively.
Unlike deep learning models, which require high computational power
and extensive hyperparameter tuning, XGBoost can achieve optimal
performance with fewer computational resources and shorter training
times.

For prediction DO, both GRUs (R? = 0.995, RMSE = 0.153, MAE =
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0.112, and PBIAS = —0.989 in training phase and R? = 0.996, RMSE =
0.138, MAE = 0.107, and PBIAS = —1.008 in testing phase) and CNNs
(R?2 = 0.995, RMSE = 0.151, MAE = 0.108, and PBIAS = 1.011 in
training phase and R? = 0.995, RMSE = 0.209, MAE = 0.109, and PBIAS
= 1.024 in testing phase) show high performance. Traditional machine
learning models like LSSVR and MLP showed higher errors and bias,
while the tree-based model of XGBoost performed well but was slightly
less stable than deep learning.

Integrating multiple estimation models through a combination
approach enhances the robustness of predictions, particularly in cases
where single models may not be reliable. To achieve the best perfor-
mance, exploring various hybrid methodologies and strategies is
essential before finalizing the merging model [27]. Given the superior
performance of the XGBoost model, it was explored in hybrid models
(XGBoost-LSSVR, XGBoost-MLP, XGBoost-GRUs, and XGBoost-CNNs) to
enhance the predictive accuracy of Chl-a concentrations. The results
demonstrate that hybrid models integrating XGBoost consistently
outperform individual models across all performance metrics. XGBoost-
GRUs and XGBoost-CNNs outperform standalone GRUs and CNNs
models, indicating that integrating tree-based learning with deep
learning improves model generalization and prediction accuracy.
XGBoost-LSSVR and XGBoost-MLP show enhanced performance over
their standalone versions, suggesting that boosting-based feature selec-
tion improves prediction robustness. Among all individual and hybrid
models, XGBoost-GRUs and XGBoost-CNNs demonstrate the best bal-
ance between high accuracy and low error, with R? values exceeding
0.97 and minimal MAE/RMSE values. Hybrid models mitigate common
weaknesses of individual deep learning models, such as overfitting, slow
convergence, and sensitivity to data noise. Fooladi et al. [27] repre-
sented that tree-based model of Random Forest showed lower uncer-
tainty in prediction DO and Chl-a in comparison with generalized
regression neural network (GRNN), Gaussian process regression (GPR),
decision tree (DT), least-squares boosting (LSB), Bayesian ridge (BR),
support vector regression (SVR), K-nearest neighbors (KNN), multilayer
perceptron (MLP), and group method of data handling (GMDH). Han
et al. [10] developed an XGBoost model to predict Chl-a concentrations
in a river in South Korea. The results demonstrated the model’s strong
predictive performance, achieving an R? of 0.9487 and RMSE of 3.1661.
Shamloo and Sima [25] utilized Landsat-8 and Sentinel-2 satellite data
in combination with multiple linear regression (MLR) and artificial
neural networks (ANNs) to model Chl-a in Lake Urmia. Their findings
revealed that models based on Landsat-8 outperformed those using
Sentinel-2, mainly when ANNs were applied to predict Chl-a. The Nash-
Sutcliffe Efficiency (NSE) values for ANN models were equal to 0.75,
demonstrating superior predictive capabilities compared to MLR models
(NSE = 0.74). The findings reinforce that hybrid tree-based and deep
learning models provide a highly effective approach for real-time water
quality prediction and environmental monitoring in aquatic systems.

Table 3 presents the architecture and parameter configurations of the
ML/DL models applied for Chl-a and DO prediction.

The error distribution of different models in predicting Chl-a is given
in the error box plot of Fig. S6. The XGBoost and its hybrid models
exhibit the lowest median absolute errors with minimal variance, indi-
cating high consistency and stability in training. Based on the Taylor
diagram, hybrid models, particularly XGBoost-CNNs and XGBoost-
GRUs, demonstrate the highest correlation of 0.99 and the lowest
RMSD (between 1.25 and 1.61 lines) in the training phase (Fig. S7). In
the testing phase, XGBoost-CNNs remain the closest to the observed
values, confirming superior generalization compared to traditional
machine learning and deep learning models. Therefore, the XGBoost-
CNNs model is chosen as the best model with high performance for
predicting Chl-a concentrations in the dam reservoir.

While error reflects a measurable deviation, it represents a deficiency
in information and understanding about a system and the complexity
and variability inherent in its nature [89]. In this study, the uncertainty
analysis is performed on the best-selected model to ensure the reliability
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Table 3
Models structure and parameter configuration for predicting Chl-a and DO.

Parameters

Model for predicting Chl-a

LSSVR c: 24.893, gamma: 14.981

MLP Learning rate: 0.001, number of hidden layers: 5, hidden size 1: 171,
hidden size 2: 165, hidden size 3: 36, hidden size 4: 56, hidden size
5: 100, batch size: 16

GRUs Learning rate: 0.005, number of hidden layers: 2, hidden size 1: 147,
hidden size 1: 68

CNNs Learning rate: 0.001, filters: 48, kernel size: 4, pool size: 1, dense
units: 70, hidden neurons: 30, batch size: 48

XGBoost Learning rate: 0.014, max depth: 6, subsample: 0.681, colsample
bytree: 0.926, L1 regularization: 0.048, L2 regularization: 0.069

XGBoost- c: 99.936, gamma: 0.002

LSSVR

XGBoost-MLP  Learning rate: 0.001, number of hidden layers: 1, hidden size 1: 63,

batch size: 32

XGBoost- Learning rate: 0.0002, number of hidden layers: 4, hidden size 1: 77,
GRUs hidden size 1: 19

XGBoost- Learning rate: 0.004, filters: 112, kernel size: 1, pool size: 1, dense
CNNs units: 10, hidden neurons: 10, batch size: 80

Model for predicting DO

LSSVR c: 6.720, gamma: 1.449

MLP Learning rate: 0.0079, number of hidden layers: 1, hidden size: 189,
batch size: 16

GRUs Learning rate: 0.046, number of hidden layers: 2, hidden size 1: 186,
hidden size 2: 67

CNNs Learning rate: 0.003, filters: 96, kernel size: 1, pool size: 1, dense
units: 20, hidden neurons: 20, batch size: 16

XGBoost Learning rate: 0.097, max depth: 3, subsample: 0.969, colsample

bytree: 0.169, L1 regularization: 3.248 x 10~7, L2 regularization:
0.070

and stability of predictive models. Based on Fig. 6, XGBoost-CNNs
achieves a high coverage probability (94.16 % in training and 79.37
% in testing phases) and most observed values fall within the 95 %
uncertainty bounds. The d-factor in the uncertainty analysis quantifies
the width of the uncertainty bounds relative to the predicted values. A
lower d-factor indicates narrower uncertainty bounds, suggesting higher
model precision, whereas a higher d-factor reflects greater uncertainty
in predictions. The relatively low d-factor values (0.69 for training, 0.68
for testing) confirm that XGBoost-CNNs provides stable and precise
predictions, with minimal uncertainty in Chl-a predicting. However, the
slight variation in the d-factor suggests that the model can be general-
ized, making it a robust and reliable tool for Chl-a prediction in dam
reservoirs.

The plots to compare observed against predicted Chl-a concentra-
tions at different depths of the reservoir for both training and testing of
the XGBoost-CNNs model are given in Fig. S8. XGBoost-CNNs accurately
follows the distribution of observed Chl-a values across different depths,
though some minor deviations occur. Park et al. [16] evaluated ANN and
SVM for early warning prediction of Chl-a, using input variables such as
phosphate phosphorus (PO4-P), ammonium nitrogen (NH3—N), nitrate
nitrogen (NO3-N), solar radiation, wind speed, and water temperature.
Through the Williams—Kloot test and sensitivity analysis, they found that
SVM outperformed ANN in prediction accuracy and in capturing the
cause-and-effect relationships between Chl-a and environmental vari-
ables in both the Juam and Yeongsan Reservoirs. Sensitivity analysis
revealed that the most influential input variable differed between
models and locations. In the Juam Reservoir, PO4-P was the most sen-
sitive variable for both ANN and SVM, whereas in the Yeongsan Reser-
voir, solar radiation was most critical for ANN and NH3-N for SVM.
These findings highlight the context-dependent nature of key drivers in
Chl-a modeling and the importance of selecting appropriate algorithms
based on system characteristics. Abbas et al. [20] evaluated six DL
models including LSTM, CNN, Temporal Convolutional Network (TCN),
CNN-LSTM, LSTM-based autoencoder, and input-attention LSTM (IA-
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LSTM) for hydrological and Chl-a simulations. Their results demon-
strated that IA-LSTM outperformed other architectures, achieving an R
of 0.85 at the training site and 0.52 at the test site.

The hybrid approach of XGBoost-CNNs leverages CNN’s robust
feature extraction and XGBoost’s predictive power, consistently
achieving higher accuracy, lower error rates, and faster processing than
standalone models [90]. Premalatha and Bai [90] achieved 98 % accu-
racy and 100 % recall in healthcare analytics, surpassing decision trees,
random forests, and SVMs. Jayakarthik et al. [91] demonstrated that a
CNN-XGBoost model optimized with WOA achieved 98 % accuracy in
climate change prediction, significantly outperforming individual CNN
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or XGBoost benchmarks. Prakash and Sangeetha [92] reported a 5 %
efficiency gain over traditional models (e.g., SVM, LSTM) in air pollu-
tion classification using XGBoost-CNN. These studies collectively un-
derscore that hybridizing CNN and XGBoost capitalizes on their
complementary strengths, as noted in the results of the current study.
The error box plot and Taylor diagram for comparing different
models in the prediction of DO are given in Figs. S9 and S10. The
evaluations confirm that GRUs and CNNs models are the most effective
models for DO prediction, outperforming traditional MLP and LSSVR
models across all metrics. To find the best model between GRUs and
CNNs, Fig. 7 shows the uncertainty analysis of these models in
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predicting DO concentrations. The Logistic function is the most related
probability distribution function on the DO dataset for uncertainty
analysis. Although the performance of the two models is almost near,
100 % coverage probability is captured within the uncertainty bounds
for the CNNs model in both the training and testing phases. Low d-factor
values (0.76 in both training and testing) indicate narrow uncertainty
bounds and high prediction accuracy of CNNs. The plots to compare
observed against predicted DO concentrations at different depths of the
reservoir for both training and testing of the CNNs model are given in
Fig. S11. Zhang et al. [93] utilized a MLP model enhanced with MI
feature selection (MLP-MI) to predict DO concentration in Australia.
Their findings demonstrated that MLP-MI provided precise DO pre-
dictions, establishing it as a valuable tool for water quality management.
Moghadam et al. [94] investigated the effectiveness of various artificial
intelligence models, including ANN, RNN, SVM, and DRNN, in pre-
dicting DO concentrations in the USA. Their findings demonstrated that
DRNN outperformed the other models regarding predictive accuracy.
Tiyasha et al. [95] developed and tested four machine learning models:
RF, conditional RF, RF generator, and XGBoost, for predicting DO con-
centrations in Malaysia. Their findings indicated that XGBoost out-
performed the other models regarding predictive accuracy. Similarly,
Heddam et al. [96] applied various models, including LSTM, SVR, ge-
netic programming (GP), group method of data handling (GMDH), SVR,
and GPR, to estimate DO levels in rivers across the USA. Their results
revealed that GPR exhibited the highest predictive accuracy among the
tested approaches. Alizamir et al. [48] implemented the Bayesian Model
Averaging (BMA) approach to integrate deep learning models such as
MLPNN, RNN, CNNs, GRUs, LSTM, and SARIMAX for more accurate DO
prediction across two USGS stations in the USA. Feature selection
techniques, including MI and Recursive Feature Elimination (RFE), were
utilized to determine the most influential predictors, with water tem-
perature and previous DO values emerging as key factors. The results
indicated that the BMA framework outperformed single-model methods,
yielding lower RMSE and MAE values and higher R2.

The model’s performance applied in the current study is inherently
constrained by several interconnected uncertainties:

(1) Environmental and measurement uncertainty: Uncontrolled
ecological variation (e.g., stochastic weather events, unmeasured
biotic interactions) and intrinsic errors from field sampling,
sensor calibration drift, and laboratory analytical precision [97]
introduce irreducible noise. This limits prediction accuracy and
requires careful error handling, as relying on imperfect data can
skew model results and reduce confidence in predictions.

Data limitations: Sparse spatiotemporal sampling coverage and
data quality issues (e.g., missing values, inconsistencies across
sources) restrict the model’s ability to capture complex system
dynamics fully. This can lead to overfitting on available data,
reduced generalizability to unmonitored locations or future
conditions, and increased sensitivity to interpolation/extrapola-
tion errors [98].

Model structural and data-driven uncertainty: Aleatoric uncer-
tainty and epistemic uncertainty are two sources of model un-
certainty. Aleatoric uncertainty shows inherent stochasticity or
noise in the observed data (e.g., natural variability of Chl-a at
microscales). Epistemic uncertainty shows limitations arising
from model structure, simplifications, incomplete process un-
derstanding, or insufficient training data. High epistemic uncer-
tainty indicates low model confidence [99,100].

Predictive distribution accuracy: the model’s ability to generate
accurate full probability distribution functions (PDFs) for key
outputs like Chl-a and DO is paramount [101]. Reliability hinges
not just on point predictions but on correctly characterizing the
range and likelihood of possible outcomes (e.g., the probability of
exceeding a critical Chl-a threshold). Underestimating prediction
intervals (e.g., due to unaccounted uncertainties or distribution

2

—

(3)

(€]
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misspecification) creates false confidence, while overestimation
reduces practical utility.

(5) The model must generate precise full probability distribution
functions (PDFs) for key outputs (e.g., Chl-a, DO) through
rigorous Monte Carlo simulation. The selection of appropriate
PDFs directly influences reliability, as it determines the accuracy
of uncertainty propagation [101]. Thus, PDF specification in
Monte Carlo frameworks is critical to balancing precision and
realism.

In conclusion, acknowledging, quantifying, and transparently
communicating these sources of uncertainty and their impact on pre-
diction confidence is fundamental to evaluating the true reliability and
appropriate application domains of applied models. Future research
should focus on mitigating epistemic uncertainty while improving the
predictive output distributions.

3.3. Assessment of selected models in the third section of the dam
reservoir

This section evaluates the capability of selected CNNs and XGBoost-
CNNs models in the third location of the dam reservoir for predicting DO
and Chl-a, respectively. Based on Fig. S12, the high R? values equal to
0.986 and 0.995 indicate a strong correlation between predicted and
observed Chl-a and DO values, respectively. The RMSE equal to 0.224
suggests high model accuracy in predicting Chl-a variations. The value
of PBIAS = 1.189 indicates a slight overestimation. Extremely low errors
(RMSE = 0.153, MAE = 0.109, and PBIAS = 0.999) in predicting DO in
the B2 section show perfect precision of CNNs in DO prediction. These
results confirm that both models provide highly accurate predictions,
with XGBoost-CNN effectively capturing Chl-a variability and CNNs
excelling in DO prediction.

Fig. S13 compares observed values against predicted values at
different depths of the B2 section in the dam reservoir. The XGBoost-
CNNs model successfully replicates the depth-wise distribution of Chl-
a, with minimal deviations across the water column. This model cap-
tures surface and subsurface variations and shows strong predictive
capability. Also, the CNNs model aligns almost perfectly with observed
DO profiles at all depths, demonstrating superior generalization. In
addition, a coverage probability of 93.68 % for predicting Chl-a using
the XGBoost-CNNs model and 100 % for predicting DO using the CNNs
model indicates that most observed values fall within the 95 % confi-
dence interval of the model predictions (Fig. 8). These models exhibit
narrow uncertainty bounds, reinforcing their robustness in real-time
Chl-a and DO prediction.

3.4. Spatial pattern predictions

The dam reservoir’s depth-based distribution of observed and pre-
dicted Chl-a and DO concentrations across three sections (B1, B2, and
B3) are shown in Fig. 9. The CNNs model was used for DO prediction,
while the XGBoost-CNNs model was employed for Chl-a prediction due
to their superior performance in earlier evaluations. These visualizations
assess the models’ effectiveness in capturing spatial and vertical varia-
tions in water quality parameters. The XGBoost-CNNs model effectively
captures the spatial pattern of Chl-a concentrations, with higher values
near the surface and lower concentrations in deeper layers. Localized
variations are visible, particularly in B2 and B3, where Chl-a peaks occur
at mid-depths, possibly due to light penetration, stratification, and
nutrient availability. In the case of DO prediction, the CNNs model
effectively captures the expected vertical stratification of DO, with
higher concentrations near the surface due to atmospheric oxygen
diffusion and gradual depletion with depth due to biological respiration
and limited mixing. The transition between oxygen-rich surface layers
and oxygen-depleted bottom layers is well-represented across all three
sections (B1, B2, and B3). The high accuracy of models in predicting DO
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Fig. 9. Depth-based distribution of Chl-a and DO concentrations predicted across three different sections of the dam reservoir (B1, B2, and B3).

and Chl-a levels across varying depths reinforces its capability for real-
time water quality monitoring and aquatic ecosystem modeling. Based
on Figs. 5 and 9, there are no strong correlations between DO and Chl-a
in the dam reservoir. Sutula et al. [102] stated that the relationship
between these variables varied significantly across different sub-
embayments. The absence of a consistent and significant association
between DO and Chl-a in this reservoir suggests that physical factors
prevented the formation of low DO conditions, even in areas with high
phytoplankton biomass accumulation [108].

3.5. Water blooms risk assessment

There are strong correlations between water bloom abundance and
Chl-a concentration [102]. For this reason, risk evaluation is a crucial
initial step in determining the effects of Chl-a and offering a framework
for assessing the potential development of water blooms. The depth-
based distribution of risk probability in three sections (B1, B2, and B3)
of the dam reservoir is shown in Fig. 10. This figure highlights areas with
potential environmental risks associated with water blooms. The color
gradient of the R factor represents the magnitude of risk in producing
water blooms, where higher values (red regions) indicate increased risk
and lower values (blue regions) suggest stable conditions. B2 and B3
sections show more risk zones at mid-depths (~6-11 m), likely due to
fluctuations in Chl-a concentrations and oxygen depletion. Higher risk
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probability at mid-depths (B2 and B3) suggests regions where oxygen
depletion (hypoxia) or algal blooms are more prevalent, potentially due
to nutrient enrichment, stratification, or limited mixing. High Chl-a
concentrations and temperature-driven phytoplankton growth are
linked to near-surface risk zones, which may impact light penetration
and DO availability. Deeper regions exhibit lower risk levels, likely due
to decreased biological activity and stable physical-chemical conditions.
The results highlight the importance of continuous monitoring and
adaptive management strategies to mitigate water quality risks. Mid-
depth regions require targeted interventions such as aeration or
controlled nutrient loading to minimize the impact of algal blooms and
oxygen depletion. The risk categories (no risk, low risk, medium risk,
and severe risk) are determined based on predefined thresholds and
shown in Fig. S14. The findings indicate that mid-depth zones are crit-
ical areas for phytoplankton growth. The spatial variations in risk
probability emphasize the need for location-specific management ap-
proaches in dam reservoirs to ensure long-term ecological sustainability
and water quality preservation.

3.6. Research limitations and prospects

Despite advancements in predicting Chl-a and DO concentrations
using ML and DL models, several limitations must be acknowledged. The
dataset utilized in this study was restricted to three specific sections (B1,
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Fig. 10. Depth-based distribution of risk probability for water blooms across three different sections (B1, B2, and B3) of the dam reservoir

B2, and B3) of the dam reservoir, potentially limiting the generaliz-
ability of the findings across different spatial and temporal scales. While
the selected sections capture variations in water quality parameters,
expanding monitoring locations and increasing temporal coverage could
provide a more comprehensive understanding of water quality dy-
namics. Future research should incorporate additional sampling sites
across various depths and geographical locations within the reservoir
and extended observation periods to account for seasonal and interan-
nual variations. Also, the study relies on a single day of measurements (8
May 2023) across three sections. Since water quality parameters can
change quickly, it is necessary to monitor data over a long time period
for accounting seasonal variations.

Another significant limitation stems from the complex nature of
water bloom formation in reservoirs and lakes. While this study suc-
cessfully identified key predictors for Chl-a and DO concentrations,
water blooms are influenced by many factors beyond the selected water
quality parameters. The formation of water blooms in lakes and reser-
voirs is a highly intricate phenomenon, influenced not only by water
quality variables such as water temperature, pH, and EC, but also by
meteorological factors such as precipitation, wind velocity, and tem-
perature [1,103]. Moreover, hydrodynamic processes, including
nutrient transport, sediment resuspension, and stratification, are crucial
in determining bloom outbreaks [78]. Meng et al. [104] developed a
Reservoir Water Bloom Risk Index (RWBRI) to assess large-scale eutro-
phication in reservoirs across Fujian Province, China. Their approach
integrated multiple variables, including the Trophic State Index (TSI),
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Floating Algae Index (FAI), temperature, precipitation, and wind speed,
using Sentinel-2 MSI data at the pixel scale. Similarly, Xue et al. [105]
evaluated algal bloom risk in the Xiashan and Jihongtan reservoirs by
analyzing total dissolved phosphorus (TDP) concentrations and N/P
ratios. Future work could focus on developing a multi-parameter risk
index for water bloom prediction. This index would incorporate key
variables such as nutrient levels (e.g., phosphorus and nitrogen), cli-
matic factors, and hydrodynamic conditions to improve the accuracy
and comprehensiveness of risk assessments.

The Monte-Carlo-based uncertainty analysis provided probabilistic
insights into the reliability of the predictions. However, uncertainties
remain due to potential measurement errors in water quality parameters
and inherent model assumptions.

From an application standpoint, integrating real-time monitoring
systems with Al-driven models remains a promising yet underexplored
area. While this study employed historical datasets for training and
validation, deploying sensor networks capable of real-time data acqui-
sition could significantly enhance the practical utility of predictive
frameworks. Implementing Internet of Things (IoT)-based water quality
monitoring and cloud-based Al analytics would enable automated early
warning systems for bloom risk assessment and water resource
management.

4. Conclusions

This study utilized the different ML/DL models, including MLP,
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XGBoost, LSSVR, GRUs, and CNNs, to predict Chl-a and DO in the dam
reservoir in Iran. Three feature selection approaches, including BFSA,
GT, and SHAP, were used to determine the most important features in
predicting Chl-a and DO after removing variables with high multi-
collinearity. The study applied an advanced technique to quantitatively
evaluate risk assessment of water bloom occurrence using Chl-a con-
centrations. The findings of this study responded to objectives as
follows:

- Feature selection and optimal input variables: Advanced feature se-
lection techniques identified the most relevant predictors for Chl-a
and DO. For Chl-a prediction, pH, temperature, EC, and Depth var-
iables emerged as the most significant variables. At the same time,
for DO, salinity and EC were determined as the most influential
predictors based on the BFSA method. Considering both BFSA and
SHAP methods ensured that only the most statistically significant
and relevant features were utilized, leading to improved model
interpretability and accuracy.

- Model performance and comparative analysis: XGBoost demon-
strated the highest accuracy in predicting Chl-a concentrations
among individual models, outperforming traditional ML and DL
approaches. For DO prediction, CNNs and GRUs models showed
superior predictive capabilities, effectively capturing spatial varia-
tions in the reservoir.
Hybrid model enhancement: hybrid ML-DL frameworks, particularly
XGBoost-CNNs and XGBoost-GRUs, significantly improved predic-
tion accuracy of Chl-a compared to standalone models. The hybrid
XGBoost-CNNs model achieved the highest performance in predict-
ing Chl-a, leveraging the strength of tree-based learning and CNNs’
capability to capture spatial patterns.
Uncertainty analysis and risk assessment: Monte-Carlo-based un-
certainty analysis demonstrated that the predictive models provided
reliable estimates, with the XGBoost-CNNs model achieving a high
coverage probability (94.16 % in training and 79.37 % in testing) for
Chl-a predictions and the CNNs model attaining 100 % coverage
probability for DO predictions. The risk assessment framework
classified water bloom risks into two categories: no risk and low risk
based on Chl-a concentrations. The results revealed that mid-depth
regions (5-13 m) exhibited the highest risk.
Application to Dam reservoir: The study successfully applied the
predictive framework to Dam, an under-researched reservoir in
Iran’s semi-arid region. The findings provided critical insights into
the spatial and vertical distributions of Chl-a and DO, demonstrating
the applicability of ML and DL models for real-time water quality
assessment in deep reservoirs. The validation of models using inde-
pendent data from the B2 section of the reservoir confirmed their
strong generalization ability and potential for future deployment in
similar water bodies.
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