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Abstract 

Metabolic syndrome is the constellation of metabolic disorders such as central 

obesity, dyslipidaemia, insulin resistance, impaired glucose tolerance and hypertension. 

This combination increases the risk of development of cardiovascular disease, fatty liver 

and type 2 diabetes. The prevalence of metabolic syndrome is increasing worldwide. 

 Diet is important in the development of metabolic syndrome assisted by increased 

oxidative stress and inflammation. Plant-based diets provide potential therapeutic 

approaches to metabolic syndrome. Testing requires an appropriate animal model that 

mimics the human syndrome. In this project, I used a diet-induced obese rat model for 

examining the nutraceutical effects of some potential functional foods. To induce 

metabolic syndrome, young male Wistar rats were fed with a high-carbohydrate high-fat 

diet for 16 weeks while corn starch served as control diet. The high-carbohydrate high-fat 

diet induced an impaired glucose tolerance, insulin resistance, obesity, elevated blood 

pressure, dyslipidaemia, cardiovascular remodelling such as hypertrophy and fibrosis, 

increased cardiac stiffness, hepatic disorders such as inflammation and steatosis, along 

with elevated plasma markers of liver function. 

Dietary interventions were given for the last 8 weeks only, as a reversal protocol. 

Interventions included green coffee extract (5%), decaffeinated green coffee extract (5%), 

chlorogenic acid (100 mg/kg/day), coffee pulp (5%), spent coffee (5%) and fish oils (3%). 

Green coffee with or without caffeine attenuated body weight and reduced cardiovascular 

disorders such blood pressure and cardiac stiffness, and improved heart and liver structure 

without improving glucose homeostasis or plasma lipid concentrations. Coffee pulp and 

spent coffee considered as waste products of coffee manufacturing industries attenuated 

cardiovascular remodelling and non-alcoholic fatty liver disease. Both waste products 

reduced body weight, improved glucose tolerance and decreased abdominal fat. 

Chlorogenic acid was present in all coffee products. Intervention with chlorogenic acid 

decreased body weight and visceral fat accumulation, improved heart and liver structure 

and function but did not improve glucose tolerance. 

Prostate cancer patients treated with testosterone deprivation therapy, either 

through orchidectomy or leuprolide injection, show increased obesity. In high-
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carbohydrate, high-fat fed rats, leuprolide treatment worsened metabolic syndrome 

symptoms and cardiovascular function, and orchidectomy produced greater responses. In 

H-fed leuprolide-treated rats, Omacor (a mixture of ethyl esters of EPA and DHA) 

decreased systolic blood pressure and left ventricular diastolic stiffness, reduced 

infiltration of inflammatory cells and collagen deposition in the heart, reduced lipid 

accumulation and inflammatory cell infiltration without improving liver damage. Thus, 

fish oils may provide an option to reduce metabolic syndrome while leuprolide treatment 

continues in patients with prostate cancer. 

My studies show the promising potential of functional foods against life-style 

associated metabolic disorders. In particular, widely used beverage coffee showed 

relevant actions against most signs of metabolic syndrome. Further, waste products from 

coffee production are a potential source for new interventions in diet-induced 

cardiovascular and metabolic diseases. 
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Metabolic syndrome: prevalence and consequences 

Obesity is characterised by the excessive accumulation of fat in adipose tissue [1]. 

The prevalence of obesity has escalated to epidemic levels globally. According to the 

World Health Organization (WHO), approximately 600 million people or 13% of the 

global population are categorised as obese and it is estimated that the number of newly 

diagnosed obese individuals has doubled since 1980 [2]. In the US, the prevalence of 

obesity was estimated at 35% among males and 40.4% among females in 2013-2014 [3]. 

Metabolic syndrome is the constellation of metabolic disorders such as dyslipidaemia, 

hypertension, visceral obesity, insulin resistance and impaired glucose tolerance [4]. 

Metabolic syndrome increases the risk of developing cardiovascular disease, type 2 

diabetes and non-alcoholic fatty liver disease [5]. The association between obesity and 

metabolic syndrome was demonstrated in the National Health and Nutritional 

Examination Survey (NHANES) III study in which 5% of normal weight, 22% of 

overweight and 60% of obese subjects were classified as having metabolic syndrome in 

the United States [6]. 

Increasing poor nutrition, high-calorie diets, sedentary lifestyle and the 

comparative ageing of populations promotes an increase in the prevalence of metabolic 

syndrome [7]. Thus, targeting metabolism or energy homeostasis could be an approach to 

prevent or reverse metabolic syndrome and its consequences [8]. Due to the improvements 

in medical management, hypertriglyceridaemia and hypertension were reduced leading to 

reduction in metabolic syndrome from about 25.5% in 1999 to 22.9% in 2010 in the United 

States. However, abdominal circumference and hyperglycaemia steadily increased over 

the same period of time [9]. Cardiovascular diseases are one of the leading causes of 

mortality and morbidity worldwide [10, 11]. Patients with metabolic syndrome have 

higher risks to develop cardiovascular morbidity and mortality as well as type 2 diabetes. 

The prevalence of cardiovascular diseases was approximately three times higher in 

individuals with metabolic syndrome than individuals without it [12]. Despite some 

promising developments, metabolic syndrome remains one of the predominant causes of 

morbidity and mortality worldwide. 
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Chronic inflammation is closely linked to the development of obesity, insulin 

resistance, oxidative stress, cardiovascular disease and type 2 diabetes, characterised by 

abnormal secretion of cytokines and activation of the inflammatory signalling cascades 

[8]. Adipocytes modify metabolism by secreting non-esterified fatty acids, hormones such 

as leptin and adiponectin and pro-inflammatory cytokines [13, 14]. Excessive adipocyte 

accumulation triggers increased secretion of several pro-inflammatory adipokines such as 

interleukin (IL)-6, tumour necrosis factor (TNF), resistin, angiotensinogen, C-reactive 

protein (CRP), plasminogen activator inhibitor-1 (PAI-1) and fibrinogen causing 

prothrombotic alterations, increases in chronic low-grade inflammation and 

cardiovascular complications such as atherogenesis [15, 16]. These adipokines also 

regulate pathways that are associated with atherosclerosis, insulin resistance, hypertension 

and endothelial dysfunction [15, 16]. For instance, TNF is an adipokine that upregulates 

inflammatory variations in the vascular tissue, causing insulin resistance by inhibition of 

the insulin receptor signalling pathway and reduced the PPAR-γ expression level [15, 16]. 

Major components of metabolic syndrome 

Metabolic syndrome is linked to hypertension and is responsible for myocardial 

dysfunctions, characterised by extended contraction and relaxation time, reduced rate of 

myocardial contraction and relaxation and reduced myocardial function [17, 18]. Several 

mechanisms have been proposed for cardiovascular abnormalities linked to metabolic 

syndromes, such as disrupted energy production because of reduced mitochondrial 

respiration and pyruvate dehydrogenase activity, oxidative stress, dyslipidaemia, 

mitochondrial leakage, reduced autophagy healing, endoplasmic reticulum stress and 

interrupted intracellular Ca2+ ion signalling [19, 20]. In a transgenic mouse model of 

lipotoxic diabetic cardiomyopathy, heart tissue showed elevated fatty acid intake, reduced 

diastolic sarcomere length, diminished myofilament Ca2+ response, higher β-MHC 

expression and extended diastole [21]. Several therapeutic options have been developed 

for the management of cardiovascular disease associated with metabolic syndrome, but 

they are not yet making a difference. This could be due to lack of clear understanding of 

metabolic syndrome associated pathogenesis in cardiovascular remodelling [22, 23].  
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Metabolic syndrome impairs cardiovascular function by the combination of 

atherogenic dyslipidaemia and hyperglycaemia due to the chronic pro-inflammatory 

conditions resulting in obesity, hypertension and prothrombotic state (Figure 1) [24, 25]. 

Subjects classified as having metabolic syndrome and diagnosed with at least 4 of 5 

metabolic syndrome parameters have been shown to have 3-fold increased risk of 

cardiovascular diseases in a 5-year follow-up [26]. Atherogenic dyslipidaemia consists of 

elevations of lipoproteins such as apolipoprotein B (ApoB), elevated serum triglycerides, 

a high concentration of small LDL particles, and low concentration of high-density 

lipoproteins (HDL) [27]. The elevated levels of triglycerides and small LDL and low 

levels of HDL-cholesterol, collectively known as the lipid triad are the fundamental 

reasons for causing cardiovascular disorders such as angina pectoris, unstable angina, 

myocardial infarction or cardiac-related deaths [28]. 

Figure 1. Components of metabolic syndrome [29]  
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Obesity 

Obesity is responsible for triggering insulin resistance resulting in the 

pathogenesis of cardiovascular disease  as insulin resistance promotes atherogenic 

dyslipidaemia [30, 31]. Insulin resistance is described as reduced sensitivity to circulating 

insulin. In diet-induced obesity, excess energy intake leads to an overload of adipocytes 

beyond their lipid storage capacity, causing excessive release of lipids into the 

bloodstream. High levels of circulating non-esterified fatty acids suppress glucose uptake 

by skeletal muscles [32]. Malfunction of fatty acid metabolism causes excess 

accumulation of lipids in myocytes, hepatocytes, and β-cells of pancreas, in turn, causing 

insulin resistance as well as impairment of β-cell function; these effects are noted as 

lipotoxicity [33, 34].  

Figure 2. Chronic low-grade inflammation in obesity [35] 

Lipotoxicity reduced insulin-mediated glucose metabolism in myocytes through 

inhibition of pyruvate dehydrogenase, consequently decreasing glucose oxidation and 

accumulation of glycolytic intermediates [36]. In such circumstances, pancreatic β-cells 

release more insulin to suppress the hyperglycaemia in the insulin-resistant state 

5



essentially causing hyperinsulinemia. Sustained insulin resistance results in clinical 

symptoms of metabolic syndrome [37, 38] and may lead to cardiovascular events and type 

2 diabetes [39]. Apart from glucose intolerance, dyslipidaemia and obesity play a crucial 

role in the excessive release of cytokines, leptin, TNF, IL-6 and decreased production of 

adiponectin (Figure 2) [40]. 

Insulin resistance 

The insulin signalling pathway plays a fundamental role in glucose metabolism. 

Insulin binds to the receptor, a ligand-activated tyrosine kinase and insulin-associated 

tyrosine phosphorylation trigger activation of two corresponding pathways: the 

phosphoinositide 3-kinase (PI3K) pathway and the mitogen-activated protein (MAP) 

kinase pathway. In the insulin resistance state, the PI3K-Akt pathway is disturbed, while 

the MAP kinase pathway performs normally. Thus, insulin resistance creates 

disproportion between these two parallel pathways. Inhibition of the PI3K-Akt pathway 

causes a decrease in endothelial nitric oxide production, leading to endothelial 

dysfunction, and a decline in GLUT4 translocation, prominently resulting in reduced 

glucose uptake by myocytes [41]. Opposite to this, the MAP kinase pathway remains 

unaltered functionally. Consequently, there is a continuous release of endothelin-1 (ET-

1), a stimulus of growth factors such as transforming growth factor-β (TGF-β), platelet-

derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and vascular cell 

adhesion molecules (VCAMs), which are crucial for development of an atherogenic 

plaque [42]. Therefore, insulin resistance induces vascular abnormalities, predisposing to 

atherosclerosis [43]. However, an insulin-resistant subject is not always categorised as 

clinically obese and such a subject may have an irregular distribution of accumulated 

adipose tissue, described as upper body fat [44]. Irrespective of the relationship between 

body fat and insulin resistance, insulin resistance has a strong correlation with progression 

in central obesity and thus, with metabolic syndrome [43]. 

Oxidative stress 

Oxidative stress is the common factor that occurs during obesity, insulin 

resistance, impaired glucose tolerance, type 2 diabetes and cardiovascular disease [45]. 
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Oxidative stress is a disturbed equilibrium between tissue oxidants (free radicals or 

reactive oxygen species (ROSs)) and antioxidants. Oxidative stress plays an important 

role in the development of obesity-associated comorbidities such as cardiovascular disease 

and diabetes [46]. In conditions of excessive energy intake, the abundance of substrates 

stimulates the activity of the citric acid cycle leading to the production of excessive 

mitochondrial NADH (mNADH) and ROS [47]. Free fatty acids and glucose are the 

primary energy sources in the skeletal muscle cells and adipocytes. Breakdown of either 

substrates mitochondrial acetyl-CoA and NADH [48]. When this acetyl-CoA enters citric 

acid cycle, it produces isocitrate which then combines with NAD+ generating NADH with 

the help of catalytic activity of isocitrate dehydrogenase. When excessive NADH is 

generated and not eliminated by oxidative phosphorylation, it causes an increased 

mitochondrial proton gradient and the shift of a single charged electron to oxygen, thereby 

destabilising it and consequently creating free radical species such as superoxide anion 

(Figure 3) [49]. 

The overproduction of ROS is the initial and significant step that stimulates other 

pathways engaged in the pathogenesis of endothelial dysfunction during hyperglycaemia 

[50, 51]. Excessive ROS such as superoxide combines with nitric oxide, triggering 

formation of the strong oxidant peroxynitrite [52] that can alter DNA sequences [51] and 

the damaged DNA initiates the activation of the nuclear enzyme poly(ADP-ribose) 

polymerase [51] which initiates DNA repair, a process that requires NAD+ as a substrate. 

The process of DNA repair may cause scarcity of intracellular NAD+. Restricted 

availability of NAD+ slows the rate of glycolysis, electron transport and ATP generation, 

and promotes ADP-ribosylation of GAPDH [51], triggering acute endothelial dysfunction. 

Free fatty acids may function similarly [53] to increase oxidative stress and cause 

endothelial dysfunction. However, antioxidants can reverse consequences of oxidative 

stress in humans [54, 55]. 
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Figure 3. Association between oxidative stress and metabolic abnormalities [49]. 

Obesity and cardiovascular disease 

Obesity has several severe impacts on cardiovascular structure and function and 

hence it is one of the prime reasons for cardiovascular disease-associated morbidity 

(Figure 4) [56]. Obesity escalates cardiac output, as well as total blood volume, thus 

increasing cardiac workload. In obesity, increased stroke volume causes an elevation in 

cardiac output associated with higher sympathetic activation which subsequently 

increases heart rate [57]. Obese subjects are more prone to develop hypertension than the 

lean persons as weight gain is associated with impaired control of arterial pressure [58]. 

Thus, obese and overweight subjects generally end up with left ventricular dilatation [56]. 

Regardless of age and sex, obesity increases the probability of left ventricular hypertrophy 

and other structural irregularities such as concentric remodelling and concentric left 
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ventricular hypertrophy [59]. Additionally, obesity causes left atrial enlargement because 

of elevated blood volume and eccentric left ventricular diastolic loading [60]. Such 

abnormalities contribute to impairments such as atrial fibrillation due to left atrial 

enlargement and heart failure [61]. Further, abnormal left ventricular structure increases 

the occurance of frequent and complex ventricular arrhythmias [62]. 

Figure. 4. Association of obesity and cardiomyopathy. LV = left ventricular; RV = 

right ventricular [56]. 

Thus, obesity as the major component of metabolic syndrome affects the 

cardiovascular system and increases the prevalence of hypertension, dyslipidaemia and 

type 2 diabetes. Similarly, obesity plays a crucial role in atherosclerosis and 

cardiovascular disease [63]. 

Cardiovascular disease 

High circulating concentrations of lipids and inflammatory cytokines lead to the 

atherosclerotic condition. In cardiovascular conditions such as unstable angina and 
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myocardial infraction, elevated concentrations of CRP and IL-6 have been associated with 

worsening of prognosis [64]. Moreover, other inflammatory markers such as IL-7, IL-8, 

soluble CD40 ligand and CRP–related protein pentraxin 3 increased during cardiovascular 

events [65-67]. Following are the cardiovascular outcomes that can develop as a result of 

uncontrolled metabolic abnormalities. 

Hypertension 

Hypertension is one of the predominant disease conditions associated with 

metabolic disorders such as obesity, glucose intolerance and dyslipidaemia [68]. Renin-

angiotensin-aldosterone (RAAS) system-associated pathway AT1R (Angiotensin II type 

1 receptor) and mineralocorticoid receptor initiate NADPH oxidase pathway and promote 

the production of ROS. NADPH oxidase, as well as the mitochondrial generation of ROS, 

causes oxidative stress in the myocardium. This ROS also triggers insulin resistance, 

endothelial dysfunction and atherosclerosis [69]. The RAAS pathway is activated by 

hyperglycaemia and hyperinsulinaemia, leading to increased expression of 

angiotensinogen, angiotensin II (AT II) and the AT1 receptors. Mutually, these play a 

crucial role in the progress of hypertension in a subject with insulin resistance [70]. There 

is also evidence that insulin resistance and hyperinsulinaemia lead to activation of the 

sympathetic nervous system, causing higher sodium reabsorption in the nephron, higher 

cardiac output and vasoconstriction of arteries initiating severe hypertension [71]. 

Moreover, it has been recently been reported that adipose tissue also generates aldosterone 

in response to ATII [72]. Hence, the adipose tissue could be a location for renin-

angiotensin-aldosterone system occurrence. 

Chronic systemic inflammation or obesity has an important role in the 

development and progression of hypertension. A strong correlation exists between obesity 

and higher blood concentrations of inflammatory cytokines such as TNF-α, IL-1β, IL-6 

and CRP. Subsequently higher concentrations of inflammatory cytokines (TNF-alpha and 

IL-1β) increase arterial stiffness, thus low-grade inflammation may play a role in the 

elevation of blood pressure [73, 74]. Increasing IL-6 concentrations in blood trigger 

elevation of soluble intercellular adhesion molecule-1 (sICAM-1) which is associated 

with elevated systolic and diastolic blood pressure, pulse pressure and mean arterial 
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pressure [75]. Plasma IL-6 was higher in women with elevated systolic and diastolic blood 

pressure, while in men, IL-6 was correlated with impaired glucose tolerance [74]. Several 

studies have shown that hypertension declined with the reduction in body weight 

regardless of the mechanisms involved [76]. Moreover, studies have reported the 

reduction in systolic blood pressure of 1-4 mmHg and diastolic blood pressure of 1-2 

mmHg per kilogram of body weight lost in ~50% of the subjects tested [77]. 

Stroke 

The published studies have shown that approximately 43% of people with 

metabolic syndrome are at the risk of stroke [78]. Obesity, insulin resistance and ROS are 

associated with increased inflammation that causes the development of the atherosclerotic 

cerebrovascular disease. Chronic low-grade inflammation present during atherogenesis of 

cerebral arteries is accelerated by several acute phase reactants such as CRP and 

fibrinogen. CRP is associated with an increasing risk of stroke events [79, 80]. Further, 

elevated CRP concentrations increased the incidence of systematic atrial fibrillation that 

escalates the risk of stroke [81, 82]. 

At cellular and molecular levels, insulin resistance has a role in the development 

of pathophysiology of vascular diseases such as stroke. Hyperglycaemia leads to increased 

oxidative stress by several mechanisms, for example, autoxidation of glucose produces 

ROS, a leading cause of oxidative stress [83]. In addition, advanced glycation end 

products, a heterogeneous group of compounds synthesised by non-enzymatic reactions 

between reducing sugars and free amino groups of proteins, are able to bind to cell surface 

receptors or cross-link with proteins, causing a modification of their structure and function 

[84]. Advanced glycation end products have the potential to induce insulin resistance and 

lead to increased oxidative stress and inflammation [85]. Furthermore, NADPH oxidase 

activation also initiates release of ROS [86]. NADPH oxidase catalyses the reduction of 

molecular oxygen causing superoxide radical formation [87]. In case of obesity, higher 

production of ROS occurs, especially in adipocytes, mediated by increased expression of 

NADPH oxidase. Further, treatment with NADPH oxidase inhibitors reduced ROS 

production in adipocytes, reduced the dysregulation of adipokines and improved 

metabolic syndrome parameters such as dyslipidaemia, obesity and  insulin resistance 
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[88]. Nitric oxide is essential for prevention of cardiac ischaemia caused by oxidative 

stress and inhibits platelet aggregation thereby playing an important role in the response 

to cardiovascular disease [89]. Overproduction of nitric oxide can also cause adverse 

cardiac events such as atherosclerosis [90]. 

Hypertrophic cardiomyopathy 

Obesity is strongly associated with heart failure and has been shown to cause 

deleterious effects on diastolic function [91, 92]. Cardiac hypertrophy is an adaptive 

response to physiological stress such as pressure or volume stress, mutations in myocyte 

proteins or metabolic disruptions. However, cardiac hypertrophy could be maladaptive 

and leads to cardiac dysfunction [93, 94]. Obesity could be a leading cause of severe 

hypertrophy by several mechanisms such as elevated sympathetic tone, elevated leptin 

concentrations, myocardial infiltration, insulin resistance and increased renin-angiotensin 

activity [95]. Obese individuals with hypertrophic cardiomyopathy had considerably 

higher left ventricular mass, left ventricular mass index and increased chances of 

progressing to severe cardiac events [96]. Moreover, the same study showed that obese 

subjects had a higher obstruction in the left ventricular outflow tract [96]. Prevalence of 

left ventricular obstruction was more than two-fold higher in obese individuals having 

hypertrophic cardiomyopathy compared to normal subjects and it was directly associated 

with elevated left ventricular mass [97, 98]. 

Coronary artery disease 

Inflammation stimulates impaired arterial function both acutely as well as in 

chronic situation [99]. Chronic low-grade inflammation and oxidative stress contribute 

significantly to the development of atherosclerosis by contributing to the early stage of 

elevated endothelial permeability as well the creation of mature atherosclerotic plaque and 

plaque rupture [100]. Inflammatory biomarkers such as CRP have a crucial role in 

coronary artery disease risk [101]. Likewise, elevated concentrations of circulating soluble 

adhesion molecules such as sICAM-1, soluble VCAM-1 and soluble P-selectin contribute 

to coronary artery disease pathogenesis [102]. However, different inflammatory 

biomarkers cause an increased risk of coronary artery disease through various 

12



mechanisms. Elevated CRP and IL-6 have been found in subjects with stable angina and 

myocardial infraction with worsening prognosis [67]. Moreover, other inflammatory 

biomarkers such as fibrinogen, IL-7, IL-8 and soluble CD40 ligand are also increased in 

cardiovascular disease patients [103]. 

Regardless of gender, weight-stable obese individuals have a higher risk of 

arrhythmias and sudden cardiac death [104]. In both genders, the rate of sudden cardiac 

arrest was approximately 40 times higher in obese individuals than lean individuals [95]. 

Further, for subjects aged between 35-44 years, mortality due to cardiac arrest is 6 times 

higher in men with severe obesity than in women of a similar age group. Hyperglycaemia 

associated with metabolic syndrome decreases nitric oxide availability resulting in 

elevated vasomotor tone and ventricular irregularity [105, 106]. Likewise, increased free 

fatty acids cause increased plasma catecholamine resulting in altered cardiac 

repolarisation [107]. Specifically, long-chain saturated fatty acids have an important role 

in the occurrence of ventricular arrhythmias leading to myocardial infarction [108]. The 

saturated fatty acid, palmitate, caused a reduction in mitochondrial respiration in 

cardiomyocytes and promoted production of excessive total cellular ROS as well as 

mitochondrial ROS [109]. Excessive ROS production caused partial depolarisation of the 

mitochondrial inner membrane and subsequently triggered mitochondrial calcium 

overload by raising sarcoplasmic reticulum calcium leakage, that leads to arrhythmias and 

heart failure [110]. 

Dietary interventions against metabolic syndrome 

Previous studies have shown that moderately modified lifestyle and dietary 

interventions can reduce the risk for metabolic diseases such as diabetes [111-113]. Diet 

and physical activity promote weight loss, favourably modulating parameters of metabolic 

syndrome. Epidemiological studies have reported that polyphenol intake has a positive 

impact on cardiovascular and hepatic disorders [114-116]. In addition, human studies with 

polyphenol-rich diets have concluded a favorable effect of polyphenols on risk factors of 

cardiovascular health such as blood pressure [117], serum lipid profile [118] and insulin 

sensitivity [119]. Studies using animal models have demonstrated that polyphenols 

improve insulin sensitivity [120], have anti-obesity effects by reducing body fat [121] and 
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are suggested to reduce plasma concentrations of triglycerides [122, 123] and cholesterol 

[124]. 

Traditionally, coffee is recommended for health management as it is rich in 

bioactive substances with a wide range of physiological effects [125-127]. Key bioactive 

substances include caffeine, chlorogenic acid and the diterpenes, cafestol and kahweol. 

The chemistry and biochemistry of coffee have been extensively described [128]. Coffee 

undergoes a chemical transformation during the roasting process of green bean, and the 

type of bean (arabica vs robusta), the degree of roasting, and brewing techniques including 

coffee grind setting and brew type will all have an impact on the biochemical 

configuration of the final beverage [129, 130]. 

Coffee as a functional food for metabolic syndrome 

Coffee is one of the most commonly consumed beverages in the world. It is a 

healthier alternative to alcoholic beverages such as beer and spirits [131]. Coffee beans of 

two main species, Coffea canephora (also known as robusta) and C. Arabica, are 

commercially available for the preparation of coffee. Both beans are well-known for their 

pleasant aroma and enjoyable taste [132]. The range of compounds in coffee may provide 

beneficial effects against metabolic syndrome [133]. Coffee is the second-most traded 

commodity in the world after oil [134]. The consumption of coffee has doubled in the last 

four decades [135]. Coffee consumption was 6.947 million tonnes in 2010 [136] and it is 

estimated that consumption will increase to 9 million tonnes in 2019 [135]. In 2010, Brazil 

was the major producer of coffee contributing about 19% of the world’s coffee production. 

The United States was the major coffee consumer with about 16% of world consumption 

[136]. 

The chemical composition of coffee is affected by factors including harvesting and 

post-harvest techniques, climate, physical conditions of soil and tree and genetic aspects 

of coffee seeds [137]. These components also vary between C. canephora and C. arabica. 

Coffee is a complex mixture of caffeine (0.5-2.8%), chlorogenic acid (4.80-6.41%), 

polyphenols, caffeic acid, lactones and diterpenoid alcohols including cafestol and 

kahweol, as well as niacin and the vitamin B3 precursor, trigonelline. It also has ample 
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amounts of vitamin B3, magnesium and potassium [137, 138]. During the roasting process 

of coffee beans, chlorogenic acid undergoes chemical transformations such as 

isomerisation, hydrolysis and degradation, causing reduction of chlorogenic acid 

concentrations and conversion into quinolactones and melanoidins [128, 139]. The 

roasting process initiates the browning reaction and gives various different compounds of 

varying molecular weights such as aldehydes, ketones, dicarbonyls, acrylamides, 

heterocyclic amines and melanoidins that impact flavour [140]. Melanoidins account for 

25-29% (w/w of dry matter) of roasted coffee beans [141]. These compounds are high 

molecular weight, water-soluble, brown-colored nitrogenous compounds with 

antioxidant, antimicrobial and anti-hypertensive activities [142, 143]. Melanoidins link or 

bind with chlorogenic acid non-covalently and regulate gut microbiota growth to produce 

anti-inflammatory effects [139]. Although coffee is rich in caffeine, chlorogenic acid, 

trigonelline, diterpenes, and melanoidins, which collectively or individually can positively 

influence health, the availability of these compounds depends on how the coffee beans are 

processed and consumed. 

There are several types of coffee beans generated depending upon processing of 

green coffee beans. A green coffee bean does not have the flavour qualities of a roasted 

bean and it’s green in color with a grassy smell. Roasting process induced the aroma and 

flavour in beans depending on temperature and time taken for processing. It creates fresh 

roast flavour with different chemical components in roasted beans. The coffee extraction 

and brewing process only extracts part of the coffee components, so that the resulting 

spent coffee ground may be a source of useful products as healthy bioactive compounds, 

including trigonelline and melanoidins [139, 144]. 

Green coffee 

Green coffee beverages accelerate glucose metabolism and lead to reduced body 

weight and prevent obesity [145]. Green coffee extract has the potential to inhibit fat 

absorption and control lipid metabolism in livers of mice [146]. Likewise, green coffee 

has anti-hypertensive properties against high blood pressure in rats [147]. 
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Green coffee is the mixture of complex chemicals that impart flavour, aroma and 

texture to coffee beverages after roasting. Along with carbohydrates, proteins, lipids and 

minerals, it is also a rich source of phenolic acids such as chlorogenic acid and alkaloids 

such as caffeine [148]. Health beneficial effects from green coffee are mainly associated 

with the presence of phenolic compounds, especially chlorogenic acid, that have been 

recognised for their antioxidant properties [149] associated with its ability to scavenge 

ROS. In addition, chlorogenic acid and caffeine inhibited tumour promotion and 

inflammation cascade by restricting the pro-oxidant enzyme lipoxygenase for 

metabolising arachidonic acid [150]. Moreover, green coffee phytochemicals have 

demonstrated potential to decrease visceral adipose tissue accumulation and body weight 

gain with several studies supporting green coffee as a weight loss supplement in animal 

models [151, 152]. 

Chronic intake of coffee has been related inversely to body weight gain in humans 

[153]. Regular coffee intake has also been associated with modulation of glycaemic 

markers [154]. Likewise, green coffee intake reduced weight gain, where caffeine and 

other bioactive compounds present in coffee play a crucial role as thermogenic agents 

[155]. In human study, green coffee has shown potential for modulating hormone release 

and glucose tolerance [156]. The possible mechanism could be the delay in glucose 

absorption where green coffee causes the absorption of glucose in distal colon instead of 

the proximal colon. This  results in the reduction in postprandial plasma concentrations of 

glucose and blood lipids [157]. Additionally, this modulation increased the diversion of 

the Na+ electrochemical gradient, and consequently reduction in intestinal brush border 

membrane glucose uptake [156]. Green coffee was also shown to regulate glucose 

homeostasis by inhibiting hepatic glucose-6-phosphatase [158]. Through suppression of 

hepatic triglyceride accumulation, green coffee could also decrease obesity [151]. Green 

coffee also altered adipokines secretion, prevented fat accumulation via downregulation 

of lipogenesis while upregulating lipid oxidation and expression of PPAR-α in the liver 

[159]. 

Roasted coffee 
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While green coffee beverages have a mild, green and bean-like taste and aroma, 

the desirable properties of coffee are acquired during the roasting process. During the 

roasting process, the coffee beans are heated from 200-250°C and process duration can 

last between 0.75 to 25 minutes, the optimal period being 1.5 - 6 minutes depending upon 

the specifications of the end product i.e., light, medium or dark roasted beans. Roasting 

process causes several physical and chemical modifications leading to a shift in colour 

from green to brown. The chemical components such as protein, amino acids, 

polysaccharides, trigonelline, chlorogenic acid and water undergo complex processes to 

form melanoidins. Melanoidins are a product of Maillard reaction through caramelisation 

of polysaccharides and amino acids with other coffee components during heating of coffee 

beans [160]. Roasted coffee is a rich source of bioactive compounds especially 

methylxanthines and polyphenols. The roasted coffee extract has demonstrated anti-

inflammatory and anti-oxidant properties with great potential for reducing ROS and 

inhibitory action against linoleic acid peroxidation and lipoxygenase [161]. In a human 

study, chlorogenic acid from roasted coffee caused a reduction in oxidative stress-induced 

DNA and macromolecular damage and increased antioxidant defense capacity [162]. In 

addition, the efficiency of antioxidant properties of roasted coffee is shown as the 

increases in glutathione S-transferase activity in vitro as well as in rats [163]. Further, 

roasted coffee components increased transcription and nuclear translocation of Nrf2 in 

HT-29 cells [164]; this modification induced by coffee components prevented colon cell 

damage from oxidative stress caused by ROS. Therefore, roasted coffee components 

reduced oxidative stress and restrict the progress of metabolic syndrome associated 

complications such as cardiovascular disease. 

Decaffeinated coffee 

Coffee beverage is generally popular for caffeine intake, and caffeine's stimulatory 

effect makes it the most recognised and most studied component in coffee. Studies have 

shown that caffeine has favorable effects on cardiovascular function [165, 166]. However, 

caffeine intake causes nervousness, irritability, headache and troubled sleeping patterns in 

many individuals [167]. Further, coffee consists of hundreds of other bioactive 
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compounds such as caffeic acid, chlorogenic acid and trigonelline, making it difficult to 

isolate the health effects of caffeine from those of the other ingredients. 

Decaffeinated coffee is consumed by individuals who have problems in tolerating 

caffeine. According to the United States Department of Agriculture, decaffeinated coffee 

is not necessarily absolutely caffeine-free. In fact, coffee only requires being ~97% 

caffeine-free in order to be classified as decaffeinated coffee, although Brazilian 

regulations only permit a maximum of 0.1% of the residual caffeine in decaffeinated 

coffee [168]. The process of decaffeination causes an alteration in decaffeinated coffee 

bean and depending upon coffee variety, coffee components such as chlorogenic acid and 

other components increase or decrease [149]. Several studies have reported health benefits 

from the decaffeinated coffee intake. In a clinical trial, decaffeinated green coffee reduced 

weight in overweight volunteers treated with 400 mg/day for 60 days [169]. Another study 

stated that drinking 0.3% decaffeinated green coffee extract in water for 20 weeks reduced 

fat accumulation and insulin resistance in mice fed on a high-fat diet [170]. Decaffeinated 

coffee extract downregulates TLR4-mediated pro-inflammatory pathways and stimulates 

GLUT4 translocation to the plasma membrane in adipocytes [170]. Similarly, ingestion 

of decaffeinated coffee for 20 weeks after inducing obesity using a high-fat diet over a 10 

week period resulted in a decrease in blood glucose concentrations and improvement in 

insulin tolerance. The coffee extract also promoted recovery from liver remodelling, 

showing a decrease in steatosis, and inhibited iNOS expression and restored the insulin-

inducing Akt phosphorylation [171]. 

Coffee wastes 

Almost 50% of the coffee bean is discarded as waste during the process of 

commercial production up to and including the consumption by the end-user. The waste 

is generated from production (e.g. coffee pulp, cherry husks and defective beans), from 

roasting industries (e.g. coffee silver skin), from soluble coffee industry (industrial spent 

coffee) and also directly by daily coffee consumers after coffee brewing (spent coffee) 

[172]. These coffee wastes have high concentrations of bioactive compounds including 

caffeine and polyphenols [173]. 
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Coffee wastes have been used mainly for commercial processes such as the 

production of ethanol, butanol, hydrogen, organic acids, glycerol and 

hydroxymethylfurfural. Coffee wastes are also used for composting in several agro-

industrial sectors [134]. Despite the high bioactive content of coffee wastes, only partial 

progress has been accomplished in its application as a functional food [174]. Coffee waste 

such as coffee husks, skin and pulp contain four major classes of polyphenols, flavan-3-

ols, hydroxycinnamic acids, flavonols and anthocyanidins which include chlorogenic 

acid, epicatechin, catechin, rutin and ferulic acid. Coffee husks, skin, and pulp are 

potential sources of 5-feruloyl-quinic acid and anthocyanins such as cyanidin-3-rutinoside 

and cyanidin-3-glucoside [172]. 

Coffee mucilage and parchment include several bioactive components such as 

amino acids, polysaccharides, pectic constituents and a trace amount of ash in addition to 

-cellulose, hemicellulose and lignin [134]. However, research on the functional 

characteristics of this coffee portion has not been performed yet. Roasted coffee silverskin, 

a by-product of roasted coffee beans, is a rich source of dietary fibre, accounting for up to 

60% of the by-product, 14% of which are soluble dietary fibre [175]. The roasted coffee 

silverskin also contained a minor amount of phenolic compounds with demonstrated 

antioxidant properties. The antioxidant properties may be attributable to melanoidins. 

Additionally, roasted coffee silverskin stimulated the preferential growth of 

Bifidobacterium rather than Clostridia and Bactericides spp. Hence, the roasted coffee 

silverskin could be used as a functional ingredient due to its high content of soluble fibre, 

its potential antioxidant activity and the prospective prebiotic properties [175]. 

Coffee components 

Caffeine 

Caffeine is a well-known stimulant of the central nervous system, acting as an 

antagonist to adenosine receptors. Adenosine receptors are present and expressed in the 

central nervous system, the vascular endothelium, heart, liver, adipose tissues and 

muscles. Thus, caffeine triggers a broad range of responses in the body [138]. It produces 

many biological functions including an acute elevation of heart rate, stimulation of the 
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central nervous system, increased carbohydrate metabolism and decreased inflammation, 

as well as increasing metabolic rate and causing diuresis [176-178]. Caffeine (~30 

mg/kg/day) in diet-induced obese rats reduced abdominal fat, total body fat, systolic blood 

pressure and improved glucose tolerance, cardiovascular and hepatic structure and 

function [179]. Caffeine promoted the gene expression of carnitine acyltransferase in the 

liver of obese mice [180]. This increase in the expression of carnitine acyltransferase may 

be responsible for the reduction of adipose tissue weight through increased fat oxidation 

and hence suppression of body weight gain. Caffeine also increased energy expenditure 

[181]. Regular intake of caffeine decreased the risk of insulin resistance by decreasing the 

sympathetic nervous system response [182].  

Chlorogenic acid 

Chlorogenic acids are a group of compounds that are esters of caffeic acid and 

quinic acid [183] and may have health benefits due to their antioxidant and anti-

inflammatory activities. Only one-third of ingested chlorogenic acid is absorbed in the 

small intestine and some amount that escapes metabolism enters the colon [184]. In the 

colon, the microbiota hydrolyses chlorogenic acid into caffeic acid and quinic acid [184]. 

These microbial metabolites undergo absorption or are changed by human enzymes and 

finally get excreted in urine [183]. Negligible amounts (0.8%) of intact chlorogenic acid 

are found in human urine. Chlorogenic acid has bacteriostatic properties towards a wide 

range of Gram-positive and Gram-negative bacteria, such as E. coli and Salmonella spp. 

[185] while specifically promoting the growth of Bifidobacterium spp., 

Lactobacillus/Enterococcus spp., Bactericides spp. and C. coccoides–E.rectale [184]. As 

almost two-thirds of the dietary chlorogenic acid reaches the colon and undergoes 

metabolism, it may have some effects in the colon, especially on the gut microflora, which 

may help in attenuating obesity [186]. 

Chlorogenic acid inhibited liver glucose-6-phosphatase activity, suggesting that it 

can reduce liver glucose output [158]. Chlorogenic acid from decaffeinated coffee 

downgraded the expression of sodium-dependent glucose transporters in brush border 

membranes of the small intestine thus suggesting its potential to reduce glucose absorption 

[187]. Similarly, chlorogenic acid from green coffee extract (0.25 - 1% diet for 6 weeks) 

20



lowered blood pressure in Spontaneously Hypertensive Rats [147]. Chlorogenic acid 

increased mRNA expression of PPAR- and liver X receptor-, the key mediators of lipid 

metabolism [188]. Chlorogenic acid (100 mg/kg/day in C57BL/6 mice for 15 weeks) 

prevented diet-induced obesity and metabolic syndrome by inhibiting expression of 

PPAR- and by reducing inflammation [189]. Chlorogenic acid helps to delay glucose 

absorption from the gut into the bloodstream. Hence, chlorogenic acid could be a potential 

dietary candidate for the host to manage metabolic disorders such as obesity, increased 

blood glucose concentrations and cardiac complications. 

Melanoidins 

During the roasting of coffee beans, melanoidins are formed by the non-enzymatic 

browning reaction as a chemical reaction between  reducing polysaccharides, amino acids 

and phenolic compounds [190]. Moreover, melanoidins are formed during the heating 

process of a broad range of foodstuffs including bread, malt, meat and tomato sauce [191]. 

The formation of melanoidins leads to increased antioxidant capacity for coffee beans, but 

this occurs only at a particular phase of coffee roasting [192]. Studies of coffee revealed 

that some positive effects on pathophysiology which are not due to caffeine can be 

credited to polyphenols and melanoidins [193]. The molecular structure of melonoidins 

are yet to be defined and thus, they are generally defined as macromolecular nitrogenous 

browning compounds [194]. However, some studies have shown that roasting process 

causes covalently linkage between arabinogalactans and proteins to produce 

arabinogalactan proteins [129] that have hydrophobic characteristics and ion-chelating 

abilities [195]. Roasting process leads to degradation of the proteins present in green 

coffee beans, including arginine, cysteine, lysine, and serine, and the degradation products 

contribute to the formation of complex melanoidins [196]. Moreover, chlorogenic acid 

and their derivatives are fused in coffee melanoidins [197]. The intact chlorogenic acids 

are incorporated into the melanoidin structures, combined through the caffeic acid moiety 

by mainly non-ester linkages [130]. In summary, polysaccharides, proteins and phenolic 

compounds such as chlorogenic acids are involved in the formation of coffee melanoidins. 
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An in vitro study by stimulating gastrointestinal enzymatic digestion showed that 

the coffee melanoidins are largely resistant to digestion in the human gut [198] suggesting 

that melanoidins could have prebiotic activity. Melanoidins have the potential to alter 

human gut microflora as fermentation of melanoidins supports the growth of residential 

bacteria [199]. The gut bacteria may also partly metabolise the melanoidins in the large 

intestine, hence, this might play a crucial role in the chelating and/or release of other, 

potentially harmful dietary components. For instance, a study of coffee melanoididns with 

human subjects has reported for growth in the number of Bacteroides and Prevotella 

bacteria identified in faecal samples [200]. In in vivo studies, melanoidins have increased 

the quantity of Bifidobacterium spp., known for their probiotic activity [201, 202]. In vitro 

fermentation of melanoidins for 24 hours with faecal bacteria from human subjects 

showed its anti-oxidant properties [203] indicating a potential role for coffee melanoidins 

in the protection against oxidative stress caused by free radical species in the colon, 

resulting in the reduction of gut dysbiosis. 

The anti-oxidant properties of melanoidins have been implicated in their protective 

effects on human hepatoma HepG2 cells against oxidative stress where melanoidins 

reduced glutathione peroxidase and glutathione reductase [204], indicators of attenuation 

in oxidative stress, as melanoidins contain hydroxyl groups, which serves as a hydrogen 

donor, and are able to scavenge free radical species [205]. Melanoidins inhibits secondary 

lipid oxidation products that contribute to health benefits, products from lipid oxidation 

are involved in the development of cardiovascular diseases [206]. Thus, in addition to the 

antioxidant property of melanoidins, the available studies suggested that ingested 

melanoidins from regular coffee intake could possibly provided the protection against 

inflammation and promote the growth of selective gut microbiota [191]. 

Other coffee components 

Along with chlorogenic acid, caffeine and melanoidins, coffee is also a source of 

other bioactive components such as trigonelline and diterpenes (cafestol and kahweol). 

These compounds from coffee have the ability to protect cells from ROS-induced 

oxidative stress by inducing the transcription of genes in the Nrf2 antioxidant response 

element signalling pathway [164]. 
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Trigonelline is an alkaloid and derivative of nicotinic acid. After demethylation, it 

is converted to nicotinic acid which is present at approximately 1–3 mg/240 ml brewed 

coffee [187]. During roasting of coffee beans, trigonelline is also transformed into its 

intermediate, N-methylpyridinium, which improves the reducing and total antioxidant 

capacity of trigonelline [207]. N-methylpyridinium is converted to nicotinic acid which 

has the potential for anti-inflammatory properties through down-regulation of MCP-1 and 

has increased adiponectin in adipocytes treated with TNF [208]. Decomposition of 

trigonelline was greater at higher roasting temperature generating higher amounts of 

nicotinic acid [209]. 

Diterepens such as cafestol and kahweol have a negative impact on cholesterol 

concentrations. Diterpenes could be a possible reason for increased plasma lipid 

concentrations in coffee drinkers as a high concentration of diterpenes have been reported 

to induce increased total cholesterol and LDL-cholesterol [187]. Coffee also increased 

serum LDL through increased expression of cholesterol esterase transfer protein assisted 

by cafestol [210]. Diterpenes have shown antioxidant properties and cells treated with 

diterpenes showed decreased DNA damage because of the ROS scavenging activity of 

cafestol and kahweol [211]. Also, kahweol and cafestol treatment protected N1HT3T cells 

challenged with hydrogen peroxide [211]. Kahweol conferred an anti-inflammatory effect 

by down-reregulating the expression of cyclooxygenase-2 and MCP-1 in HUVECS and 

decreased the inducible nitric oxide synthase in rats treated with carrageenan [212]. A 

recent study has also shown beneficial effects of cafestol against diabetes in KKAy mice 

[213]. 

Thus, metabolic syndrome is strongly associated with the increasing prevalence of 

cardiovascular diseases and associated comorbidity. Cardiovascular diseases are reliant 

on reversible metabolic abnormalities such as oxidative stress, dyslipidaemia and 

impaired glucose tolerance, which are associated with metabolic syndrome. Coffee and 

its phytochemical components exhibit the potential against oxidative stress, inflammation 

and insulin resistance and thus, coffee beverages could be a potential dietary intervention 

for cardiovascular disease. It is difficult to determine what component of coffee could be 

responsible for beneficial health effects because of the complex chemical composition of 
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coffee beans as well as coffee waste. By investigating responses to coffee products and 

coffee components, beneficial effects of coffee waste and coffee components can be 

explored. Clearly, all investigations into the health benefits of coffee intake must consider 

several parameters such as coffee variety, coffee beans, roasting method, sample size, 

brewing course, and a dose of individual coffee components administered and the duration 

of treatment. In order to understand the specific roles of individual components of coffee 

in cardiovascular health, properly controlled experiments have been carried out to 

determine preclinical outcomes. 
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Abstract 

Abdominal obesity is associated with the development of metabolic disorders, type 

2 diabetes and cardiovascular diseases. This study assessed the effects of green coffee on 

metabolic variables in obesity induced by high-carbohydrate, high-fat diet in rats. Male 

Wistar rats (8-9 weeks old, 340 ± 5 g, n = 72) were divided into 6 groups and fed with 

either corn starch diet (16 weeks) (C), corn starch diet with 5% green coffee (CGC) or 

decaffeinated green coffee extract (CDC) in food for the last 8 weeks, high-carbohydrate 

high-fat diet (16 weeks) (H), or high-carbohydrate high-fat diet with 5% green coffee 

(HGC) or decaffeinated green coffee extract (HDC) in food for the last 8 weeks. The high-

carbohydrate high-fat diet-fed rats showed signs of metabolic syndrome as changes in 

cardiovascular and liver structure and function. Green coffee attenuated body weight (C 

385 ± 5g, H 563 ± 14g, HGC 515 ± 16g, HDC 522 ± 15g), feed efficiency (C 0.11 ± 

0.01kJ/g, H 0.37 ± 0.02kJ/g, HGC 0.31 ± 0.02kJ/g, HDC 0.32 ± 0.02kJ/g), systolic blood 

pressure (C 128 ± 1mmHg, H 147 ± 1mmHg, HGC 130 ± 2mmHg, HDC 128 ± 2mmHg) 

and improved structure of heart and liver without improving obesity, glucose sensitivity 

or dyslipidaemia. The chlorogenic acid in green coffee could be the major bioactive 

compound to attenuate diet-induced abnormalities in heart and liver structure and function. 

Keywords: Green coffee, Obesity, Metabolic syndrome, High-carbohydrate, high-fat diet   

51



Introduction 

Functional foods have been proposed as interventions to prevent or reverse 

metabolic syndrome [1], a constellation of metabolic disorders including obesity, 

hypertension, impaired glucose tolerance, insulin resistance, dyslipidaemia and fatty liver 

as a major risk factor for cardiovascular disease and type 2 diabetes [1]. Obesity and 

insulin resistance are strongly linked with metabolic syndrome in the general population 

[2, 3]. As part of a healthy diet, green coffee could be a potential functional food for 

metabolic syndrome [4]. Green coffee extract decreased obesity and blood lipid changes 

by mechanisms including inhibition of adipogenesis, scavenging of reactive oxygen 

species, and reduced triglycerides and glucose concentrations in rats and adipocytes in 

culture [5]. Coffee components such as chlorogenic acids, caffeine, trigonelline, and 

diterpenes reach active concentrations in the human body [6]. A cross-sectional study in 

humans concluded that green coffee intake was inversely associated with some parameters 

of metabolic syndrome and cardiovascular mortality [7]. Likewise, green coffee improved 

weight loss [8] and protected against the development of non-alcoholic fatty liver disease 

(NAFLD) [9]. A meta-analysis of studies on weight loss with green coffee showed an 

average loss of 2.47 kg, but all studies had a high risk of bias and were of poor 

methodological quality [10]. However, the extent of the responses on the range of 

disorders in metabolic syndrome and the compounds responsible for those effects have 

not been determined. 

The processing of coffee berries into coffee involves six main steps of pulping, 

fermentation, drying, hulling, roasting then grinding [11]. Green coffee products, usually 

sold as capsules, come from coffee beans that have not been roasted, so these products 
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contain different proportions of components compared to roasted or black coffee [12]. The 

moderate intake of green coffee, 4-6 cups/day, delivers bioactivity of some coffee 

components such as caffeine [13], chlorogenic acids [13], trigonelline [14], and 

diterepenes [15] in human body [16,6]. Caffeine intake has been demonstrated to decrease 

metabolic syndrome [17], however, caffeine consumption is also reported for adverse 

outcomes consistent with the physiologic effects among adults and young adults [18,19]. 

Esters of caffeic acid and chlorogenic acid (caffeoylquinic acids) are well demonstrated 

for health benefits such as improvement in cardiovascular disease and type 2 diabetes [20]. 

Chlorogenic acids show potential anti-oxidant and anti-inflammatory effects through 

reducing liver mRNA expression of TNF-alpha, IL-6 and IL-1beta that provide protection 

against lipid accumulation of Sprague-Dawley rats fed a high-fat diet (HFD) [21]. 

Chlorogenic acids (50 mg/kg for 42 days) increased the plasma lipid metabolism in rats 

by reducing the concentrations of free fatty acids and triglycerides and regulating the 

multiple components in hepatocytes through AMPK pathway [22], which indicates that 

chlorogenic acids could be a promising ingredient in diet for obesity management. Along 

with chlorogenic acids, caffeic acids, trigonelline and cafestol provided the synergistic 

effects and improved the insulin sensitivity in the treated rats, and increased plasma 

concentrations of adiponectin [23]. Further, cafestol (a diterpene present in coffee brew) 

has insulinotropic effects on pancreatic β-cells, induces glucose uptake in human 

myoblasts [24], and increases glycaemic regulation in vivo [25].  

This study has determined whether green coffee and its decaffeinated product can 

improve signs of metabolic syndrome when given as 8-week dietary interventions in rats 

fed a high-carbohydrate, high-fat diet for 16 weeks to mimic human metabolic syndrome 
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[13]. Cardiovascular function was studied in vivo by measurement of systolic blood 

pressure and ex vivo in isolated Langendorff heart preparations, isolated thoracic aortic 

rings together with histology. Liver structure and function were measured by histology 

and plasma biochemistry. Metabolic parameters related to obesity and glucose tolerance 

were also evaluated. 

Methods 

Analysis of green coffee 

Extractions were prepared in 3:2 ethanol:water mixture. Briefly, 1 g of coffee 

(Arabica spp.) was dissolved in 50 mL of ethanol:water mixture, sonicated for 15 minutes 

and an aliquot of the supernatant was taken for analysis by the HPLC using an Agilent 

1100 series system coupled with a mass spectrometer for further peak confirmation or 

identification as required. The HPLC system consisted of a diode array detector (G4212B), 

binary pump (G4220A), an autosampler (G4226A), a vacuum degasser and a column oven 

with an MSD (G1946D) detector also present. The chromatography was performed on a 

Phenomenex luna C18 (2) HPLC column (100 x 4.6 mm) using a gradient method of water 

and acetonitrile with 0.005% trifluoroacetic acid over 28 minutes. The optimal solvent 

gradient for separation of target constituents were starting at 10% acetonitrile which was 

increased as a gradient to 30% acetonitrile over 10 minutes, then to 95% acetonitrile over 

8 minutes, at a flow rate of 0.75 mL/minute and an injection volume of 5 µL. Calibration 

standards of trigonelline, caffeine and chlorogenic acid were prepared in 60:40 

ethanol:water, at concentrations from 0.01 to 1 mg/mL, 0.005 to 0.5 mg/mL and 0.004 to 

1 mg/mL for each of these standards, respectively. Specific detection and calibration 
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curves for each compound were performed at 254 nm, 280 nm and 330 nm, respectively. 

Quantification was performed using the Chemstation Software based on reference 

standards, peak area and sample dilution at specific wavelengths for each compound [14].  

Rats, diets and treatment 

Male Wistar rats (8–9 weeks old, 330-340 g, n = 72) were obtained from the 

Animal Resource Centre, Perth. Rats were divided into 6 groups (n = 12 rats/group): C, 

corn starch diet-fed rats; CGC, corn starch diet + regular green coffee extract (5% in food); 

CDC, corn starch diet + decaffeinated green coffee extract (5% in food); H, high-

carbohydrate, high-fat diet-fed rats; HGC, high-carbohydrate, high-fat diet-fed rats + 

regular green coffee extract (5% in food); and HDC, high-carbohydrate, high-fat diet-fed 

rats + decaffeinated green coffee extract (5% in food). 

C and H rats were fed with corn starch and high-carbohydrate, high-fat diets for 

16 weeks, respectively [13]. Treatment groups were fed with either corn starch (C) or high-

carbohydrate, high-fat diets (H) for the first 8 weeks and then the respective diets were 

supplemented with treatments for the last 8 weeks. Extracts of regular green coffee or 

decaffeinated green coffee were prepared by mixing ground coffee (50 g) with hot water 

but not boiling water (100 mL) and then filtering after 5 minutes of mixing to obtain 50 

mL of extract. This extract was then mixed with the food by replacing 50 mL water per 

kg food. 

Cornstarch diet contained 570 g of corn starch, 155 g of powdered rat food, 25 g 

of HMW salt mixture and 250 mL of water per kilogram of diet. High-carbohydrate, high-

fat diet contained 175 g of fructose, 395 g of sweetened condensed milk, 200 g of beef 
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tallow, 155 g of powdered rat food, 25 g of HMW salt mixture and 50 mL of water per 

kilogram of diet [13]. Drinking water containing 25 % (w/v) fructose was provided to all 

H groups. C rat groups received normal drinking water. Rats were individually housed 

under temperature controlled, 12-hour-light/dark conditions and given free access to food 

and water [13]. 

Physiological parameters 

Body weight and food and water intakes were measured daily [13]. Abdominal 

circumference and body length were measured using a standard measuring tape under light 

anaesthesia with Zoletil (tiletamine 10 mg/kg and zolazepam 10 mg/kg, intraperitoneal; 

Virbac, Peakhurst, Australia) [13]. Body mass index was calculated as body weight (in 

grams)/[body length (in cm)]2 [13]. Feed efficiency was calculated as [mean body weight 

gain (in grams)/daily energy intake (in kJ)] [13]. 

Systolic blood pressure was determined under light sedation with Zoletil 

(tiletamine 10 mg/kg and zolazepam 10 mg/kg, intraperitoneal; Virbac, Peakhurst, 

Australia), using an MLT1010 Piezo-Electric Pulse Transducer and inflatable tail-cuff 

connected to an MLT844 Physiological Pressure Transducer and PowerLab data 

acquisition unit (ADInstruments, Sydney, Australia)  [13]. 

Dual-energy X-ray absorptiometric measurements were carried out at the end of 

the protocol with a Norland XR46 DXA instrument (Norland Corp, Fort Atkinson, WI). 

These scans were evaluated using the manufacturer’s suggested software for use in 

laboratory animals (Small Subject Analysis Software, version 2.5.3/1.3.1; Norland Corp) 
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[13]. The precision error of lean mass for replicate measurements, with repositioning, is 

3.2%. 

Oral glucose tolerance tests were performed after determining overnight fasting 

blood glucose concentrations in tail vein blood using Medisense Precision Q.I.D. glucose 

meters (Abbot Laboratories, Bedford, MA). For overnight fasting, rats were deprived of 

all types of diets for 12 hours. Fructose-supplemented drinking water in H diet-fed groups 

was replaced with normal drinking water for the overnight food deprivation period. Rats 

were given a glucose load of 2 g/(kg body weight) as 40% glucose solution via oral gavage 

and blood glucose concentrations were measured again 30, 60, 90 and 120 minutes after 

oral glucose administration [13]. 

Euthanasia 

Rats were euthanized with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

intraperitoneal; Virbac, Peakhurst, Australia). After euthanasia, heparin (200 IU; Sigma-

Aldrich Australia, Sydney, NSW, Australia) was injected through the right femoral vein. 

The abdomen was then opened and blood (~5 mL) was withdrawn from the abdominal 

aorta and collected into heparinised tubes. Blood was centrifuged at 5000 × g for 10 

minutes to obtain plasma. Plasma samples were stored at -20°C.  

Hearts were then removed from rats for isolated Langendorff heart preparation 

[13]. These hearts were perfused with modified Krebs–Henseleit bicarbonate buffer 

bubbled with 95% O2–5% CO2 and maintained at 35°C. Isovolumetric ventricular function 

was measured by inserting a latex balloon catheter into the left ventricle connected to a 

Capto SP844 MLT844 physiological pressure transducer and Chart software on a Maclab 
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system. Left ventricular end-diastolic pressure values were measured during pacing of the 

heart at 250 beats per minute using an electrical stimulator. End-diastolic pressures were 

obtained from 0 to 30 mmHg for the calculation of diastolic stiffness constant (, 

dimensionless) [13]. 

Thoracic aortic rings (~ 4 mm in length) were suspended in an organ bath filled 

with Tyrode physiological salt solution bubbled with 95% O2–5% CO2, maintained at 

35°C and allowed to stabilise at a resting tension of ~10 mN. Cumulative concentration-

response curves (contraction) were obtained for noradrenaline and cumulative 

concentration-response curves (relaxation) were obtained for acetylcholine and sodium 

nitroprusside after submaximal (~70%) contraction to noradrenaline [13]. 

After isolated heart perfusion studies, hearts were separated into left ventricles 

(with septum) and right ventricles and weighed. Livers were isolated and weighed. 

Retroperitoneal, epididymal and omental abdominal fats were removed separately and 

weighed. These organ weights were normalised against the tibial length at the time of 

organ removal and expressed as mg/mm of tibial length [13]. 

Histology 

Hearts and livers were removed from the rats (n = 4) soon after euthanasia and 

these organs were fixed in 10% neutral buffered formalin. The samples were then 

dehydrated and embedded in paraffin wax. Thin sections (5 µm) were cut and stained with 

haematoxylin and eosin stain to study infiltration of inflammatory cells (×20) and for 

determining fat vacuoles (×40) in the liver. Picrosirius red stain was used to study left 

ventricular collagen deposition (×20) [13]. 
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Plasma biochemistry 

Plasma activities of aspartate transaminase, alanine transaminase and alkaline 

phosphatase, and plasma concentrations of total cholesterol, triglycerides and non-

esterified fatty acids were measured [13]. 

Statistical analysis 

Data are presented as mean ± SEM. Results were tested for variance using 

Bartlett’s test and variables that were not normally distributed were transformed (using 

log 10 functions) prior to statistical analyses. Groups were tested for effects of diet, 

treatment and their interactions by two-way analysis of variance. When the interaction 

and/or the main effects were significant, means were compared using Newman-Keuls 

multiple comparison post hoc tests. A P value <0.05 was considered statistically 

significant. All statistical analyses were performed using GraphPad Prism version 5.0 for 

Windows (San Diego, CA, USA). 
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Results 

Green coffee analysis 

The contents and doses of chlorogenic acid, caffeine and trigonelline in green coffee are 

given in Table 1. 

Table 1: Green and decaffeinated green coffee 

Components 

Green 

coffee 

(mg/ml) 

Decaffeina

ted green 

coffee 

(mg/ml) 

CGC 

(mg/kg/

day) 

CDC 

(mg/kg/

day) 

HGC 

(mg/kg/

day) 

HDC 

(mg/kg/

day) 

 

Chlorogenic 

acid 

2.58 1.3 118 ± 5 55 ± 5 69 ± 2 34 ± 1 

Caffeine 0.7 0 32 ± 2 0 19 ± 2 0 

Trigonelline 0.85 0.9 39 ± 2 38 ± 4 23 ± 1 24 ± 1 

 

Dietary intake, body composition and metabolic parameters  

Green coffee treatment in corn starch rats (CGC, CDC rats) did not alter 

physiological parameters or plasma biochemistry compared to C rats (Tables 2 and 3). 

Green coffee treatment in HGC and HDC rats decreased the rate of body weight gain 

without affecting food, water or energy intakes, by reducing feed efficiency compared to 

H rats (Table 2). Body mass index reduced in HGC rats but did not change in HDC rats 

compared to H rats. However, abdominal circumference, basal or final blood glucose 
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concentrations, the area under the curve, plasma lipid concentrations, and total lean and 

fat mass did not change in HGC and HDC rats compared to H rats. Retroperitoneal fat was 

decreased while epididymal fat and omental fat were unchanged in HGC and HDC rats 

compared to H rats (Table 2). 

Cardiovascular and liver function  

Green coffee did not change cardiovascular or liver parameters in CGC and CGC 

compared to C rats (Table 2). Systolic blood pressure, left ventricular stiffness, fibrosis 

and inflammation were increased in H rats compared to C rats; in HGC and HDC rats, 

both parameters were reduced compared to H rats (Table 2). Green coffee treatments did 

not change fibrosis or inflammation in hearts of CGC (Figure 1B and 1H) or CDC (Figure 

1C and 1I) rats compared to C rats (Figure 1A and 1G) while decreasing fibrosis and 

inflammation in HGC rats (Figure 1E and 1K) and HDC rats (Figure 1F and 1L) compared 

to H rats (Figure 1D and 1J). Green coffee treatment did not alter aortic responses in C or 

H rats (Figure 2A, 2B and 2C). Green coffee treatments did not change inflammation and 

fat deposition in livers of CGC (Figure 3B and 3H) or CDC (Figure 3C and 3I) rats 

compared to C rats (Figure 3A and 3G) while decreasing inflammation and fat deposition 

in livers of HGC rats (Figure 3E and 3K) and HDC rats (Figure 3F and 3L) compared to 

H rats (Figure 3D and 3J). 
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Table 2: Green and decaffeinated green coffee on physiological and metabolic variables 

Variables C CGC CDC H HGC HDC 

P value 

Diet Treatment 

Diet × 

Treatment 

Initial body weight, 

g 

340 ± 1 339 ± 1 340 ± 1 340 ± 1 337 ± 1 339 ± 1 0.23 0.12 0.61 

Final body weight, 

g 

385 ± 5c 384 ± 6c 402 ± 9c 563 ± 14a 515 ± 16b 522 ± 15b <0.0001 0.12 0.035 

Body weight gain 

(8-16 weeks), % 

7.7 ± 1.4c 10.5 ± 0.8c 7.6 ± 1.3c 20.7 ± 1.8a 16.0 ± 1.0b 16.7 ± 1.6b <0.0001 0.33 0.028 

Water intake, mL/d 25.1 ± 3.5 27.5 ± 2.6 30.2 ± 1.9 32.2 ± 2.5 34.6 ± 2.7 31.5 ± 1.1 0.054 0.56 0.42 

Food intake, g/d 35.2 ± 1.3a 34.2 ± 1.8a 33.0 ± 0.9a 27.2 ± 0.7b 26.5 ± 0.9b 25.5 ± 0.6b <0.0001 0.22 0.98 

Energy intake, kJ/d 395 ± 15b 365 ± 6b 371 ± 10b 612 ± 17a 621 ± 22a 578 ± 10a <0.0001 0.13 0.20 
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Feed efficiency, 

kJ/g 

0.11 ± 0.01c 0.11 ± 0.01c 0.15 ± 0.02c 0.37 ± 0.02a 0.31 ± 0.02b 0.32 ± 0.02b <0.0001 0.19 0.038 

Body mass index, 

g/cm2 

0.63 ± 0.02d 0.65 ± 0.01d 0.71 ± 0.02c 0.85 ± 0.02a 0.77 ± 0.03b 0.81 ± 0.02a <0.0001 0.19 0.038 

Abdominal 

circumference, cm 

18.8 ± 0.3b 18.3 ± 0.1b 18.8 ± 0.3b 23.3 ± 0.7a 21.7 ± 0.7a 22.0 ± 0.6a <0.0001 0.19 0.038 

Whole-body lean 

mass, g 

297 ± 4 273 ± 7 312 ± 11 278 ± 8 278 ± 9 295 ± 18 0.20 0.051 0.39 

Whole-body fat 

mass, g 

68.7 ± 4.8b 89.6 ± 6.9b 74.1 ± 4.8b 252 ± 17a 209 ± 17a 224 ± 29a <0.0001 0.70 0.12 

Bone mineral 

density, g/cm2 

0.174 ± 

0.003b 

0.168 ± 

0.003b 

0.176 ± 

0.002ab 

0.185 ± 

0.003a 

0.182 ± 

0.002a 

0.183 ± 

0.004a 

<0.0001 0.24 0.52 

Bone mineral 

content, g 

11.2 ± 0.2c 11.3 ± 0.3c 11.7 ± 0.3c 17.4 ± 0.5a 15.5 ± 0.7b 15.4 ± 0.8b <0.0001 0.16 0.034 
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Basal blood glucose 

concentrations, 

mmol/L 

4.1 ± 0.2b 4.3 ± 0.2b 4.0 ± 0.2b 5.1 ± 0.2a 5.4 ± 0.3a 4.8 ± 0.2a <0.0001 0.13 0.79 

Blood glucose 

concentrations at 

120 minutes, 

mmol/L 

4.9 ± 0.1b 4.7 ± 0.1b 5.0 ± 0.1b 5.7 ± 0.3a 5.8 ± 0.1a 6.0 ± 0.1a <0.0001 0.22 0.62 

Area under the 

curve, 

mmol/L.minute 

715 ± 20b 661 ± 10b 707 ± 17b 805 ± 18a 832 ± 12a 778 ± 20a <0.0001 0.52 0.009 

Retroperitoneal fat, 

mg/mm tibial 

length 

136 ± 12c 192 ± 16c 179 ± 15c 484 ± 54a 380 ± 28b 393 ± 29b <0.0001 0.59 0.010 
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Epididymal fat, 

mg/mm tibial 

length 

87.2 ± 6b 112 ± 9b 97.2 ± 10.7b 226 ± 23a 220 ± 21a 246 ± 15a <0.0001 0.59 0.37 

Omental fat, 

mg/mm tibial 

length 

130 ± 8b 136 ± 8b 126 ± 7b 251 ± 16a 224 ± 16a 252 ± 20a <0.0001 0.67 0.27 

Total abdominal 

fat, mg/mm tibial 

length 

353 ± 18b 439 ± 30b 402 ± 27b 961 ± 89a 824 ± 56a 892 ± 52a <0.0001 0.86 0.08 

Plasma total 

cholesterol, 

mmol/L 

1.64 ± 0.08 1.64 ± 0.08 1.53 ± 0.04 1.58 ± 0.08 1.60 ± 0.06 1.55 ± 0.05 0.64 0.45 0.83 
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Plasma 

triglycerides, 

mmol/L 

0.53 ± 0.06d 0.54 ± 0.07d 

0.80 ± 

0.06cd 

1.30 ± 0.16b 

1.23 ± 

0.16bc 

2.80 ± 0.22a <0.0001 <0.0001 <0.0001 

Plasma NEFA, 

mmol/L 

1.4 ± 0.2b 1.4 ± 0.2b 1.9 ± 0.3b 3.8 ± 0.3a 3.7 ± 0.3a 4.4 ± 0.2a <0.0001 0.052 0.93 

Values are mean ± SEM, n=6-12. Means in a row with superscripts without a common letter differ significantly, P<0.05. C, corn starch 

diet-fed rats; CGC, corn starch diet-fed rats treated with green coffee extract; CDC, corn starch diet-fed rats treated with decaffeinated 

green coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HGC, high-carbohydrate, high-fat diet-fed rats treated with green 

coffee extract; HDC, high-carbohydrate, high-fat diet-fed rats treated with decaffeinated green coffee extract.  
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Table 3: Green and decaffeinated green coffee on cardiovascular and liver function 

Variables C CGC CDC H HGC HDC 

P value 

Diet Treatment 

Diet × 

Treatment 

Systolic blood 

pressure, mmHg 

128 ± 1b 129 ± 1b 127 ± 2b 147 ± 1a 130 ± 2b 128 ± 2b <0.0001 <0.0001 <0.0001 

Left ventricular 

diastolic stiffness 

constant ()  

24.1 ± 1.2b 22.1 ± 0.4b 22.1 ± 0.5b 27.5 ± 2.2a 22.4 ± 0.6b 21.5 ± 0.6b 0.28 0.002 0.20 

Left ventricular + 

Septum wet weight, 

mg/mm tibial 

length 

20.6 ± 1 20.1 ± 1.1 22.1 ± 0.8 24.1 ± 2.0 20.3 ± 0.8 22.7 ± 0.6 0.12 0.09 0.29 
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Right ventricular 

wet weight, mg/mm 

tibial length 

4.8 ± 0.4 4.9 ± 0.4 5.1 ± 0.2 5.5 ± 0.8 4.6 ± 0.4 4.6 ± 0.4 0.89 0.62 0.33 

Liver wet weight, 

mg/mm 

220 ± 7b 225 ± 7b 254 ± 5b 336 ± 19a 308 ± 17a 329 ± 8a <0.0001 0.11 0.17 

Plasma aspartate 

transaminase 

activity, U/L 

69.1 ± 1.8 76.7 ± 3.2 75.2 ± 3 81.6 ± 6.1 70.7 ± 5.8 74.9 ± 5.1 0.58 0.93 0.12 

Plasma alanine 

transaminase 

activity, U/L 

29.8 ± 2.6 31.8 ± 2.5 30.5 ± 2.3 37.6 ± 3.4 31.9 ± 2.7 31.1 ±2 0.19 0.54 0.26 

1Values are mean ± SEM, n=6-10. Means in a row with superscripts without a common letter differ significantly, P<0.05. C, corn starch 

diet-fed rats; CGC, corn starch diet-fed rats treated with green coffee extract; CDC, corn starch diet-fed rats treated with decaffeinated 

green coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HGC, high-carbohydrate, high-fat diet-fed rats treated with green 

coffee extract; HDC, high-carbohydrate, high-fat diet-fed rats treated with decaffeinated green coffee extract. 
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Figure 1. Effects of green coffee extracts on inflammation and fibrosis in the heart. Haematoxylin and eosin staining of left ventricle 

showing infiltration of inflammatory cells (A–F, inflammatory cells marked as “in”) from C (A), CGC (B), CDC (C), H (D), HGC (E) 

and HDC (F) rats. Picrosirius red staining of left ventricle showing collagen deposition (G-L, fibrosis marked as “fi”) from C (G), CGC 

(H), CDC (I), H (J), HGC (K) and HDC (L) rats. C, corn starch diet-fed rats; CGC, corn starch diet-fed rats treated with regular green 

coffee extract; CDC, corn starch diet-fed rats treated with decaffeinated green coffee extract; H, high-carbohydrate, high-fat diet-fed 

rats; HGC, high-carbohydrate, high-fat diet-fed rats treated with regular green coffee extract; HDC, high-carbohydrate, high-fat diet-fed 

rats treated with decaffeinated green coffee extract. 
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Figure 2. Effects of regular green coffee and decaffeinated green coffee extract on (A) noradrenaline-induced contraction, (B) sodium 

nitroprusside-induced relaxation and (C) acetylcholine-induced relaxation in thoracic aortic preparation from C, CGC, CDC, H, HGC 

and HDC rats. Values are mean ± SEM, n = 8-12. Endpoint means without a common letter differ, P < 0.05. C, corn starch diet-fed rats; 

CGC, corn starch diet-fed rats treated with regular green coffee extract; CDC, corn starch diet-fed rats treated with decaffeinated green 

coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HGC, high-carbohydrate, high-fat diet-fed rats treated with regular green 

coffee extract; HDC, high-carbohydrate, high-fat diet-fed rats treated with decaffeinated green coffee extract. 
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Figure 3. Effects of green coffee extracts on inflammation and fat deposition in the liver. Haematoxylin and eosin staining of liver 

showing infiltration of inflammatory cells (A–F, inflammatory cells marked as “in”) from C (A), CGC (B), CDC (C), H (D), HGC (E) 

and HDC (F) rats and fat deposition (G-L, enlarged fat vacuoles as “fv”) from C (G), CGC (H), CDC (I), H (J), HGC (K) and HDC (L) 

rats. C, corn starch diet-fed rats; CGC, corn starch diet-fed rats treated with regular green coffee extract; CDC, corn starch diet-fed rats 

treated with decaffeinated green coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HGC, high-carbohydrate, high-fat diet-fed 

rats treated with regular green coffee extract; HDC, high-carbohydrate, high-fat diet-fed rats treated with decaffeinated green coffee 

extract.  
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Discussion 

In this study, green coffee extract and decaffeinated green coffee extract decreased 

body weight and visceral fat accumulation, and improved heart and liver structure and 

function in obese, hypertensive rats fed a high-carbohydrate, high-fat diet, without 

improving glucose tolerance or dyslipidaemia. High-carbohydrate, high-fat diet-fed rats 

are an appropriate preclinical model for mimicking human metabolic syndrome as they 

develop relevant symptoms including visceral obesity, impaired glucose tolerance, 

dyslipidaemia, hypertension, cardiovascular remodelling and liver abnormalities [13]. 

Obesity is the critical factor of metabolic syndrome associated with high calorie 

intake and sedentary life lifestyle [15, 16]. In contrast to the few studies in green coffee, 

roasted (black) coffee has been more widely studied so that it has been proposed as a 

functional food to reverse the health complications caused by obesity [17]. Coffee contains 

around 1000 possibly biologically active components, including caffeine, chlorogenic 

acid, caffeic acid, hydroxyhydroquinone, trigonelline, diterpenes such as kahweol and 

cafestol, lignin and melanoidins [18]. Chronic black coffee consumption has been 

associated with a reduction in the development of chronic diseases such as cardiac 

disorders [19], hepatic diseases [20] and type 2 diabetes [21]. The anti-obesity effect of 

black coffee has been associated with reduced lipid accumulation in cells by reduction of 

adipogenesis and modifications of transcription factors and lipogenesis-related proteins in 

the adipose tissue of animal models [22] but could also be associated with altered glucose 

homeostasis, antioxidant activity and inflammatory biomarkers [21]. Individual 

components including caffeine [23], chlorogenic acid [24] and trigonelline [25] may 

improve glucose tolerance and reduce the risk of type 2 diabetes progression [26] but the 
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diterpenes may increase serum lipid concentrations in humans [27]. However, the type of 

coffee and the method of preparation determines the effects of coffee on lipoproteins [28]. 

In our previous study, roasted coffee extract in obese rats improved cardiovascular and 

hepatic structure and function with no improvements in obesity or blood concentrations 

of triglycerides and non-esterified fatty acids [23]. In contrast, caffeine at the same dose 

as in coffee extract decreased body weight and abdominal obesity [29]. This clearly 

indicated that caffeine was only partly contributing to the responses from coffee extract.  

This study determined whether the unroasted green coffee has potential for health 

improvement, rather than black coffee. Decaffeinated green coffee supplementation 

reduced postprandial hyperglycaemia in rats and humans [30]. An intake of 200 mg/kg/day 

green coffee extract for 6 weeks reduced obesity and dyslipidaemia in mice [31] and anti-

inflammatory effects of green coffee extract in rats were demonstrated by decreasing 

lipopolysaccharide-induced leukocyte migration in the peritonitis test [32]. Likewise, 

decaffeinated green coffee reduced obesity and fat accumulation with improving insulin 

sensitivity by 0.3% diet supplementation for 11 weeks in high-fat diet-fed mice [33]. In 

humans, a randomised crossover study showed that green coffee consumption reduced 

body weight, body mass index, fat accumulation and hypertension [34]. A 22-week 

crossover study of green coffee extract in overweight humans reduced body weight and 

heart rate, and body mass index shifted back to normal [34]. Meta-analysis of human 

clinical trials showed reduced body weight with green coffee extract compared with 

placebo [10]. 

The observation in our study was that green coffee extract reduced feed efficiency. 

The reduced feed efficiency indicates higher satiety level from diet supplemented with 
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green coffee. This outcome pointed out that green coffee extract delivered a similar energy 

intake as their control, and revealed a decrease in feed efficiency and hence, body weight. 

The decreased feed efficiency could result from elevated energy expenditure and 

thermogenesis. Chlorogenic acid, the hydoxycinnamic acid derivative present in green 

coffee extract, enhanced energy expenditure through the upregulation of adenosine 

monophosphate activated protein kinase (AMPK) by inhibiting cAMP phosphodiesterase, 

with the subsequent increase in fatty acid oxidation [35]. The proposed mechanism of 

action is the inhibition of the enzyme pancreatic lipase, which leads in a decrease in lipid 

absorption [36] resulting in weight reduction. 

Green coffee contains a wide range of potentially bioactive compounds. In this 

study, green coffee contained higher concentrations of chlorogenic acid compared to the 

decaffeinated green coffee with no caffeine present in decaffeinated green coffee. 

Trigonelline was equivalent in the two types of green coffee. As the responses of green 

and decaffeinated green coffee were quite similar, caffeine could be ruled out for 

contribution towards the responses observed in obese rats. Further, the dose of chlorogenic 

acid was almost half in decaffeinated green coffee (~34 mg/kg/day) compared to green 

coffee (~69 mg/kg/day). In addition, previous studies used a dose of 100 mg/kg/day of 

chlorogenic acid to suggest its beneficial effects [37, 38]. This suggests that chlorogenic 

acid is one of several active components in green coffee to attenuate metabolic syndrome. 

Trigonelline is also a putative bioactive compound in green coffee with the dose 

around 25 mg/kg/day from both types of green coffee interventions. A higher dose of 

trigonelline (40 mg/kg/day) for 48 weeks in a high-carbohydrate, high-fat diet reduced 

body weight, lowered blood glucose and HbA1c via increasing serum GLP-1 
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concentrations and GLP-1R expression in rats [39]. At the same dose, trigonelline for 4 

weeks in rats improved insulin sensitivity by reducing the availability of free fatty acids, 

TNFα and IL-6 in serum [40]. A limitation of our study was the limited availability and 

high cost of pure trigonelline to test its responses.  

The responses of green and decaffeinated coffee suggest that chlorogenic acid and 

trigonelline may have additive or synergistic effects towards attenuating symptoms of 

metabolic syndrome. Further, coffee also contains diterpenoids, cafestol and kahweol, that 

were not measured and may have their role in either improving metabolic complications 

[41] or have detrimental effects as in previous study where non-filtered, boiled coffee 

containing increased diterpenoids increased serum cholesterol concentrations and hence 

the risk of cardiovascular disease [42]. 

 

Conclusions 

Green coffee with or without caffeine attenuated obesity and reduced 

cardiovascular disease components without changes in glucose homeostasis and plasma 

lipid concentrations in high-carbohydrate, high-fat diet-induced metabolic syndrome in 

rats. Both green coffee products improved structure and function of the heart and liver in 

these rats. Results from this study suggest that chlorogenic acid and trigonelline, rather 

than caffeine, may serve as the bioactive components of green coffee. Following well-

designed human studies with green coffee [8, 43], green coffee may serve as a simple and 

safe dietary supplement to manage weight and blood pressure that may prove very 

effective in combination with healthy lifestyles in obese hypertensive patients. 
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Abstract 

Chlorogenic acid as a constituent of coffee is consumed regularly in the human diet. 

Chlorogenic acid intake has been associated with decreased risk of cardiovascular disease and 

type 2 diabetes. This study investigated whether chlorogenic acid improves cardiovascular, 

liver and metabolic responses in a diet-induced rat model of metabolic syndrome induced by a 

high-carbohydrate, high-fat diet. Male Wistar rats (8-9 week old, 335 ± 5 g, n = 48) were 

divided into 4 groups and fed with either corn starch diet (16 weeks), corn starch diet with 2 

g/kg chlorogenic acid in food for the last 8 weeks, high-carbohydrate, high-fat diet (16 weeks), 

or high-carbohydrate, high-fat diet with 2 g/kg chlorogenic acid in food for the last 8 weeks. 

In high-carbohydrate, high-fat diet-fed rats, chlorogenic acid reduced energy intake and food 

efficiency to reduce visceral fat (especially retroperitoneal fat) and abdominal circumference; 

reversed the elevated systolic blood pressure and attenuated left ventricular diastolic stiffness 

while reducing collagen deposition and infiltration of inflammatory cells in the left ventricle. 

Chlorogenic acid decreased inflammation and fat deposition in the liver along with reduction 

in plasma liver enzyme activities of obese rats but did not change the plasma lipid profile. 

These results suggest that chronic dietary chlorogenic acid may attenuate inflammation as well 

as cardiovascular, liver, and metabolic abnormalities induced by high-carbohydrate, high-fat 

diet. 
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Introduction 

Coffee, a complex mixture of almost 1000 compounds, may decrease the risk of 

developing metabolic syndrome, for example, reducing the risk of type 2 diabetes and 

decreasing triglyceride concentrations [1]. An important component of coffee is a class of 

compounds known as chlorogenic acids, which are isomeric hydroxycinnamic esters of quinic 

acid [2]; one of the major compounds from this class is 5-caffeoyl-quinic acid [3]. Closely 

related compounds are also present in coffee beans, including the 3- and 4-isomers 

(isochlorogenic acids A and B), as well as 3,4-, 3,5-, and 4,5-diquinyl esters of cinnamic acid 

[4]. Chlorogenic acid intake is common and the content in one cup of coffee varies between 70 

and 350 mg [3]. In the stomach, chlorogenic acid is absorbed directly whereas in the small and 

large intestines, it is broken down to caffeic acid and quinic acid before absorption [3]. 

Patients with metabolic syndrome have an increased risk of developing cardiovascular 

disease and diabetes [5]. Consumption of chlorogenic acids has been associated with decreased 

risk of these two chronic and common diseases [3]. These therapeutic responses to chlorogenic 

acids have been attributed to their antioxidant and anti-inflammatory properties [3, 6], 

modulation of glucose and lipid metabolism [7] by increased mRNA expression of PPAR- 

and liver X receptor  as key mediators of lipid metabolism [8, 9], inhibition of glucose-6-

phosphatase activity to reduce hepatic glucose output [10], and decreased expression of 

sodium-dependent glucose transporters in brush border membranes of the small intestine to 

reduce glucose absorption [11]. 

Our previous study with coffee extract in high-carbohydrate, high-fat diet-fed rats did 

not show any changes in obesity but improved heart and liver structure and function [12]. 

Following this, we matched the dose of caffeine from the coffee extract study to show that this 

dose of caffeine reversed obesity along with other improvements from coffee extract [13]. 
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Thus, the current study investigated whether chlorogenic acid has beneficial or opposing effects 

to caffeine during an 8-week diet intervention in rats fed a high-carbohydrate, high-fat diet. 

After treatment with chlorogenic acid, metabolic parameters related to obesity and glucose 

tolerance, and the structure and function of the cardiovascular system and liver were examined. 

Cardiovascular function was studied in isolated Langendorff heart preparations, isolated 

thoracic aortic rings and by measurement of systolic blood pressure together with 

histopathology. Liver structure and function were measured by plasma biochemistry and 

histopathology. 

Methods and materials 

Rats, diets, and treatments 

All experimental protocols were approved by the University of Southern Queensland 

Animal Ethics Committee under the guidelines of the National Health and Medical Research 

Council of Australia. Male Wistar rats (8–9 weeks old, 340 ± 2 g, n = 48) were obtained from 

Animal Resource Centre, Murdoch, WA, Australia. Rats were randomly divided into 4 groups 

for the 16 week feeding protocol: corn starch diet-fed rats (C, n = 12), corn starch diet + 

chlorogenic acid (CC, n = 12; 2 g/kg of food for the final 8 weeks); high-carbohydrate, high-

fat diet-fed rats (H; n = 12); and high-carbohydrate, high-fat diet + chlorogenic acid (HC; n = 

12, 2 g/kg of food for the final 8 weeks). C diet contained 570 g corn starch, 155 g powdered 

rat food, 25 g HMW salt mixture, and 250 g water per kilogram of diet. H diet contained 175 

g fructose, 395 g sweetened condensed milk, 200 g beef tallow, 155 g powdered rat food, 25 g 

HMW salt mixture, and 50 g water per kilogram of diet [14]. Drinking water with 25% w/v 

fructose was provided to H and HC groups. C and CC rats were given normal drinking water. 

All the rats were individually housed under temperature-controlled, 12-hour-light/dark 

conditions and given ad libitum access to food and water [14]. 
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Physiological parameters 

Body weight, food, and water intakes were measured daily [14]. Abdominal 

circumference and body length (nose to anus) were measured using a standard measuring tape 

under light anesthesia with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, 

intraperitoneally) [14]. Body mass index was calculated as body weight (in grams)/[body 

length (in cm)]2 [14]. Feed efficiency was calculated as [mean body weight gain (in 

grams)/daily energy intake (in kJ)] [14]. 

Systolic blood pressure measurements 

Systolic blood pressure was determined under light sedation with Zoletil (tiletamine 10 

mg/kg, zolazepam 10 mg/kg, intraperitoneally), using an MLT1010 Piezo-Electric Pulse 

Transducer and inflatable tail-cuff connected to an MLT844 Physiological Pressure Transducer 

and PowerLab data acquisition unit [14]. 

Body composition measurement 

Dual-energy X-ray absorptiometric measurements were carried out with a Norland 

XR36 DXA instrument (Norland Corp, Fort Atkinson, WI). These scans were evaluated using 

the manufacturer’s suggested software for use in laboratory animals (Small Subject Analysis 

Software, version 2.5.3/1.3.1; Norland Corp). The precision error of lean mass for replicate 

measurements, with repositioning, was 3.2% [15]. Visceral adiposity index (%) was analyzed 

as ([retroperitoneal fat (g) + omental fat (g) + epididymal fat (g)]/ [body weight (g)]) × 100. 

Oral glucose tolerance test 

Oral glucose tolerance tests were performed on rats following a 12-hour food 

deprivation during which fructose-supplemented drinking water in H and HC groups was 
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replaced with normal drinking water [14]. After determining basal blood glucose 

concentrations in tail vein blood using Medisense Precision Q.I.D. glucose meters, rats were 

given a glucose load of 2 g/kg body weight as 40% glucose solution via oral gavage and blood 

glucose concentrations were measured again 30, 60, 90, and 120 minutes after oral glucose 

administration [14]. 

Terminal experiments 

Rats were euthanased with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

intraperitoneally). After euthanasia, heparin (200 IU) was injected through the right femoral 

vein. The abdomen was then opened and blood (~5 mL) was withdrawn from the abdominal 

aorta and collected into heparinized tubes. Blood was centrifuged at 5000 × g for 15 minutes 

to obtain plasma. Plasma was stored at –20°C for further characterization. Hearts were then 

removed from rats for isolated Langendorff heart preparation [14]. 

Isolated Langendorff heart preparation 

Hearts isolated from euthanased rats were perfused with modified Krebs–Henseleit 

bicarbonate buffer bubbled with 95% O2–5% CO2 and maintained at 35°C. Isovolumetric 

ventricular function was measured by inserting a latex balloon catheter into the left ventricle 

connected to a Capto SP844 MLT844 physiological pressure transducer and Chart software on 

a Maclab system. All left ventricular end-diastolic pressure values were measured during 

pacing of the heart at 250 beats per minute using an electrical stimulator. End-diastolic 

pressures were obtained from 0 to 30 mmHg for the calculation of diastolic stiffness constant 

(, dimensionless) [14]. 
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Isolated tissue reactivity 

Thoracic aortic rings (~4 mm in length) were suspended in an organ bath filled with 

Tyrode physiological salt solution bubbled with 95% O2–5% CO2 maintained at 35°C and 

allowed to stabilize at a resting tension of ~10 mN. Cumulative concentration–response curves 

(contraction) were obtained for noradrenaline and cumulative concentration–response curves 

(relaxation) were obtained for acetylcholine and sodium nitroprusside after submaximal 

(~70%) contraction to noradrenaline [14]. 

Organ weights 

After isolated heart perfusion studies, the heart was separated into left ventricle (with 

septum) and right ventricle and weighed separately. The liver was isolated and weighed. 

Retroperitoneal, epididymal, and omental abdominal fat pads were removed separately and 

weighed. These organ weights were normalized against the tibial length at the time of organ 

removal and expressed as mg/mm of tibial length [14]. 

Histology 

Heart and liver were removed from rats soon after euthanasia and fixed in 10% neutral 

buffered formalin. The samples were then dehydrated and embedded in paraffin wax. Thin 

sections (∼5 m) of heart and liver were cut and stained with hematoxylin and eosin to study 

infiltration of inflammatory cells and for determining fat vacuoles in liver. Heart sections were 

also stained with picrosirius red stain to study collagen distribution [14]. 
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Plasma biochemistry 

Plasma activities of aspartate transaminase (AST) and alanine transaminase (ALT) and 

concentrations of total cholesterol, triglycerides, and non-esterified fatty acids (NEFA) in 

plasma were measured [14]. 

Statistical analysis 

All data are presented as mean ± SEM. Results were tested for variance using Bartlett’s 

test and variables that were not normally distributed were transformed (using log 10 functions) 

prior to statistical analyses. C, CC, H, and HC groups were tested for effects of diet, treatment, 

and their interactions by 2-way Analysis of Variance. When the interaction and/or the main 

effects were significant, means were compared using Newman-Keuls multiple comparison post 

hoc tests. A P value <0.05 was considered significant. All statistical analyses were performed 

using GraphPad Prism version 5.0 for Windows (San Diego, CA, USA). 

Results 

Dietary intake, body composition, and plasma biochemistry 

At the end of 16 weeks, H rats had higher body weight compared to C rats while 

chlorogenic acid reduced the body weight in HC rats (Table 1). Water intakes were similar 

between C and CC rats and between H and HC rats. Food intakes was lower in H rats compared 

to C rats. Chlorogenic acid increased food intake in CC rats compared to C rats while it did not 

change food intake in HC rats compared to H rats. The food intake in CC rats was higher than 

HC rats; hence, the chlorogenic acid intake was higher in CC rats compared to HC rats. Energy 

intake was higher in H rats than in C rats. Chlorogenic acid increased energy intake in CC rats 

compared to C rats while it did not change energy intake in HC rats compared to H rats (Table 

1). Feed efficiency, body mass index, and abdominal circumference were higher in H rats than 
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in C rats whereas chlorogenic acid reduced these parameters in HC rats compared to H rats 

with no effects in CC rats compared to C rats on these parameters at the end of 16 weeks (Table 

1). Whole-body lean mass was similar in all diet groups. Whole-body fat mass was higher in 

H rats than in C rats and was decreased with chlorogenic acid in HC rats compared to H rats 

(Table 1). Basal blood glucose concentrations were higher in H rats than in C rats and reduced 

by chlorogenic acid in both HC and CC rats compared to H and C rats, respectively. However, 

chlorogenic acid failed to reduce the 120-minute blood glucose concentrations and hence area 

under the curve during oral glucose tolerance test (Table 1). Plasma total cholesterol 

concentrations were unchanged between the groups while chlorogenic acid was unable to 

reduce the plasma concentrations of triglycerides and non-esterified fatty acids in CC or HC 

rats (Table 1). Retroperitoneal, omental, epididymal, and total abdominal fat pads were higher 

in H rats than in C rats. These fat depots were unchanged in CC rats compared to C rats while 

chlorogenic acid reduced total abdominal fat through reduction in retroperitoneal fat in HC rats 

compared to H rats. Visceral adiposity followed the same trend between the groups as total 

abdominal fat (Table 1). 

Cardiovascular structure and function 

Histopathological analysis of left ventricle indicated increased infiltration of 

inflammatory cells in H rats (Figure 1C) compared to C rats (Figure 1A). Chlorogenic acid 

reduced infiltration of inflammatory cells into the left ventricle of HC rats (Figure 1D) than in 

H rats. Picrosirius red staining of left ventricle suggested higher collagen deposition in H rats 

(Figure 1G) compared to C rats (Figure 1E). Chlorogenic acid reduced collagen deposition in 

the left ventricle of HC rats (Figure 1H) than in H rats. Noradrenaline-induced contraction and 

acetylcholine-induced relaxation were lower in H rats than in C rats and chlorogenic acid 

treatment did not change these responses (Figure 2A and 2C). There were no differences in 

sodium nitroprusside-induced vascular relaxation in isolated thoracic aortic rings between the 
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groups (Figure 2B). Systolic blood pressure and diastolic stiffness were higher in H rats than 

in C rats and chlorogenic acid reduced both systolic blood pressure and diastolic stiffness in 

HC rats compared to H rats (Table 1). LV and RV wet weights were unchanged between the 

groups (Table 1). 

Liver structure and function 

Increased inflammatory cell infiltration and fat deposition were observed in H rats 

(Figure 1K) than in C rats (Figure 1I). Chlorogenic acid reduced infiltration of inflammatory 

cells and fat deposition in livers of HC rats (Figure 1L) compared to H rats. Liver wet weight 

was higher in H rats than in C rats and it was unchanged by chlorogenic acid treatment in both 

CC and HC rats (Table 1). Plasma ALT activities were higher in H rats compared to C rats and 

reduced in HC rats. Plasma AST activity was unchanged between H and C rats and reduced in 

HC rats compered to H rats (Table 1). 

Discussion 

In this study, chlorogenic acid decreased body weight and visceral fat accumulation, 

and improved heart and liver structure and function in obese, hypertensive rats fed a high-

carbohydrate, high-fat diet, without improving glucose tolerance. These responses of 

chlorogenic acid, one of the major components of coffee, are an important aspect in functional 

foods research as many people consume chlorogenic acid and related compounds on a daily 

basis through diet, mainly coffee. Further, the responses to chlorogenic acid in this study were 

obtained in a high-carbohydrate, high-fat diet-fed rats as an appropriate model for human 

metabolic syndrome developing similar symptoms including visceral obesity along with 

impaired glucose tolerance, dyslipidemia, hypertension, endothelial dysfunction, and liver 

abnormalities [14]. 
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Coffee consumption in human studies, mostly cross-sectional analyses, has been 

associated with decreases in components of metabolic syndrome including waist 

circumference, systolic and diastolic blood pressures, and blood concentrations of triglyceride 

and fasting glucose [1]. Coffee consumption has also been associated with decreased risk of 

type 2 diabetes and cardiovascular disease [1]. Coffee is a widely-used source of bioactive 

compounds such as caffeine, chlorogenic acid, trigonelline, cafetstol, and kahweol [1]. 

Caffeine and chlorogenic acid are two major components of coffee that have been associated 

with beneficial health effects, especially against metabolic syndrome [1]. Our previous study 

with coffee extract treatment in obese rats (5% coffee extract in food for 8 weeks) showed 

improved cardiovascular and hepatic structure and function with no improvements in obesity 

or blood concentrations of triglycerides and NEFA [12]. Caffeine treatment (~28 mg/kg/day) 

in obese rats for 8 weeks showed improved structure and function of heart and liver, with 

reduction in obesity but no improvements in blood concentrations of cholesterol, triglycerides, 

and NEFA [13]. Caffeine inhibited A1-adenosine receptors in the hypothalamus to suppress 

appetite and increase energy expenditure in order to reduce diet-induced obesity in mice [16]. 

Chlorogenic acid has been associated with decreases in blood pressure and 

improvements in endothelial function, lipid metabolism, and carbohydrate metabolism [3, 17, 

18]. The dose of chlorogenic acid in the high-carbohydrate, high-fat diet-fed rats was ~100 

mg/kg in this study. In mice, no improvements in body weight or insulin resistance were 

observed with lower doses of ~50 mg/kg/day for 12 weeks or ~30 mg/kg/day for 8 weeks [19, 

20]. The doses of CGA used in our study are comparable with those obtained in a typical cup 

of coffee. However, the relationship is not straightforward as these values fluctuate markedly 

depending on the type of coffee and the preparation method [21]. Typical values in green coffee 

bean are of the order of 8 % for CGA so the doses used in our study are achievable from the 

daily consumption levels. 
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Intestinal absorption of chlorogenic acid has been controversial. In some studies, 

chlorogenic acid has been found in urine after coffee or pure chlorogenic acid consumption 

[22-26] while chlorogenic acid was not detected in other studies in plasma, urine, or bile [27-

33]. One study suggested direct absorption of chlorogenic acid in the gut of 8% [27]. Further, 

metabolism of chlorogenic acid is quite variable in different individuals and it may cause the 

variation in the responses to chlorogenic acid [34]. After ingestion of coffee, various 

derivatives of chlorogenic acid were found in the urine. Further, chlorogenic acid was broken 

down to caffeic acid and hence derivatives of caffeic acid were also found in the urine [35]. 

These metabolites derived from chlorogenic acid are further metabolized into compounds 

including m-coumaric acid and hydroxy-derivatives of phenylpropionic, benzoic and hippuric 

acids [26, 36, 37]. Chlorogenic acids and their metabolites scavenge free radical oxygen 

species, with dihydrocaffeic acid showing the strongest effect against oxidative stress-induced 

inflammation [38]. Further, metabolites of chlorogenic acid, but not chlorogenic acid itself, 

improved the growth of Bifidobacterium spp. and moderated the Firmicutes/Bacteroidetes ratio 

[39]. These changes in gut microbiota may modulate the metabolic changes observed in 

obesity. This may be one of mechanisms of action of chlorogenic acid in improving metabolic 

changes in obesity in this study. 

In our study, chlorogenic acid did not reverse the glucose intolerance in obese rats. In 

a previous study, 90 mg/kg/day chlorogenic acid in Sprague−Dawley rats improved fasting 

glucose, glucose tolerance, and fasting serum insulin concentrations through differential 

expression of SGLT1, GLUT2, and proglucagon in the intestinal segments [40]. However, this 

study confirmed the outcomes from our study in terms of body weight and abdominal fat 

reduction [40]. 
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We suggest that the reduced inflammation following chlorogenic acid treatment 

decreased the signs of the metabolic syndrome in diet-induced obese rats. In animal models, 

high-fat diets are associated with increased chylomicrons in the intestine, which promote 

systemic uptake of gut microbiota-derived lipopolysaccharides causing metabolic endotoxemia 

to trigger the low-grade inflammation that characterizes obesity [41, 42]. In obese humans, 

circulating endotoxin was 20% higher than in lean patients and 125% higher in a type 2 diabetic 

patient compared to lean individual [43]. Diets rich in fat or carbohydrate triggered systemic 

lipopolysaccharides secretion and increased expression of TLR-4, NF-κB, TNF-α, and IL-6, 

which are components engaged in pathways that also participate in the regulation of insulin 

secretion [44]. Thus, further studies on finding specific targets for the suppression of 

inflammation by chlorogenic acid are warranted. 

Increased plasma ALT and AST activities, inflammatory cell infiltration and lipid 

deposition in the liver are important markers of fatty liver [45]; these changes were reduced by 

chlorogenic acid in this study. A possible explanation could be the activation of AMP kinase 

[46]. AMP kinase is an energy-sensing enzyme with a crucial role in the regulation of 

carbohydrate and lipid metabolism in response to cellular stress [47]. Chlorogenic acid as an 

anti-inflammatory agent reduced liver fibrosis by decreasing inflammatory cytokines, TLR-4, 

iNOS, COX-2, and NF-κB [48]. Further, chlorogenic acid intervention attenuated diet-induced 

liver abnormalities by downregulating the expression of the PPAR-γ to reduce fibrosis and 

accumulation of fat [49] with decreased expression of macrophage mRNA such as TNF-α, 

MCP-1, and chemokines associated with inflammatory cascade pathways. Consistent with our 

results, chlorogenic acid reduced fat deposition in adipose tissue by decreasing mRNA 

expression of the lipogenic enzymes (fatty acid synthase, acetyl-CoA carboxylase, and 

stearoyl-CoA desaturase) in the liver [50]. Overall, the reduction of expression in 
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inflammation-associated proteins could attenuate lipid-related disorders such as obesity, 

hypertension, and metabolic abnormalities. 

In conclusion, high-carbohydrate, high-fat-diet-induced metabolic syndrome in rats 

was attenuated by chlorogenic acid. As coffee is the major dietary source of chlorogenic acid, 

this compound could be one of the most effective bioactive constituents in coffee leading to 

improved cardiovascular, liver, and metabolic functions. Production of chlorogenic acid-

enriched coffee could be an effective intervention strategy with improved compliance. Thus, a 

clinical trial with chlorogenic acid–enriched coffee in mildly hypertensive, overweight, or 

obese patients is warranted. 
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Figure legends 

Figure 1. Effects of chlorogenic acid on structure of heart and liver at the end of 16 weeks. 

Hematoxylin and eosin staining of left ventricle showing inflammatory cells (“in”) in corn 

starch diet-fed rats (A), corn starch diet-fed rats supplemented with chlorogenic acid (B), high-

carbohydrate, high-fat diet-fed rats (C), and high-carbohydrate, high-fat diet-fed rats 

supplemented with chlorogenic acid (D). Picrosirius red staining of left ventricle showing 

fibrosis (“fi”) in corn starch diet-fed rats (E), corn starch diet-fed rats supplemented with 

chlorogenic acid (F), high-carbohydrate, high-fat diet-fed rats (G), and high-carbohydrate, 

high-fat diet-fed rats supplemented with chlorogenic acid (H). Hematoxylin and eosin staining 

of liver showing enlarged fat vacuoles (“fv”) and inflammatory cells (“in”) from rats fed with 

corn starch diet (I), corn starch diet-fed rats treated with chlorogenic acid (J), high-

carbohydrate, high-fat diet-fed rats (K), and high-carbohydrate, high-fat diet-fed rats treated 

with chlorogenic acid (L). 

Figure 2. Effects of chlorogenic acid on thoracic aortic responses to noradrenaline (A), sodium 

nitroprusside (B), and acetylcholine (C) at the end of 16 weeks. Values are presented as mean 

± SEM (n = 8–10). End-point means without a common alphabet significantly differ, P < 0.05. 

C, corn starch diet-fed rats; CC, corn starch diet-fed rats treated with chlorogenic acid; H, high-

carbohydrate, high-fat diet-fed rats; HC, high-carbohydrate, high-fat diet-fed rats treated with 

chlorogenic acid.
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Table 1. Effects of Chlorogenic acid treatment on physiological, compositional, and metabolic parameters at the end of 16 weeks 

Values are mean ± SEM, n = 8–10. Mean values within a row with unlike superscript letters are significantly different, P<0.05. ALT, alanine transaminase; AST, aspartate 

transaminase; AUC, area under the curve; C, corn starch diet-fed rats; CC, corn starch diet-fed rats treated with chlorogenic acid; H, high-carbohydrate, high-fat diet-fed rats; 

HC, high-carbohydrate, high-fat diet-fed rats treated with chlorogenic acid; LV, left ventricle; NEFA, non-esterified fatty acids; RV, right ventricle. 

Variables C CC H HC 

P value 

Diet 
Chlorogenic 

acid 

Diet ×  

Chlorogenic acid 

Initial body weight, g 342 ± 1 341 ± 2 340 ± 1 340 ± 2 0.34 0.75 0.75 

Final body weight, g 385 ± 5c 380 ± 5c 563 ± 14a 498 ± 13b <0.0001 0.002 0.006 

Water intake, mL/d 27.3 ± 0.8a 27.2 ± 1.1a 24.7 ± 0.8ab 23.6 ± 0.8b 0.001 0.50 0.58 

Food intake, g/d 32.3 ± 0.8b 36.1 ± 0.9a 25.1 ± 0.9c 23.4 ± 0.6c <0.0001 0.20 0.002 

Chlorogenic acid intake, mg/kg/day - 173 ± 3 - 103 ± 2 - - - 

Energy intake, kJ/d 363 ± 9c 406 ± 11b 541 ± 13a 508 ± 14a <0.0001 0.68 0.003 

Feed efficiency, kJ/g 0.12 ± 0.01c 0.10 ± 0.01c 0.41 ± 0.03a 0.31 ± 0.02b <0.0001 0.003 0.045 

Body mass index, g/cm2 0.63 ± 0.02c 0.63 ± 0.01c 0.85 ± 0.02a 0.75 ± 0.02b <0.0001 0.008 0.008 

Abdominal circumference, cm 18.8 ± 0.3b 18.6 ± 0.2a 23.3 ± 0.5a 21.8 ± 0.2a 0.002 0.007 <0.0001 

Whole-body lean mass, g 297 ± 4 293 ± 9 291 ± 6 300 ± 15 0.96 0.79 0.50 

Whole-body fat mass, g 69 ± 5c 55 ± 8c 223 ± 11a 187 ± 10b <0.0001 0.008 0.22 

Basal blood glucose, mmol/L 4.14 ± 0.24c 3.65 ± 0.14d 5.25 ± 0.16a 4.66 ± 0.06b <0.0001 0.002 0.76 

Blood glucose at 120 minutes, mmol/L 4.86 ± 0.14b 4.90 ± 0.16b 5.82 ± 0.31a 5.62 ± 0.09a <0.0001 0.68 0.54 

Blood glucose AUC, mmol/L × minutes 715 ± 20b 761 ± 23ab 805 ± 18a 819 ± 23a 0.001 0.16 0.45 

Plasma total cholesterol, mmol/L 1.70 ± 0.10 1.70 ± 0.06 1.58 ± 0.08 1.56 ± 0.09 0.1242 0.9045 0.9045 

Plasma triglyceride, mmol/L 0.56 ± 0.06b 0.64 ± 0.06b 1.30 ± 0.16a 1.23 ± 0.16a <0.0001 0.9661 0.5249 

Plasma NEFA, mmol/L 1.54 ± 0.22b 1.86 ± 0.23b 3.83 ± 0.27a 3.37 ± 0.27a <0.0001 0.7784 0.1224 

Retroperitoneal fat, mg/mm tibial length 136 ± 12c 146 ± 12c 484 ± 54a 279 ± 18b <0.0001 0.0012 0.0004 

Epididymal fat, mg/mm tibial length 87.2 ± 6b 97.0 ±8.0b 226 ± 23a 189 ± 16a <0.0001 0.3550 0.1168 

Omental fat, mg/mm tibial length 130 ± 8b 127 ± 9b 251 ± 16a 226 ± 13a <0.0001 0.2401 0.3485 

Total abdominal fat, mg/mm tibial length 353 ± 18c 371 ± 27c 961 ± 89a 694 ± 30b <0.0001 0.0101 0.0038 

Visceral adiposity index, % 4.33 ± 0.19c 4.65 ± 0.28c 8.91 ± 0.65a 6.90 ± 0.30b <0.0001 0.038 0.0052 

Systolic blood pressure, mmHg 134 ± 1b 131 ± 1b 142 ± 2a 132 ± 1b 0.002 <0.0001 0.012 

LV + septum wet weight, mg/mm tibial length 20.6 ± 1.0 20.5 ± 1.0 24.1 ± 2.0 22.7 ± 1.1 0.051 0.58 0.63 

RV wet weight, mg/mm tibial length 4.85 ± 0.45 4.48 ± 0.37 5.49 ± 0.75 5.25 ± 0.38 0.18 0.56 0.89 

LV diastolic stiffness constant () 22.5 ± 0.8b 23.0 ± 0.8b 28.4 ± 1.1a 24.2 ± 0.9b 0.0004 0.049 0.014 

Liver, mg/mm tibial length 220 ± 7b 209 ± 9b 336 ± 19a 304 ± 10a <0.0001 0.0676 0.3565 

Plasma ALT activity, mmol/L 28.6 ± 2.6b 32.5 ± 3.7b 41.7 ± 3.8a 29.5 ± 1.8b 0.031 0.039 0.013 

Plasma AST, mmol/L 71.6  ± 3.0a 71.0  ± 3.7a 81.1 ± 6.2a 60.5 ± 2.3b 0.5812 0.0074 0.0090 
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Coffee pulp attenuates metabolic syndrome in diet-induced 

obese hypertensive rats 
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Abstract 

Coffee pulp is a major by-product of the coffee industry and is a rich source of 

chlorogenic acid, caffeine and dietary fibre. However, there is very limited data available 

on applications of coffee pulp in human health. In this study, we demonstrated the 

pathophysiological and metabolic effects of coffee pulp on a rat model of human 

metabolic syndrome. 8-9 weeks old male Wistar rats were divided into four groups. Two 

groups of rats were fed on corn starch diet while the other two groups were fed on high-

carbohydrate, high-fat diet for 16 weeks. One group from each diet was given 5% freeze-

dried coffee pulp mixed in the food for the last 8 weeks of the protocol. High-

carbohydrate, high-fat diet-fed rats developed the symptoms of metabolic syndrome 

including abdominal obesity, dyslipidaemia, impaired glucose tolerance, and 

cardiovascular and hepatic complications. Coffee pulp attenuated obesity and 

hypertension, and improved glucose tolerance, cardiovascular and hepatic dysfunction 

while reducing blood lipid concentrations without affecting plasma total cholesterol 

concentrations or vascular reactivity. This study suggested that coffee pulp could be used 

as a functional food for managing obesity-associated metabolic, cardiovascular and 

hepatic abnormalities. 
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Introduction 

 Obesity has become a major health concern globally [1]. Sedentary lifestyle, lack 

of physical activity and chronic consumption of excess energy are the prominent causes 

of the escalating prevalence of obesity [2] as approximately 38% of the world’s population 

is overweight and 20% is obese [3]. Obesity as a component of metabolic syndrome, a 

constellation of metabolic disorders such as hypertension, central obesity, dyslipidaemia, 

impaired glucose tolerance and insulin resistance, further increases the risk of developing 

type 2 diabetes, cardiovascular diseases and non-alcoholic fatty liver disease [4]. Under 

chronic excess energy intake, excess energy is stored in adipocytes leading to an 

imbalance in metabolic functions, causing oxidative stress through the disproportionate 

production of reactive oxygen species, subsequently activating low-grade chronic 

inflammatory signaling pathways and insulin resistance [5]. Previous studies with 

functional foods and nutraceuticals have shown antioxidant and anti-inflammatory 

responses against obesity and metabolic syndrome leading to decreased risks of 

developing type 2 diabetes, cardiovascular diseases and non-alcoholic fatty liver disease 

[6]. 

Coffee is a highly consumed beverage around the world [7], and reports show that 

coffee is associated with improved glucose tolerance [8], obesity [9], oxidative stress [10], 

impaired glucose tolerance [11], dyslipidaemia [12], type 2 diabetes [13] and 

cardiovascular disease [14]. Coffee is an excellent source of phytochemicals including 

caffeine, chlorogenic acid and fibre that are responsible for delivering the health beneficial 

effects [15, 16]. High consumption of coffee requires the processing of a large number of 

coffee berries which generates coffee pulp as the waste from processing. Coffee pulp 

accounts for ~29% (w/w) of the dry weight of the whole berry. This waste leads to the 

challenge of disposing of it without environmental contamination [17]. The dry matter of 

coffee pulp contains carbohydrates (15.7%), proteins (17.4%), crude fibre (14.1%), 

cellulose (20.7%), hemicellulose (3.6%), lignin (14.3%) [18] and minerals (especially 

potassium), along with tannins, polyphenols such as chlorogenic acid, and caffeine [17]. 

HPLC analysis of coffee pulp showed phenolic compounds such as chlorogenic acid (5-

caffeoylquinic acid, 42.2%), epicatechin (21.6%), isochlorogenic acid I (5.7%), 
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isochlorogenic acid II (19.3%), isochlorogenic acid III (4.4%), catechin (2.2%), rutin 

(2.1%), protocatechuic acid (1.6%) and ferulic acid (1.0%) [19]. Hence, the use of coffee 

pulp may be considered as a potential approach for management of metabolic 

complications associated with obesity as there are many reports of health benefits from 

these individual components of coffee pulp. However, there is insufficient evidence for 

the health effects of coffee pulp as a dietary supplement. 

This study investigated the effects of freeze-dried coffee pulp as an intervention 

for the last 8 weeks to rats fed a high-carbohydrate, high-fat diet for 16 weeks to mimic 

human metabolic syndrome [20]. After treatment with coffee pulp, the structure and the 

function of the cardiovascular system and liver were investigated. Cardiovascular function 

was studied in isolated Langendorff heart preparations, isolated thoracic aortic rings and 

by measurement of systolic blood pressure together with histology. Liver structure and 

function were measured by plasma biochemistry and histology. Metabolic parameters 

related to obesity and glucose tolerance were also evaluated [20]. 

Methods 

Preparation of coffee pulp powder 

Coffee pulp sample was collected from Mountain Top Coffee Farm and Mill, 

Nimbin, Asutralia in December 2016. The sample was freeze-dried at School of 

Agriculture and Food Sciences, University of Queensland, Gatton, Australia and stored at 

4°C until analysis. 

Characterisation of coffee pulp freeze-dried powder 

Extracts of coffee pulp powder were prepared in 3:2 ethanol:water mixture. 

Briefly, 1 g of powder was dissolved in 50 mL of ethanol:water mixture, sonicated for 15 

minutes and an aliquot of the supernatant was taken for analysis by HPLC using an Agilent 

1100 series system coupled with a mass spectrometer for further peak confirmation or 

identification as required. The HPLC system consisted of a diode array detector 

(G4212B), binary pump (G4220A), an autosampler (G4226A), a vacuum degasser and a 

column oven with an MSD (G1946D) detector also present. The chromatography was 
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performed on a Phenomenex luna C18 (2) HPLC column (100 x 4.6 mm) using a gradient 

method of water and acetonitrile with 0.005% trifluoroacetic acid over 28 minutes. The 

optimal solvent gradient for separation of target constituents started with 10% acetonitrile 

which was increased as a gradient to 30% acetonitrile over 10 minutes, then to 95% 

acetonitrile over 8 minutes, at a flow rate of 0.75 mL/minute and an injection volume of 

5 µL. Calibration standards of trigonelline, caffeine and chlorogenic acid were prepared 

in 3:2 ethanol:water, at concentrations from 0.01 to 1 mg/mL, 0.005 to 0.5 mg/mL and 

0.004 to 1 mg/mL for each of these standards, respectively. Specific detection and 

calibration curves for each compound were performed at 254 nm, 280 nm and 330 nm, 

respectively. Quantification was performed using the Chemstation Software based on 

reference standards, peak area and sample dilution at specific wavelengths for each 

compound. Mr Peter Mouatt, Senior Analytical Officer from Southern Cross University, 

played a major role in the analysis of components. 

Rats, diets and treatments 

All experimental protocols were approved by the University of Southern 

Queensland Animal Ethics Committee under the guidelines of the National Health and 

Medical Research Council of Australia. Male Wistar rats (8–9 weeks old, 340 ± 1 g, n = 

48) were obtained from Animal Resource Centre, Perth, Australia. Rats were divided into 

4 groups for the 16 week feeding protocol: corn starch diet-fed rats (C; n = 12), corn starch 

diet + coffee pulp powder (CCP, n=12; 5% in food for the final 8 weeks); high-

carbohydrate, high-fat-diet-fed rats (H; n = 12) and high-carbohydrate, high-fat diet + 

coffee pulp powder (HCP, n=12; 5% in food for the final 8 weeks). Corn starch diet 

contained 570 g corn starch, 155 g powdered rat food, 25 g Hubbel, Mendel & Wakeman 

salt mixture and 250 g water per kilogram of diet. High-carbohydrate, high-fat diet 

contained 175 g fructose, 395 g sweetened condensed milk, 200 g beef tallow, 155 g 

powdered rat food, 25 g Hubbel, Mendel & Wakeman salt mixture and 50 g water per 

kilogram of diet [20]. Drinking water with 25% (w/v) fructose was provided to H and 

HCP groups. C and CCP groups were given normal drinking water. The rats were 

individually housed under temperature-controlled, 12-hour light/dark conditions and 

given ad libitum access to food and water [20]. 

H 
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Physiological parameters 

Body weight, food and water intakes were measured daily. Abdominal 

circumference and body length (nose to anus) were measured using a standard measuring 

tape under light anaesthesia with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, 

intraperitoneal). Body mass index was calculated as body weight (in grams)/[body length 

(in cm)]2. Feed efficiency was calculated as [mean body weight gain (in grams)/daily 

energy intake (in kJ)] [20]. 

Systolic blood pressure 

Systolic blood pressure was measured under light anaesthesia with Zoletil 

(tiletamine 10 mg/kg, zolazepam 10 mg/kg, intraperitoneally), using an MLT1010 Piezo-

Electric Pulse Transducer and inflatable tail-cuff connected to an MLT844 Physiological 

Pressure Transducer and PowerLab data acquisition unit [20]. 

Body composition measurement 

Dual-energy X-ray absorptiometric measurements were carried out at the end of 

the protocol with a Norland XR46 DXA instrument (Norland Corp, Fort Atkinson, WI). 

These scans were evaluated using the manufacturer’s suggested software for use in 

laboratory animals (Small Subject Analysis Software, version 2.5.3/1.3.1; Norland Corp) 

[21]. The precision error of lean mass for replicate measurements, with repositioning, is 

3.2%. 

Oral glucose tolerance test 

Oral glucose tolerance tests were performed after determining overnight fasting 

blood glucose concentrations in tail vein blood using Medisense Precision Q.I.D. glucose 

meters. For overnight fasting, rats were deprived of food for 12 hours. Fructose-

supplemented drinking water in all H diet-fed groups was replaced with normal drinking 

water for the overnight food deprivation period. Basal blood glucose concentrations were 

measured followed by administration of glucose load 2 g/kg body weight as 40% glucose 
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solution via oral gavage. Blood glucose concentrations were then measured 30, 60, 90 and 

120 minutes after oral glucose administration [20]. 

Metabolic rate assessment 

Indirect calorimetry was applied to determine oxygen consumption and carbon 

dioxide production using a 4-chamber Oxy-Max system (Columbus Instruments, 

Columbus, OH) with one rat per chamber. Rats were given ad libitum access to food and 

water during the measurements. Oxygen consumption (VO2) and carbon dioxide 

production (VCO2) were measured individually from each chamber. The respiratory 

exchange ratio was calculated by Oxy-Max software (v. 4.86). Energy expenditure was 

determined by assessment of the exchange of oxygen for carbon dioxide that occurs during 

the metabolic processing of food [22]. 

Terminal experiments 

Rats were euthanased with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

intraperitoneally). After euthanasia, heparin (200 IU) was injected through the right 

femoral vein. The abdomen was then opened and blood (~5 mL) was withdrawn from the 

abdominal aorta and collected into heparinised tubes. Blood was centrifuged at 5000  g 

for 10 minutes to obtain plasma. Plasma was stored at -20°C for further characterisation. 

Hearts were then removed from rats for isolated Langendorff heart preparation [20]. 

Isolated Langendorff heart preparation 

Hearts isolated from euthanased rats were perfused with modified Krebs–

Henseleit bicarbonate buffer bubbled with 95% O2–5% CO2 and maintained at 35°C. 

Isovolumetric ventricular function was measured by inserting a latex balloon catheter into 

the left ventricle connected to a Capto SP844 MLT844 physiological pressure transducer 

and Chart software on a Maclab system. Left ventricular end-diastolic pressure values 

were measured during pacing of the heart at 250 beats per minute using an electrical 

stimulator. End-diastolic pressures were obtained from 0 to 30 mmHg for the calculation 

of diastolic stiffness constant (, dimensionless) [20]. 
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Vascular reactivity 

Thoracic aortic rings (~4 mm in length) were suspended in an organ bath filled 

with Tyrode physiological salt solution bubbled with 95% O2–5% CO2 maintained at 35°C 

and allowed to stabilise at a resting tension of ~10 mN. Cumulative concentration-

response curves (contraction) were obtained for noradrenaline (1×10-9 – 3×10-6 M) and 

cumulative concentration-response curves (relaxation) were obtained for acetylcholine 

(1×10-9 – 3×10-6 M) and sodium nitroprusside (1×10-9 – 3×10-6 M) after submaximal 

(~70%) contraction to noradrenaline [20]. 

Analysis of intestinal transit time 

Rats were orally gavaged with 3 mL of 0.05% phenol red solution 20 minutes 

before euthanasia. After euthanasia, the entire region from the stomach to small intestine 

was removed from its mesenteric attachment immediately. The length of small intestine 

was measured from the pyloric sphincter to the ileocecal junction. The endpoint of phenol 

red transit in the small intestine was visualised using a few drops of 0.1 M sodium 

hydroxide [23]. The intestinal transit for each rat was determined by the following 

formula: 

Intestinal transit (%) = (the total distance traveled by phenol red solution/total 

length of small intestine) × 100 

Organ weights 

After isolated heart perfusion studies, the heart was separated into left ventricle 

(with septum) and right ventricle and weighed. The liver was isolated and weighed. 

Retroperitoneal, epididymal and omental fat pads were removed separately and weighed. 

These organ weights were normalised against tibial length at the time of organ removal 

and expressed as mg/mm of tibial length [20]. 

Histology 

Hearts and livers were removed from the rats soon after euthanasia and fixed in 

10% neutral buffered formalin. These samples were then dehydrated and embedded in 
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paraffin wax. Thin sections (5 µm) were cut and stained with hematoxylin and eosin to 

study infiltration of inflammatory cells (heart and liver) and fat deposition (liver) and with 

picrosirius red (heart) to study collagen deposition [20]. 

Plasma biochemistry 

Plasma activities of aspartate transaminase, alanine transaminase and alkaline 

phosphatase, and plasma concentrations of total cholesterol, triglycerides and non-

esterified fatty acids were measured [20]. 

Statistical analysis 

All data are presented as mean ± SEM. Results were tested for variance using 

Bartlett’s test and variables that were not normally distributed were transformed (using 

log 10 functions) prior to statistical analyses. C, CCP, H and HCP groups were tested for 

effects of diet, treatment and their interactions by 2-way analysis of variance. When the 

interaction and/or the main effects were significant, means were compared using 

Newman-Keuls multiple comparison post hoc tests. A P value of <0.05 was considered 

significant. All statistical analyses were performed using GraphPad Prism version 5.0 for 

Windows (San Diego, CA, USA). 
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Results 

Coffee pulp intake 

The caffeine and trigonelline doses (mg/kg) were higher in CCP rats than in HCP 

rats due to higher intake of food by rats fed with corn-starch supplemented with treatments 

(Table 1). 

Table 1. Intakes in coffee pulp powder diets 

Component CCP HCP 

Caffeine intake, mg/kg/day 24.5 ± 2.2 17.5 ± 2.9 

Chlorogenic acid intake, 

mg/kg/day 
4.2 ± 0.4 3.0 ± 0.5 

Trigonelline intake, mg/kg/day 14.4 ± 1.3 10.2 ± 1.7 

 

Dietary intake, body composition and plasma biochemistry 

Body weight was similar between C and CCP rats. H rats had increased body 

weight compared to C rats while coffee pulp treatment decreased the body weight in HCP 

rats compared to H rats (Table 2). Food intake was lower in H rats compared to C rats and 

coffee pulp did not change food intake in both CCP and HCP rats (Table 2). Water intake 

was similar between C, H and HCP rats while CCP rats had higher water intake. Energy 

intake was higher in H rats compared to C rats. Coffee pulp did not change energy intake 

in CCP rats compared to C rats whereas it was higher in HCP rats compared to H rats 

(Table 2). Feed efficiency and abdominal circumference were similar between C and CCP 

rats but coffee pulp increased body mass index in CCP rats compared to C rats. Feed 

efficiency, body mass index and abdominal circumference were higher in H rats than in C 

rats. Coffee pulp reduced these parameters in HCP rats compared to H rats (Table 2). Heat 

produced and respiratory exchange ratio were unchanged by coffee pulp in both CCP and 

HCP rats. Basal blood glucose concentrations were higher in H rats compared to C rats 

and coffee pulp reduced basal blood glucose concentrations in both CCP and HCP rats 

compared to C and H rats, respectively. Area under the curve was higher in H rats 

compared to C rats while it was decreased in both CCP and HCP rats compared to C and 
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H rats, respectively (Table 2). Retroperitoneal, epididymal, omental and total abdominal 

fat pads were unchanged in CCP rats compared to C rats but were higher in H rats than in 

C rats. Coffee pulp reduced total abdominal fat in HCP rats through reduction in omental 

and epididymal fat pads (Table 2). Whole-body lean mass was similar between C and H 

rats and coffee pulp only increased it in HCP rats. Whole-body fat mass was higher in H 

rats than in C rats and it was decreased with coffee pulp in HCP rats compared to H rats 

(Table 2). Plasma total cholesterol concentrations were unchanged between the groups 

while coffee pulp reduced plasma concentrations of triglycerides and non-esterified fatty 

acids in CCP and HCP rats compared to C and H rats, respectively (Table 2). 

Cardiovascular structure and function 

Histopathological analysis of left ventricle indicated increased infiltration of 

inflammatory cells in H rats (Figure 1C) compared to C rats (Figure 1A). Coffee pulp 

reduced infiltration of inflammatory cells into the left ventricle of HCP rats (Figure 1D) 

than in H rats. Picrosirius red staining of left ventricle showed higher collagen deposition 

in H rats (Figure 1G) compared to C rats (Figure 1E). Coffee pulp reduced collagen 

deposition in the left ventricle of HCP rats (Figure 1H) compared to H rats. Noradrenaline-

induced contraction and acetylcholine-induced relaxation were lower in H rats than in C 

rats and coffee pulp treatment did not change these responses (Figure 2A and 2C). There 

were no differences in sodium nitroprusside-induced vascular relaxation in isolated 

thoracic aortic rings between the groups (Figure 2B). Systolic blood pressure and left 

ventricular diastolic stiffness were higher in H rats than in C rats and coffee pulp reduced 

these parameters in HCP rats compared to H rats (Table 3). LV and RV wet weights were 

unchanged by coffee pulp treatment (Table 3). 
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Table 2. Coffee pulp on physiological and metabolic variables 

Variables C CCP H HCP 

P values 

Diet Intervention 
Diet × 

Intervention 

Initial body weight, g 340 ± 1 338 ± 1 339 ± 1 339 ± 1 1.00 0.27 0.27 

Final body weight, g 383 ± 2c 386 ± 6c 555 ± 9a 494 ± 9b <0.0001 0.0002 <0.0001 

Body weight gain (8-16 week), % 6.0 ± 2.0c -1.0 ± 1.0d 23.0 ± 2.0a 10.0 ± 1.0b <0.0001 <0.0001 0.06 

Food intake, g/day 35.2 ± 1.3a 34.2 ± 0.6a 27.2 ± 0.7b 28.0 ± 1.5b <0.0001 0.93 0.42 

Water intake, g/day 31.0 ± 2.0ab 36.8 ± 2.1a 26.6 ± 1.6b 32.2 ± 1.7ab 0.02 0.004 0.96 

Energy intake, kJ/d 405 ± 15c 384 ± 10c 556 ± 19b 616 ± 17a <0.0001 0.22 0.013 

Feed efficiency, kJ/g 0.10 ± 0.01c 0.12 ± 0.02c 0.39 ± 0.02a 0.25 ± 0.02b <0.0001 0.001 0.0001 

Heat, kcal 3.36 ± 0.17b 3.14 ± 0.31b 4.14 ± 0.10a 4.51 ± 0.16a <0.0001 0.71 0.13 

Respiratory exchange ratio 1.01 ± 0.01a 0.95 ± 0.04ab 0.89 ± 0.01b 0.89 ± 0.01b 0.0003 0.19 0.29 

Body mass index, g/cm2 0.61 ± 0.01d 0.66 ± 0.01c 0.83 ± 0.02a 0.75 ± 0.01b <0.0001 0.26 <0.0001 

Abdominal circumference, cm 18.4 ± 0.2c 17.8 ± 0.2c 23.2 ± 0.4a 20.2 ± 0.2b <0.0001 <0.0001 <0.0001 

Basal blood glucose concentrations, 

mmol/L 
3.9 ± 0.2b 2.9 ± 0.1c 4.9 ± 0.3a 3.2 ± 0.1c 0.002 <0.0001 0.08 

Area under the curve, mmol/L.min 692 ± 28b 421 ± 13d 790 ± 23a 571 ± 13c <0.0001 <0.0001 0.21 

Retroperitoneal fat (mg/mm) 182 ± 21b 196 ± 14b 534 ± 53a 458 ± 22a <0.0001 0.30 0.14 

Epididymal fat (mg/mm) 90 ± 8c 86 ± 10c 222 ± 17a 183 ± 10b <0.0001 0.07 0.13 

Omental fat (mg/mm) 130 ± 8c 117 ± 11c 263 ± 17a 213 ± 12b <0.0001 0.015 0.14 

Total Fat pads (mg/mm) 402 ± 30c 399 ± 28c 1019 ± 81a 855 ± 33b <0.0001 0.08 0.09 

Whole-body lean mass, g 283 ± 5b 295 ± 4ab 286 ± 11b 314 ± 7a 0.15 0.01 0.30 

Whole-body fat mass, g 83 ± 7c 77 ± 7c 235 ± 17a 168 ± 11b <0.0001 0.003 0.01 

Bone mineral content, g 11.8 ± 0.4b 12.2 ± 0.5b 17.4 ± 0.6a 15.8 ± 0.5a <0.0001 0.24 0.06 

Bone mineral density, g/cm2 
0.172 ± 

0.002c 

0.188 ± 

0.002b 
0.185 ± 0.002b 0.197 ± 0.005a 0.0002 <0.0001 0.47 

Intestinal transit, % 70.4 ± 7.2b 52.2 ± 7.5b 89.1 ± 4.9a 58.2 ± 8.0b 0.010 0.002 0.40 
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Values are mean ± SEM, n = 8–12. Means in a row with unlike superscripts differ significantly, P<0.05. C, corn starch diet-fed rats; CCP, corn 

starch diet-fed rats supplemented with coffee pulp; H, high-carbohydrate, high-fat diet-fed rats; HCP, high-carbohydrate, high-fat diet-fed rats 

treated with coffee pulp. 

Table 3. Coffee pulp on cardiovascular and hepatic parameters 

Variable C CCP H HCP 

P values 

Diet Intervention 
Diet × 

Intervention 

Systolic blood pressure, mmHg 125 ± 1b 125 ± 1b 145 ± 2a 129 ± 1b <0.0001 <0.0001 <0.0001 

Diastolic stiffness constant,  21.9 ± 0.5b 20.48 ± 0.4b 29.3 ± 1.9a 21.0 ± 0.3b <0.0001 0.0004 0.002 

LV + septum wet weight, mg/mm tibial length 21.1 ± 0.7b 20.4 ± 0.7b 24.7 ± 1.5a 23.5 ± 0.8ab 0.002 0.34 0.80 

RV wet weight, mg/mm tibial length 4.97 ± 0.38 4.44 ± 0.20 5.64 ± 0.52 5.15 ± 0.20 0.06 0.16 0.96 

Liver wet weight, mg/mm tibial length 230 ± 6c 245 ± 10c 336 ± 13a 293 ± 10b <0.0001 0.17 0.006 

Plasma aspartate transaminase activity, mmol/L 79.1 ± 4.8b 94.7 ± 3.9ab 82.2 ± 4.4b 103 ± 6.7a 0.25 0.0007 0.60 

Plasma alanine transaminase activity, mmol/L 33.0 ± 4.2 37.4 ± 2.8 35.2 ± 3.2 42.1 ± 3.5 0.33 0.12 0.72 

Values are mean ± SEM, n = 6–10. Means in a row with unlike superscripts differ significantly, P<0.05. C, corn starch diet-fed rats; CCP, corn starch 

diet-fed rats treated with coffee pulp; H, high-carbohydrate, high-fat diet-fed rats; HCP, high-carbohydrate, high-fat diet-fed rats treated with coffee 

pulp.  

Plasma total cholesterol concentrations,  

mmol/L 
1.84 ± 0.08 1.71 ± 0.07 1.71 ± 0.10 1.84 ± 0.13 1.0000 1.0000 0.18 

Plasma triglyceride concentrations , 

mmol/L 
0.57 ± 0.05b 0.33 ± 0.04c 1.17 ± 0.10a 0.61 ± 0.07b <0.0001 <0.0001 0.03 

Plasma non-esterified fatty acids 

concentrations, mmol/L 
1.37 ± 0.16b 0.76 ± 0.14c 3.57 ± 0.18a 1.53 ± 0.20b <0.0001 <0.0001 <0.0001 
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Figure 1. Effects of coffee pulp on the heart and liver structure. Haematoxylin & eosin 

staining showing infiltration of inflammatory cells (“in”) in hearts from C (A), CCP (B), 

H (C) and HCP (D) and enlarged fat vacuoles (“fv”) in livers from C (I), CCP (J), H (K) 

and HCP (L) (×20). Picrosirius red staining showing fibrosis (“fi”) in heart from C (E), 

CCP (F), H (G) and HCP (H) (×20). C, corn starch diet-fed rats; CCP, corn starch diet-fed 

rats treated with coffee pulp; H, high-carbohydrate, high-fat diet-fed rats; HCP, high-

carbohydrate, high-fat diet-fed rats treated with coffee pulp. 
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Figure 2. Effects of coffee pulp on noradrenaline-induced contraction (A), sodium 

nitroprusside-induced relaxation (B) and acetylcholine-induced relaxation (C) in thoracic 

aorta ring, prepared from C, CCP, H and HCP rats. Values are mean ± SEM, n = 8-10. 

End-point means without a common letter differ, P<0.05. C, corn starch diet-fed rats; 

CCP, corn starch diet-fed rats treated with coffee pulp; H, high-carbohydrate, high-fat 

diet-fed rats; HCP, high-carbohydrate, high-fat diet-fed rats treated with coffee pulp. 
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Liver structure and function 

Liver wet weight was higher in H rats than in C rats and coffee pulp decreased the liver 

wet weight of HCP rats compared to H rats (Table 3). Liver wet weight was unchanged 

by coffee pulp treatment between C and CCP rats. Increased inflammatory cell infiltration 

and fat deposition were observed in livers from H rats (Figure 1K) compared to C rats 

(Figure 1I). Coffee pulp reduced infiltration of inflammatory cells and fat deposition in 

livers of HCP rats (Figure 1L) compared to H rats. Plasma alanine transaminase activity 

was unchanged between the groups. Plasma aspartate transaminase activity was 

unchanged between H and C rats and increased in HCP rats compared to H rats (Table 3). 

Discussion 

In this study, coffee pulp reduced body weight and central obesity, improved 

glucose tolerance along with improved heart and liver structure and function on diet-

induced obese rats, fed with the high-carbohydrate high-fat diet. Moreover, coffee pulp 

increased lean mass and bone mineral density in obese rats. These responses of coffee 

pulp, a major waste product of the coffee industry, demonstrated the potential application 

of coffee pulp as a functional food containing bioactive components such as caffeine, 

chlorogenic acid and trigonelline. These effects of coffee pulp in our diet-induced rat 

model of metabolic syndrome suggest that this intervention may provide benefits in the 

complex condition of human metabolic syndrome. The rat model of diet-induced 

metabolic syndrome used in this study has been validated for the signs of metabolic 

syndrome including abdominal obesity, impaired glucose tolerance, dyslipidaemia, 

elevated blood pressure, cardiovascular remodelling and fatty liver [20]. 

During coffee processing, by-products such as pulp are generated and every 2 tons 

of coffee creates 1 ton of coffee pulp, a leading cause of serious environmental issue [24, 

25]. Therefore, alternative application of coffee pulp is attracting interest. Coffee pulp has 

been used for production of cascara, a refreshing beverage containing 226 mg/L caffeine 

[26]. Dry mass of coffee pulp has been used for bioethanol production as it contained 

polysaccharides including arabinose, galactose, glucose, xylose and mannose at 

concentrations of 5.8, 5.2, 20.2, 4.2 and 4.7% in dry mass, respectively [27]. Moreover, 

121



coffee pulp consisting of proteins 12%, fibre 21%, caffeine 1.3% and 1% polyphenol [28] 

and coffee pulp components such as caffeine and chlorogenic acid have antioxidant 

properties that may counterbalance oxidative stress [29]. 

Meta-analysis of coffee consumption has reported the inverse relationship with 

components of metabolic syndrome including abdominal obesity, hypertension, insulin 

resistance, impaired glucose tolerance, dyslipidaemia and liver complications [30, 31]. 

Treatment with coffee extract attenuated high-fat diet-induced metabolic disorders and 

decreased body weight, adipose tissue, and plasma concentrations of glucose, free fatty 

acid, cholesterol and insulin in mice [32]. In the high-carbohydrate, high-fat fed rat model 

used in this study, coffee extract [33] and caffeine [34] have previously attenuated 

metabolic syndrome in these obese hypertensive rats. This study was conducted based on 

the concept that coffee pulp is a rich source of the same bioactive compounds that are 

present in coffee prepared as a beverage. This study supported the inverse relationship 

between consumption of coffee bioactive compounds and cardiovascular disease and type 

2 diabetes [35]. 

Caffeine treatment (~28 mg/kg/day) in obese rats for 8 weeks improved structure 

and function of heart and liver, with a reduction in obesity except for dyslipidaemia [34]. 

Caffeine antagonised A1-adenosine receptors in the hypothalamus to suppress appetite and 

promote energy use that reduced diet-induced obesity in mice [36]. Chlorogenic acid 

treatment (5 mg/kg/day) for 3 weeks in obese rats improved glucose tolerance, decreased 

plasma and liver lipid profile, and recovered mineral pool distribution [37]. Chlorogenic 

acid (5 mg/kg/day) for 45 days in rats reduced blood lipids including cholesterol, free fatty 

acids, triglycerides, phospholipids, LDL-cholesterol, VLDL- cholesterol and increased 

concentrations of HDL- cholesterol and decreased HMG-CoA reductase activity and lipid 

synthesising enzymes [38]. The study has suggested that diet-induced inflammation in 

obesity could be managed by the anti-inflammatory property of chlorogenic acid [39] 

through the increased production of adiponectin and PPARγ. Likewise, chlorogenic acid 

reduced the intracellular ROS production and genes associated with ROS-producing 

enzymes such NOX2, NOX4 and iNOS [40]. Similarly, chlorogenic acid improved lipid 

metabolism disorders by modifying the expression of PPARα and LXRα, which contribute 
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to several intracellular signalling pathways [40]. Consistent with our study, coffee pulp 

has been reported as a rich source of chlorogenic acid and caffeine, where coffee pulp 

showed anti-oxidant properties due to their presence [24]. However, in Chapter 3, I 

showed that a much higher dose of chlorogenic acid (approximately 100 mg/kg/day) was 

required to attenuate inflammation as well as cardiovascular, liver and metabolic 

abnormalities induced by the high-carbohydrate, high-fat diet. This suggests that 

chlorogenic acid is not the major bioactive component of coffee pulp. 

Coffee pulp used in this study also contained trigonelline, the second most 

abundant alkaloid in green coffee beans. Trigonelline, as an anti-oxidant, attenuated 

endoplasmic reticulum-associated stress and oxidative stress-triggered damage in 

pancreas and adipocytes [41]. Trigonelline (40 mg/kg/day) treatment in the diet for 8 

weeks reduced serum activity of aspartate transaminase and aspartate transaminase, and 

serum concentrations of total cholesterol and LDL-cholesterol and decreased non-

alcoholic fatty liver diseases in rats fed with a high fat diet [42]. Trigonelline reduced lipid 

accumulation by restricting adipocyte differentiation by the PPARgamma cascade. This 

study suggested that trigonelline inhibits adipocyte differentiation by downregulating fatty 

acid synthase and GLUT-4 transporter in muscles and adipocytes of mice [43]. These 

studies suggest that components from coffee pulp as a waste product of the coffee 

industry, especially trigonelline, have the potential to attenuate metabolic syndrome. 

Besides bioactive compounds, the coffee pulp also contained fibre [18] and fibre 

reduced  obesity-associated health disorders through modulating the gut microbiota [44] 

and reduced body fat, an improved hepatic function that is advantageous to host health 

[45]. Altered gut microbiota composition disrupts gut barrier junction and promotes the 

production of lipopolysaccharides by gram-negative bacteria in the gut. This modulation 

induces gut permeability that enables the translocation of whole bacteria or endotoxic 

bacterial components into metabolic active tissues and leads to endotoxaemia condition 

[46]. Endotoxaemia triggers the chronic low-grade inflammation that characterises 

obesity [47]. Endotoxaemia also induces increased production of  nitric oxide metabolites, 

nitrite and nitrate, increases reactive oxygen species, and increases plasma free fatty acids, 

tumor necrosis factor and interleukin-6 [48]. Our study with coffee pulp intervention 
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reduced plasma concentrations of triglycerides and non-esterified fatty acids along with 

the reduction in body fat mass. These changes may be assisted by healthy gut microbiota 

that modulate the metabolic changes observed in obesity. Crude fibre accounted for 

approximately 33.6% of coffee pulp [49] and fibre has prebiotic effects on gut microbiota 

leading to decreased food intake, weight gain and adiposity, and increased circulating 

satiety hormones GLP-1 and PYY and colonic fermentation [50]. Colonic fermentation of 

fibre produces butyrate, acetate and propionate and other dietary secondary metabolites 

that serve as a substrate for de novo lipogenesis in the liver, whereas propionate can be 

used for gluconeogenesis [51]. Moreover, short-chain fatty acids are also ligands of free 

fatty acid receptors [52]. Activation of free fatty acid receptors promotes expression and 

secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY 

which is responsible for satiety [53]. Using the same rat model as in this chapter, treatment 

with the prebiotic inulin attenuated abdominal obesity, hypertension, increases in 

inflammatory cell infiltration in the heart and liver, left ventricular diastolic stiffness, lipid 

droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance 

[54]. Dietary fibre has demonstrated prebiotic and anti-bacterial properties, leading to 

growth of health beneficial gut microbiota and their metabolites [55]. Therefore, I suggest 

that reduced inflammatory markers and increased colonic production of short-chain fatty 

acids with the increased intake of dietary fibre from coffee pulp could have contributed to 

the reduction of the signs of metabolic syndrome in this study. 

In conclusion, this chapter provides evidence that coffee pulp can deliver similar 

results on both pathophysiology and metabolic variables as products from coffee beans. 

These positive outcomes correlated with reduced plasma lipid concentrations and 

improvement of glucose tolerance and contributed to reduced obesity, dyslipidaemia and 

hyperglycaemia. This chapter suggests that dietary intervention with coffee pulp has 

therapeutic potential to reverse the signs of metabolic syndrome such as obesity, 

cardiovascular diseases and hepatic abnormalities. Further, the most plausible bioactive 

components of coffee pulp are trigonelline and fibre. Human clinical trials are necessary 

to determine whether coffee pulp supplementation in the diet will attenuate or reverse 

metabolic disorders associated with metabolic syndrome, particularly obesity and 

hypertension. 
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Abstract 

Spent coffee is the by-product of coffee brewing process containing chlorogenic 

acid, caffeine, trigonelline and melanoidins. However, limited data has been reported for 

its health benefits. In this study, we investigated responses to spent coffee in a diet-induced 

rat model of metabolic syndrome. 8-9 weeks old male Wistar rats were divided into four 

groups. Two groups of rats were fed on corn starch diet with normal drinking water while 

the other two groups were fed on high-carbohydrate, high-fat diet with 25% fructose in 

drinking water for 16 weeks. One group from each diet was supplemented with 5% dried 

spent coffee in the food for the last 8 weeks of protocol. High-carbohydrate, high-fat diet-

fed rats developed symptoms of metabolic syndrome including abdominal obesity, 

impaired glucose tolerance, dyslipidaemia and cardiovascular and hepatic damages. Spent 

coffee intervention reduced body weight, abdominal fat pads, total body fat mass, systolic 

blood pressure and concentrations of plasma triglycerides and non-esterified fatty acids 

along with improvements in glucose tolerance, heart and liver structure and function. 

Spent coffee increased the diversity of gut microbiota and ratio between 

Bacteroidetes/Firmicutes. Thus, spent coffee has potential for further testing as a 

functional food in managing human obesity and metabolic syndrome.  
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Introduction 

Coffee is one of the most consumed beverages and it is the second most important 

commodity of world trade after crude oil (1). Green coffee beans are an excellent source 

of compounds such as carbohydrates (59–61%), lipids (10–16%), proteins (10%), 

chlorogenic acid (7–10%), minerals (4%), caffeine (1–2%), trigonelline (1%) and free 

amino acids (<1%). The roasting process of green coffee beans causes significant loss of 

some bioactive compounds including carbohydrates, proteins, chlorogenic acid, free 

amino acids, lipids, minerals, caffeine and trigonelline (2). During the roasting process, 

melanoidins are formed as the products of Maillard reaction (3). Melanoidins are 

nitrogenous non-enzymatic browning compounds that consist of several components 

contributing to polymerisation reactions (4). The exact chemical structure of coffee 

melanoidins is still unknown due to variations based on temperature and chemical 

components present in the complex structure of melanoidins. A potential structure of 

coffee melanoidins has been provided using sugars, glycoside linkages, amino acids and 

phenolic compounds (5). Melanoidins may serve as a prebiotic as the melanoidins reach 

the colon without metabolism in the small intestine. In colon, melanoidins are fermented 

by gut microbiota, potentially supporting the growth of important gut microbiota (6, 7). 

Following the coffee brewing process, spent grains are discarded as a by-product. 

This discarded spent coffee contributes to approximately 50% of the total coffee weight 

(8). Thus, a huge quantity of spent coffee is generated as waste during the making of 

coffee brew. Spent coffee consists of chlorogenic acid, caffeine, trigonelline and 

melanoidins and hence it may have potential against metabolic syndrome (9). Studies have 

shown the presence of other bioactive compounds such as diterpenes, lignins, cellulose, 
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hemicellulose and other polysaccharides in spent coffee (10, 11). The current applications 

of spent coffee include biodiesel production, as a precursor for the production of activated 

carbon, as compost and as a sorbent for metal ions removal (12, 13). Very few studies 

have demonstrated health benefits of spent coffee. Spent coffee exhibited free radical 

scavenging properties against oxidative stress developed as an outcome of mitochondrial 

dysfunction (14). Spent coffee restricted the inflammatory activity in J774A.1 mouse 

macrophage cell line and tumourigenesis activity in P388 leukaemia cell line (15). 

Melanoidins have previously shown antioxidant and anti-inflammatory activities along 

with some prebiotic actions on gut microbiota (16). Caffeine, trigonellne and chlorogenic 

acid found in spent coffee, have already shown potential against various metabolic 

diseases (17-22). Thus, this project identified the combined effects of these components 

with melanoidins as spent coffee is generated in large quantities throughout the world and 

currently is thrown away as a waste material. 

The aim of this study was to investigate whether the spent coffee can reverse 

obesity-associated metabolic changes and changes in structure and function of the heart 

and liver in high-carbohydrate, high-fat diet-fed rats. High-carbohydrate, high-fat diet-fed 

rats demonstrated the symptoms of metabolic syndrome with metabolic abnormalities, 

cardiovascular remodelling and non-alcoholic steatohepatitis (23). Following spent coffee 

intervention for the last 8 weeks of the 16 week protocol, the structure and function of the 

heart were characterised through isolated Langendorff heart preparation and 

histopathology whereas the structure and function of the liver were characterised through 

histopathology and plasma biochemical studies. Metabolic changes were also 

characterised through measurement of glucose tolerance, plasma lipids and body 
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composition. Further, gut microbiota composition was analysed through diversity 

profiling of faeces isolated from rat colon. 

Methods and materials 

Spent coffee collection and storage 

Spent coffee was collected from the Campus Catering People café at the University 

of Southern Queensland, Toowoomba, Australia in September 2016. Spent coffee was 

dried at 60°C until constant weight was achieved. Dried spent coffee was stored at 4°C in 

dry conditions until analysis of samples and use as dietary intervention. 

Characterisation of spent coffee 

Spent coffee was prepared in 3:2 ethanol:water mixture. Briefly, 1 g of spent 

coffee was dissolved in 50 mL of ethanol:water mixture, sonicated for 15 minutes and an 

aliquot of the supernatant was taken for analysis by HPLC using an Agilent 1100 series 

system coupled with a mass spectrometer for further peak confirmation or identification 

as required. The HPLC system consisted of a diode array detector (G4212B), binary pump 

(G4220A), an autosampler (G4226A), a vacuum degasser and a column oven with an 

MSD (G1946D) detector also present. The chromatography was performed on a 

Phenomenex luna C18 (2) HPLC column (100 x 4.6 mm) using a gradient method of water 

and acetonitrile with 0.005% trifluoroacetic acid over 28 minutes. The optimal solvent 

gradient for separation of target constituents started with 10% acetonitrile which was 

increased as a gradient to 30% acetonitrile over 10 minutes, then to 95% acetonitrile over 

8 minutes, at a flow rate of 0.75 mL/minute and an injection volume of 5 µL. Calibration 
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standards of trigonelline, caffeine and chlorogenic acid were prepared in 60:40 

ethanol:water, at concentrations from 0.01 to 1 mg/mL, 0.005 to 0.5 mg/mL and 0.004 to 

1 mg/mL, respectively. Specific detection and calibration curves for each compound were 

performed at 254 nm, 280 nm and 330 nm, respectively. Quantification was performed 

using the Chemstation Software based on reference standards, peak area and sample 

dilution at specific wavelengths for each compound. Mr Peter Mouatt, Senior Analytical 

Officer from Southern Cross University, played a major role in the analysis of 

components. 

Rats, diets and treatments 

All experimental protocols were approved by the University of Southern 

Queensland Animal Ethics Committee under the guidelines of the National Health and 

Medical Research Council of Australia. Male Wistar rats (8–9 weeks old, 340 ± 1 g, n = 

48) were obtained from Animal Resource Centre, Perth, Australia. Rats were divided into 

4 groups for the 16 week feeding protocol: corn starch diet-fed rats (C; n = 12), corn starch 

diet + spent coffee (CSC, n = 12; 5% in food for the final 8 weeks); high-carbohydrate, 

high-fat diet-fed rats (H; n = 12), high-carbohydrate high-fat diet + spent coffee (HSC, n 

= 12; 5% in food for the final 8 weeks). 

Corn starch diet contained 570 g cornstarch, 155 g powdered rat food, 25 g HMW 

salt mixture and 250 g water per kilogram of diet. High-carbohydrate, high-fat diet 

contained 175 g fructose, 395 g sweetened condensed milk, 200 g beef tallow, 155 g 

powdered rat food, 25 g HMW salt mixture and 50 g water per kilogram of diet. Drinking 

water with 25% (w/v) fructose was provided to H and HSC groups. C and CSC groups 

H 
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were given normal drinking water. Rats were individually housed under temperature-

controlled, 12-hour-light/dark conditions and given ad libitum access to food and water 

(23). 

Physiological parameters 

Body weight, food and water intakes were measured daily. Abdominal 

circumference and body length were measured using a standard measuring tape under light 

anaesthesia with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, intraperitoneal). 

Body mass index was calculated as body weight (in grams)/[body length (in cm)]2. Feed 

efficiency was calculated as [mean body weight gain (in grams)/daily energy intake (in 

kJ)] (23). 

Systolic blood pressure 

Systolic blood pressure was measured under light anaesthesia with Zoletil 

(tiletamine 10 mg/kg, zolazepam 10 mg/kg, intraperitoneally), using an MLT1010 Piezo-

Electric Pulse Transducer and inflatable tail-cuff connected to an MLT844 Physiological 

Pressure Transducer and PowerLab data acquisition unit (23). 

Body composition measurement 

Dual-energy X-ray absorptiometric measurements were carried out at the end of 

the protocol with a Norland XR46 DXA instrument (Norland Corp, Fort Atkinson, WI). 

These scans were evaluated using the manufacturer’s suggested software for use in 

laboratory animals (Small Subject Analysis Software, version 2.5.3/1.3.1; Norland Corp) 
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(24). The precision error of lean mass for replicate measurements, with repositioning, is 

3.2%. 

Oral glucose tolerance test 

Oral glucose tolerance tests were performed after determining overnight fasting 

blood glucose concentrations in tail vein blood using Medisense Precision Q.I.D. glucose 

meters. For overnight fasting, rats were deprived of food for 12 hours. Fructose-

supplemented drinking water for H and HSC groups was replaced with normal drinking 

water for the overnight food deprivation period. Following basal blood glucose 

concentration measurement, rats were administered 2 g/kg body weight of glucose as 40% 

glucose solution via oral gavage. Blood glucose concentrations were measured 30, 60, 90 

and 120 minutes after oral glucose administration (23). 

Metabolic rate assessment 

Indirect calorimetry was applied to determine oxygen consumption and carbon 

dioxide production using a 4-chamber OxyMax system (Columbus Instruments, 

Columbus, OH) with one rat per chamber. Rats were given ad libitum access to food and 

water during the measurement. Oxygen consumption and carbon dioxide production were 

measured individually from each chamber. The respiratory exchange ratio was evaluated 

by OxyMax software (v. 4.86). Energy expenditure was determined by assessment of the 

exchange of oxygen for carbon dioxide that occurs during the metabolic processing of 

food (25). 

Terminal experiments 
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Rats were euthanased with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

intraperitoneally). After euthanasia, heparin (~200 IU) was injected into the right femoral 

vein. The abdomen was then opened and blood (~5 mL) was withdrawn from the 

abdominal aorta and collected into heparinised tubes. Blood was centrifuged at 5000  g 

for 10 minutes to obtain plasma. Plasma was stored at -20°C for further characterisation. 

Hearts were then removed from rats for isolated Langendorff heart preparation (23). 

Isolated Langendorff heart preparation 

Hearts isolated from euthanased rats were perfused with modified Krebs–

Henseleit bicarbonate buffer bubbled with 95% O2–5% CO2 and maintained at 35°C. 

Isovolumetric ventricular function was measured by inserting a latex balloon catheter into 

the left ventricle connected to a Capto SP844 MLT844 physiological pressure transducer 

and Chart software on a Maclab system. All left ventricular end-diastolic pressure values 

were measured during pacing of the heart at 250 beats per minute using an electrical 

stimulator. End-diastolic pressures were obtained from 0 to 30 mmHg for the calculation 

of diastolic stiffness constant (, dimensionless) (23). 

Vascular reactivity 

Thoracic aortic rings (~4 mm in length) were suspended in an organ bath filled 

with Tyrode physiological salt solution bubbled with 95% O2–5% CO2 maintained at 35°C 

and allowed to stabilise at a resting tension of ~10 mN. Cumulative concentration–

response curves (contraction) were obtained for noradrenaline (1×10-9 – 3×10-5 M) and 

cumulative concentration–response curves (relaxation) were obtained for acetylcholine 

140



(1×10-9 – 3×10-5 M) and sodium nitroprusside (1×10-9 – 3×10-5 M) after submaximal 

(~70%) contraction to noradrenaline (23). 

Analysis of intestinal transit 

Rats from each diet group were orally gavaged with 3 mL of 0.05% phenol red 

solution 20 minutes before euthanasia. After euthanasia, the entire region from the 

stomach to small intestine was removed from its mesenteric attachment immediately. The 

length of small intestine was measured from the pyloric sphincter to the ileo-caecal 

junction. The endpoint of phenol red transit in small intestine was visualised by adding a 

few drops of 0.5 M NaOH. The intestinal transit for each rat was determined by following 

formula (26): 

Intestinal transit (%) = (the total distance traveled by phenol red solution/ total 

length of small intestine) × 100 

Organ weights 

After isolated heart perfusion studies, the heart was separated into left ventricle 

(with septum) and right ventricle and weighed. The liver was isolated and weighed. 

Retroperitoneal, epididymal and omental fat contents were removed separately and 

weighed. These organ weights were normalised against tibial length at the time of organ 

removal and expressed as mg/mm of tibial length (23). 
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Histology 

Hearts and livers were removed from the rats soon after euthanasia and fixed in 

10% neutral buffered formalin. These samples were then dehydrated and embedded in 

paraffin wax. Thin sections (5 µm) were cut and stained with haematoxylin and eosin to 

study infiltration of inflammatory cells (heart and liver) and fat deposition (liver) and with 

picrosirius red (heart) to study collagen deposition (23). 

Plasma biochemistry 

Plasma activities of aspartate transaminase, alanine transaminase and alkaline 

phosphatase, and plasma concentrations of total cholesterol, triglycerides and non-

esterified fatty acids were measured (23). 

Gut microbiota diversity profiling 

Immediately following euthanasia and organ removal, two to three fecal pellets 

were collected from the colon of rats and stored at –80°C in nuclease-free tubes. Diversity 

profiling was performed as described previously (25). In brief, the V3-V4 region of the 

16S rRNA gene was chosen for amplification. The primers applied were F341 (5′-

CCTAYGGGRBGCASCAG-3′) and R806 (5′-GGACTACNNGGGTATCTAAT-3′). 

PCR amplicons were created using AmpliTaq Gold 360 mastermix (Life Technologies, 

Scoresby, VIC, Australia) for the primary PCR. A secondary PCR to index the amplicons 

was operated with TaKaRa Taq DNA Polymerase (Clontech, Mountain View, CA, USA). 

The subsequent amplicons were measured by fluorometry (Invitrogen Picogreen, Mount 

Waverley, VIC, Australia) and normalized. The equimolar pool was then calculated by 
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qPCR (KAPA) followed by sequencing on the Illumina MiSeq (San Diego, CA, USA) 

with 2 x 300 base pairs paired-end chemistry. 

Paired-ends reads were assembled by aligning the forward and reverse reads using 

PEAR (version 0.9.5) (27). Primers were detected and trimmed. Trimmed sequences were 

processed using Quantitative Insights into Microbial Ecology (QIIME 1.8) (28) 

USEARCH (version 7.1.1090) (29, 30) and UPARSE software (31). Using USEARCH, 

sequences were quality filtered, full length duplicate sequences were eliminated and 

organized by abundance. Singletons or unique reads in the data set were discarded. 

Sequences were clustered followed by chimera filtered using “rdp_gold” database as the 

reference. To obtain the number of reads in each OTU, reads were mapped back to OTUs 

with a minimum identity of 97%. Using QIIME, taxonomy was assigned using 

Greengenes database (version 13_8, Aug 2013) (32). 

A heat map was constructed using R statistical software according to the 

developer’s instructions to visualise the relative abundance of each bacterial species and 

their respective phyla. 

Statistical analysis 

All data are presented as mean ± SEM. Results were tested for variance using 

Bartlett’s test and variables that were not normally distributed were transformed (using 

log 10 functions) prior to statistical analyses. C, CSC, H and HSC groups were tested for 

effects of diet, treatment and their interactions by two-way analysis of variance. When the 

interaction and/or the main effects were significant, means were compared using 

Newman-Keuls multiple comparison post hoc test. A P value of less than 0.05 was 
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considered significant. All statistical analyses were performed using GraphPad Prism 

version 5.0 for Windows (San Diego, CA, USA). 

Results 

Spent coffee composition 

Spent coffee contained caffeine (7 mg/g w/w), chlorogenic acid (4 mg/g w/w) and 

trigonelline (1.3 mg/g w/w). The average intake of these compounds over the 8-16 week 

period was in CSC rats was caffeine (41.9  0.5 mg/kg/day), chlorogenic acid (8.9  0.1 

mg/kg/day) and trigonelline (12.1  0.2 mg/kg/day) and in HSC rats was caffeine (17.7  

0.4 mg/kg/day), chlorogenic acid (3.8  0.1 mg/kg/day) and trigonelline (5.1  0.1 

mg/kg/day). 

Dietary intake, body composition and plasma biochemistry 

Spent coffee treatment in CSC rats did not change body weight even after 

increasing food, water and energy intakes compared to C rats. Thus, feed efficiency and 

body mass index were unchanged between C and CSC rats (Table 1). Abdominal 

circumference and abdominal fat pads did not change between C and CSC rats while basal 

blood glucose concentrations and area under the curve were reduced with spent coffee 

treatment in CSC rats compared to C rats (Table 1). Whole-body lean mass, whole-body 

fat mass, bone mineral content and bone mineral density did not change between C and 

CSC rats (Table 1). Spent coffee did not change plasma concentrations of total cholesterol, 

triglycerides and non-esterified fatty acids in CSC rats compared to C rats (Table 1). 

Respiratory exchange ratio and heat produced did not change between C and CSC rats 

(Table 1). 
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Spent coffee treatment in HSC rats decreased body weight even after increasing 

food, water and energy intakes compared to H rats. Thus, feed efficiency and body mass 

index were decreased in HSC rats compared to H rats (Table 1). Abdominal 

circumference, abdominal fat pads, basal blood glucose concentrations and area under the 

curve were reduced in HSC rats compared to H rats (Table 1). Whole-body lean mass, 

bone mineral content, bone mineral density, respiratory exchange ratio and heat produced 

did not change between H and HSC rats while whole body fat mass was reduced in HSC 

rats compared to H rats (Table 1). Spent coffee did not change plasma concentrations of 

total cholesterol but reduced plasma concentrations of triglycerides and non-esterified 

fatty acids in HSC rats compared to H rats (Table 1). 

Cardiovascular and hepatic function 

In CSC rats, systolic blood pressure and left ventricular diastolic stiffness constant 

did not change with spent coffee treatment compared to C rats (Table 2). Spent coffee 

treatment did not induce inflammation or fibrosis in hearts of CSC rats (Figure 1B and 

1F) compared to C rats (Figure 1A and 1E). Spent coffee did not change aortic responses 

to noradrenaline, sodium nitroprusside or acetylcholine in CSC rats compared to C rats 

(Figure 2A, 2B and 2C). Left ventricular wet weight decreased while right ventricular wet 

weights were unchanged in CSC rats compared to C rats (Table 2). Liver wet weight, and 

plasma activities of aspartate transaminase and alanine transaminase were unchanged 

between C and CSC rats (Table 2). Spent coffee did not induce inflammation and fat 

deposition in livers of CSC rats (Figure 3B and 3F) compared to C rats (Figure 3A and 

3E). 
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In HSC rats, systolic blood pressure and left ventricular diastolic stiffness constant 

decreased with spent coffee treatment compared to H rats (Table 2). Spent coffee 

treatment reduced inflammation and fibrosis in hearts of HSC rats (Figure 1D and 1H) 

compared to H rats (Figure 1C and 1G). Spent coffee did not change aortic responses to 

noradrenaline, sodium nitroprusside or acetylcholine in HSC rats compared to H rats 

(Figure 2A, 2B and 2C). Left ventricular wet weight decreased while right ventricular wet 

weight was unchanged in HSC rats compared to H rats (Table 2). Liver wet weight 

decreased while plasma activities of aspartate transaminase and alanine transaminase were 

unchanged between H and HSC rats (Table 2). Spent coffee reduced inflammation and fat 

deposition in livers of HSC rats (Figure 3D and 3H) compared to H rats (Figure 3C and 

3G).  
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Table 1. Response to spent coffee on physiological and metabolic variables 

Variables C CSC H HSC 

P 

Diet 

Spent 

coffee 

Diet × 

spent 

coffee 

Initial body weight, g 340 ± 1 341 ± 1 339 ± 1 339 ± 1 0.13 0.61 0.61 

Final body weight, g 383 ± 2c 374 ± 5c 555 ± 9a 481 ± 12b <0.0001 <0.0001 <0.0001 

Food intake, g/day 35.7 ± 0.6c 44.7 ± 0.4a 26.0 ± 0.4d 36.7 ± 0.6b <0.0001 <0.0001 0.01 

Water intake, g/day 26.8 ± 0.4c 34.6 ± 0.4b 27.7 ± 0.5c 36.5 ± 0.5a <0.0001 <0.0001 0.01 

Energy intake, kJ/day 378 ± 8d 443 ± 7c 558 ± 7b 640 ± 10a <0.0001 <0.0001 0.30 

Feed efficiency, kJ/g 0.11 ± 0.01c 0.07 ± 0.01c 0.39 ± 0.02a 0.22 ± 0.03b <0.0001 <0.0001 0.002 

BMI, g/cm2 0.61 ± 0.01c 0.63 ± 0.01c 0.83 ± 0.02a 0.76 ± 0.02b <0.0001 0.13 0.01 

Abdominal circumference, cm 18.4 ± 0.2c 18.8 ± 0.2c 23.2 ± 0.4a 21.5 ± 0.2b <0.0001 0.015 0.0002 
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Basal blood glucose concentrations, 

mmol/L 

3.9 ± 0.2b 2.6 ± 0.1d 4.9 ± 0.3a 3.3 ± 0.1c 0.0002 <0.0001 0.47 

Area under the curve, 

mmol/L.minutes 

692 ± 28b 400 ± 10c 790 ± 23a 682 ± 15b <0.0001 <0.0001 <0.0001 

Retroperitoneal fat, mg/mm 182 ± 21c 165 ± 13c 534 ± 53a 404 ± 33b <0.0001 0.04 0.10 

Epididymal fat, mg/mm 90 ± 8c 66 ± 8c 222 ± 17a 142 ± 16b <0.0001 0.0003 0.04 

Omental fat, mg/mm 130 ± 8c 108 ± 3c 263 ± 17a 221 ± 20b <0.0001 0.031 0.49 

Total abdominal fat, mg/mm 402 ± 30c 339 ± 21c 1019 ± 81a 767 ± 63b <0.0001 0.007 0.091 

Whole-body lean mass, g 283 ± 5 308 ± 6 286 ± 11 309 ± 8 0.80 0.052 0.90 

Whole-body fat mass, g 83 ± 7c 49 ± 4c 235 ± 17a 180 ± 21b <0.0001 0.002 0.45 

Bone mineral content, g 11.8 ± 0.4b 11.4 ± 0.2b 17.4 ± 0.6a 15.9 ± 0.8a <0.0001 0.08 0.31 

Bone mineral density, g/cm2 

0.172 ± 

0.002b 

0.175 ± 

0.002b 

0.185 ± 

0.002a 

0.188 ± 0.003a <0.0001 0.19 1.00 

Respiratory exchange ratio 1.01  0.01a 1.01  0.01a 0.89  0.01b 0.88  0.02b <0.0001 0.70 0.70 

Heat, kJ 3.36  0.17bc 2.94  0.09c 4.14  0.10a 3.61  0.19b <0.0001 0.003 0.70 
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Plasma total cholesterol,  mmol/L 1.84 ± 0.08 1.85 ± 0.06 1.71 ± 0.10 1.92 ± 0.08 0.72 0.20 0.24 

Plasma triglycerides, mmol/L 0.57 ± 0.05c 0.45 ± 0.05c 1.17 ± 0.10a 0.81 ± 0.1b <0.0001 0.004 0.12 

Plasma non-esterified fatty acids, 

mmol/L 

1.37 ± 0.16bc 0.94 ± 0.15c 3.57 ± 0.18a 1.76 ± 0.18b <0.0001 <0.0001 0.0002 

Values are mean ± SEM, n = 8–10. Means in a row with superscripts without a common letter differ significantly, P < 0.05. C, corn 

starch diet-fed rats; CSC, corn starch diet-fed rats treated with spent coffee; H, high-carbohydrate, high-fat diet-fed rats; HSC, high-

carbohydrate, high-fat diet-fed rats treated with spent coffee.  
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Table 2. Effects of spent coffee on cardiovascular and liver function 

Variable C CCR H HCR 

 p  

Diet 

Spent 

coffee 

Diet × 

Spent 

coffee 

Systolic blood pressure, mmHg 125 ± 1b 127 ± 2b 145 ± 2a 127 ± 2b <0.0001 <0.0001 <0.0001 

Left ventricular diastolic stiffness 

constant () 

20.7 ± 0.4b 20.8 ± 0.4b 26.7 ± 1.3a 20.8 ± 0.2b 0.0002 0.0002 0.0002 

Left ventricle + septum wet weight, 

mg/mm 

21.6 ± 0.8a 19.0 ± 1.3b 24.7 ± 1.5a 19.5 ± 1.2b 0.16 0.004 0.30 

Right ventricle wet weight, mg/mm 4.97 ± 0.38 4.91 ± 0.78 5.64 ± 0.52 6.02 ± 0.76 0.15 0.80 0.72 

Liver wet weight, mg/mm 230 ± 6c 245 ± 10c 336 ± 13a 293 ± 10b <0.0001 0.17 0.01 

Plasma aspartate transaminase, U/L 79.1 ± 4.8 80.7 ± 3.0 82.2 ± 4.4 81.1  5.7 0.73 0.96 0.79 

Plasma alanine transaminase, U/L 27.7  1.8ab 24.7  1.9b 35.2 ± 3.2a 29.1 ± 1.8ab 0.02 0.07 0.52 
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Values are mean ± SEM, n = 8–10. Means in a row with superscripts without a common letter differ significantly, P < 0.05. C, corn 

starch diet-fed rats; CSC, corn starch diet-fed rats treated with spent coffee; H, high-carbohydrate, high-fat diet-fed rats; HSC, high-

carbohydrate, high-fat diet-fed rats treated with spent coffee.  
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Figure 1. Effects of spent coffee in the heart and liver. H&E staining showing infiltration 

of inflammatory cells (in) and enlarged fat vacuoles (fv) in heart (A-D) from C (A), CSC 

(B), H (C), and HSC (D) and liver (I-L) from C (I), CSC (J), H (K) and HSC (L) (×20). 

Picrosirius red staining showing fibrosis (fi) in heart (E-H) from C (E), CSC (F), H (G), 

and HSC (H) (×20). C, corn starch diet-fed rats; CSC, corn starch diet-fed rats treated with 

spent coffee; H, high-carbohydrate, high-fat diet-fed rats; HSC, high-carbohydrate, high-

fat diet-fed rats treated with spent coffee. 
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Figure 2. Effects of spent coffee on noradrenaline-induced contraction (A), sodium 

nitroprusside-induced relaxation (B) and acetylcholine-induced relaxation (C) in thoracic 

aorta ring, prepared from C, CSC, H and HSC rats. Values are mean ± SEM, n = 6-10. 

End-point means without a common letter differ, P<0.05. C, corn starch diet-fed rats; 

CSC, corn starch diet-fed rats treated with spent coffee; H, high-carbohydrate, high-fat 

diet-fed rats; HSC, high-carbohydrate, high-fat diet-fed rats treated with spent coffee. 
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Gut microbiome 

Figure 3 shows the heat map of bacterial species abundance. In all groups, the 

major gastrointestinal bacterial phyla, Firmicutes and Bacteroidetes, were predominant 

(Figure 4). Gut bacterial composition of groups are shown in Figure 4. HSC rats had higher 

abundance of Bacteroidetes compared to H rats while it did not change between C and 

CSC rats. Conversely, abundance of Firmicutes remained unchanged among all diet 

groups (Figure 5A). Spent coffee increased the Bacteroidetes/Firmicutes ratio in CSC and 

HSC rats compared to C and H rats respectively (Figure 5B). Based on the Shannon 

diversity index, there was an increase in diversity between the treatment groups CSC and 

HSC rats compared to control groups C and H rats. (Figure 5C). 

The relative abundance of all species was compared between the treatment and 

control groups to evaluate the effect of spent coffee at species level. A cut-off point of 1% 

abundance in C rats was applied to enhance confidence. The abundance of two species 

from phylum Bacteroidetes (Bacteroides sp., and an unspecified species from the S24-7 

family) was increased and two species from phylum Firmicutes (Turicibacter sp. and an 

unspecified species from Clostridiaceae family) was decreased by spent coffee (Figure 

5D). Compared to C rats, there was significant increase in Bacteroides sp without 

changing in the S24-7 family species, Turicibacter sp. and an unspecified species from 

Clostridiaceae family in CSC rats. HSC rats had higher abundance of Bacteroides sp., 

S24-7 family species, Turicibacter sp. and an unspecified species from Clostridiaceae 

family in compared to H rats (Figure 5D). 
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Figure 3. Heat map of bacterial species abundance. Abundance values for each species 

were plotted as a percentile with the most abundant species represented by violet, the 50 

percentile species represented with yellow and the lowest value with dark brown; C, corn 

starch diet-fed rats; CSC, corn starch diet-fed rats treated with spent coffee; H, high-
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carbohydrate, high-fat diet-fed rats; HSC, high-carbohydrate, high-fat diet-fed rats treated 

with spent coffee. 

 

Figure 4. Effect of spent coffee on gut microbiota diversity profiles. Alpha diversity with 

the diet-group. The relative abundance of each phylum presented as a percentage of the 

total population for each treatment group. C, corn starch diet-fed rats; CSC, corn starch 

diet-fed rats treated with spent coffee; H, high-carbohydrate, high-fat diet-fed rats; HSC, 

high-carbohydrate, high-fat diet-fed rats treated with spent coffee. 
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Figure 5. Effect of spent coffee on gut microbiota diversity profiles. A: The relative 

abundance of each phylum presented as a percentage of the total population for each 

treatment group. B: Bacteroidetes/Firmicutes ratio. C. Shannon diversity index. The index 

was determined from the means of abundance for each treatment group. D: Relative 

abundance of species that were differentially regulated by diet. Only species whose mean 

abundance for the C diet group was equal to or higher than 1% were plotted in order to 

enhance confidence. C, corn starch-rich diet-fed rats; CSC, corn starch-rich diet-fed rats 

treated with spent coffee; H, high-carbohydrate, high-fat diet-fed rats; HSC, high-

carbohydrate, high-fat diet-fed rats treated with spent coffee.. 
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Discussion 

In this study, spent coffee that is usually discarded after brewing was used as the 

possible intervention in diet-induced metabolic syndrome in rats. Spent coffee decreased 

abdominal obesity, systolic blood pressure, plasma triglycerides and plasma non-esterified 

fatty acids along with improvements in glucose tolerance, cardiovascular and hepatic 

structure and function in diet-induced obese rat. In our previous studies, we reported that 

coffee extract (33) and caffeine (34), improved glucose tolerance and cardiovascular 

structure and function. In these studies, caffeine decreased obesity while coffee extract 

failed to decrease obesity. Caffeine, through its inhibitory effects on A1R adenosine 

receptors (34, 35), decreased obesity while coffee extract was unable to decrease obesity. 

Spent coffee contained significant amounts of caffeine, chlorogenic acid and 

trigonelline, thus suggesting potential of these components in attenuating obesity and 

metabolic syndrome. However, the dose of caffeine in obese rats (~18 mg/kg/day) was 

lower than the dose of the caffeine in our previous study (~28 mg/kg/day) (34). This 

suggests that these 3 components may play a role in attenuating metabolic syndrome but 

are not the component causing significant response. Spent coffee has also been shown to 

contain melanoidins, large molecular complexes that still requires further work for 

elucidating their structure. Roasting process of coffee beans reduced chlorogenic acid (36) 

while producing melanoidins (37). Melanoidins are formed as the product of Maillard 

reactions during roasting process using amino acids, polysaccharides and phenolic acids 

such as chlorogenic acid (5, 38). Similarly, spent coffee includes melanoidins with 

polysaccharides such as arabinogalactans and galactomannans, which have been shown 

to have prebiotic activity (39). Melanoidins from roasted coffee have shown several 
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biological activities such as antioxidant (40), anti-inflammatory (41) and antihypertensive 

(42). Coffee melanoidins are metabolised by the gut microbiota and produces fermentation 

products in the colon (43). Previous studies have concluded that coffee melanoidins, 

through their prebiotic activity, produced acetate and propionate from polysaccharides 

including galactomannans and arabinogalactans (44, 45). These fermentation products 

may have a role in improving the quality of gut microbiota. Previous in vitro studies have 

supported the improvements in gut microbiota with the use of melanoidins (46). In this 

study, we have identified the role of melanoidins from spent coffee in improving the gut 

microbiota in obese rats thus attenuating metabolic complications. Gut microbiota 

diversity has increased in spent coffee-treated group of rats. The changes observed in gut 

microbiota at the species level included increased Bacteroidetes species - Bacteroides sp, 

S24-7, and decreased Firmicutes species - Turicibacter sp, and Clostridiaceae sp in spent 

coffee-treated group of H rats. Obesity is associated with the modulation of gut microbiota 

where free fatty acids promotes growth of Firmicutes and consequently reduces 

Bacteroidetes count (47). The positive modulation in gut microbiota by coffee pulp 

treatment could be associated with the dietary fibres present in coffee pulp as dietary fibres 

have been reported for delivering health beneficial (48). Dietary fibre improved the water 

content of faeces, decreased intestinal transit time and shifted the composition of the gut 

microbiota positively and enhanced the concentration of short-chain fatty acids in the 

faeces of mice (48). Thus, fibre from spent coffee could be considered as a prebiotic which 

could be possible reason for the positive modulation in gut microbiota. Further, this study 

with spend coffee showed reduction in blood lipids and these changes were not seen in 

any of our previous studies with coffee (33) or caffeine (34). 
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Spent coffee, generated in large amounts throughout the world on a daily basis, 

has served as a functional food against diet-induced obesity in rats in this study. Spent 

coffee reduced decreased systolic blood pressure as found in our previous study with 

coffee extract and caffeine (33, 34). This may suggest a role of caffeine and other phenolic 

acids such as chlorogenic acid in causing these effects. Further, spent coffee also improved 

glucose tolerance in treatment groups. This study supported our previous studies where 

coffee (49) and caffeine (34) diet-supplements improved glucose tolerance and insulin 

sensitivity. Spent coffee still includes an appreciable amount of caffeine. Caffeine induced 

thermogenesis effects that facilitate energy expenditure and weight management (50). 

Moreover, the combination of caffeine and chlorogenic acid produced synergistic effects 

against lipogenesis in mice where caffeine + chlorogenic acid was found to reduce serum 

and hepatic total cholesterol and triglycerides concentrations (51). This synergetic effect 

occurs by inhibition of FAS and down-regulation of FAS protein in liver as well as 

upregulation of AMPK protein expression in adipose tissue (51). Thus, the higher energy 

expenditure triggered by synergistic effects of caffeine and chlorogenic acid could be the 

possible reason in our study where elevated food intake delivered the reduction in body 

weight, feed efficiency and whole-body fat mass. 

A high-fat diet is associated with inflammation and modulating energy 

homeostasis, particularly diets rich in saturated fatty acids (C14:0, C16:0 and C18:0), and 

caused higher availability of free fatty acids that serve as a ligand to TLR4 (52). Activated 

TLRs trigger phosphorylation of JNK and binding of activator protein-1 that serve as a 

transcriptional activator of pro-inflammatory cytokines such as TNF, MCP-1, IFN- and 

IL-6 (53). Thus, we speculated that spent coffee may reduce activation of TLR4-mediated 
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signalling pathway and accordingly prevented the expression of pro-inflammatory 

cytokines, confirmed by reduced inflammation in heart and liver. The phosphorylated 

JNK inhibits IRS-1 by phosphorylating its serine unit. Phosphorylated IRS-1 prevents 

GLUT4 translocation resulting in insulin resistance state (54). In this study, spent coffee 

may have improved glucose tolerance by reducing JNK activation and stimulating GLUT4 

translocation leading to decreased basal blood glucose concentration and improved 

glucose response at the end of glucose tolerance test. 

Spent coffee improved lipid profile by reducing triglycerides and non-esterified 

fatty acids in plasma. Increased concentrations of these lipid components are associated 

with development of obesity, cardiovascular complications and fatty liver (55). Reduction 

in the lipid components in the blood may suggest the role of spent coffee in improving 

overall metabolic status thus contributing towards the improvement in metabolic 

syndrome-associated complications. These improvements in the metabolic status can be 

linked to the improved gut microbiota observed with the spent coffee treatment. This is 

the first study to demonstrate the potential of spent coffee in decreasing obesity, and 

improving obesity-related complication. As we are throwing away useful bioactive 

components that are present in spent coffee, this is an important finding to warrant future 

human studies for using food wastes in improving human metabolic health, and so 

possibly decrease the incidence of obesity in the world. 
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Abstract 

Inducing testosterone deficiency by orchidectomy or gonadotrophin-releasing 

hormone agonists is the standard treatment of prostate cancer but this treatment may cause 

metabolic disorders including insulin resistance, hyperinsulinemia, dyslipidemia, central 

obesity, cardiovascular diseases, and type 2 diabetes. This study measured responses to 

testosterone deficiency in a diet-induced model of metabolic syndrome induced by a high-

carbohydrate, high-fat (H) diet in rats. We then tested whether eicosapentaenoic acid 

(EPA)/docosahexaenoic acid (DHA) ethyl esters (Omacor) reversed these metabolic changes. 

Male Wistar rats (8-9 weeks old) were divided into 8 groups with 4 groups fed corn starch 

(C) and 4 groups fed H diet. For each diet, 1 group received diet only; 1 group was

orchidectomized, 1 group was given leuprolide acetate (2 mg/kg every 4
th

 week) and the last

group was treated with leuprolide and their diet was supplemented with 3% Omacor. The 

protocol was for 16 weeks. Leuprolide treatment worsened the metabolic syndrome 

symptoms and cardiovascular function, and orchidectomy produced greater responses. In H-

fed leuprolide-treated rats, Omacor decreased systolic blood pressure and left ventricular 

diastolic stiffness, reduced infiltration of inflammatory cells and collagen deposition in the 

heart, reduced lipid accumulation and inflammatory cell infiltration without improving liver 

damage. These results suggest that Omacor supplementation is associated with decreased 

inflammation associated with H diets and so could attenuate metabolic complications in 

prostate cancer patients with induced testosterone deprivation. 
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Introduction 

Metabolic syndrome is the constellation of insulin resistance, impaired glucose 

tolerance, dyslipidemia, hypertension, and obesity which increases risk for cardiovascular 

disease and type 2 diabetes, with an increasing prevalence in the last few decades (O'Neill & 

O'Driscoll, 2015). Metabolic syndrome, potentially caused by imbalances in energy intake 

and expenditure, increases morbidity and mortality and is one of the leading preventable 

causes of death (Zhang, et al., 2017). Further, low testosterone concentrations have been 

associated with many of these complications including insulin resistance, hyperinsulinemia, 

dyslipidemia, and cardiovascular disorders (Dockery, et al., 2003; Haffner, et al., 1993; 

Simon, et al., 1997; Stellato, et al., 2000). Prostate cancer is the second most commonly 

diagnosed cancer world-wide; in men with prostate cancer, the presence of metabolic 

syndrome was associated with worse oncologic outcomes, in particular with more aggressive 

tumor features and biochemical recurrence (Di Francesco & Tenaglia, 2017; Gacci, et al., 

2017). The major therapies for prostate cancer rely on induction of testosterone deficiency by 

orchidectomy or gonadotrophin-releasing hormone (GnRH) agonists such as leuprolide 

acetate (Lepor & Shore, 2012). However, GnRH agonists increased the risk of development 

of diabetes and cardiovascular disease, increased fat mass, and decreased lean mass 

(Goldenberg, et al., 2011; Smith, et al., 2008; Van Londen, et al., 2008). 

Diet interventions targeting these metabolic syndrome parameters would be a 

potential approach to decrease the risk of cardiovascular disease in prostate cancer survivors 

treated with induced testosterone deficiency, and possibly slow down tumor progression. The 

health benefits of omega-3 fatty acids such as eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) in metabolic syndrome and cardiovascular diseases have been 

reviewed (Bennacer, et al., 2017; Guo, et al., 2017; Tortosa-Caparros, et al., 2017). Omega 3-
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fatty acids (EPA and DHA, 1.8 g/day for 26 weeks) decreased expression of genes associated 

with inflammation and atherogenesis-associated pathways (Bouwens, et al., 2009). Omega-3 

fatty acids reduced inflammatory markers and cardiovascular disease risk factors (Calder, 

2013; Mori & Beilin, 2004). Mixed EPA:DHA interventions decreased inflammation and 

cardiovascular disease risk components with elevated antioxidant enzymes activities 

(Dasilva, et al., 2016). In a randomized controlled trial, daily doses of 300 mg EPA and 200 

mg of DHA for 8 weeks reduced high-sensitivity C reactive protein, fasting blood glucose 

and triglyceride concentrations in hypertensive and/or diabetic obese patients (Ellulu, et al., 

2016). 

In this study, we firstly investigated whether orchidectomy worsened metabolic 

syndrome in rats fed a high-carbohydrate, high-fat diet. This diet mimics the changes 

observed in humans with metabolic syndrome (Panchal, et al., 2011). Secondly, we 

investigated whether rats with testosterone deficiency following 4-weekly leuprolide acetate 

injections developed similar pathophysiological changes to the high-carbohydrate, high-fat 

diet as the rats with orchidectomy. Thirdly, we investigated whether a commercially-

available mixture of ethyl esters of EPA and DHA (Omacor) reversed the cardiovascular, 

hepatic, and metabolic parameters in these leuprolide-treated high-carbohydrate, high-fat 

diet-fed rats. Our hypothesis was that this mixture of EPA and DHA esters has potential as a 

treatment for metabolic syndrome in prostate cancer patients treated long-term with 

leuprolide acetate. 

Materials and methods 

Rats and diets 

All experimental procedures were approved by the Animal Ethics Committee of the 

University of Southern Queensland under the guidelines of the National Health and Medical 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 173



Research Council of Australia. 8–9 weeks old male Wistar rats (338 ± 1 g, n = 96) were 

obtained from Animal Resource Centre (Murdoch, WA, Australia). Rats were randomly 

divided into 8 groups each of 12 rats, with 4 groups fed a corn starch diet and 4 groups fed a 

high-carbohydrate, high-fat diet, as follows: 

• C: Corn starch diet-fed rats for 16 weeks

• COr: Orchidectomized rats fed corn starch diet for 16 weeks

• CL: Rats treated with leuprolide acetate and fed corn starch diet for 16 weeks

• CLOm: Rats treated with leuprolide acetate for 16 weeks and fed corn starch diet for first

8 weeks followed by corn starch diet supplemented with 3% Omacor for the final 8 weeks 

• H: High-carbohydrate, high-fat diet-fed rats for 16 weeks

• HOr: Orchidectomized rats fed high-carbohydrate, high-fat diet for 16 weeks

• HL: Rats treated with leuprolide acetate and fed high-carbohydrate, high-fat diet for 16

weeks 

• HLOm: Rats treated with leuprolide acetate for 16 weeks and fed high-carbohydrate,

high-fat diet for first 8 weeks followed by high-carbohydrate, high-fat diet supplemented 

with 3% Omacor for the final 8 weeks 

Induction of testosterone deficiency 

24 male rats were orchidectomized at the age of 8 weeks. Bilateral orchidectomy was 

performed under anesthesia induced by intraperitoneal injection of Zoletil (tiletamine 15 

mg/kg, zolazepam 15 mg/kg; Virbac, Peakhurst, NSW, Australia) combined with Rompun 

(xylazine 10 mg/kg; Troy Laboratories, Smithfield, NSW, Australia). An incision was made 

at the midpoint of the scrotum and the underlying tissue, followed by excision of the testicles 

and part of the spermatic cord. The incision site was sutured and rats were allowed to recover 

with administration of carprofen (1 mg/kg for 3 days). Before initiation of the experimental 
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diet, the orchidectomized rats were given standard laboratory chow diet and monitored daily. 

In a further 24 age-matched male rats, testosterone deficiency was induced by subcutaneous 

injection of 2 mg/kg leuprolide acetate (Lupron Depot, AbbVie, Sydney, NSW, Australia) at 

0, 4, 8, and 12 weeks of the protocol. 

Rats, diets, and treatments 

All rats were individually housed at the University of Southern Queensland animal 

house under temperature-controlled, 12-hour-light/dark conditions and were fed ad libitum 

with their respective diets. C, COr, and CL rats were fed with corn starch diet for 16 weeks 

while CLOm rats were fed with corn starch diet for first 8 weeks and then 3% Omacor-

supplemented corn starch diet for the last 8 weeks. C, COr, CL, and CLOm rats received 

normal drinking water for the duration of the protocol. H, HOr, and HL rats were fed with 

high-carbohydrate, high-fat diet for 16 weeks while HLOm rats were fed with high-

carbohydrate, high-fat diet for first 8 weeks and then 3% Omacor-supplemented high-

carbohydrate, high-fat diet for the last 8 weeks. H, HOr, HL, and HLOm rats received 

drinking water with 25% fructose (w/v) for the duration of the protocol. Corn starch diet 

contained 570 g corn starch, 155 g powdered rat food, 25 g Hubble, Mendel and Wakeman 

salt mixture, and 250 mL water per kilogram of diet. High-carbohydrate, high-fat diet 

contains 175 g fructose, 395 g sweetened condensed milk, 200 g beef tallow, 155 g powdered 

rat food, 25 g Hubble, Mendel and Wakeman salt mixture, and 50 mL water per kilogram of 

diet (Panchal, et al., 2011). Each gram of Omacor contained 840 mg of the omega-3 fatty 

acid ethyl esters comprising 460 mg of EPA ethyl ester and 380 mg of DHA ethyl esters. 

Physiological parameters 

Body weight, and food and water intakes of all rats were measured daily (Panchal, et 

al., 2011). Abdominal circumference and body length (nose to anus) were measured using a 
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standard measuring tape under light sedation with Zoletil (tiletamine 10 mg/kg, zolazepam 10 

mg/kg, intraperitoneal). Feed efficiency was calculated as [mean body weight gain (in 

grams)/daily energy intake (in kJ)] (Panchal, et al., 2011). 

Systolic blood pressure measurements 

Systolic blood pressure was determined every fourth week under light sedation with 

Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, intraperitoneal), using an MLT1010 

Piezo-Electric Pulse Transducer and inflatable tail-cuff connected to an MLT844 

Physiological Pressure Transducer and PowerLab data acquisition unit (Panchal, et al., 2011). 

After blood pressure measurements, a small volume of blood was collected from the tail vein 

for measuring plasma total testosterone concentrations. 

Echocardiography 

Echocardiographic examination (Phillips iE33, 12-MHz transducer) was performed in 

rats at the end of protocol (Panchal, et al., 2011). Briefly, rats were anesthetized using Zoletil 

(tiletamine 10 mg/kg and zolazepam 10 mg/kg, intraperitoneal) and Ilium Xylazil (xylazine 6 

mg/kg, intraperitoneal) and positioned in dorsal recumbency before scanning (Panchal, et al., 

2011). 

Body composition measurement 

Dual-energy X-ray absorptiometric (DXA) measurements were carried out at the end 

of the protocol with a Norland XR36 DXA instrument (Norland Corp, Fort Atkinson, WI, 

USA). These scans were evaluated using the manufacturer’s suggested software for use in 

laboratory animals (Small Subject Analysis Software, version 2.5.3/1.3.1; Norland Corp) 

(Ward & Battersby, 2009). The precision error of lean mass for replicate measurements, with 

repositioning, was 3.2%. 
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Oral glucose tolerance test 

Oral glucose tolerance tests were performed on rats every fourth week following a 12-

hour food deprivation when fructose-supplemented drinking water in all H diet-fed groups 

was replaced with normal drinking water (Panchal, et al., 2011). After determining basal 

blood glucose concentrations in tail vein blood using Medisense Precision Q.I.D. glucose 

meters, rats were given a glucose load of 2 g/kg body weight as 40% glucose solution via oral 

gavage and blood glucose concentrations were measured again 30, 60, 90, and 120 minutes 

after oral glucose administration (Panchal, et al., 2011). 

Terminal experiments 

Rats were euthanized with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

intraperitoneal) before injection of heparin (200 IU) through the right femoral vein. The 

abdomen was then opened and blood (~5 mL) was withdrawn from the abdominal aorta and 

collected into heparinized tubes. Blood was centrifuged at 5000 × g for 15 minutes to obtain 

plasma. Plasma was stored at –20°C for further biochemical characterization. Hearts were 

then removed for isolated Langendorff heart studies. 

Left ventricular function 

Isolated Langendorff heart preparations were used to assess left ventricular function 

of rats (Panchal, et al., 2011). Hearts isolated from euthanized rats were perfused with 

modified Krebs–Henseleit bicarbonate buffer bubbled with 95% O2 – 5% CO2 and 

maintained at 35°C. Isovolumetric ventricular function was measured by inserting a latex 

balloon catheter into the left ventricle connected to a Capto SP844 MLT844 physiological 

pressure transducer and Chart software on a Maclab system. Left ventricular end-diastolic 

pressure values were measured during pacing of the heart at 250 beats per minute using an 
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electrical stimulator. End-diastolic pressures were obtained from 0 to 30 mmHg for the 

calculation of diastolic stiffness constant (κ, dimensionless) (Panchal, et al., 2011). 

Vascular reactivity 

Thoracic aortic rings (~4 mm in length) were suspended in an organ bath filled with 

Tyrode physiological salt solution bubbled with 95% O2 – 5% CO2 maintained at 35°C and 

the rings were allowed to stabilise at a resting tension of ~10 mN. Cumulative concentration–

response curves (contraction) were obtained for noradrenaline and cumulative concentration–

response curves (relaxation) were obtained for acetylcholine and sodium nitroprusside after 

submaximal (~70%) contraction to noradrenaline (Panchal, et al., 2011). 

Organ weights 

After isolated heart perfusion studies, hearts were separated into left ventricles (with 

septum) and right ventricles and weighed. Livers were isolated and weighed. Retroperitoneal 

and omental fat pads were removed separately and weighed; epididymal fat pads were 

removed from rats except orchidectomized rats. Organ weights were normalized against the 

tibial length at the time of organ removal and expressed as mg/mm of tibial length (Panchal, 

et al., 2011). 

Histology 

Heart and liver portions were collected and fixed in 10% neutral buffered formalin. 

The samples were then dehydrated and embedded in paraffin wax. Thin sections (∼5 µm) of 

heart and liver were cut and stained with hematoxylin and eosin to study infiltration of 

inflammatory cells and for determining fat vacuoles in liver. Heart sections were also stained 

with picrosirius red stain to study collagen distribution in the heart (Panchal, et al., 2011). 
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Plasma biochemistry 

Activities of aspartate transaminase (AST) and alanine transaminase (ALT), and 

concentrations of total cholesterol, triglycerides, and non-esterified fatty acids (NEFA) in 

plasma were measured (Panchal, et al., 2011). Plasma total testosterone concentrations were 

measured using commercial kits (Enzo Life Sciences, Farmingdale, NY) according to 

protocols provided by the manufacturer. 

Statistical analysis 

All data are presented as mean ± SEM. Rats were divided in groups of 12 as this 

group size produced statistically robust data to answer the hypotheses of this project, as in our 

previous studies (Panchal, et al., 2011; Poudyal, et al., 2013). Results were tested for 

variance using Bartlett’s test and variables that were not normally distributed were 

transformed (using log 10 function) prior to statistical analyses. C, COr, HL, H, HL, and HOr 

rats were tested for effects of diet, testosterone deficiency and their interactions by two-way 

analysis of variance. When the interaction and/or the main effects were significant, means 

were compared using Newman-Keuls multiple comparison post hoc test. CL, CLOm, HL, 

and HLOm groups were tested for effects of diet + leuprolide, Omacor treatment and their 

interactions by two-way analysis of variance. When the interaction and/or the main effects 

were significant, means were compared using Newman-Keuls multiple comparison post hoc 

test. A P value of <0.05 was considered significant. All statistical analyses were performed 

using GraphPad Prism version 6.1 for Windows (San Diego, CA, USA). 

Results 

Bilateral orchidectomy 

Dietary intakes, body composition, and metabolic parameters 
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Orchidectomy rapidly reduced plasma total testosterone concentrations in both COr 

and HOr rats compared to C and H rats, respectively, confirming the effectiveness of 

orchidectomy (Figure 1A). Orchidectomy did not change body weight, feed efficiency, or 

intakes of food, water, and energy after 16 weeks of feeding C or H diet compared to their 

respective non-orchidectomized rats (Table 1). Abdominal circumference, basal blood 

glucose concentrations, and area under the curve for glucose were higher in orchidectomized 

rats fed either C or H diet compared to their respective controls (Table 1). Plasma 

concentrations of total cholesterol, triglycerides, and NEFA were unchanged between the 

controls and their respective orchidectomized rats (Table 1). Orchidectomy reduced total lean 

mass in COr and HOr rats compared to C and H rats, respectively. In contrast, the total fat 

mass was unchanged in C and COr rats but increased in HOr rats compared to H rats (Table 

1). Bone mineral content increased in HOr rats compared to H rats but was unchanged in COr 

and C rats while bone mineral density was unchanged. Retroperitoneal fat increased in COr 

and HOr rats compared to C and H rats, respectively, while omental fat did not change 

between C and COr or H and HOr rats (Table 1). 

Cardiovascular and liver functions 

Orchidectomy in COr rats increased systolic blood pressure and left ventricular 

diastolic stiffness while all other cardiovascular parameters were similar to C rats (Table 2). 

Orchidectomy induced inflammation and fibrosis in hearts of COr rats (Figure 2B and 2H) 

compared to C rats (Figure 2A and 2G). Orchidectomy reduced aortic responses to 

noradrenaline, sodium nitroprusside, and acetylcholine in COr rats compared to C rats 

(Figure 3A, 3B, and 3C). HOr rats had lower heart rate and cardiac output along with higher 

systolic blood pressure than H rats. H diet induced cardiac changes including inflammation 

(Figure 2D) and fibrosis (Figure 2J) while orchidectomy worsened these changes in HOr rats 

(Figure 2E and 2K). H diet reduced the aortic responses to noradrenaline, sodium 
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nitroprusside, and acetylcholine compared to C rats while HOr rats had similar aortic 

response as in H rats (Figure 3A, 3B, and 3C). 

C diet did not induce inflammation or fat deposition in liver (Figure 4A and 4G), 

while orchidectomy induced inflammation and fat deposition in livers of COr rats (Figure 4B 

and 4H). H diet induced inflammation and fat deposition in livers (Figure 4D and 4J) whereas 

HOr rats showed similar changes to H rats (Figure 4E and 4K). No changes in liver weight 

and ALT and AST activities were observed between C and COr or H and HOr rats (Table 2). 

Leuprolide treatment 

Dietary intake, body composition, and metabolic parameters 

Leuprolide reduced plasma total testosterone concentrations after 8 weeks from initial 

injection in CL rats compared to C rats (Figure 1A). Leuprolide treatment did not change 

body weight, feed efficiency, or water and food intakes in CL rats compared to C rats; 

however, energy intakes were increased in CL rats compared to C rats after 16 weeks (Table 

1). Abdominal circumference, basal blood glucose concentrations, and area under the curve 

for glucose were higher in CL rats compared to C rats (Table 1). Plasma concentrations of 

total cholesterol, triglycerides, and NEFA were unchanged between CL and C rats. 

Leuprolide treatment did not change fat mass of CL rats compared to C rats while the lean 

mass was reduced in CL rats compared to C rats. Bone mineral content and bone mineral 

density did not change between CL and C rats. Retroperitoneal fat increased in CL rats 

compared to C rats, while omental and epididymal fat did not change between C and CL rats 

(Table 1). 

Leuprolide reduced plasma testosterone concentrations after 8 weeks from initial 

injection in HL rats compared to H rats (Figure 1A). Leuprolide treatment did not change 

body weight, feed efficiency, or water and food intakes in HL rats compared to H rats. 
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Energy intakes were increased in HL groups compared to H rats after 16 weeks (Table 1). 

Abdominal circumference and area under the curve for glucose were higher in HL rats 

compared to H rats while basal blood glucose concentrations did not change in HL rats 

compared to H rats (Table 1). Plasma concentrations of triglycerides and NEFA were higher 

in HL rats compared to H rats while plasma concentrations of total cholesterol were not 

different between H and HL groups. Leuprolide treatment had no effects on the lean or fat 

mass in HL rats compared to H rats. Bone mineral content decreased in HL rats compared to 

H rats whereas bone mineral density did not change with leuprolide treatment. 

Retroperitoneal fat increased in HL rats compared to H rats, while omental and epididymal 

fat did not change between H and HL rats (Table 1). 

Cardiovascular and liver function 

CL rats had increased LVIDd, LVIDs, diastolic and systolic volumes, and systolic 

wall stress along with decreased fractional shortening and ejection fraction compared to C 

rats (Table 2). Leuprolide induced inflammation in CL rats (Figure 2C) and cardiac fibrosis 

(Figure 2I) and reduced aortic responses to noradrenaline and acetylcholine while not 

changing the response to sodium nitroprusside in CL rats compared to C rats (Figure 3A, 3B, 

and 3C). Leuprolide did not induce inflammation or fat deposition in livers of CL rats (Figure 

4C and 4I). No changes in liver weight or ALT and AST activities were observed between C 

and CL rats (Table 2). 

HL rats had decreased heart rate and fractional shortening with increased LVIDd, 

LVIDs, and systolic volume than H rats (Table 2). HL rats showed inflammation and fibrosis 

in the heart (Figure 2F and 2L) and had similar aortic responses as in H and HOr rats (Figure 

3A, 3B, and 3C). HL rats showed inflammation and fat deposition in liver (Figure 4F and 4L) 

and no changes in liver weight or ALT and AST activities were observed between H and HL 

rats (Table 2). 
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Omacor treatment 

Dietary intake, body composition, and metabolic parameters 

Plasma total testosterone concentrations were reduced in CLOm rats from 8 weeks 

after initial injection, as in CL rats, and there were no differences in plasma total testosterone 

concentrations between CL and CLOm rats at 16 weeks (Figure 1B). Omacor treatment in 

CLOm rats starting 8 weeks after the initial leuprolide injection decreased body weight even 

after increasing food and energy intakes. Omacor reduced the feed efficiency, abdominal 

circumference, basal blood glucose concentrations, and area under the curve in CLOm rats. 

Plasma concentrations of total cholesterol and NEFA were decreased while triglycerides did 

not change when compared to CL rats. Total body lean mass, total body fat mass, 

retroperitoneal fat, and epididymal fat were decreased in CLOm rats compared to CL rats 

(Table 3). 

Omacor treatment did not change body weight and feed efficiency but it increased 

water intake (fructose-containing water) in HLOm rats compared to HL rats. Food and energy 

intakes did not change in HLOm rats compared to HL rats after 16 weeks (Table 1). 

Abdominal circumference did not change in HLOm rats compared to HL rats. The area under 

the curve for glucose load was higher in HLOm rats compared to HL rats while basal blood 

glucose concentrations were decreased in HLOm rats compared to HL rats (Table 1). Plasma 

concentrations of total cholesterol, triglycerides, and NEFA were reduced in HLOm rats 

compared to HL rats. In contrast to the plasma lipid profile, Omacor decreased lean mass in 

HLOm rats compared to HL rats while it increased fat mass in HLOm rats compared to HL 

rats. Bone mineral content was unchanged while bone mineral density increased in HLOm 

rats. Retroperitoneal fat, epididymal fat, and visceral adiposity index did not change in HL 

and HLOm rats while omental fat was increased in HLOm rats in comparison to HL rats 

(Table 3). 
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Cardiovascular and hepatic function 

In CLOm rats, blood pressure and left ventricular diastolic stiffness constant 

decreased with Omacor treatment compared to CL rats. Omacor treatment reduced 

inflammation and fibrosis in hearts of CLOm rats (Figure 5B and 5F) compared to CL rats 

(Figure 5A and 5E). Omacor treatment did not improve aortic responses in CLOm rats 

compared to CL rats (Figure 6A, 6B, and 6C). Liver weights decreased and ALT activity 

increased in CLOm rats (Table 4). Omacor treatment attenuated inflammation in livers of 

CLOm rats (Figure 7B) compared to CL rats (Figure 7A). 

In HLOm rats, LVIDs, diastolic volume, systolic volume, systolic wall stress, 

estimated left ventricular mass, right ventricular weight, and left ventricular weight were 

increased when compared to HL rats. LVPWs, fractional shortening, ejection fraction, 

systolic blood pressure, and left ventricular diastolic stiffness decreased in HLOm rats when 

compared with HL rats (Table 4). Omacor treatment reduced inflammation and fibrosis in 

hearts of HLOm rats (Figure 5D and 5H) compared to HL rats (Figure 5C and 5G). Omacor 

treatment did not improve aortic responses in HLOm rats compared to HL rats (Figure 6A, 

6B, and 6C). Omacor treatment attenuated inflammation and fat deposition in livers of 

HLOm (Figure 7D and 7H) rats compared to HL rats (Figure 7C and 7G). No changes were 

observed in liver wet weight or plasma ALT and AST activities between HL and HLOm rats 

(Table 4). 

Discussion 

Prostate cancer is the second most commonly diagnosed cancer world-wide covering 

14% of newly diagnosed cases of cancer and it is associated with about 6% total cancer 

deaths (Jemal, et al., 2011). The association between metabolic syndrome and prostate cancer 

focused on the function of insulin, IGF-1, and their receptors as strategic factors in 
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downstream signaling pathways that stimulate tumor growth (Renehan, et al., 2004). The 

GnRH agonist leuprolide decreased testosterone concentrations to lead to improved health 

status of prostate cancer patients by restricting the process of tumorigenesis in the prostate 

leading to tumor regression, easing of urinary symptoms and bone pain, and prolonged 

survival (You, et al., 2010). However, patients on androgen deprivation therapy show 

detrimental changes in body composition such as weight gain, loss of muscle mass, increased 

fat mass, and decreased muscle strength, with increased fasting glucose, triglycerides, and 

cholesterol concentrations (Macleod, et al., 2015). 

In the present study, we firstly demonstrated that orchidectomy is associated with 

worse pathophysiological signs of metabolic syndrome in rats fed a high-carbohydrate, high-

fat diet. These metabolic changes mimic the progression present in humans with metabolic 

syndrome (Panchal, et al., 2011). Secondly, we demonstrated that rats with testosterone 

deficiency induced either by leuprolide or orchidectomy developed similar 

pathophysiological changes when fed with high-carbohydrate, high-fat diet. Noticeably, 

orchidectomy delivered more severe pathophysiological complications than leuprolide. When 

leuprolide is given, there is a period of testosterone flare which, in humans, lasts for around 

1-2 weeks (Damber, et al., 2012). This is probably the reason for the slower decrease in

testosterone concentrations in the leuprolide-treated groups than in the orchidectomized 

groups. It also means that the exposure to testosterone deficiency in leuprolide-treated rats is 

shorter than in the orchidectomized groups. Further, testosterone deficiency induced cardiac 

inflammation and fibrosis with liver steatosis in the corn starch diet-fed rats. Thirdly, we 

demonstrated that a commercially-available mixture of ethyl esters of EPA and DHA 

(Omacor) reversed the cardiovascular complications such as decreased blood pressure and 

left ventricular wall stiffness, reduced hepatic damage such as decreased inflammation and 

fat deposition in liver and decreased plasma lipid concentrations in these leuprolide-treated 
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high-carbohydrate high-fat diet-fed rats. Thus, the positive changes against metabolic 

syndrome with the dietary supplementation have validated our hypothesis that this mixture of 

EPA and DHA ethyl esters has potential as a nutraceutical approach for reducing components 

of metabolic syndrome in prostate cancer patients treated long-term with leuprolide acetate. 

Orchidectomy and treatment with GnRH agonists such as leuprolide are successful 

interventions for prostate cancer by initiating testosterone deficiency (Marberger, et al., 

2010), although orchidectomy is more effective for the initiation of glandular apoptosis and 

atrophy (Cakiroglu, et al., 2016). Testosterone deficiency produces complications including 

increased central obesity, increased triglycerides concentrations and elevated fasting plasma 

glucose concentrations (Gandaglia, et al., 2014; Goldenberg, et al., 2011; Sidaway, 2015; 

Smith, et al., 2002; Wang, et al., 2011). Leuprolide acetate, although associated with these 

metabolic complications, has shown tolerability in routine clinical use (Tunn, 2011). Thus, it 

is important to treat complications associated with GnRH agonist therapy in order to provide 

benefits against prostate cancer while minimising the development of metabolic and 

cardiovascular complications. 

This study compared the physiological changes produced by testosterone deficiency, 

either by orchidectomy or leuprolide treatment, and whether these changes worsen during a 

high-carbohydrate, high-fat diet. In this study, corn starch was used as the control diet as corn 

starch is slowly digestible, low-glycemic carbohydrate (Panchal, et al., 2011). Unlike fructose 

in high-carbohydrate, high-fat diet, corn starch does not induce clinical signs of metabolic 

syndrome (Panchal, et al., 2011; Patel, et al., 2009; Thirunavukkarasu, et al., 2004). High-

carbohydrate, high-fat diet induced metabolic syndrome with obesity, dyslipidemia, 

hypertension and impaired glucose tolerance along with changes in liver and heart structure 

and function (Panchal, et al., 2011). Orchidectomy reduced lean mass while increasing fat 
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mass to a greater extent than leuprolide, possibly due to the slower onset of testosterone 

deficiency with leuprolide. Both orchidectomy and leuprolide increased the deposition of 

retroperitoneal fat, a major component of the abdominal fat. Presence of abdominal obesity is 

the major metabolic complication in the initiation of inflammation, potentially increasing the 

risk of cardiovascular disease (Després, 2012). During the protocol, rats were provided with 

similar environment including cage size and environmental enrichment with no facility to 

increase physical activity. We have previously shown that exercise in our high-carbohydrate, 

high-fat diet-fed rats improved metabolic and cardiovascular function (Cameron, et al., 

2012). This indicates that the basal physical activity in this study is unlikely to change 

metabolic or cardiovascular function by itself. 

Metabolic syndrome, characterized by the presence of central obesity, hypertension, 

and dyslipidemia as risk factors for type 2 diabetes and cardiovascular disease, is one of the 

major complications with leuprolide treatment (Dockery, et al., 2003; Haffner, et al., 1993; 

Simon, et al., 1997; Stellato, et al., 2000). Obesity as the major component of metabolic 

syndrome is still without an effective, non-invasive treatment free from adverse effects, with 

functional foods and nutraceuticals, including omega-3 fatty acids, proposed as effective 

treatment options (Brown, et al., 2015). EPA and DHA have been reviewed extensively for 

their effectiveness against metabolic syndrome (Bennacer, et al., 2017; Guo, et al., 2017; 

Tortosa-Caparros, et al., 2017). Omega-3 and omega-6 fatty acids play vital roles in 

regulating metabolism as well as state of inflammation (Poudyal, et al., 2011; Simopoulos, 

2016). A balance is required between pro-inflammatory omega-6 and anti-inflammatory 

omega-3 fatty acids for the body to maintain homeostasis (Simopoulos, 2016). With the 

increases in omega-6 fatty acid intake in the modern world, dietary supplementation of 

omega-3 fatty acids will reduce the imbalance between omega-3 and omega-6 intake and 

hence contribute in alleviating metabolic and inflammation-related complications 
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(Simopoulos, 2016). For omega-3 fatty acids, animal studies described anti-obesity effects, 

but human studies do not conclusively suggest this (Buckley & Howe, 2009). Further, 

conflicting results are available from the randomized trials of omega-3 fatty acids which may 

have resulted from differences in study design, dosage used, omega-6/omega-3 fatty acid 

ratio of the background diet, duration of omega-3 fatty acid supplementation, use of other 

supplements in addition to omega-3 fatty acids, and demographics of the study population 

(Simopoulos, 2016). 

This study used a commercial mixture of the ethyl esters of EPA and DHA, Omacor, 

to identify the beneficial effects in the treatment of leuprolide-treated obese rats. Omacor 

treatment improved bone mineral density, plasma concentrations of total cholesterol, 

triglycerides, and NEFA, and basal blood glucose concentrations. Omega-3 fatty acids 

attenuated obesity and glucose intolerance and decreased plasma triglycerides in humans 

(Lorente-Cebrian, et al., 2013; Rafiee, et al., 2016; Skulas-Ray, et al., 2011). Further, EPA 

and DHA suppressed the production of pro-inflammatory cytokines including IL-6, TNF-α, 

IL-1, and IL-2 (Das, 2006). Omega-3 fatty acids upregulated lipoprotein lipase and adipose 

triglyceride lipase, enzymes catalysing hydrolysis of triglycerides in skeletal muscle and 

adipose tissue, respectively (Zimmermann, et al., 2004). Further, omega-3 fatty acids played 

crucial roles in lowering the rate of fatty acid synthesis and glucose metabolism through 

downregulation of fatty acid synthase in liver (Kim, et al., 1999). Our study results also 

suggest that omega-3 fatty acid supplementation improved cardiovascular responses 

including reduced systolic blood pressure and left ventricular diastolic stiffness along with 

reduced inflammatory cell infiltration and collagen deposition. Further, Omacor reduced lipid 

accumulation and inflammatory cell infiltration without changing wet weight of liver and its 

enzyme activities. 
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The mechanism of action of omega-3 fatty acids is based on their anti-inflammatory 

responses (Mori & Beilin, 2004). Omega-3 fatty acids protected against metabolic syndrome 

through their anti-inflammatory and platelet activating properties that enhance endothelial 

function and normalize blood pressure by restricting the lipogenesis and activation of lipid 

oxidation (Carpentier, et al., 2006). In our previous study, EPA and DHA individually 

improved metabolic syndrome in obese rats at the same dose as in this study (3% in food) 

(Poudyal, et al., 2013). Colon-specific delivery of EPA or DHA increased the release of 

glucagon-like peptide 1 and insulin with subsequent reduction in glucose concentrations 

(Morishita, et al., 2008). Increasing adiponectin is one mechanism by which omega-3 fatty 

acids can improve cardiometabolic profile in people with cardiovascular risk (Barbosa, et al., 

2017). Plasma adiponectin was associated with insulin sensitivity (Borges, et al., 2017) and 

reduced plasma adiponectin was a marker of insulin resistance and increased risk of type 2 

diabetes (Yamauchi, et al., 2001). Both animal and human studies showed that omega-3 fatty 

acid supplements improved plasma adiponectin concentrations (Barbosa, et al., 2017; Itoh, et 

al., 2007; Mohammadi, et al., 2012; Neschen, et al., 2006). Thus, increasing both glucagon-

like peptide 1 secretion and adiponectin production by omega-3 fatty acids could improve 

both insulin secretion and sensitivity (Bhaswant, et al., 2015) resulting in improved recovery 

from insulin resistance and dyslipidemia, thus attenuating metabolic syndrome. Measuring 

glucagon-like peptide 1 and adiponectin before and after intervention with omega-3 fatty 

acids could support a plausible mechanism of action of EPA and DHA. However, this study 

was unable to measure these hormonal changes making it a limitation of our study. 

Conclusions 

We demonstrated that orchidectomy and treatment with a GnRH agonist produced 

similar worsening of metabolic syndrome symptoms and cardiovascular function. Omacor, a 
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combination of ethyl esters of EPA and DHA, delivered positive physiological and 

biochemical responses to reduce symptoms of metabolic syndrome. Further, this study is 

consistent with previous outcomes obtained for omega 3-fatty acids except for attenuating 

visceral obesity. Reduced systolic blood pressure and left ventricular stiffness reduction were 

the major cardiovascular outcomes from this study. Given these observations and the ease of 

administration, clinical trials of Omacor in men with prostate cancer being managed with 

androgen deprivation therapy are warranted. 
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Figure legends 

Figure 1. Plasma total testosterone concentrations in C, COr, CL, H, HOr, and HL rats (A) 

and in CL, CLOm, HL, and HLOm rats (B). Data are shown as mean ± SEM, n = 6–

10/group. End-point means without a common alphabet significantly differ, P<0.05. 

Figure 2. Effects of orchidectomy and leuprolide on the structure of the heart. Top row 

represents hematoxylin and eosin staining of left ventricle showing inflammatory cell (“in”) 

while the bottom row represents picrosirius red staining of left ventricle showing collagen 

deposition (“cd”) from C (A, G), COr (B, H), CL (C, I), H (D, J), HOr (E, K), and HL (F, L) 

rats. 

Figure 3. Cumulative concentration-response curves for noradrenaline (A), sodium 

nitroprusside (B), and acetylcholine (C) in thoracic aortic rings from C, COr, CL, H, HOr, 

and HL rats. Data are shown as mean ± SEM, n = 10–12/group. End-point means without a 

common alphabet significantly differ, P<0.05. 

Figure 4. Effects of orchidectomy and leuprolide on the structure of the liver. Top row 

represents hematoxylin and eosin staining of liver showing inflammatory cell (“in”) while the 

bottom row represents hematoxylin and eosin staining of liver showing fat deposition (“fd”) 

from C (A, G), COr (B, H), CL (C, I), H (D, J), HOr (E, K), and HL (F, L) rats. 

Figure 5. Effects of Omacor on leuprolide-induced changes in the structure of the heart. Top 

row represents hematoxylin and eosin staining of left ventricle showing inflammatory cell 

(“in”) while the bottom row represents picrosirius red staining of left ventricle showing 

collagen deposition (“cd”) from CL (A, E), CLOm (B, F), HL (C, G), and HLOm (D, H) rats. 

Figure 6. Cumulative concentration-response curves for noradrenaline (A), sodium 

nitroprusside (B), and acetylcholine (C) in thoracic aortic rings from CL, CLOm, HL, and 
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HLOm rats. Data are shown as mean ± SEM, n = 10–12/group. End-point means without a 

common alphabet significantly differ, P<0.05. 

Figure 7. Effects of Omacor on leuprolide-induced changes in the structure of the liver. Top 

row represents hematoxylin and eosin staining of liver showing inflammatory cell (“in”) 

while the bottom row represents hematoxylin and eosin staining of liver showing fat 

deposition (“fd”) from CL (A, E), CLOm (B, F), HL (C, G), and HLOm (D, H) rats. 
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Table 1. Effects of orchidectomy and leuprolide-induced changes in physiological and metabolic parameters 

Value are means ± SEM, n = 10–12. Mean values in a row with unlike superscript letters are significantly different (P<0.05). C, corn starch diet-fed rats; COr, 

orchidectomized rats fed corn starch diet; CL, leuprolide-treated rats fed corn starch diet; H, high-carbohydrate high-fat diet fed rats; HOr, orchidectomized rats fed high-

carbohydrate high-fat diet; HL, leuprolide-treated rats fed high-carbohydrate high-fat diet; NEFA, non-esterified fatty acids. 

Variables C COr CL H HOr HL 

P value 

Diet 
Testosterone 

deficiency 

Diet × 

testosterone 

deficiency 
Initial body weight (g) 337 ± 1 338 ± 1 337 ± 1 336 ± 1 339 ± 1 338 ± 1 0.68 0.14 0.52 

Final body weight (g) 419 ± 5
b
 429 ± 5

b
 417 ± 8

b
 520 ± 6

a
 522 ± 14

a
 539 ± 18

a
 <0.0001 0.71 0.37 

Water intake (mL/day) 31.0 ± 2.1
a
 32.0 ± 2.4

a
 26.4 ± 2.6

ab
 19.8 ± 1.6

bc
 19.8 ± 1.6

bc
 17.5 ± 1.7

c
 <0.0001 0.12 0.71 

Food intake (g/day) 31.6 ± 2.0
a
 31.9 ± 2.3

a
 36.1 ± 2.2

a
 20.8 ± 1.3

b
 21.1 ± 1.8

b
 24.3 ± 1.9

b
 <0.0001 0.08 0.96 

Energy intake (kJ/day) 346 ± 3
d
 356 ± 3

d
 401 ± 6

c
 444 ± 3

b
 447 ± 5

b
 507 ± 12

a
 <0.0001 <0.0001 0.54 

Feed efficiency (g/kJ) 0.23 ± 0.01
b
 0.25 ± 0.02

b
 0.20 ± 0.02

b
 0.41 ± 0.01

a
 0.40 ± 0.03

a
 0.40 ± 0.03

a
 <0.0001 0.48 0.51 

Abdominal circumference (cm) 18.4 ± 0.1
d
 20.1 ± 0.4

c
 20.1 ± 0.2

c
 22.0 ± 0.2

b
 23.2 ± 0.5

a
 23.0 ± 0.3

a
 <0.0001 <0.0001 0.52 

Basal blood glucose concentrations 

(mmol/L) 
4.1 ± 0.1d 4.7 ± 0.1c 4.8 ± 0.1c 5.1 ± 0.1bc 5.6 ± 0.1a 5.4 ± 0.2ab <0.0001 <0.0001 0.24 

Area under the curve (mmol/L×minutes) 632 ± 21c 776 ± 19b 781 ± 10b 774 ± 16b 854 ± 14a 844 ± 24a <0.0001 <0.0001 0.07 

Total cholesterol (mmol/L) 1.37 ± 0.05b 1.71 ± 0.15ab 1.65 ± 0.04ab 1.88 ± 0.06a 1.84 ± 0.17a 1.90 ± 0.10a 0.001 0.28 0.20 

Triglyceride (mmol/L) 0.60 ± 0.03c 0.56 ± 0.05c 0.60 ± 0.06c 1.42 ± 0.15b 1.06 ± 0.22bc 2.02 ± 0.32a <0.0001 0.019 0.032 

NEFA (mmol/L) 1.74 ± 0.16c 2.47 ± 0.17c 2.38 ± 0.19c 3.69 ± 0.37b 3.41 ± 0.43b 4.60 ± 0.35a <0.0001 0.034 0.09 

Whole-body lean mass (g) 312 ± 11a 271 ± 11b 275 ± 5b 314 ± 8a 229 ± 14c 308 ± 9a 0.78 <0.0001 0.002 

Whole-body fat mass (g) 114 ± 11c 121 ± 10c 112 ± 8c 191 ± 8b 259 ± 23a 161 ± 15bc <0.0001 0.0007 0.006 

Bone mineral content (g) 13.3 ± 0.5b 12.4 ± 0.4bc 11.9 ± 0.2bc 13.3 ± 0.4b 16.2 ± 0.6a 11.3 ± 0.5c 0.005 <0.0001 <0.0001 

Bone mineral density (g/cm2) 0.183 ± 0.003 0.173 ± 0.004 0.174 ± 0.003 0.183 ± 0.004 0.173 ± 0.003 0.177 ± 0.003 0.72 0.12 0.88 

Retroperitoneal fat (mg/mm tibial length) 122 ± 8d 231 ± 18c 220 ± 18c 366 ± 17b 537 ± 26a 479 ± 54a <0.0001 <0.0001 0.51 

Epididymal fat (mg/mm tibial length) 101 ± 4b - 125 ± 11b 224 ± 17a - 263 ± 26a <0.0001 0.07 0.65 

Omental fat (mg/mm tibial length) 65 ± 6b 90 ± 6b 83 ± 6b 132 ± 9a 137 ± 13a 147 ± 13a <0.0001 0.16 0.52 
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Table 2. Effects of orchidectomy and leuprolide-induced changes in cardiovascular and hepatic function 

Value are means ± SEM, n = 10–12. Mean values in a row with unlike superscript letters are significantly different (P<0.05). C, corn starch diet-fed rats; COr, 

orchidectomized rats fed corn starch diet; CL, leuprolide-treated rats fed corn starch diet; H, high-carbohydrate high-fat diet fed rats; HOr, orchidectomized rats fed high-

carbohydrate high-fat diet; HL, leuprolide-treated rats fed high-carbohydrate high-fat diet; LVIDd, left ventricular internal diameter during diastole; LVIDs, left ventricular 

internal diameter during systole; IVSd, interventricular septal thickness during diastole; IVSs, interventricular septal thickness during systole; LVPWd, left ventricular 

Variables C COr CL H HOr HL 

P value 

Diet 
Testosterone 

deficiency 

Diet × 

testosterone 

deficiency 
Heart rate (bpm) 253 ± 23

bc
 227 ± 17

c
 238 ± 11

bc
 350 ± 10

a
 282 ± 15

bc
 290 ± 15

b
 <0.0001 0.01 0.29 

LVIDd (mm) 6.64 ± 0.28
c
 6.63 ± 0.30

c
 7.70 ± 0.15

ab
 7.09 ± 0.22

bc
 7.23 ± 0.20

bc
 8.24 ± 0.22

a
 0.007 <0.0001 0.95 

LVIDs (mm) 3.11 ± 0.19
c
 3.68 ± 0.18

bc
 4.52 ± 0.19

a
 3.22 ± 0.23

c
 3.48 ± 0.25

bc
 4.14 ± 0.18

ab
 0.35 <0.0001 0.49 

IVSd (mm) 1.91 ± 0.12 1.96 ± 0.10 1.77 ± 0.06 2.05 ± 0.08 2.05 ± 0.17 1.82 ± 0.06 0.28 0.10 0.91 

IVSs (mm) 3.09 ± 0.26
ab

 3.13 ± 0.20
ab

 2.80 ± 0.08
b
 3.65 ± 0.09

a
 3.43 ± 0.20

ab
 3.12 ± 0.11

ab
 0.006 0.047 0.70 

LVPWd (mm) 1.70 ± 0.09 1.91 ± 0.12 1.79 ± 0.03 2.04 ± 0.06 2.08 ± 0.15 1.75 ± 0.05 0.05 0.06 0.14 

LVPWs (mm) 2.73 ± 0.16
b
 2.65 ± 0.14

b
 2.58 ± 0.15

b
 3.27 ± 0.14

a
 3.04 ± 0.13

ab
 2.95 ± 0.10

ab
 0.0003 0.23 0.80 

Diastolic volume (µL) 317 ± 41
c
 318 ± 38

c
 481 ± 26

ab
 427 ± 40

abc
 356 ± 30

bc
 531 ± 47

a
 0.036 0.0001 0.59 

Systolic volume (µL) 34.2 ± 6.1
c
 55.0 ± 8.2

bc
 100.2 ± 12.8

a
 38.4 ± 7.0

c
 49.2 ± 10.5

bc
 77.1 ± 8.6

ab
 0.28 <0.0001 0.33 

Stroke volume (µL) 283 ± 38
b
 263 ± 33

b
 381 ± 22

ab
 388 ± 35

ab
 306 ± 24

b
 454 ± 43

a
 0.009 0.0007 0.65 

SBP:LVIDs 42.4 ± 2.9
ab

 40.9 ± 1.8
abc

 32.1 ± 1.5
c
 48.3 ± 3.8

a
 48.0 ± 3.0

a
 36.9 ± 2.4

bc
 0.009 0.0001 0.91 

SBP:systolic volume 4826 ± 956
ab

 3016 ± 418
ab

 1599 ± 198
b
 5562 ± 1462

a
 4436 ± 840

ab
 2291 ± 479

ab
 0.17 0.001 0.89 

ESS:LVIDs 2.40 ± 0.10
b
 2.44 ± 0.08

ab
 2.84 ± 0.16

a
 2.30 ± 0.09

b
 2.69 ± 0.09

ab
 2.56 ± 0.11

ab
 0.63 0.007 0.05 

Cardiac output (mL/min) 70.1 ± 9.2
b
 56.3 ± 7.9

b
 90.6 ± 7.3

b
 135.2 ± 10.9

a
 84.8 ± 5.6

b
 130.9 ± 12.9

a
 <0.0001 0.0001 0.14 

Relative wall thickness 0.56 ± 0.05 0.58 ± 0.05 0.47 ± 0.02 0.56 ± 0.02 0.60 ± 0.05 0.45 ± 0.02 1.00 0.003 0.87 

Systolic wall stress 75.7 ± 7.0
b
 104.4 ± 8.9

ab
 129.9 ± 12.2

a
 74.8 ± 7.1

b
 93.3 ± 6.6

b
 106.4 ± 7.3

ab
 0.09 <0.0001 0.41 

Estimated LV mass (g) 0.81 ± 0.03
b
 0.89 ± 0.05

ab
 1.01 ± 0.04

ab
 1.16 ± 0.07

a
 1.08 ± 0.12

ab
 1.07 ± 0.06

ab
 0.006 0.65 0.11 

Fractional shortening (%) 53.1 ± 2.3
ab

 47.1 ± 2.1
bc

 41.2 ± 2.1
c
 56.6 ± 2.5

a
 49.6 ± 2.7

abc
 47.7 ± 2.3

bc
 0.033 0.0002 0.68 

Ejection fraction (%) 89.1 ± 1.6
a
 84.0 ± 2.0

ab
 79.3 ± 2.0

b
 91.2 ± 1.5

a
 86.6 ± 2.1

a
 85.2 ± 1.7

ab
 0.021 0.0002 0.53 

Systolic blood pressure (mmHg) 126 ± 2
d
 146 ± 1

bc
 144 ± 2

c
 152 ± 2

b
 161 ± 2

a
 150 ± 2

bc
 <0.0001 <0.0001 <0.0001 

Right ventricular wet weight (mg/mm 

tibial length) 
2.37 ± 0.19 3.39 ± 0.64 2.76 ± 0.16 4.21 ± 1.14 2.88 ± 0.12 3.19 ± 0.15 0.20 0.85 0.11 

Left  ventricular + septum wet weight 

(mg/mm tibial length) 
17.6 ± 0.5

b
18.1 ± 0.7

ab
18.1 ± 0.5

ab
19.5 ± 0.5

ab
19.9 ± 0.2

a
19.1 ± 0.5

ab
0.003 0.62 0.62 

Left  ventricular  diastolic stiffness 

constant, κ 
23.8 ± 0.7

b
 29.4 ± 0.6

a
 27.3 ± 0.5

a
 29.1 ± 0.7

a
 29.1 ± 1.1

a
 27.9 ± 0.7

a
 0.003 0.002 0.0006 

Liver wet weight (mg/mm tibial 

length) 
241 ± 7

b
 239 ± 7

b
 250 ± 15

b
 333 ± 8

a
 351 ± 11

a
 325 ± 19

a
 <0.0001 0.76 0.31 

ALT activity (U/L) 25.9 ± 1.6
b
 29.0 ± 2.6

b
 27.6 ± 1.9

b
 41.8 ± 2.0

a
 39.6 ± 1.6

a
 40.4 ± 5.9

a
 <0.0001 0.99 0.68 

AST activity (U/L) 64.3 ± 2.9
b
 78.3 ± 5.5

ab
 64.1 ± 3.5

b
 88.3 ± 3.6

a
 95.1 ± 4.3

a
 86.7 ± 9.4

a
 <0.0001 0.07 0.78 
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posterior wall thickness during diastole; LVPWs. left ventricular posterior wall thickness during systole; ESS, end-systolic stress; AST, aspartate transaminase; ALT, alanine 

transaminase. 
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Table 3. Effects of Omacor on leuprolide-induced changes in physiological and metabolic parameters 

Value are means ± SEM, n = 10–12. Mean values in a row with unlike superscript letters are significantly different (P<0.05). CL, leuprolide-treated rats fed corn starch diet; 

CLOm, leuprolide-treated rats fed corn starch diet supplemented with Omacor; HL, leuprolide-treated rats fed high-carbohydrate high-fat diet; HLOm, leuprolide-treated rats 

fed high-carbohydrate, high-fat diet supplemented with Omacor; NEFA, non-esterified fatty acids. 

Variables CL CLOm HL HLOm 

P value 

Diet + 

leuprolide 
Omacor 

(Diet + 

leuprolide) × 

Omacor 

Initial body weight (g) 337 ± 1 342 ± 2 338 ± 1 339 ± 3 0.61 0.13 0.31 

Final body weight (g) 417 ± 8b 319 ± 9c 539 ± 18a 536 ± 19a <0.0001 0.001 0.002 

Water intake (mL/day) 26.4 ± 2.6b 33.2 ± 2.6a 17.5 ± 1.7c 24.5 ± 1.1b 0.0001 0.002 0.96 

Food intake (g/day) 36.1 ± 2.2a 38.3 ± 2.8a 24.3 ± 1.9b 26.1 ± 1.1b <0.0001 0.34 0.93 

Energy intake (kJ/day) 401 ± 6c 487 ± 34b 507 ± 12ab 560 ± 21a 0.0001 0.002 0.44

Feed efficiency (g/kJ) 0.20 ± 0.02b -0.03 ± 0.01c 0.40 ± 0.03a 0.35 ± 0.03a <0.0001 <0.0001 0.0005 

Abdominal circumference (cm) 20.1 ± 0.2b 17.0 ± 0.2c 23.0 ± 0.4a 22.0 ± 0.4a <0.0001 <0.0001 0.002 

Basal blood glucose concentrations (mmol/L) 4.8 ± 0.1b 3.5 ± 0.1c 5.4 ± 0.2a 4.5 ± 0.3b 0.0002 <0.0001 0.31 

Area under the curve (mmol/L×minutes) 781 ± 10b 599 ± 16c 844 ± 24b 933 ± 40a <0.0001 0.07 <0.0001 

Total cholesterol (mmol/L) 1.65 ± 0.05b 1.04 ± 0.03d 1.89 ± 0.11a 1.41 ± 0.07c 0.0001 <0.0001 0.37 

Triglyceride (mmol/L) 0.60 ± 0.06b 0.27 ± 0.02b 1.98 ± 0.31a 0.33 ± 0.04b <0.0001 <0.0001 0.0004 

NEFA (mmol/L) 2.38 ± 0.19b 0.46 ± 0.03c 4.63 ± 0.43a 0.99 ± 0.18c <0.0001 <0.0001 0.0016 

Whole-body lean mass (g) 314 ± 8a 261 ± 10b 308 ± 9a 251 ± 13b 0.44 <0.0001 0.85 

Whole-body fat mass (g) 191 ± 8b 59 ± 8c 161 ± 15b 248 ± 27a <0.0001 0.18 <0.0001 

Bone mineral content (g) 0.173 ± 0.003 0.179 ± 0.003 0.177 ± 0.004 0.180 ± 0.001 0.40 0.14 0.62 

Bone mineral density (g/cm2) 12.0 ± 0.2b 10.6 ± 0.5b 11.3 ± 0.5b 16.8 ± 0.9a <0.0001 0.001 <0.0001 

Retroperitoneal fat (mg/mm tibial length) 220 ± 18b 95 ± 14c 479 ± 54a 406 ± 50a <0.0001 0.015 0.50 

Epididymal fat (mg/mm tibial length) 125 ± 11b 67 ± 7c 263 ± 26a 226 ± 26a <0.0001 0.02 0.59 

Omental fat (mg/mm tibial length) 83 ± 6c 79 ± 10c 147 ± 13b 249 ± 20a <0.0001 0.0007 0.0003 
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Table 4. Effects of Omacor on leuprolide-induced changes in cardiovascular and hepatic function 

Value are means ± SEM, n = 10–12. Mean values in a row with unlike superscript letters are significantly different (P<0.05). CL, leuprolide-treated rats fed corn starch diet; 

CLOm, leuprolide-treated rats fed corn starch diet supplemented with Omacor; HL, leuprolide-treated rats fed high-carbohydrate high-fat diet; HLOm, leuprolide-treated rats 

fed high-carbohydrate, high-fat diet supplemented with Omacor; LVIDd, left ventricular internal diameter during diastole; LVIDs, left ventricular internal diameter during 

systole; IVSd, interventricular septal thickness during diastole; IVSs, interventricular septal thickness during systole; LVPWd, left ventricular posterior wall thickness during 

diastole; LVPWs. left ventricular posterior wall thickness during systole; ESS, end-systolic stress; AST, aspartate transaminase; ALT, alanine transaminase. 

Variables CL CLOm HL HLOm 

P value 

Diet + 

leuprolide 
Omacor 

(Diet + 

leuprolide) × 

Omacor 

Heart rate 238 ± 11 255 ± 22 290 ± 15 283 ± 11 0.08 0.75 0.44 

LVIDd (mm) 7.70 ± 0.15
b
 7.64 ± 0.17

b
 8.24 ± 0.22

ab
 8.54 ± 0.16

a
 0.0002 0.50 0.32 

LVIDs (mm) 4.52 ± 0.19
b
 4.62 ± 0.13

b
 4.14 ± 0.18

b
 5.33 ± 0.09

a
 0.29 0.0001 0.0009 

IVSd (mm) 1.77 ± 0.06
ab

 1.68 ± 0.05
b
 1.82 ± 0.06

ab
 1.91 ± 0.02

a
 0.008 1.0000 0.08 

IVSs (mm) 2.80 ± 0.08
b
 2.72 ± 0.07

b
 3.12 ± 0.11

a
 2.92 ± 0.06

ab
 0.0028 0.10 0.47 

LVPWd (mm) 1.79 ± 0.03
ab

 1.67 ± 0.03
b
 1.75 ± 0.05

ab
 1.84 ± 0.04

a
 0.10 0.70 0.009 

LVPWs (mm) 2.58 ± 0.15
b
 2.39 ± 0.05

b
 2.95 ± 0.10

a
 2.65 ± 0.06

b
 0.003 0.017 0.58 

Diastolic volume (µL) 481 ± 26
b
 473 ± 34

b
 531 ± 47

b
 658 ± 36

a
 0.002 0.11 0.07 

Systolic volume (µL) 100.0 ± 12.8
b
 104.9 ± 8.9

b
 77.0 ± 8.6

b
 159.2 ± 7.8

a
 0.12 <0.0001 0.0003 

Stroke volume (µL) 381 ± 22
b
 368 ± 25

b
 454 ± 43

ab
 499 ± 31

a
 0.002 0.61 0.36 

SBP:LVIDs 32.1 ± 1.5
b
 26.5 ± 0.9

c
 36.9 ± 2.4

a
 25.9 ± 0.7

c
 0.18 <0.0001 0.08 

SBP:systolic volume 1599 ± 198
ab

 1216 ± 101
b
 2291 ± 479

a
 882 ± 48

b
 0.50 0.002 0.06 

ESS:LVIDs 2.84 ± 0.16 2.55 ± 0.07 2.56 ± 0.11 2.61 ± 0.08 0.33 0.28 0.13 

Cardiac output (mL) 90.6 ± 7.3
b
 94.5 ± 10.8

b
 130.9 ± 12.9

a
 141.2 ± 10.0

a
 0.0001 0.50 0.76 

Relative wall thickness 0.47 ± 0.02 0.44 ± 0.01 0.45 ± 0.02 0.44 ± 0.01 0.53 0.21 0.53 

Systolic wall stress 129.9 ± 12.2
ab

 117.8 ± 4.0
ab

 106.4 ± 7.3
b
 139.0 ± 4.0

a
 0.88 0.19 0.006 

Estimated LV mass (g) 1.01 ± 0.04
b
 0.92 ± 0.05

b
 1.07 ± 0.06

b
 1.29 ± 0.05

a
 0.0001 0.21 0.004 

Fractional shortening (%) 41.2 ± 2.1
b
 39.6 ± 0.7

b
 47.7 ± 2.3

a
 37.6 ± 0.8

b
 0.18 0.0009 0.013 

Ejection fraction (%) 79.3 ± 2.0
b
 77.9 ± 0.7

b
 85.2 ± 1.7

a
 75.6 ± 0.9

b
 0.22 0.0004 0.006 

Systolic blood pressure (mmHg) 144 ± 2
b
 122 ± 1

d
 150 ± 2

a
 137 ± 2

c
 <0.0001 <0.0001 0.016 

Right ventricular wet weight (mg/mm tibial 

length) 
2.76 ± 0.16

c
 3.59 ± 0.29

b
 3.19 ± 0.15

bc
 4.71 ± 0.22

a
 0.0008 <0.0001 0.11 

Left  ventricular + septum wet weight (mg/mm 

tibial length) 
18.1 ± 0.5b 17.2 ± 0.8b 19.1 ± 0.5b 22.9 ± 0.9a <0.0001 0.044 0.002 

Left  ventricular  diastolic stiffness constant, κ 27.3 ± 0.5a 22.8 ± 1.0bc 27.9 ± 0.7a 21.3 ± 1.0c 0.59 <0.0001 0.21 

Liver wet weight (mg/mm tibial length) 250 ± 15b 161 ± 7c 325 ± 19a 294 ± 14a <0.0001 0.0001 0.05 

ALT activity (U/L) 27.6 ± 1.9b 41.4 ± 4.4a 34.9 ± 2.4ab 39.7 ± 2.8a 0.36 0.004 0.15 

AST activity (U/L) 64.1 ± 3.5b 72.5 ± 3.1ab 86.7 ± 9.4a 70.0 ± 4.2ab 0.08 0.47 0.032 
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Figure 2. Effects of orchidectomy and leuprolide on the structure of the heart. Top row represents 
hematoxylin and eosin staining of left ventricle showing inflammatory cell (“in”) while the bottom row 

represents picrosirius red staining of left ventricle showing collagen deposition (“cd”) from C (A, G), COr (B, 
H), CL (C, I), H (D, J), HOr (E, K), and HL (F, L) rats. 
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Figure 3. Cumulative concentration-response curves for noradrenaline (A), sodium nitroprusside (B), and 
acetylcholine (C) in thoracic aortic rings from C, COr, CL, H, HOr, and HL rats. Data are shown as mean ± 

SEM, n = 10–12/group. End-point means without a common alphabet significantly differ, P<0.05. 
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Figure 4. Effects of orchidectomy and leuprolide on the structure of the liver. Top row represents 
hematoxylin and eosin staining of liver showing inflammatory cell (“in”) while the bottom row represents 
hematoxylin and eosin staining of liver showing fat deposition (“fd”) from C (A, G), COr (B, H), CL (C, I), H 

(D, J), HOr (E, K), and HL (F, L) rats. 
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Figure 5. Effects of Omacor on leuprolide-induced changes in the structure of the heart. Top row represents 
hematoxylin and eosin staining of left ventricle showing inflammatory cell (“in”) while the bottom row 

represents picrosirius red staining of left ventricle showing collagen deposition (“cd”) from CL (A, E), CLOm 

(B, F), HL (C, G), and HLOm (D, H) rats. 

40x14mm (300 x 300 DPI) 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 209



Figure 6. Cumulative concentration-response curves for noradrenaline (A), sodium nitroprusside (B), and 
acetylcholine (C) in thoracic aortic rings from CL, CLOm, HL, and HLOm rats. Data are shown as mean ± 

SEM, n = 10–12/group. End-point means without a common alphabet significantly differ, P<0.05. 
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Figure 7. Effects of Omacor on leuprolide-induced changes in the structure of the liver. Top row represents 
hematoxylin and eosin staining of liver showing inflammatory cell (“in”) while the bottom row represents 

hematoxylin and eosin staining of liver showing fat deposition (“fd”) from CL (A, E), CLOm (B, F), HL (C, G), 
and HLOm (D, H) rats. 
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Chapter 7. Discussion and conclusions
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Summary of results: This thesis has emphasised preclinical studies with an 

appropriate and characterised diet-induced rat model that mimics metabolic syndrome in 

humans to demonstrate that foods are sources of potentially effective treatments. Chapter 

1 describes metabolic syndrome and its components, metabolic syndrome-associated 

cardiovascular complications and role of coffee and its components against the metabolic 

syndrome. Prevalence of metabolic syndrome is increasing worldwide [1]. The 

constellation of metabolic disorders such as obesity, elevated blood pressure, 

dyslipidaemia and insulin resistance or impaired glucose tolerance escalates the risk of 

cardiovascular diseases, hepatic disorders and type 2 diabetes, which can lead to death. 

Oxidative stress and chronic inflammation have crucial roles in the development of these 

metabolic consequences. Since coffee and its components show antioxidant and anti-

inflammatory properties, it is logical to examine possible beneficial effects of coffee 

components against metabolic syndrome. 

Chapter 2 describes the metabolic, cardiovascular and liver remodeling induced 

by high-calorie rich diet in rats and development of metabolic syndrome parameters such 

as abdominal obesity, hypertension, impaired glucose tolerance and dyslipidaemia. 

Previous studies from our research group in diet-induced obese rats with Colombian 

coffee extract containing caffeine, chlorogenic acid, trigonelline and diterpenoids showed 

reversal of the cardiovascular and liver remodelling to reduce hypertension and cardiac 

stiffness as well as non-alcoholic steatohepatitis, decreased impaired glucose tolerance 

and hypertension without affecting plasma lipids or abdominal obesity [2]. Further, 

caffeine produced different responses, especially with pronounced decreases in body 

weight [3]. My project extended these studies, initially by defining responses to green 

(unroasted) coffee and decaffeinated green coffee in rats with diet-induced metabolic 

syndrome. Both coffee products were provided as an extract incorporated in the food. 

Green coffee reduced body weight, abdominal fats and body mass index without altering 

plasma lipid contents indicating fat redistribution. Decaffeinated green coffee reduced 

body weight and retroperitoneal fat without causing change plasma content of lipid. Both 

decreased infiltration of inflammatory cells in the heart and the liver, and decreased 

collagen accumulation in the heart wall and fibrosis in the liver. The similarity of the 

responses suggests that caffeine is not the major bioactive compound in green coffee 
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reducing metabolic syndrome. Other compounds in green coffee that could have 

biological effects include chlorogenic acid, trigonelline, diterpenes such as cafestol and 

kahweol, and phenolic acids. The doses of chlorogenic acid are similar to literature studies 

which decreased some of the physiological changes in metabolic syndrome [4, 5], so this 

compound was then investigated. 

Chapter 3 describes the responses to chlorogenic acid as an intervention in rats 

with diet-induced metabolic syndrome. There are several isomers of chlorogenic acid in 

nature, and my study investigated the most common, 5-O-caffeoylquinic acid. 

Chlorogenic acid decreased abdominal fat pads and body weight and improved 

cardiovascular and liver structure and function. This strongly suggests that chlorogenic 

acid produces at least some of the biological responses to green coffee. The roles of other 

compounds, especially trigonelline, the diterpenes present in coffee such as cafestol and 

kahweol, and phenolic acids, need further investigation. 

Chapter 4 examines whether coffee waste could become a functional food. In the 

coffee production process, coffee waste and by-products cause problems of waste 

management and environmental contamination. High consumption of coffee requires the 

processing of a large number of coffee berries which generates coffee pulp as the waste 

from processing. Coffee pulp accounts for ~29% (w/w) of the dry weight of the whole 

berry. The dry matter of coffee pulp contains carbohydrates (15.7%), proteins (17.4%), 

crude fibre (14.1%), cellulose (20.7%), hemicellulose (3.6%), lignin (14.3%) [6] and 

minerals (especially potassium), along with tannins, polyphenols such as chlorogenic acid, 

and caffeine [7]. Hence, the use of coffee pulp may be considered as a potential approach 

for management of metabolic complications associated with obesity as there are many 

reports of health benefits from these individual components of coffee pulp. My study 

showed that coffee pulp intervention attenuated obesity, hypertension, improved glucose 

tolerance, cardiovascular and hepatic dysfunction while reducing blood lipid 

concentrations without affecting plasma total cholesterol concentrations and vascular 

reactivity. 

Chapter 5 investigated the potential therapeutic effects of another major waste 

product in the production of coffee as a beverage, the spent coffee. This product contains 
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at least 1000 compounds, including the melanoidins produced during roasting of the beans 

by caramelisation and Maillard reaction. When given as a dietary intervention in high-

carbohydrate, high-fat diet-fed rats, spent coffee reversed the metabolic, cardiovascular 

and liver abnormalities. Addition of spent coffee normalised blood glucose concentrations 

and delayed intestinal glucose absorption, reduced the elevated triglycerides and non-

esterified fatty acids in plasma, and reversed abdominal obesity. Further, spent coffee 

reduced systolic blood pressure, cardiac wall stiffness and inflammation in the heart and 

liver. My study identified that gut microbiota played a major role in improving metabolic 

syndrome with spent coffee treatment. 

Prostate cancer is one of the commonly diagnosed cancers in men and is treated 

by chemical or surgical induction of testosterone deficiency [8]. However, testosterone 

deficiency is associated with metabolic disorders such as central obesity, dyslipidaemia, 

impaired glucose tolerance, hepatic and cardiovascular remodelling [9]. Chapter 6 has 

investigated whether omega-3 unsaturated fatty acids are effective as functional foods in 

testosterone deficiency in rats. Testosterone deficiency produced by castration or 

treatment with GnRH agonist increased the metabolic disturbances measured in rats fed a 

high-carbohydrate, high-fat diet. Addition of omega-3 unsaturated fatty acids to the diet 

decreased systolic blood pressure and left ventricular diastolic stiffness, reduced left 

ventricular infiltration of inflammatory cells and collagen deposition, reduced liver lipid 

accumulation and inflammatory cell infiltration without improving liver function. These 

results suggest that increased omega-3 unsaturated fatty acid supplementation could 

attenuate metabolic complications in prostate cancer patients with induced testosterone 

deprivation. 

Conclusions: My results from these studies with coffee, coffee waste and fish oil 

demonstrated the functional food properties where coffee and fish oil-intervention 

markedly reduced cardiovascular and hepatic disorder. Furthermore, positive outcomes 

from coffee waste studies introduced an innovation for coffee waste management and has 

shown the unique concept to apply them as dietary supplements in humans for managing 

obesity-associated health complications. These studies have shown that these components 

can improve several parameters of metabolic syndrome, particularly reversing 
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cardiovascular and adipocytes changes. Moreover, other fruits such as pineapple, apple, 

potato, strawberry and tomato are also sources of chlorogenic acid. Hence, their by-

products such as pineapple waste, apple pomace, potato peel, berry-juice processing waste 

could hold the relevant functional food properties against metabolic syndrome parameters. 

Human clinical trial could be the future prospective of coffee component and their wastes 

to describe their potential advantage against metabolic syndrome for human health. 

Overall, functional foods such as coffee and fish oil can be therapeutic supplement if taken 

in regular and proper amount as per individual needs. 

 Similar to coffee (green or roasted), many fruits and vegetables possess a range of 

compounds [10]. Some of the components from such fruits and vegetables have shown 

health benefits, including flavonoids, anthocyanins, ellagic acid and stilbenes [11]. As I 

have done in my thesis for coffee, many other foods still require extensive research to 

confirm whether they have sufficient bioactive compounds or whether we are discarding 

the most important components in food waste. Further, when considering the role of 

various components from a food, the food matrix should be considered in characterising 

its health effects [12]. Once health effects are defined for certain foods, food industries 

need to design the food products, functional foods or nutraceuticals that can attract 

compliance from the general community. 

 My thesis has defined responses to green coffee, coffee components and coffee 

waste products in a validated rat model of metabolic syndrome and obesity. As these 

interventions share antioxidant and anti-inflammatory activities, these responses may well 

be extended to other chronic diseases that are associated with oxidative stress and chronic 

inflammation, for example, inflammatory bowel disease, chronic kidney disease, non-

alcoholic fatty liver disease and osteoarthritis. Previous and current studies from our 

laboratory have characterised rat models of these chronic disease [13-15] (inflammatory 

bowel disease model – under review). 

 Another aspect to be explored from my thesis is the advantage of food waste such 

as coffee pulp and spent coffee. Other food waste such as red grape marc from the wine 

industry, citrus waste from juice industry and spent cereals from beer brewing are some 

of the major food wastes from food processing. These wastes generate greenhouse gases 
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[16] and have an immense environmental footprint. Thus, identifying foods wastes that 

can provide nutraceuticals will not only provide a cheaper source of bioactive compounds 

for human health improvement but also reduce the environmental footprint. Once these 

health effects are defined, it will be important to identify the commercial viability of these 

products and then develop food products that can be accepted by the general community. 

For defining health benefits and developing food products, human intervention trials will 

need to be carried out to define the extent of the responses produced in humans. Success 

of these trials will help in convincing the community to consume these foods and hence 

will generate a viable market for food industries. 

Although this study has provided evidence for effects of green coffee, coffee 

components and coffee wastes against diet-induced obesity, this study was unable to 

confirm molecular mechanisms involved in improvements of obesity-associated 

metabolic changes. Further, measuring a range of metabolic hormones such as insulin, 

leptin, adiponectin and resistin could supplement the data provided in this thesis. Further, 

identifying the role of gut microbiota for each intervention would further support the role 

of gut microbiota in improving metabolic complications in obesity. Further, sufficient and 

cost-effective availability of pure trigonelline, cafestol and kahweol would have allowed 

the study of the effects of these individual components of coffee. This would have further 

enabled me to extend my study outcomes to individual components.
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