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A B S T R A C T

Predicting water quality indicators accurately is vital for the sustainable management of aquatic ecosystems, 
particularly in dam reservoirs that are highly vulnerable to environmental phenomena. Dissolved oxygen (DO) 
and chlorophyll-a (Chl-a) are essential indicators for evaluating ecosystem stability and water quality. In this 
study, an innovative and robust intelligent framework is designed using integrated uncertainty quantification 
and feature selection to predict DO, Chl-a, and bloom risk evaluation of dams. First, the individual machine 
learning and deep learning models, including Extreme Gradient Boosting (XGBoost), Convolutional Neural 
Networks (CNNs), Gated Recurrent Units (GRUs), Least Square Support Vector Regression (LSSVR), and Multi- 
Layer Perceptron (MLP) were assessed. Subsequently, the most effective models are then integrated to 
enhance predictive accuracy. The Boruta Feature Selection Approach (BFSA), Gamma Test, and Shapley Additive 
Explanations (SHAP) are used to select the most suitable and relevant features. Then the Monte-Carlo simulation 
is implemented for uncertainty analysis to evaluate the reliability of models’ prediction by determining proba
bility distribution functions. The hybrid XGBoost-CNNs achieved the highest performance in terms of R2 

= 0.923, 
RMSE = 0.547 μg/l for Chl-a prediction, and CNNs obtained R2 = 0.995, RMSE = 0.143 ppm for DO prediction. 
The 95 % Prediction Uncertainty (95PPU) varied from 79.37 to 100, which shows strong predictive reliability. 
Also, d-factor values lower than 0.77 confirmed the model uncertainty is low. Furthermore, water bloom risk was 
assessed using the predicted Chl-a concentration. The analysis indicated no risk levels at reservoir depths of 
0–5.5 m and 13.5–32 m, while low-risk levels were identified between 5.5 and 13.5 m. The maximum risk 
probability was 20.66 % when Chl-a concentrations were below 40 μg/l. The results highlight the effectiveness of 
hybrid artificial intelligence frameworks in enabling real-time water quality monitoring, early detection of 
harmful algal blooms, and promoting sustainable reservoir management.

1. Introduction

Managing water quality in dam reservoirs is essential for ecological 
preservation, ensuring public water supply security, and promoting 
economic and recreational opportunities. These water bodies are 
essential sources of drinking water and provide habitats for various 

aquatic species that enhance and sustain ecosystem services and 
contribute to the economic stability [1,2]. Freshwater ecosystems are 
facing significant environmental challenges, including algal blooms 
caused by global warming, industrialization, increasing pollutant 
trends, and various human activities [3–6]. Dissolved oxygen (DO) and 
chlorophyll-a (Chl-a) are two key indicators of water quality, 
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representing the amount of oxygen available for aquatic life and 
reflecting the abundance of algae and cyanobacteria, reflecting the 
reservoir’s trophic status and potential eutrophication [7,8]. The 
occurrence of blooms can pose significant ecological risks, such as 
lowering oxygen levels in water bodies, and can lead to the death of 
aquatic organisms, including fish [9].

Monitoring DO and Chl-a is crucial, yet challenging due to their 
temporal and spatial variability driven by complex interactions among 
physical, chemical, and biological processes [10]. Conventional moni
toring techniques require manual sampling and laboratory testing, 
which are resource-intensive, time-consuming, and expensive. More
over, these methods often lack the resolution and scalability required for 
comprehensive monitoring, particularly in large reservoirs with limited 
access [11]. Additionally, these conventional approaches fail to capture 
rapid changes in water quality caused by sudden environmental events, 
such as storms or nutrient influxes, which can significantly impact DO 
and Chl-a levels [12]. Therefore, accurate prediction of these water 
quality parameters is necessary for effective reservoir management, 
early detection of harmful algal blooms, and mitigation of eutrophica
tion risks [13]. Over the years, the empirical models have been devel
oped to predict Chl-a concentrations and analyze phytoplankton 
dynamics in natural ecosystems [14]. However, the interactions within 
algal communities, which are significantly affected by nutrient influx 
and temperature variations, complicate efforts to make precise ap
proximations [15,16]. Process-based models often face challenges due to 
their intricate structure, suboptimal predictive accuracy, extensive 
calibration demands, and limited capacity to integrate dynamic input 
variables influencing the target outcome [17].

Recent developments in artificial intelligence (AI), particularly ma
chine learning (ML) and deep learning (DL), have significantly enhanced 
the ability to address these challenges. These AI driven methods are 
beneficial for examining extensive datasets to detect the complex and 
nonlinear relationships in water quality parameters. Several studies 
demonstrated the effectiveness of integrating traditional water quality 
index (WQI) models with ML techniques for real-time monitoring and 
management of aquatic ecosystems. Kim et al. [18] suggested that the 
British Columbia Water Quality Index (BCWQI)-based assessment 
framework can be effectively replaced by long short-term memory 
(LSTM) models driven by in-situ measurable parameters. Zare et al. [19] 
analyzed extensive water quality datasets using ML algorithms to 
identify key water quality variables (WQVs). The model’s robustness 
was confirmed to support data-driven decision-making in reservoir 
management. In addition, by applying ML/DL techniques, the DO and 
Chl-a variables can be predicted with greater accuracy and efficiency as 
compared to the other computational models, which provides a cost- 
effective solution for managing water quality [20,21]. For example, 
Kim et al. [7] showed that Random Forest (RF) is effective in predicting 
Chl-a concentrations in the Han River basin, highlighting the signifi
cance of feature selection for improving model accuracy. Likewise, Tian 
et al. [22] utilized Convolutional Neural Networks (CNNs) to model 
temporal variations of Chl-a, demonstrating the capability of DL models 
to capture complex patterns in time-series data. Huang and Zhang [23] 
found that nonlinear models, such as Multi-Layer Perceptron (MLP) and 
Support Vector Regression (SVR), are significantly accurate in predict
ing Chl-a concentrations compared to linear models. These studies 
highlight the increasing dependence on data-driven methods for moni
toring and managing water quality.

Over the past few decades, remote sensing has become a powerful 
tool for monitoring water quality and eutrophication in inland and 
coastal waters. For instance, Mozafari et al. [24] employed MODIS-Aqua 
Level 3 chlorophyll-a (Chl-a) data to assess the trophic state of the 
Caspian Sea. Their findings showed acceptable agreement with in situ 
measurements, reinforcing the utility of satellite data for large-scale 
water quality assessment. Further advancements have been made 
through machine learning techniques. Shamloo and Sima [25] evaluated 
the performance of Landsat-8 (L8) and Sentinel-2 (S2) data, combined 

with multiple linear regression (MLR) and ANN models, to predict Chl-a 
in Lake Urmia. Their results indicated that L8-based models out
performed those using S2, with ANN achieving the highest accuracy. 
Similarly, Mozafari et al. [26] integrated MODIS-Aqua and ERA5 
climate data into a generalized additive model (GAM) to predict Chl-a in 
the Caspian Sea, identifying photosynthetically active radiation (PAR) 
and sea surface temperature (SST) as key drivers of phytoplankton 
biomass. Despite these advancements, challenges remain in applying 
remote sensing and ML/DL methods across different water depths and 
optical conditions. Fooladi et al. [27] highlighted persistent un
certainties in predicting water quality parameters at varying reservoir 
depths, emphasizing the need for further refinement of algorithms and 
validation with in situ data. Expanding on these studies, this research 
aims to address existing gaps by predicting Chl-a and DO concentrations 
in the depth of the reservoir.

Hybrid modeling frameworks that integrate various ML and DL al
gorithms provide a promising opportunity to further enhance prediction 
accuracy and reliability. Hybrid approaches can leverage the strengths 
of individual models to overcome their limitations and provide more 
reliable predictions. A relevant study by Fooladi et al. [27] presented a 
hybrid clustering technique for predicting DO and Chl-a concentrations 
in the Wadi Dayqah Dam in Oman. The study used advanced clustering 
methods to segment the dataset into uniform groups, allowing for pre
cise model training and validation for each cluster. By combining ge
netic algorithms (GA) with Bayesian Ridge Regression in a hybrid 
framework, the researchers enhanced prediction accuracy and included 
uncertainty quantification to evaluate model reliability. This method 
highlighted the significance of integrating clustering with advanced 
hybrid models to effectively tackle the spatial and temporal variability 
present in water quality data. Another study by Abbas et al. [20] 
introduced a hybrid model combining Long Short-Term Memory (LSTM) 
networks and CNNs, effectively integrating temporal and spatial fea
tures. These studies highlight the evolving nature of ML and DL appli
cations in water quality modeling, with an increasing focus on hybrid 
approaches that combine the strengths of individual models.

Feature selection is a vital process in predictive modeling, as it en
sures that only the most relevant variables are included in the predic
tion, thereby enhancing its interpretability, accuracy, and 
computational efficiency. In the context of DO and Chl-a prediction, 
selecting optimal input variables is essential to accurately represent the 
underlying environmental and water quality variables that influence 
these parameters [28]. Advanced feature selection techniques, such as 
the Boruta Feature Selection Approach (BFSA) and Shapley Additive 
Explanations (SHAP), have shown great potential in identifying key 
variables that influence predictions. The BFSA is a robust algorithm that 
determines the importance of features by comparing them to randomly 
shuffled shadow features, ensuring only statistically significant variables 
are retained for predictive modeling [29]. The SHAP framework offers a 
clear interpretation of how each variable contributes to model pre
dictions, helping to understand the factors influencing DO and Chl-a 
levels [30,31]. Zhou et al. [31] compared traditional methods like 
Principal Component Analysis (PCA) with modern approaches such as 
SHAP and concluded that SHAP offers superior interpretability and 
performance in identifying critical variables. SHAP provides model- 
agnostic, interpretable feature importance scores, even for nonlinear 
interactions. While PCA reduces dimensionality by capturing maximum 
variance, it assumes linearity and does not inherently rank features by 
predictive importance [32]. Furthermore, Park et al. [33] highlighted 
the limitations of Tree-based Feature Importance (Tree-FI) and recom
mended incorporating SHAP to mitigate variable correlation challenges. 
The Gamma Test (GT) directly quantify the predictability of input fea
tures, identify those with the strongest nonlinear influence on the target 
variable. Unlike mutual information (MI), BFSA and SHAP account for 
feature dependencies and model-specific contexts. MI is scalable and 
robust to noise but evaluates features independently, potentially over
looking synergistic interactions [34]. The selection of BFSA, SHAP, and 
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GT was based on their strengths in handling nonlinear relationships, 
interpretability, and robust feature importance assessment, which are 
key requirements for water quality prediction. These methods separately 
applied and compared their selected features using XGBoost perfor
mance, ensuring the most robust subset was retained for modeling. In 
the current study, the selection of BFSA, SHAP, and GT was based on 
their strengths in handling nonlinear relationships, interpretability, and 
robust feature importance assessment, which are key requirements for 
water quality prediction. These methods were applied separately and 
compared their selected features using XGBoost performance, ensuring 
the most robust subset was retained for modeling.

Uncertainty analysis is essential in environmental modeling for 
evaluating the reliability of predictions and facilitating informed 
decision-making. Analyzing the uncertainty of predictions is essential 
for ensuring the robustness of water quality models, particularly when 
they are used to guide management interventions [106]. Busari et al. 
[106] applied different sampling periods to develop LSTM models 
enhanced with a Monte-Carlo dropout technique for predicting Chl-a 
concentrations in a freshwater lake. Their findings indicated that 
hourly data supported 7-day ahead predictions, surpassing the accuracy 
of daily data. In the current study, the uncertainty analysis using the 
Monte-Carlo simulation technique is applied to predictive models for 
providing probabilistic insights into the reliability of DO and Chl-a 
predictions.

In addition, assessing the risk level of water blooms using the best- 
selected model for predicting Chl-a is crucial for effective lake and 
reservoir management. Bloom risk assessment involves evaluating algal 
blooms’ likelihood and potential impact on a water body. This 
comprehensive approach ensures that the model provides accurate 
predictions and supports effective and timely decision-making for water 
quality management [23]. By integrating risk assessment into the 
modeling framework, the study provides actionable insights for reser
voir management to reduce environmental and ecological risks.

1.1. Research gap and motivation

Despite recent advancements in predictive modeling, research gaps 
in DO and Chl-a prediction still exist especially for bloom risk evalua
tions. First, most studies have focused on rivers, with limited exploration 
of shallow or deep dam reservoirs. These reservoirs pose distinct chal
lenges due to their climatic variability and hydrological dynamics, 
which require strong and innovative modeling approaches. Second, 
predicting DO and Chl-a at different depths of dam reservoirs in arid and 
semi-arid regions, such as Iran, is currently limited. Third, despite the 
proven benefits of advanced feature selection techniques like Boruta and 
SHAP, many studies rely on traditional feature selection methods for 
finding input variables of ML/DL models. Fourth, hybrid models that 
combine the strengths of tree-based ML (e.g., XGBoost) and DL (e.g., 
CNNs, GRUs) are still underexplored for DO and Chl-a prediction which 
can effectively capture spatial patterns and nonlinear interactions. Fifth, 
integrating advanced feature selection techniques (BFSA and SHAP) and 
hybrid ML/DL models remains underutilized for predicting water 
quality parameters of DO and Chl-a. Finally, few studies have incorpo
rated comprehensive uncertainty analysis and bloom risk assessment to 
help decision-makers for managing dam reservoirs.

1.2. Research objectives

This work aims to address the aforementioned gaps by (1) identifying 
the optimal input variables for predicting DO and Chl-a using advanced 
feature selection techniques, including BFSA, GT, and SHAP; (2) 
developing and evaluating state-of-the-art ML and DL models, such as 
XGBoost, MLP, GRUs, and CNNs, for accurate water quality prediction; 
(3) incorporating Monte Carlo-based uncertainty analysis and risk 
assessment to quantify the confidence in model predictions and support 
decision-making; and (4) applying the proposed framework to a dam 

reservoir in Iran for contributing to the limited body of research in this 
region.

2. Material and methods

2.1. Study area

The studied Dam reservoir is situated in southeastern Iran in a 
mountainous area with a semi-arid climate. Water resources in this re
gion are limited, and the landscape is characterized by uneven forma
tions. Agriculture significantly contributes to the economy of this region 
by cultivating crops like wheat, barley, pomegranates, and almonds that 
are suited to the cooler mountain climate. Livestock farming, particu
larly with sheep and goats, is a crucial economic activity in this region. 
The mountainous setting provides a distinctive natural environment, 
including valleys and streams nourished by seasonal rains and snowmelt 
from higher elevations. Climatic data indicate an average yearly tem
perature of 14.2 ◦C, a humidity level of 33 %, and a total precipitation of 
256 mm.

The dam reservoir (Fig. 1), with a 40 million cubic meters storage 
capacity is the crucial source of drinking water around cities. The dam 
operation was started in 2009 and is responsible for downstream water 
demands, including 120 l/s for agriculture, 30 l/s for environmental 
needs, and 10 l/s for industry activities. The reservoir of dam has unique 
characteristics that impact its water quality. These include the inflow of 
floodwaters from rural areas and agricultural lands carrying organic 
materials, wastewater, plant residues, leaf litter, fertilizers, and pesti
cides. Additionally, factors such as local temperature fluctuations, the 
lake’s depth, evaporation, and prolonged residence time due to carry- 
over contribute to water quality challenges.

2.2. Measurement data in dam reservoir

In this research, three measurement sections were established within 
the Dam reservoir (Fig. 1). In-situ data were collected using a combi
nation of personnel, a boat, and a rapid optical sensor (CTD 310-Idro
naut, Fig. S1). The depths recorded at measurement sections of B1, 
B2, and B3 were 48.30 m, 39.41 m, and 28.02 m, respectively. The CTD 
310-Idronaut device with integrated sensors can measure multiple var
iables in aquatic environments. It enables automatic continuous vertical 
profiling, saving data within or transmitting it to a connected computer 
in real-time. Specifically, the CTD 310-Idronaut multiparameter device 
features a fast-optical DO sensor. It can measure detailed vertical dis
tributions of DO (ppm), depth (m), temperature (◦C), electrical con
ductivity (EC) (mS/cm), salinity (PSU), Chl-a (μg/l), and pH. The study’s 
data were collected at various depths, ranging from the surface to 
approximately 32 m, on 8 May 2023. Given the significance of DO and 
Chl-a as water quality indicators, this study focuses on modeling these 
two parameters within the Dam reservoir.

2.3. Multicollinearity test on the variables

Due to strong interconnections, or collinearity, among predictor 
variables, the accuracy and reliability of predictions for the target var
iable can be significantly diminished. Therefore, it is essential to conduct 
a collinearity test on datasets before selecting variables for modeling. 
Collinearity arises when independent variables are highly correlated, 
significantly obscuring the individual contributions of each predictor 
and leading to misleading results. Multiple methods have been devel
oped to detect and quantify collinearity in order to address this issue. 
Among these, the Variance Inflation Factor (VIF) has emerged as a 
widely adopted and robust technique for evaluating the degree of cor
relation between independent variables and their collective impact on 
the model’s outcomes [35,36]. The VIF is calculated using the following 
equation: 
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VIF =

[
1

1 − R2J

]

(1) 

where R2J represents the coefficient of determination obtained by 
regressing the jth independent variable against all other predictors in the 
dataset.

This metric measures how much the variance of an estimated 
regression coefficient increases due to multicollinearity. According to 
Bui et al. [37], a VIF value >10 strongly indicates problematic collin
earity, suggesting that the associated variable may be redundant or 
overly dependent on other predictors. High VIF values require further 
investigation as they may affect the model’s stability and interpret
ability. Addressing collinearity early in the modeling process can 
improve the predictive power and robustness of analyses.

2.4. Feature selection

To enhance model interpretability and predictive performance, 
advanced feature selection techniques namely BFSA, SHAP, and GT 
were applied in this study.

2.4.1. BFSA method
Feature selection is critical in developing predictive models for water 

quality assessment, as it enhances model interpretability, reduces 
overfitting, and improves computational efficiency. The BFSA is a 
robust, wrapper-based method designed to identify the most relevant 
features by comparing them with their randomized counterparts, known 
as shadow features. This method ensures that only the most significant 
predictors are retained, contributing to more reliable and interpretable 
models in environmental studies [29].

BFSA operates by iteratively evaluating feature importance using a 
classification algorithm, typically a Random Forest (RF), and deter
mining whether a given feature provides information beyond what is 
expected from random noise. Features demonstrating significantly 
higher importance than shadow features are deemed relevant, while 
those with lower importance are discarded. This rigorous process makes 
Boruta particularly effective in handling complex, high-dimensional 
datasets, such as those encountered in water quality prediction [38].

The algorithm consists of eight essential steps aimed at systemati
cally assessing and improving the significance of variables within the 
dataset. To begin the process, all variables are duplicated to enhance the 
information system and create a comprehensive foundation for analysis. 

Next, the newly added attributes are shuffled to break existing correla
tions with the target variables (DO and Chl-a). A random forest algo
rithm is used to calculate Z-scores, which assess the significance of each 
variable. The algorithm identifies the highest Z-score among shadow 
variables (artificial attributes) and retains only those variables that 
exceed this benchmark. For variables whose importance remains 
ambiguous after this step, an equality analysis is conducted to assess 
their relevance further. Subsequently, variables with lower importance 
are discarded, while those with higher Z-scores are preserved. Having 
served their purpose, shadow variables are removed from the dataset to 
streamline the evaluation process [39].

2.4.2. SHAP method
ML models are essential for assessing water quality because they can 

effectively manage complex, non-linear relationships among different 
environmental parameters. However, the interpretability of these 
models remains a significant challenge, often limiting their practical 
application in environmental management. To address this issue, the 
SHAP method has been employed as a robust method to explain and 
interpret the contributions of individual features in ML prediction [30].

SHAP, based on cooperative game theory, assigns an importance 
value to each feature by evaluating all possible feature combinations, 
thus providing a thorough understanding of each feature’s influence on 
the model’s output. This method ensures that the impact of each 
parameter is accurately assessed, promoting transparent and interpret
able ML models in water quality research [40,41].

2.4.3. Gamma Test method
The GT is a non-linear modeling analysis tool used to estimate the 

noise variance in a dataset, which helps determine how much an output 
variable can be represented as a smooth function of input variables. This 
approach is particularly effective in identifying and quantifying non- 
linear relationships between inputs and outputs, which is essential for 
constructing accurate predictive models [42].

The key idea behind the GT is that when two input vectors are close 
together in the input space, their corresponding output values should 
also be similarly close in the output space, provided that there is a 
smooth underlying function. Any differences from this expectation are 
considered to be due to noise. The GT estimates the noise variance in the 
data by examining the relationship between the distances of nearest 
neighbors in the input space and the corresponding differences in the 
output space. This estimation helps in understanding the data’s 

Fig. 1. The location of the study area, including Dam reservoir, and the measurement points.
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suitability for modeling and the potential accuracy of predictive models 
[43].

2.5. Machine learning and deep learning models

Several models, including MLP, XGBoost, LSSVR, GRUs, and CNNs, 
are considered to predict Chl-a and DO in the dam reservoir. The 
selected ML/DL models are particularly effective when dealing with 
complex and nonlinear relationships between input and output vari
ables. The selection of these specific techniques was driven by a 
comparative analysis of their strengths and suitability for the problem at 
hand. Each technique brings unique advantages in handling different 
aspects of the data complexity, such as nonlinearities, generalization, 
computational efficiency, dependencies, and overfitting. Each model 
contributes uniquely to addressing the complexities inherent in water 
quality prediction.

2.5.1. XGBoost model
XGBoost is an advanced version of gradient-boosting algorithms that 

focuses on speed and performance. It constructs an ensemble of decision 
trees in sequence, with each new tree correcting the errors made by the 
previous one. This iterative process aims to minimize a specific loss 
function, which improves the model’s predictive accuracy [44].

A unique aspect of XGBoost is its regularization framework, which 
imposes penalties on model complexity to avoid overfitting. This is 
accomplished by incorporating regularization terms into the objective 
function, which controls the model’s complexity and enhances gener
alization. Additionally, XGBoost introduces a sparsity-aware algorithm 
capable of handling missing values and optimizing memory usage, 
making it efficient for large-scale datasets.

The algorithm supports parallel and distributed computing, enabling 
accelerated training across multiple cores or machines. This scalability is 
especially beneficial when working with large datasets and complex 
models. Additionally, XGBoost utilizes a unique tree learning method 
based on quantile sketching, which allows for the handling of weighted 

Fig. 2. The schematic diagram of (a) XGBoost, (b) MLP [48], (c) GRUs [53], and (d) CNNs [61] models.
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data and enhances the process of finding splits in decision trees [45]. 
The schematic representation of the XGBoost algorithm is shown in 
Fig. 2a. Trees are built sequentially, with each tree correcting errors 
from the previous one. The output (ŶNt ) can be written as following 
equation 

equalŶNt =
∑Nt

k=1
fk(X) (2) 

where Nt is the number of decision trees and fk is the kth decision tree.
To gain insight into this model’s structure and mathematical foun

dations, see Chen and Guestrin [21] and Lee et al. [46].

2.5.2. MLP model
The MLP is a type of artificial neural network (ANN) that was chosen 

due to its ability to learn complex patterns and relationships from data, 
which is essential when dealing with the multidimensional and 
nonlinear nature of input and output data. MLP excels at capturing 
intricate dependencies in data through hidden layers of neurons. In 
water quality prediction, MLPs are employed to analyze multiple envi
ronmental and hydrological parameters, such as temperature, pH, DO, 
and nutrient concentrations, to accurately forecast water quality indices 
[47].

An MLP consists of an input layer, one or more hidden layers, and an 
output layer. Each layer is made up of interconnected neurons, with 
each neuron applying a weighted sum of its inputs, followed by a non- 
linear activation function. Common activation functions include the 
Rectified Linear Unit (ReLU) and sigmoid functions, which add non- 
linearity to the model, allowing it to capture complex patterns within 
the data. The training process involves optimizing the weights and 
biases from the input to the hidden layer (Wij and βj) and from the 
hidden to the output layer (Wik and βk). This is done by minimizing the 
error function that measures the difference between the predicted out
puts and the actual outputs [48]. This study applied the Rectified Linear 
Unit (ReLU) activation function, and the loss function was optimized 
using the Optuna optimization algorithm. The overall structure of the 
MLP model is presented in Fig. 2b.

2.5.3. LSSVR model
The LSSVR is an extension of the traditional Support Vector Machine 

(SVM) framework, tailored for regression tasks. Unlike standard SVMs, 
which solve a quadratic programming problem with inequality con
straints, LSSVR simplifies the optimization process by transforming it 
into a set of linear equations. These equations utilize equality constraints 
along with a least squares cost function. This reformulation improves 
computational efficiency, particularly when working with large datasets 
[49]. The methodology involves transforming input data into a high- 
dimensional feature space through the use of kernel functions, allow
ing for the detection of complex patterns that linear models may over
look. This study employs the Radial Basis Function (RBF) kernel. The 
LSSVR training process involves minimizing a cost function that bal
ances model complexity and fitting error. This is accomplished by 
introducing a regularization parameter that balances the smoothness of 
the regression function with the tolerance for deviations from the actual 
data points. The solution to this optimization problem is found by 
solving a system of linear equations, which is computationally simpler 
than the quadratic programming used in SVMs. This efficiency makes 
LSSVR a practical choice for real-time water quality monitoring and 
prediction systems [50].

2.5.4. GRUs model
The GRU is a recurrent neural network (RNN) designed to handle 

sequential data and capture temporal dependencies. The GRUs tackle 
issues found in traditional RNNs, like vanishing and exploding gradients, 
by using gating mechanisms to manage information flow. This archi
tecture allows GRUs to effectively capture long-term dependencies in 

time-series data, making it especially suitable for applications such as 
water quality prediction [51].

The training process for a GRUs model involves feeding time-series 
data into the network, where the gating units adjust the influence of 
previous states and current inputs. This mechanism enables the model to 
learn complex temporal patterns without explicitly defined time lags or 
external feature engineering. The ability of GRUs to manage de
pendencies over extended time periods allows it to capture the dynamic 
and non-linear relationships inherent in environmental data. The 
model’s structure includes reset and update gates that control the 
incorporation of new information and the retention of past data, facili
tating accurate predictions based on historical water quality measure
ments [52]. The GRUs model can be expressed using the following 
equations [53]: 

rt = σ(Wrxt +Urht− 1 + br) (3) 

zt = σ(Wzxt +Uzht− 1 + bz) (4) 

h̃t = tanh[Whxt +Uh(rt ⊗ ht− 1)+ bz ] (5) 

ht = (1 − zt) ⊗ ht− 1 + zt ⊗ h̃t (6) 

where W and U represent the weight matrices, b represents bias vector, 
zt shows the update gate, rt is the reset gate, h̃t represents the candidate 
state, and ht shows the hidden state.

The structure of the GRUs model is illustrated in Fig. 2c.

2.5.5. CNNs model
CNNs have become a powerful deep learning architecture for man

aging spatially structured data, making them particularly effective for 
various environmental modeling tasks, including water quality assess
ment. The basic structure of CNNs includes three key layers: convolu
tional, pooling, and fully connected layers, each with a distinct role in 
feature extraction and classification [54].

The architecture of CNN models consists of several convolutional 
layers, each followed by an activation function (typically ReLU) and 
pooling layers that reduce dimensionality and improve computational 
efficiency [55,56]. The high-level features extracted are passed through 
fully connected layers to generate final predictions. Additionally, 
dropout layers are incorporated to mitigate overfitting, as recommended 
in previous studies [56].

One of the key advantages of CNNs in water quality prediction is 
their ability to process raw sensor data with minimal preprocessing, 
thereby reducing reliance on domain-specific feature engineering [107]. 
This characteristic makes CNNs adaptable to diverse environmental 
datasets, including those collected from reservoirs, rivers, and coastal 
regions. Additionally, CNN models can be integrated with other ML and 
DL architectures.

In water quality estimation, CNNs have been employed to identify 
spatial patterns within datasets, utilizing their capacity to automatically 
detect relevant features [58–60]. The study by Zamani et al. [61] 
highlighted the effectiveness of CNNs in estimating key water quality 
indicators (WQIs), such as Chl-a and DO. Their CNNs model was 
designed to process multidimensional data inputs, including spatial at
tributes (latitude, longitude, and depth), to extract meaningful features 
contributing to accurate predictions. The structure of the CNNs model is 
illustrated in Fig. 2d.

The models and all simulations were developed and implemented in 
Python, utilizing its comprehensive libraries and tools for computational 
modeling and analysis. It should also be noted that data from sections B1 
and B3 were used for modeling, including training and testing, while 
data from section B2 were used for assessing best-selected models.
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2.6. Uncertainty analysis

Monte Carlo simulation was used to assess the uncertainty of the 
models. It is considered one of the most effective techniques for uncer
tainty analysis and has gained considerable popularity in recent years, 
especially in hydrological modeling studies. The modeling process be
gins by identifying the optimal probability distribution function for the 
model’s output. A Kolmogorov-Smirnov (KS) test was employed to select 
the best-fitting distribution from a set of 20 candidate distributions, 
including normal, gamma, beta, exponential, lognormal, Weibull 
(minimum and maximum), Pareto, Cauchy, chi-squared, Student’s t, 
uniform, triangular, logistic, exponentially modified normal, skew- 
normal, Gumbel (right and left), Laplace, and power-law distributions. 
Next, the selected probability distribution function was used to simulate 
the model’s output. For each prediction, a random value was drawn 
from the respective distribution and converted into a feasible value 
using the distribution’s mean and variance. This sampling process was 
repeated 1000 times, and the resulting data were analyzed to assess 
variations in the model’s results [62].

This method uses the 95 % predicted uncertainties (95PPU) factor to 
establish a range of model outputs, defining the bounds for uncertainty 
analysis. The 95PPU is calculated by determining the cumulative dis
tribution of prediction values at the 97.5 % and 2.5 % limits based on 
1000 predictions. For the uncertainty level to be considered appropriate, 
the 95PPU range should include “most of the model’s prediction”. 
Specifically, an acceptable uncertainty level is achieved when the 
95PPU covers 80–100 % of the data. In more complex scenarios with 
lower estimation accuracy, having 50 % of the measured samples within 
the 95PPU range is deemed satisfactory. Also, to determine the reli
ability and predictive capability of the models, the degree of uncertainty 
(dx) is used as an assessment tool. The percentage of the model’s pre
diction data falling within the 95 % confidence interval of Monte Carlo 
simulations and d-factor are calculated as [63]: 

95PPU(%) =
Count(Q\XL ≤ Q ≤ XU)

n
×100 (7) 

dx =
1
k
∑k

i=1
(XU − XL)i (8) 

d − factor =
dx

σx
(9) 

where k is the total number of samples, σx is the standard deviation of 
the DO or Chl-a variables, and dx is the mean distance between the upper 
and lower bounds.

2.7. Risk of water blooms

Water blooms, characterized by the rapid proliferation of algae in 
eutrophic water bodies, are a significant environmental concern. Four- 
level classification system has been established, aligned with nation
ally recognized eutrophication standards including no risk (Chl-a < 10 
mg/m3, indicating poor or medium nutrition), low risk (Chl-a 10–20 
mg/m3, slight eutrophication), medium risk (Chl-a 20–40 mg/m3, 
moderate eutrophication), and high risk (Chl-a > 40 mg/m3, severe 
eutrophication) [23].

Current methods for evaluating bloom risk are mainly data-driven, 
which makes them vulnerable to variations in data quality and un
certainties in factor relationships. To address this, the risk probability 
(R) has been calculated using the following equation: 

R = P×K×E (10) 

where P represents the average probability of water bloom occurrence, K 
denotes to monitor data accuracy, and E signifies model prediction 

accuracy. For P, it is assumed that when Chl-a exceeds 40 mg/m3 (severe 
eutrophication), P = 100 %; for Chl-a concentrations (C) below 40 mg/ 
m3, P can be calculated as follows: 

P =

(
C
40

)

×100 (11) 

This probabilistic approach provides a practical framework for water 
bloom risk assessment, moving beyond traditional methods’ rigid clas
sifications and better reflecting real-world scenarios’ complexities [23].

2.8. Models evaluation criteria and diagrams

The performance of various models was assessed using multiple 
statistical evaluation metrics, such as the root mean square error 
(RMSE), the coefficient of determination (R2), mean absolute error 
(MAE), and (PBIAS). The mathematical formulations for these criteria 
are provided below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
Yobs

i − Ypre
i
)2

√

(12) 

R2 =

⎛

⎜
⎜
⎜
⎜
⎝

∑N

i=1

(
Yobs

i − Y
)(

Ypre
i − Y

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Yobs

i − Y
)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(
Ypre

i − Y
)2

√

⎞

⎟
⎟
⎟
⎟
⎠

2

(13) 

MAE =
1
N
∑N

i=1

⃒
⃒
(
Ypre

i − Yobs
i
)⃒
⃒ (14) 

PBIAS =

∑N

i=1

(
Ypre

i − Yobs
i
)
× 100

∑N

i=1
Yobs

i

(15) 

where N is the total number of observations, Ypre
i is the predicted value, 

and Yobs
i is the observed value.

In addition, models were evaluated using two plots including Taylor 
diagram and the error box plot. The Taylor diagram is a powerful 
graphical method integrating three essential statistical metrics, 
including standard deviation (SD), centered root mean square difference 
(RMSD), and the R2 into a comprehensive visualization. This diagram 
offers a straightforward method to evaluate the alignment between 
model predictions and observed data. Plotting these metrics together 
allows for a straightforward comparison of model performance, high
lighting how closely the predicted results match the observed values in 
terms of variability, error magnitude, and correlation strength. Error box 
plots provide a visual summary of error distributions, highlighting in
sights into consistency, spread, and potential outliers in model pre
dictions. These tools work together to create a strong framework for 
evaluating the accuracy and reliability of models, allowing researchers 
to identify their predictive strengths and weaknesses.

2.9. Model overview and framework development

The framework of the model consists of a series of essential steps, 
which are described in detail as follows and shown in Fig. 3.

Step 1. Data preprocessing and evaluation using Pearson correla
tion coefficient heatmap, density plot, and VIF analysis

The density distribution plots of water quality variables are given in 
Fig. S2. The x-axis represents the measured values of these parameters, 
while the y-axis denotes the density of occurrences, providing insights 
into the frequency distribution of the data. It is necessary to note that the 
depths recorded at measurement sections of B1, B2, and B3 were 48.30 
m, 39.41 m, and 28.02 m, respectively. The density distributions of 
temperature across the three sections (B1, B2, and B3) indicate relatively 
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similar trends, with an unimodal distribution in each case. There are no 
extreme deviations, indicating stable thermal conditions across sam
pling sites. The EC distributions exhibit multimodal patterns at all three 
locations. While the overall trends are similar, B1 shows a slightly 
broader distribution, suggesting more variability in conductivity. In this 
section, multiple peaks may indicate influences from inflows or 
anthropogenic activities. The salinity density distributions in B1 and B2 
display a right-skewed pattern, peaking at lower salinity values with a 
gradual decline toward higher salinity levels. This trend indicates that 
the reservoir primarily contains freshwater, with only minor saline in
trusions. The pH density plots indicate that the reservoir conditions are 

neutral to slightly alkaline. The broader distribution observed in B3 may 
suggest more significant fluctuations in pH levels, potentially due to 
biological activities or localized inputs. The density plots for DO indicate 
a multimodal distribution, particularly in B1 and B2. The variation 
suggests possible differences in aeration, photosynthetic activity, and 
water column stratification across the reservoir. The broader distribu
tion in B3 is affected by the lower depth of measurements. It may reflect 
localized mixing or external inputs influencing DO concentrations. Chl-a 
density distributions exhibit variations between sections. The right- 
skewed nature of the distributions suggests episodic algal blooms or 
localized eutrophication processes, potentially driven by nutrient 

Fig. 3. Flowchart of modeling process for predicting DO and Chl-a.
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availability and hydrodynamic factors.
The Pearson correlation coefficient heatmaps for B1, B2, and B3 

datasets are given in Fig. S3. The Chl-a shows a moderate positive cor
relation with pH and a weak correlation with other parameters, sug
gesting pH levels might influence Chl-a concentrations. Ibelings and 
Maberly [64] found that elevated surface pH facilitates the uptake of 
atmospheric CO2 into aquatic systems through a mechanism known as 
chemical enhancement, which subsequently enhances algal photosyn
thesis and leads to increased Chl-a concentrations. Han et al. [10] 
confirmed this result when investigating the correlation between vari
ables in the Namhan River watershed in South Korea.

The correlation between Chl-a and Temperature in the B3 section 
differs from that observed in B1 and B2, potentially due to variations in 
hydrological characteristics, the shallower depth of B3, and anthropo
genic influences. The correlation of Chl-a with other water quality pa
rameters in the B3 section, located upstream of the dam reservoir, is 
lower than in the B1 and B2 sections. This emphasizes the need to 
monitor upstream Chl-a levels to better predict and manage changes in 
downstream water quality. Different research has confirmed that water 
temperature is crucial in regulating algal bloom dynamics in aquatic 
ecosystems [65,66]. Also, a study on rivers by Kim et al. [67] and 
another on rivers and marginal lakes by Casanova et al. [68] found a 
strong positive correlation between EC and Chl-a. However, our findings 
do not fully align with these results, as we observed relatively weak 
correlations between Chl-a and two variables of EC and Temperature. 
The current study results are similar to those of Yang et al. [13], who 
applied correlation analysis to reveal the Chl-a concentration pattern in 
the Fuchun River, China. They presented that the precise relationship 
and the extent of the impact remain uncertain, as the correlations be
tween variables are highly intricate due to their strong dependence on 
spatiotemporal variability, climate dynamics, and anthropogenic 
influences.

The DO strongly correlates with all input variables of depth, tem
perature, EC, salinity, and pH. Notably, the strong correlation of dis
solved oxygen with depth in datasets B1 and B2, as well as with salinity 
in section B3, underscores the impact of these factors on oxygen levels. 
The strong correlations between DO and other variables indicate reliable 
relationships that can be utilized for predictive modeling and environ
mental monitoring. However, strong correlations also indicate potential 
multicollinearity, which should be addressed in multivariate analyses to 
avoid biased estimates.

The VIF test was conducted on the dataset to identify and eliminate 
variables exhibiting strong collinearity. Table 1 illustrates the collin
earity relationships among the independent variables for predicting Chl- 
a and DO. The results revealed that nearly all variables demonstrated a 
low risk and acceptable degree of collinearity (1 < VIF ≤ 5) in prediction 
Chl-a. However, from the results of VIF values for DO predicting, Depth 
and Temperature variables show strong multicollinearity (VIF > 10), 
and two variables of Salinity and pH show moderate collinearity (5 <
VIF ≤ 10) with DO. Given these findings, all variables for Chl-a and two 
variables of EC and Salinity are selected for further analysis to ensure 
multicollinearity did not significantly impact the analytical process.

Step 2. Feature selection using BFSA, SHAP, and GT techniques
Table S1 presents the five best feature combinations identified 

through the GT for predicting Chl-a and three feature combinations for 

predicting DO in the dam reservoir. The GT was employed to evaluate 
the predictive relevance of different input variables, minimizing noise 
and maximizing the accuracy of predictive models. Two key metrics, 
Gamma and Vratio, were used to assess the performance of selected 
variables. Lower Gamma and Vratio values indicate better predictive 
capability with minimal uncertainty.

For Chl-a prediction, the Temperature, EC, and pH combination 
yielded the lowest Gamma value (1.098) and Vratio (0.221), indicating 
that these parameters have the highest predictive power for Chl-a con
centration in the reservoir. Expanding the selection to include Salinity 
resulted in a marginal increase in Gamma (1.102) and Vratio (0.222), 
suggesting a slightly reduced predictive efficiency.

The best-performing variable combination for DO prediction was EC 
and Salinity, which recorded the lowest Gamma (0.031) and Vratio 
(0.007). Considering only Salinity as the input vector resulted in a 
slightly higher Gamma value (0.500), which indicates that the Salinity 
variable contributes meaningfully to improving prediction accuracy.

The results from the BFSA emphasize Temperature, pH, and EC as the 
most critical predictors for Chl-a. Based on the BFSA, the importance of 
EC and Salinity variables were almost similar. The pH (Z-score = 1.29) is 
the most important variable for Chl-a prediction. These findings un
derscore the need for continuous monitoring of these key variables to 
improve the accuracy of machine learning-based water quality models. 
Since the Z-score values of all variables were lower than the critical 
threshold, all variables are selected for further modeling of Chl-a.

Fig. S4 illustrates the impact and importance of different water 
quality parameters in predicting Chl-a concentrations in the dam 
reservoir, as determined by the SHAP method. SHAP values quantify the 
contribution of each input variable to the model’s predictions and help 
to identify the most influential features. The distribution of SHAP values 
and mean absolute SHAP values show that the pH and Temperature 
variables have the highest variation in SHAP values, indicating their 
strong influence on model output for predicting Chl-a. Higher pH values 
tend to have a positive impact on Chl-a predictions. Increased pH levels 
may be associated with enhanced algal growth. Depth has relatively 
lower SHAP values and indicates a weaker but still notable influence on 
Chl-a predictions. Therefore, based on the SHAP analysis, two optimal 
feature combinations of (1) Temperature and pH, and (2) Temperature, 
pH, and Depth are selected for further modeling and prediction of Chl-a 
concentration in the dam reservoir. These findings align with estab
lished ecological and hydrological processes. For instance, Saravani 
et al. [69] emphasized that water temperature and pH regulate 
biogeochemical processes, including photosynthesis and nutrient 
cycling. Specifically, temperature directly affects algal growth, with 
15–30 ◦C being optimal for many species [70,71]. Han et al. [10] further 
highlighted the interaction between pH and temperature: higher tem
peratures amplify pH’s effect on Chl-a, while stratification may create 
localized depth-specific conditions where cooler temperatures and 
elevated pH still promote algal growth—possibly due to enhanced CO2 
influx in stratified layers [72]. Water depth and surface area influence 
sediment resuspension, altering inorganic suspended solids (ISS) and 
light availability [73,74]. Elevated ISS reduces light penetration, 
inhibiting algal growth [75,76], while depth-driven variations in the N:P 
ratio can disrupt nutrient-Chl-a relationships [77]. These mechanisms 
underscore why reservoir-specific traits (e.g., depth, stratification) must 
be considered in predictive models [78]. As noted by Zou et al. [79], 
integrating reservoir morphology (e.g., depth, area) and stratification 
effects could refine predictions of water bloom outbreaks.

In addition, Salinity has the highest SHAP value distribution, indi
cating that it is the most significant predictor of DO (Fig. S5). Therefore, 
based on this analysis, two input vectors of (1) EC and Salinity, and (2) 
Salinity are considered for further modeling. DO dynamics in aquatic 
systems are shaped by both biological production (primarily through 
photosynthesis) [80] and consumption processes (respiration and 
organic matter decomposition) [81], with salinity and EC serving as 
critical regulators. Salinity directly reduces oxygen solubility and 

Table 1 
VIF values to assess the degree of multicollinearity among the independent 
water quality variables of the dam reservoir.

Variable R-squared VIF (Chl-a) R-squared VIF (DO)

Depth 0.165 1.197 0.936 15.566
Temperature 0.165 1.198 0.903 10.272
EC 0.053 1.056 0.315 1.460
Salinity 0.168 1.202 0.829 5.839
pH 0.310 1.450 0.887 8.878
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promotes stratification that can isolate bottom waters, exacerbating 
hypoxia [82], while EC reflects ionic nutrient concentrations that drive 
microbial activity—high EC (e.g., from NH₄+ or PO₄3− ) stimulates 
oxygen-consuming heterotrophic respiration [83], and low EC may limit 
algal oxygen production. These features interact with temperature and 
physical aeration, where elevated EC and salinity collectively signal 
increased organic loads or reduced mixing potential, aligning with their 
identified importance in predicting DO declines through oxidative 
decomposition [84,85] and stratification-linked respiration of algal 
biomass [82].

Table 2 presents five different input variable combinations for pre
dicting Chl-a and DO, selected using BFSA, SHAP, and GT techniques. 
Each method identifies the most influential water quality parameters to 
improve predictive accuracy. The selected feature sets vary, with 
embedded-based BFSA including all variables, while SHAP focuses on 
the most impactful ones, such as Temperature, pH, and Depth. GT- 
selected combinations emphasize EC and Salinity as critical factors for 
Chl-a and DO. These feature combinations will be further evaluated 
using XGBoost to determine their effectiveness in predictive modeling. 
Uddin et al. [86] applied eighteen feature selection techniques, 
including Boruta, to identify key water quality parameters for predicting 
the water quality index (WQI) in Ireland. The findings suggest that 
embedded-based approaches outperform traditional filter methods, such 
as Principal Component Analysis (PCA) and Pearson Correlation 
(PCOR), in identifying the most significant water quality indicators.

Step 3. Evaluating various combinations of input variables from 
step 2 to determine the most effective configuration

The XGBoost model is utilized to assess the various combinations in 
this stage. The model was fine-tuned using the Optuna optimization 
algorithm, a hyperparameter optimization framework. The dataset was 
randomly divided into two subsets, with 70 % allocated for training and 
30 % reserved for testing. This partitioning ensured the model was 
trained on a substantial portion of the data. After testing multiple var
iable combinations, the optimal configuration was selected based on 
performance metrics to ensure the best predictive capability.

Step 4. Develop comparing models
The performance of the XGBoost model was evaluated in comparison 

with several other individual models, including MLP, LSSVR, GRUs, and 
CNNs. The assessment used multiple evaluation criteria, error box plots, 
uncertainty analyses, scatter plots, and Taylor diagrams. Based on these 
assessments, the most effective model was selected for further analysis.

Step 5. Development of hybrid models
In this step, hybrid models are developed by combining the best- 

performing model from Step 4 with other applied models. The pri
mary objective of this hybridization process is to enhance predictive 
performance by leveraging the strengths of multiple algorithms. A 
regularized XGBoost model (optimized via Optuna with L1/L2 regula
rization) was trained to predict the target variable of Chl-a. Its output 
predictions were then treated as an additional engineered feature, 
capturing non-linear relationships and feature importance from tabular 
data. The XGBoost predictions were used as standalone inputs and fed 
into MLP, LSSVR, GRUs, and CNNs models to form hybrid frameworks 
[87]. Therefore, XGBoost-MLP, XGBoost-LSSVR, XGBoost-GRUs, and 
XGBoost-CNNs models were developed to explore potential improve
ments in predictive capabilities through hybridization.

Step 6. Validation of the selected model on the B2 dataset
The datasets obtained from two distinct locations, B1 and B3, were 

utilized for training and testing the model. In contrast, data from the 
third location, B2, were exclusively allocated for the validation. This 
approach ensures that the final model is evaluated on an independent 
dataset, thereby assessing its generalization capability and performance 
in predicting water quality parameters under different spatial 
conditions.

Step 7. Risk assessment of water bloom in dam reservoir
This process analyzes potential risks to water quality, aquatic life, 

and reservoir usability. The assessment aims to identify early warning 
indicators to prevent or minimize the adverse effects of water blooms on 
the ecosystem and human activities.

3. Results and discussion

3.1. Evaluation of the selected input features using the XGBoost model

Fig. 4 illustrates the XGBoost model’s evaluation results optimized 
with the Optuna algorithm for predicting Chl-a and DO concentrations 
in the dam reservoir. The selected feature combinations, derived from 
BFSA, SHAP, and GT methods, were tested to determine the best input 
variables for accurate prediction. In the Chl-a prediction, R2 values are 
consistently high (above 0.91) in the training phase and between 0.88 
and 0.92 in the testing phase. Based on the R2 values in the testing phase, 
feature combinations of F1, F2, and F3 can be considered as the best. 
RMSE and MAE values vary among the selected feature sets, with F1 and 
F3 demonstrating the lowest errors in the testing phase and suggesting 
these feature combinations can enhance model precision. Also, the 
minimum value of PBIAS and maximum value of 95PPU in the testing 
phase were observed for F1. The results confirm that using carefully 
selected features, the XGBoost model can effectively predict Chl-a. The 
feature combination of F1 demonstrated the highest accuracy and lowest 
error rates.

In the case of DO prediction, the R2 values are >0.94, demonstrating 
exceptional model reliability in capturing DO variations. RMSE and 
MAE values are notably low, and I1 shows the best performance. PBIAS 
analysis reveals minor deviations and the lowest value is attained for the 
I1 (0.043) feature combination in the testing phase. The values of 95PPU 
are obtained equal to 98.2 % for I1 and 88.8 % for I3 in the testing phase. 
This result highlights a good level of predictive confidence and uncer
tainty handling. Therefore, the results confirm the capability of the I1 
feature combination, selected by the BFSA method, for predicting DO in 
dam reservoirs.

3.2. Individual and hybrid models performance

Fig. 5 presents the comparative performance evaluation of models 
(MLP, LSSVR, GRUs, and CNNs) in predicting Chl-a and DO concentra
tions. The evaluation uses the best-performing feature sets, F1 and I1, 
which include Depth, Temperature, EC, Salinity, and pH for F1, and EC 
and Salinity for I1, as selected by the BFSA method. Among individual 
models, XGBoost consistently outperformed all others in prediction Chl- 
a (R2 = 0.977, RMSE = 0.339, MAE = 0.237, and PBIAS = − 0.094 in 
training phase and R2 = 0.921, RMSE = 0.553, MAE = 0.405, and PBIAS 
= 0.245 in testing phase). Zhu et al. [88] stated that increasing the 
complexity of a model’s structure may enhance its capacity, but it can 
also lead to instability and may not necessarily improve accuracy. In this 
study, CNNs and GRUs models were less effective than XGBoost in 
accurately identifying the patterns of Chl-a and DO concentrations that 
contributed to the suboptimal performance of these models. In addition, 
XGBoost’s superior performance in predicting Chl-a and DO in dam 
reservoirs can arise from its ability to handle structured datasets, cap
ture complex interactions, and provide computational efficiency with 
high interpretability. Deep learning models, including CNNs and GRUs, 
require large datasets for practical training. However, data availability is 

Table 2 
The best-selected feature combinations of variables based on BFSA, SHAP, and 
GT techniques.

Method Selected variables for predicting Chl-a Selected variables for 
predicting DO

BFSA F1 Depth, temperature, EC, Salinity, pH I1 EC, Salinity
SHAP F2 Temperature, pH I2 EC, Salinity

F3 Temperature, pH, Depth I3 Salinity
GT F4 Temperature, EC, pH I4 EC, Salinity

F5 Temperature, EC, Salinity, pH I5 Salinity
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often limited in environmental modeling, especially for dam reservoirs, 
due to continuous monitoring and sampling constraints. XGBoost per
forms exceptionally well by efficiently capturing relationships between 
water quality parameters (e.g., Temperature, pH, EC, Salinity, and 
Depth) without requiring vast training data. Deep learning models, on 
the other hand, can overfit small datasets, leading to inconsistent pre
dictions in test cases. Additionally, XGBoost employs gradient boosting 
with decision trees, allowing it to model complex, non-linear relation
ships between water quality parameters effectively. The lower RMSE 

values achieved by XGBoost are due to their enhanced ability to mitigate 
generalization errors, primarily through bootstrap aggregation [21]. 
Deep learning models rely heavily on neural network architectures and 
may require extensive tuning to recognize such interactions effectively. 
Unlike deep learning models, which require high computational power 
and extensive hyperparameter tuning, XGBoost can achieve optimal 
performance with fewer computational resources and shorter training 
times.

For prediction DO, both GRUs (R2 = 0.995, RMSE = 0.153, MAE =

Fig. 4. Performance evaluation of selected Chl-a and DO Prediction features using the XGBoost model.

Fig. 5. Performance evaluation of machine/deep learning models for Chl-a and DO Prediction.
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0.112, and PBIAS = − 0.989 in training phase and R2 = 0.996, RMSE =
0.138, MAE = 0.107, and PBIAS = − 1.008 in testing phase) and CNNs 
(R2 = 0.995, RMSE = 0.151, MAE = 0.108, and PBIAS = 1.011 in 
training phase and R2 = 0.995, RMSE = 0.209, MAE = 0.109, and PBIAS 
= 1.024 in testing phase) show high performance. Traditional machine 
learning models like LSSVR and MLP showed higher errors and bias, 
while the tree-based model of XGBoost performed well but was slightly 
less stable than deep learning.

Integrating multiple estimation models through a combination 
approach enhances the robustness of predictions, particularly in cases 
where single models may not be reliable. To achieve the best perfor
mance, exploring various hybrid methodologies and strategies is 
essential before finalizing the merging model [27]. Given the superior 
performance of the XGBoost model, it was explored in hybrid models 
(XGBoost-LSSVR, XGBoost-MLP, XGBoost-GRUs, and XGBoost-CNNs) to 
enhance the predictive accuracy of Chl-a concentrations. The results 
demonstrate that hybrid models integrating XGBoost consistently 
outperform individual models across all performance metrics. XGBoost- 
GRUs and XGBoost-CNNs outperform standalone GRUs and CNNs 
models, indicating that integrating tree-based learning with deep 
learning improves model generalization and prediction accuracy. 
XGBoost-LSSVR and XGBoost-MLP show enhanced performance over 
their standalone versions, suggesting that boosting-based feature selec
tion improves prediction robustness. Among all individual and hybrid 
models, XGBoost-GRUs and XGBoost-CNNs demonstrate the best bal
ance between high accuracy and low error, with R2 values exceeding 
0.97 and minimal MAE/RMSE values. Hybrid models mitigate common 
weaknesses of individual deep learning models, such as overfitting, slow 
convergence, and sensitivity to data noise. Fooladi et al. [27] repre
sented that tree-based model of Random Forest showed lower uncer
tainty in prediction DO and Chl-a in comparison with generalized 
regression neural network (GRNN), Gaussian process regression (GPR), 
decision tree (DT), least-squares boosting (LSB), Bayesian ridge (BR), 
support vector regression (SVR), K-nearest neighbors (KNN), multilayer 
perceptron (MLP), and group method of data handling (GMDH). Han 
et al. [10] developed an XGBoost model to predict Chl-a concentrations 
in a river in South Korea. The results demonstrated the model’s strong 
predictive performance, achieving an R2 of 0.9487 and RMSE of 3.1661. 
Shamloo and Sima [25] utilized Landsat-8 and Sentinel-2 satellite data 
in combination with multiple linear regression (MLR) and artificial 
neural networks (ANNs) to model Chl-a in Lake Urmia. Their findings 
revealed that models based on Landsat-8 outperformed those using 
Sentinel-2, mainly when ANNs were applied to predict Chl-a. The Nash- 
Sutcliffe Efficiency (NSE) values for ANN models were equal to 0.75, 
demonstrating superior predictive capabilities compared to MLR models 
(NSE = 0.74). The findings reinforce that hybrid tree-based and deep 
learning models provide a highly effective approach for real-time water 
quality prediction and environmental monitoring in aquatic systems.

Table 3 presents the architecture and parameter configurations of the 
ML/DL models applied for Chl-a and DO prediction.

The error distribution of different models in predicting Chl-a is given 
in the error box plot of Fig. S6. The XGBoost and its hybrid models 
exhibit the lowest median absolute errors with minimal variance, indi
cating high consistency and stability in training. Based on the Taylor 
diagram, hybrid models, particularly XGBoost-CNNs and XGBoost- 
GRUs, demonstrate the highest correlation of 0.99 and the lowest 
RMSD (between 1.25 and 1.61 lines) in the training phase (Fig. S7). In 
the testing phase, XGBoost-CNNs remain the closest to the observed 
values, confirming superior generalization compared to traditional 
machine learning and deep learning models. Therefore, the XGBoost- 
CNNs model is chosen as the best model with high performance for 
predicting Chl-a concentrations in the dam reservoir.

While error reflects a measurable deviation, it represents a deficiency 
in information and understanding about a system and the complexity 
and variability inherent in its nature [89]. In this study, the uncertainty 
analysis is performed on the best-selected model to ensure the reliability 

and stability of predictive models. Based on Fig. 6, XGBoost-CNNs 
achieves a high coverage probability (94.16 % in training and 79.37 
% in testing phases) and most observed values fall within the 95 % 
uncertainty bounds. The d-factor in the uncertainty analysis quantifies 
the width of the uncertainty bounds relative to the predicted values. A 
lower d-factor indicates narrower uncertainty bounds, suggesting higher 
model precision, whereas a higher d-factor reflects greater uncertainty 
in predictions. The relatively low d-factor values (0.69 for training, 0.68 
for testing) confirm that XGBoost-CNNs provides stable and precise 
predictions, with minimal uncertainty in Chl-a predicting. However, the 
slight variation in the d-factor suggests that the model can be general
ized, making it a robust and reliable tool for Chl-a prediction in dam 
reservoirs.

The plots to compare observed against predicted Chl-a concentra
tions at different depths of the reservoir for both training and testing of 
the XGBoost-CNNs model are given in Fig. S8. XGBoost-CNNs accurately 
follows the distribution of observed Chl-a values across different depths, 
though some minor deviations occur. Park et al. [16] evaluated ANN and 
SVM for early warning prediction of Chl-a, using input variables such as 
phosphate phosphorus (PO4-P), ammonium nitrogen (NH3− N), nitrate 
nitrogen (NO3-N), solar radiation, wind speed, and water temperature. 
Through the Williams–Kloot test and sensitivity analysis, they found that 
SVM outperformed ANN in prediction accuracy and in capturing the 
cause-and-effect relationships between Chl-a and environmental vari
ables in both the Juam and Yeongsan Reservoirs. Sensitivity analysis 
revealed that the most influential input variable differed between 
models and locations. In the Juam Reservoir, PO4-P was the most sen
sitive variable for both ANN and SVM, whereas in the Yeongsan Reser
voir, solar radiation was most critical for ANN and NH3-N for SVM. 
These findings highlight the context-dependent nature of key drivers in 
Chl-a modeling and the importance of selecting appropriate algorithms 
based on system characteristics. Abbas et al. [20] evaluated six DL 
models including LSTM, CNN, Temporal Convolutional Network (TCN), 
CNN-LSTM, LSTM-based autoencoder, and input-attention LSTM (IA- 

Table 3 
Models structure and parameter configuration for predicting Chl-a and DO.

Parameters

Model for predicting Chl-a
LSSVR c: 24.893, gamma: 14.981
MLP Learning rate: 0.001, number of hidden layers: 5, hidden size 1: 171, 

hidden size 2: 165, hidden size 3: 36, hidden size 4: 56, hidden size 
5: 100, batch size: 16

GRUs Learning rate: 0.005, number of hidden layers: 2, hidden size 1: 147, 
hidden size 1: 68

CNNs Learning rate: 0.001, filters: 48, kernel size: 4, pool size: 1, dense 
units: 70, hidden neurons: 30, batch size: 48

XGBoost Learning rate: 0.014, max depth: 6, subsample: 0.681, colsample 
bytree: 0.926, L1 regularization: 0.048, L2 regularization: 0.069

XGBoost- 
LSSVR

c: 99.936, gamma: 0.002

XGBoost-MLP Learning rate: 0.001, number of hidden layers: 1, hidden size 1: 63, 
batch size: 32

XGBoost- 
GRUs

Learning rate: 0.0002, number of hidden layers: 4, hidden size 1: 77, 
hidden size 1: 19

XGBoost- 
CNNs

Learning rate: 0.004, filters: 112, kernel size: 1, pool size: 1, dense 
units: 10, hidden neurons: 10, batch size: 80

Model for predicting DO
LSSVR c: 6.720, gamma: 1.449
MLP Learning rate: 0.0079, number of hidden layers: 1, hidden size: 189, 

batch size: 16
GRUs Learning rate: 0.046, number of hidden layers: 2, hidden size 1: 186, 

hidden size 2: 67
CNNs Learning rate: 0.003, filters: 96, kernel size: 1, pool size: 1, dense 

units: 20, hidden neurons: 20, batch size: 16
XGBoost Learning rate: 0.097, max depth: 3, subsample: 0.969, colsample 

bytree: 0.169, L1 regularization: 3.248 × 10− 7, L2 regularization: 
0.070
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LSTM) for hydrological and Chl-a simulations. Their results demon
strated that IA-LSTM outperformed other architectures, achieving an R2 

of 0.85 at the training site and 0.52 at the test site.
The hybrid approach of XGBoost-CNNs leverages CNN’s robust 

feature extraction and XGBoost’s predictive power, consistently 
achieving higher accuracy, lower error rates, and faster processing than 
standalone models [90]. Premalatha and Bai [90] achieved 98 % accu
racy and 100 % recall in healthcare analytics, surpassing decision trees, 
random forests, and SVMs. Jayakarthik et al. [91] demonstrated that a 
CNN-XGBoost model optimized with WOA achieved 98 % accuracy in 
climate change prediction, significantly outperforming individual CNN 

or XGBoost benchmarks. Prakash and Sangeetha [92] reported a 5 % 
efficiency gain over traditional models (e.g., SVM, LSTM) in air pollu
tion classification using XGBoost-CNN. These studies collectively un
derscore that hybridizing CNN and XGBoost capitalizes on their 
complementary strengths, as noted in the results of the current study.

The error box plot and Taylor diagram for comparing different 
models in the prediction of DO are given in Figs. S9 and S10. The 
evaluations confirm that GRUs and CNNs models are the most effective 
models for DO prediction, outperforming traditional MLP and LSSVR 
models across all metrics. To find the best model between GRUs and 
CNNs, Fig. 7 shows the uncertainty analysis of these models in 

Fig. 6. Uncertainty analysis of hybrid XGBoost-CNNs model in prediction Chl-a concentrations by determining probability distribution function.

Fig. 7. Uncertainty analysis of individual GRUs and CNNs models in prediction DO concentrations by determining probability distribution function.
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predicting DO concentrations. The Logistic function is the most related 
probability distribution function on the DO dataset for uncertainty 
analysis. Although the performance of the two models is almost near, 
100 % coverage probability is captured within the uncertainty bounds 
for the CNNs model in both the training and testing phases. Low d-factor 
values (0.76 in both training and testing) indicate narrow uncertainty 
bounds and high prediction accuracy of CNNs. The plots to compare 
observed against predicted DO concentrations at different depths of the 
reservoir for both training and testing of the CNNs model are given in 
Fig. S11. Zhang et al. [93] utilized a MLP model enhanced with MI 
feature selection (MLP-MI) to predict DO concentration in Australia. 
Their findings demonstrated that MLP-MI provided precise DO pre
dictions, establishing it as a valuable tool for water quality management. 
Moghadam et al. [94] investigated the effectiveness of various artificial 
intelligence models, including ANN, RNN, SVM, and DRNN, in pre
dicting DO concentrations in the USA. Their findings demonstrated that 
DRNN outperformed the other models regarding predictive accuracy. 
Tiyasha et al. [95] developed and tested four machine learning models: 
RF, conditional RF, RF generator, and XGBoost, for predicting DO con
centrations in Malaysia. Their findings indicated that XGBoost out
performed the other models regarding predictive accuracy. Similarly, 
Heddam et al. [96] applied various models, including LSTM, SVR, ge
netic programming (GP), group method of data handling (GMDH), SVR, 
and GPR, to estimate DO levels in rivers across the USA. Their results 
revealed that GPR exhibited the highest predictive accuracy among the 
tested approaches. Alizamir et al. [48] implemented the Bayesian Model 
Averaging (BMA) approach to integrate deep learning models such as 
MLPNN, RNN, CNNs, GRUs, LSTM, and SARIMAX for more accurate DO 
prediction across two USGS stations in the USA. Feature selection 
techniques, including MI and Recursive Feature Elimination (RFE), were 
utilized to determine the most influential predictors, with water tem
perature and previous DO values emerging as key factors. The results 
indicated that the BMA framework outperformed single-model methods, 
yielding lower RMSE and MAE values and higher R2.

The model’s performance applied in the current study is inherently 
constrained by several interconnected uncertainties: 

(1) Environmental and measurement uncertainty: Uncontrolled 
ecological variation (e.g., stochastic weather events, unmeasured 
biotic interactions) and intrinsic errors from field sampling, 
sensor calibration drift, and laboratory analytical precision [97] 
introduce irreducible noise. This limits prediction accuracy and 
requires careful error handling, as relying on imperfect data can 
skew model results and reduce confidence in predictions.

(2) Data limitations: Sparse spatiotemporal sampling coverage and 
data quality issues (e.g., missing values, inconsistencies across 
sources) restrict the model’s ability to capture complex system 
dynamics fully. This can lead to overfitting on available data, 
reduced generalizability to unmonitored locations or future 
conditions, and increased sensitivity to interpolation/extrapola
tion errors [98].

(3) Model structural and data-driven uncertainty: Aleatoric uncer
tainty and epistemic uncertainty are two sources of model un
certainty. Aleatoric uncertainty shows inherent stochasticity or 
noise in the observed data (e.g., natural variability of Chl-a at 
microscales). Epistemic uncertainty shows limitations arising 
from model structure, simplifications, incomplete process un
derstanding, or insufficient training data. High epistemic uncer
tainty indicates low model confidence [99,100].

(4) Predictive distribution accuracy: the model’s ability to generate 
accurate full probability distribution functions (PDFs) for key 
outputs like Chl-a and DO is paramount [101]. Reliability hinges 
not just on point predictions but on correctly characterizing the 
range and likelihood of possible outcomes (e.g., the probability of 
exceeding a critical Chl-a threshold). Underestimating prediction 
intervals (e.g., due to unaccounted uncertainties or distribution 

misspecification) creates false confidence, while overestimation 
reduces practical utility.

(5) The model must generate precise full probability distribution 
functions (PDFs) for key outputs (e.g., Chl-a, DO) through 
rigorous Monte Carlo simulation. The selection of appropriate 
PDFs directly influences reliability, as it determines the accuracy 
of uncertainty propagation [101]. Thus, PDF specification in 
Monte Carlo frameworks is critical to balancing precision and 
realism.

In conclusion, acknowledging, quantifying, and transparently 
communicating these sources of uncertainty and their impact on pre
diction confidence is fundamental to evaluating the true reliability and 
appropriate application domains of applied models. Future research 
should focus on mitigating epistemic uncertainty while improving the 
predictive output distributions.

3.3. Assessment of selected models in the third section of the dam 
reservoir

This section evaluates the capability of selected CNNs and XGBoost- 
CNNs models in the third location of the dam reservoir for predicting DO 
and Chl-a, respectively. Based on Fig. S12, the high R2 values equal to 
0.986 and 0.995 indicate a strong correlation between predicted and 
observed Chl-a and DO values, respectively. The RMSE equal to 0.224 
suggests high model accuracy in predicting Chl-a variations. The value 
of PBIAS = 1.189 indicates a slight overestimation. Extremely low errors 
(RMSE = 0.153, MAE = 0.109, and PBIAS = 0.999) in predicting DO in 
the B2 section show perfect precision of CNNs in DO prediction. These 
results confirm that both models provide highly accurate predictions, 
with XGBoost-CNN effectively capturing Chl-a variability and CNNs 
excelling in DO prediction.

Fig. S13 compares observed values against predicted values at 
different depths of the B2 section in the dam reservoir. The XGBoost- 
CNNs model successfully replicates the depth-wise distribution of Chl- 
a, with minimal deviations across the water column. This model cap
tures surface and subsurface variations and shows strong predictive 
capability. Also, the CNNs model aligns almost perfectly with observed 
DO profiles at all depths, demonstrating superior generalization. In 
addition, a coverage probability of 93.68 % for predicting Chl-a using 
the XGBoost-CNNs model and 100 % for predicting DO using the CNNs 
model indicates that most observed values fall within the 95 % confi
dence interval of the model predictions (Fig. 8). These models exhibit 
narrow uncertainty bounds, reinforcing their robustness in real-time 
Chl-a and DO prediction.

3.4. Spatial pattern predictions

The dam reservoir’s depth-based distribution of observed and pre
dicted Chl-a and DO concentrations across three sections (B1, B2, and 
B3) are shown in Fig. 9. The CNNs model was used for DO prediction, 
while the XGBoost-CNNs model was employed for Chl-a prediction due 
to their superior performance in earlier evaluations. These visualizations 
assess the models’ effectiveness in capturing spatial and vertical varia
tions in water quality parameters. The XGBoost-CNNs model effectively 
captures the spatial pattern of Chl-a concentrations, with higher values 
near the surface and lower concentrations in deeper layers. Localized 
variations are visible, particularly in B2 and B3, where Chl-a peaks occur 
at mid-depths, possibly due to light penetration, stratification, and 
nutrient availability. In the case of DO prediction, the CNNs model 
effectively captures the expected vertical stratification of DO, with 
higher concentrations near the surface due to atmospheric oxygen 
diffusion and gradual depletion with depth due to biological respiration 
and limited mixing. The transition between oxygen-rich surface layers 
and oxygen-depleted bottom layers is well-represented across all three 
sections (B1, B2, and B3). The high accuracy of models in predicting DO 
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and Chl-a levels across varying depths reinforces its capability for real- 
time water quality monitoring and aquatic ecosystem modeling. Based 
on Figs. 5 and 9, there are no strong correlations between DO and Chl-a 
in the dam reservoir. Sutula et al. [102] stated that the relationship 
between these variables varied significantly across different sub- 
embayments. The absence of a consistent and significant association 
between DO and Chl-a in this reservoir suggests that physical factors 
prevented the formation of low DO conditions, even in areas with high 
phytoplankton biomass accumulation [108].

3.5. Water blooms risk assessment

There are strong correlations between water bloom abundance and 
Chl-a concentration [102]. For this reason, risk evaluation is a crucial 
initial step in determining the effects of Chl-a and offering a framework 
for assessing the potential development of water blooms. The depth- 
based distribution of risk probability in three sections (B1, B2, and B3) 
of the dam reservoir is shown in Fig. 10. This figure highlights areas with 
potential environmental risks associated with water blooms. The color 
gradient of the R factor represents the magnitude of risk in producing 
water blooms, where higher values (red regions) indicate increased risk 
and lower values (blue regions) suggest stable conditions. B2 and B3 
sections show more risk zones at mid-depths (~6–11 m), likely due to 
fluctuations in Chl-a concentrations and oxygen depletion. Higher risk 

probability at mid-depths (B2 and B3) suggests regions where oxygen 
depletion (hypoxia) or algal blooms are more prevalent, potentially due 
to nutrient enrichment, stratification, or limited mixing. High Chl-a 
concentrations and temperature-driven phytoplankton growth are 
linked to near-surface risk zones, which may impact light penetration 
and DO availability. Deeper regions exhibit lower risk levels, likely due 
to decreased biological activity and stable physical-chemical conditions. 
The results highlight the importance of continuous monitoring and 
adaptive management strategies to mitigate water quality risks. Mid- 
depth regions require targeted interventions such as aeration or 
controlled nutrient loading to minimize the impact of algal blooms and 
oxygen depletion. The risk categories (no risk, low risk, medium risk, 
and severe risk) are determined based on predefined thresholds and 
shown in Fig. S14. The findings indicate that mid-depth zones are crit
ical areas for phytoplankton growth. The spatial variations in risk 
probability emphasize the need for location-specific management ap
proaches in dam reservoirs to ensure long-term ecological sustainability 
and water quality preservation.

3.6. Research limitations and prospects

Despite advancements in predicting Chl-a and DO concentrations 
using ML and DL models, several limitations must be acknowledged. The 
dataset utilized in this study was restricted to three specific sections (B1, 

Fig. 8. Uncertainty analysis of CNNs and XGBoost-CNNs models in prediction DO and Chl-a in B2 section, respectively.

Fig. 9. Depth-based distribution of Chl-a and DO concentrations predicted across three different sections of the dam reservoir (B1, B2, and B3).
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B2, and B3) of the dam reservoir, potentially limiting the generaliz
ability of the findings across different spatial and temporal scales. While 
the selected sections capture variations in water quality parameters, 
expanding monitoring locations and increasing temporal coverage could 
provide a more comprehensive understanding of water quality dy
namics. Future research should incorporate additional sampling sites 
across various depths and geographical locations within the reservoir 
and extended observation periods to account for seasonal and interan
nual variations. Also, the study relies on a single day of measurements (8 
May 2023) across three sections. Since water quality parameters can 
change quickly, it is necessary to monitor data over a long time period 
for accounting seasonal variations.

Another significant limitation stems from the complex nature of 
water bloom formation in reservoirs and lakes. While this study suc
cessfully identified key predictors for Chl-a and DO concentrations, 
water blooms are influenced by many factors beyond the selected water 
quality parameters. The formation of water blooms in lakes and reser
voirs is a highly intricate phenomenon, influenced not only by water 
quality variables such as water temperature, pH, and EC, but also by 
meteorological factors such as precipitation, wind velocity, and tem
perature [1,103]. Moreover, hydrodynamic processes, including 
nutrient transport, sediment resuspension, and stratification, are crucial 
in determining bloom outbreaks [78]. Meng et al. [104] developed a 
Reservoir Water Bloom Risk Index (RWBRI) to assess large-scale eutro
phication in reservoirs across Fujian Province, China. Their approach 
integrated multiple variables, including the Trophic State Index (TSI), 

Floating Algae Index (FAI), temperature, precipitation, and wind speed, 
using Sentinel-2 MSI data at the pixel scale. Similarly, Xue et al. [105] 
evaluated algal bloom risk in the Xiashan and Jihongtan reservoirs by 
analyzing total dissolved phosphorus (TDP) concentrations and N/P 
ratios. Future work could focus on developing a multi-parameter risk 
index for water bloom prediction. This index would incorporate key 
variables such as nutrient levels (e.g., phosphorus and nitrogen), cli
matic factors, and hydrodynamic conditions to improve the accuracy 
and comprehensiveness of risk assessments.

The Monte-Carlo-based uncertainty analysis provided probabilistic 
insights into the reliability of the predictions. However, uncertainties 
remain due to potential measurement errors in water quality parameters 
and inherent model assumptions.

From an application standpoint, integrating real-time monitoring 
systems with AI-driven models remains a promising yet underexplored 
area. While this study employed historical datasets for training and 
validation, deploying sensor networks capable of real-time data acqui
sition could significantly enhance the practical utility of predictive 
frameworks. Implementing Internet of Things (IoT)-based water quality 
monitoring and cloud-based AI analytics would enable automated early 
warning systems for bloom risk assessment and water resource 
management.

4. Conclusions

This study utilized the different ML/DL models, including MLP, 

Fig. 10. Depth-based distribution of risk probability for water blooms across three different sections (B1, B2, and B3) of the dam reservoir

A. Seifi et al.                                                                                                                                                                                                                                     Journal of Water Process Engineering 77 (2025) 108341 

16 



XGBoost, LSSVR, GRUs, and CNNs, to predict Chl-a and DO in the dam 
reservoir in Iran. Three feature selection approaches, including BFSA, 
GT, and SHAP, were used to determine the most important features in 
predicting Chl-a and DO after removing variables with high multi
collinearity. The study applied an advanced technique to quantitatively 
evaluate risk assessment of water bloom occurrence using Chl-a con
centrations. The findings of this study responded to objectives as 
follows: 

- Feature selection and optimal input variables: Advanced feature se
lection techniques identified the most relevant predictors for Chl-a 
and DO. For Chl-a prediction, pH, temperature, EC, and Depth var
iables emerged as the most significant variables. At the same time, 
for DO, salinity and EC were determined as the most influential 
predictors based on the BFSA method. Considering both BFSA and 
SHAP methods ensured that only the most statistically significant 
and relevant features were utilized, leading to improved model 
interpretability and accuracy.

- Model performance and comparative analysis: XGBoost demon
strated the highest accuracy in predicting Chl-a concentrations 
among individual models, outperforming traditional ML and DL 
approaches. For DO prediction, CNNs and GRUs models showed 
superior predictive capabilities, effectively capturing spatial varia
tions in the reservoir.

- Hybrid model enhancement: hybrid ML-DL frameworks, particularly 
XGBoost-CNNs and XGBoost-GRUs, significantly improved predic
tion accuracy of Chl-a compared to standalone models. The hybrid 
XGBoost-CNNs model achieved the highest performance in predict
ing Chl-a, leveraging the strength of tree-based learning and CNNs’ 
capability to capture spatial patterns.

- Uncertainty analysis and risk assessment: Monte-Carlo-based un
certainty analysis demonstrated that the predictive models provided 
reliable estimates, with the XGBoost-CNNs model achieving a high 
coverage probability (94.16 % in training and 79.37 % in testing) for 
Chl-a predictions and the CNNs model attaining 100 % coverage 
probability for DO predictions. The risk assessment framework 
classified water bloom risks into two categories: no risk and low risk 
based on Chl-a concentrations. The results revealed that mid-depth 
regions (5–13 m) exhibited the highest risk.

- Application to Dam reservoir: The study successfully applied the 
predictive framework to Dam, an under-researched reservoir in 
Iran’s semi-arid region. The findings provided critical insights into 
the spatial and vertical distributions of Chl-a and DO, demonstrating 
the applicability of ML and DL models for real-time water quality 
assessment in deep reservoirs. The validation of models using inde
pendent data from the B2 section of the reservoir confirmed their 
strong generalization ability and potential for future deployment in 
similar water bodies.
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