
Vol.:(0123456789)

Data Science and Engineering
https://doi.org/10.1007/s41019-024-00251-0

RESEARCH PAPER

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node
Selection and Deterministic Block Finalization

Buti Sello1  · Jianming Yong2 · Xiaohui Tao3

Received: 18 February 2024 / Revised: 18 April 2024 / Accepted: 23 May 2024
© The Author(s) 2024

Abstract
The introduction of blockchain technology has brought about significant transformation in the realm of digital transactions,
providing a secure and transparent platform for peer-to-peer interactions that cannot be tampered with. The decentralised and
distributed nature of blockchains guarantees the integrity and authenticity of the data, eliminating the need for intermediaries.
The applications of this technology are not limited to the financial sector, but extend to various areas, such as supply chain
management, identity verification, and governance. At the core of these blockchains is the consensus mechanism, which
plays a crucial role in ensuring the reliability and integrity of a system. Consensus mechanisms are essential for achieving
an agreement amongst network participants regarding the validity of transactions and the order in which they are recorded
on the blockchain. By incorporating consensus mechanisms, blockchains ensure that all honest nodes in the network reach a
consensus on whether to accept or reject a block, based on predefined rules and criteria. The aim of this study is to introduce
a novel consensus mechanism named Erdos, which seeks to address the shortcomings of existing consensus algorithms, such
as the Proof of Work and Proof of Stake. Erdos emphasises security, decentralisation, and fairness. One notable feature of
this mechanism is its equitable node-selection algorithm, which ensures equal opportunities for all nodes to engage in block
creation and validation. In addition, Erdos implements a deterministic block finalisation process that guarantees the integrity
and authenticity of the blockchain. The main contribution of this research lies in its innovative approach to deterministic
block finalisation, which effectively mitigates the various security risks associated with blockchain systems.

Keywords  Blockchain deterministic finality · Blockchain fork-resistance · Blockchain security · Decentralised ledger
technology

1  Introduction

The paradigm shift brought about by blockchain technol-
ogy cannot be overlooked in our understanding of digital
trust and transactional transparency. Central to this ground-
breaking technology is the pivotal concept of the consensus
algorithms. These algorithms play a crucial role in enabling
disparate and decentralised nodes to reach a consensus on
the state of a blockchain ledger, thereby guaranteeing the
accurate and honest confirmation of transactions and the
proper addition of blocks. This guarantees the immutability
of transactions.

The utilisation of blockchain technology extends beyond
the realm of cryptocurrency, encompassing various domains,
such as supply chain management, identity verification, gov-
ernance, and numerous other sectors. This broad applicabil-
ity is due to the robust consensus algorithms employed by
blockchain, such as Proof of Work (PoW) and Proof of Stake

 *	 Buti Sello
	 Buti.Sello@unisq.edu.au

	 Jianming Yong
	 Jianming.Yong@unisq.edu.au

	 Xiaohui Tao
	 Xiaohui.Tao@unisq.edu.au

1	 School of Business, University of Southern Queensland,
West St, Toowoomba, QLD 4350, Australia

2	 School of Business, University of Southern Queensland,
Sinnathamby Blvd, Springfield, QLD 4300, Australia

3	 School of Mathematics, Physics and Computing, University
of Southern Queensland, West St, Toowoomba, QLD 4350,
Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-024-00251-0&domain=pdf
http://orcid.org/0000-0002-5414-4590

	 B. Sello et al.

(PoS), which guarantee enhanced security while simultane-
ously ensuring efficient transaction processing within the
network. Nevertheless, the existing consensus algorithms
suffer from certain limitations. For instance, the Proof of
Work algorithm is not only energy-intensive but also sus-
ceptible to centralisation, posing significant environmental
and security risks. On the other hand, the Proof of Stake
algorithm presents challenges related to the concentration
of wealth. These drawbacks impede widespread network
participation and prevent the attainment of a harmonious
equilibrium among decentralisation, security, and scalability
within the realm of blockchain technology.

To address these obstacles, we proposed a novel consen-
sus mechanism called Erdos. This mechanism prioritises
security, decentralisation, and fairness, and its compari-
son with PoW and PoS is shown in Fig. 1. It incorporates
a node-selection method that promotes equal opportunities
for all nodes to engage in block creation and validation. In
addition, it implements a deterministic process for finalis-
ing the blocks, ensuring the integrity and authenticity of the
blockchain. This study makes a significant contribution to
the field of blockchain technology by introducing a novel
method for achieving deterministic block finalisation. This
approach effectively mitigates various security risks inherent
in blockchain systems.

This study has a clear organizational structure. The intro-
duction is followed by Sect. 2, which offers a comprehensive
background and examines previous research on blockchain,
consensus mechanisms, and related challenges. Section 3
provides an in-depth overview of the Erdos Consensus, and
Sect. 4 discusses the intricacies of the Erdos architecture.
Section 5 presents a thorough discussion of our research and
future work, followed by the conclusion.

2 � Related Work

2.1 � An Overview of Blockchain Technology

Blockchain, or Distributed Ledger Technology (DLT),
commonly associated with Bitcoin, introduced in 2008 by
Satoshi Nakamoto, is a tamper-proof distributed ledger sys-
tem known for its decentralisation, immutability, and trans-
parency. Its utility has rapidly evolved from its initial use
in cryptocurrencies to a versatile tool applicable to diverse
sectors, including healthcare, banking, food safety, and sup-
ply chain management [7]. There are various types of block-
chains, such as public, private, and consortium blockchains,
each characterised by unique access controls and govern-
ance models. There is further categorisation, namely permis-
sioned or permissionless blockchains. They differ fundamen-
tally in terms of accessibility and governance mechanisms.
Permission blockchains, typically private or consortium
blockchains, restrict network access only to authorised par-
ticipants and manage consensus through a limited number of
nodes, thereby enhancing scalability, efficiency, and super-
visory control [10].

However, permissionless blockchains are open to anyone
where individuals can participate in consensus and validate
transactions without prior permissions, making them capa-
ble of being highly decentralised [31]. While open partici-
pation promotes a higher level of privacy and decentralisa-
tion, as it removes the necessity of a third-party authority
to ensure the integrity of the chain, it also presents chal-
lenges in a trustless environment. The absence of centralised
oversight to enforce flexible and adaptive controls, such as
security, scalability, and general governance, leads to dif-
ficulties in updating and upgrading systems efficiently, even

Fig. 1   Erdos versus PoW and PoS

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

hindering rapid evolution, giving rise to the need for some
form of autonomous governance across the network [30];
hence, blockchain consensus mechanisms have emerged to
fill this gap.

2.2 � Consensus Mechanisms

A consensus algorithm is pivotal in blockchain systems
as it serves as a collaborative framework that confirms the
legitimacy and order of transactions without the need for a
central authority [2]. Various consensus algorithms, such
as Proof of Work (PoW) and Proof of Stake (PoS), pos-
sess distinct advantages and drawbacks, impacting aspects
such as security, throughput, scalability, latency, and energy
efficiency. They are critical for achieving agreement across
distributed systems, particularly in the presence of failures
or malicious actors [29]. Consensus mechanisms allow deci-
sions and agreement on the state of the system, despite such
adversities. By incorporating consensus mechanisms, the
blockchain ensures that every honest node in the network
agrees on the acceptance or rejection of a block based on
predefined rules and criteria [10]. These mechanisms also
serve the purpose of determining which node will have the
authority to add the next block to the blockchain and receive
a reward for this service to the network. This reward is the
key to ensuring the liveness of the chain. The concept of
liveness in consensus mechanisms refers to the ability of the
system to continue to operate and make progress, ensuring
that transactions and operations are eventually completed
despite issues such as network delays or node failures. Live-
ness is highlighted as one of the fundamental components of
any consensus algorithm [5, 8, 29]. This component is cru-
cial for indicating that all nodes in the network are capable
of reaching a consensus and confirming transactions within
a reasonable timeframe, ensuring that the system remains
active and responsive. Liveness, along with safety, agree-
ment, termination, and fault tolerance, form the backbone of
a robust consensus algorithm which is necessary for main-
taining the overall health and effectiveness of blockchain
applications.

2.2.1 � Fairness

However, the reward introduces the problem of fairness
and equity in the right to produce and add a block to the
blockchain and receive rewards for one’s efforts. Sahin et al.
asserted that fairness and equity in the incentive structure of
a consensus mechanism are core to the cardinal principles
of blockchain [23]. For example, in PoW, mining a block
requires a miner to solve a difficult cryptographic puzzle.
This requires significant computational power, thereby

making it difficult for a solo miner with limited computing
power to obtain the opportunity to mine a block. This leaves
only those that can afford powerful and expensive computing
power with an unfair advantage [26]. The same applies to
PoS as participants who have financial resources to afford
putting forth a higher stake are also advantaged above those
with fewer resources bringing us to the old adage “the rich
get richer”. The excessive computational power required for
PoW also presents the issue of energy consumption.

2.2.2 � Energy Consumption

The Proof of Work (PoW) consensus mechanism, which is
one of the most commonly utilised in blockchain technolo-
gies such as Bitcoin, dominates the energy consumption in
cryptocurrencies owing to factors such as redundant opera-
tions, inefficient mining devices, and the type of energy
sources [14] and is particularly energy-intensive. This is
because of the requirement for extensive computational
effort to solve complex mathematical problems, which in
turn results in high electricity utilisation [2, 15].

2.2.3 � Centralisation

Consensus mechanisms play pivotal roles in how central-
ized or decentralized a blockchain network is. For instance,
the analysis by Rebello et al. highlights the security vul-
nerabilities associated with consensus mechanisms, such as
susceptibility to 51% attacks in PoW or the potential for
collusion in PoS systems, and stresses that these vulnera-
bilities can be exacerbated by the degree of centralisation in
the network. For example, if a small number of participants
control significant computing power in PoW or hold large
stakes in PoS, the network becomes more centralised and,
thus, more vulnerable to attacks [20]. Although centralised
mechanisms can provide some benefits in scalability and
transaction throughput, it comes at the cost of distributed
trust and security that the blockchain is meant to provide [9,
11, 27, 28]. Susceptibility to threats, such as the aforemen-
tioned 51% attack, is non-negligible when considering the
possible enormity of the threat.

2.2.4 � 51% Attack

A 51% attack occurs when an entity gains control over more
than 50% of a blockchain’s hashing power, allowing them
to manipulate the network by double-spending coins or pre-
venting other miners from confirming transactions [1].This
type of attack can be especially detrimental, as it also allows
attackers to fork the blockchain and create a private version,

	 B. Sello et al.

which can undermine the integrity and trust of the block-
chain network [13]. These attacks can significantly devalue
the associated cryptocurrency as trust in its stability and
security is diminished [22].

2.2.5 � Double Spend

Double spending can occur in several ways, but notably via
a Race Attack or 51% attack.

In a Race Attack, the attacker aims to use the same cur-
rency token for multiple recipients, similar to signing a
check for two individuals using the same available funds.
This attack can succeed, for example, because Bitcoin’s PoW
has a 10 min time lag to confirm a transaction. On average,
Bitcoin adds a new block within approximately 10 min [4,
16]. Within that time, transactions that carry higher transac-
tion fees are prioritised by miners when selecting transac-
tions from the transaction pool to be included in a new block.
This presents a ripe opportunity for race attacks [24].

The anatomy of this attack is as follows: Suppose an
attacker/user only has $ 10 balance in their blockchain wal-
let and initiates a transaction with a merchant, for example,
a coffee shop, worth $ 10. The transaction is broadcast to
the blockchain, and is thus placed in an unconfirmed trans-
action pool. At the same time, using the Unspent Transac-
tion Output (UTXO) method initiates another transaction
for the same $ 10 but makes this transaction more attractive
to miners by ensuring that the transaction fees are much
higher than the original transaction to the merchant. In the
UTXO model, a transaction output is considered "unspent"
until it is used as an input in a new transaction. In this case,
both transactions end up in the unconfirmed transaction
pool. Miners are more likely to select the second transaction
because they have higher fees and include it in the next block
[12]. The merchant, who may not have waited for transaction
confirmation, would have proceeded to provide the goods
“purchased”. On the 10 min time elapse for the new block
to be added to the chain, the fraudulent transaction has been

Fig. 2   Double-spend example

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

included in the block. Eventually, the original transaction
to the merchant makes it into being selected for inclusion
in the next block, and it fails to validate regardless of the
fact that goods or services may have already been issued as
shown in Fig. 2.

As mentioned earlier, the 51% attack has many serious
security issues for blockchains but also provides further vul-
nerability with regard to double spending [3]. In the con-
text of double spending, the mechanism of attack can be
conducted as follows: the attacker or a group of attackers
aims to acquire over 50% of the network’s hash computing
power. It is worth noting that this proves challenging in large
blockchain networks because it is costly to gain over 50% of
the hash power. However, the smaller chains are particularly
vulnerable. After gaining 50% of hash power, attacker/s ini-
tiates a legitimate transaction to a merchant or other party.
This transaction is processed and confirmed normally in a
new block. Because attacker/s have more computing power
in the network, they can begin a secret fork, that is, mining
blocks in secret, thus creating a private fork of the chain [1].
In this secret private fork, they can include transactions that
can send the already spent currency back to themselves, in
essence, reversing the original transaction. This chain can
grow faster to become the longest chain because attacker/s
possess more computing power than the rest of the network
[17]. Because the PoW protocol dictates that where there
are multiple forks of a chain, the longest chain is the valid
one [6, 25], the secret, fraudulent fork will be adopted as
the legitimate fork, invalidating the original legitimate
transaction.

2.2.6 � Longest Fork and Probabilistic Block Finalisation

The feature of immutability is core to blockchain technology.
Probabilistic block finalisation, made possible by the longest
fork issue, goes against the core principle of immutability in
the blockchain technology.

The longest-fork issue arises when multiple blocks are
mined simultaneously, resulting in the creation of multi-
ple competing chains. Risks include selfish mining, block
orphanings, and chain reorganisation, often referred to as
chain reorg issues.

Selfish mining is a strategy in which miners attempt to
gain an advantage by keeping new blocks private instead of
immediately broadcasting them to the network. By doing so,
they can potentially increase their chances of mining the next
block, leading to a longer chain and higher reward. Block
orphaning, on the other hand, is a situation where a valid
block, which was added to a forked chain, becomes obsolete

and is discarded because another valid block on a different
fork chain becomes dominant.

Chain reorg refers to a situation in which a previously
accepted chain is replaced by an alternative, longer chain.
This of course, being the basis of Nakamoto-based block-
chains’ way of dealing with consensus, where the long-
est fork is considered the valid one and thus becomes the
preferred fork, as it ensures the highest level of security
and validity, except where it is a malicious chain reorg. A
malicious chain reorg can open the chain to various other
vulnerabilities.

2.2.7 � Scalability

Scalability is a critical concern in blockchain technology and
refers to a network’s ability to handle an increasing load of
transactions efficiently [21]. Scalability in blockchain net-
works, particularly PoW-based chains, has been attributed to
the speed of transaction processing, which does not increase
proportionally with the addition of additional resources [19].
In Bitcoin, a new block is created and added to the chain
approximately every ten minutes [18].

3 � Erdos Overview

The Erdos Consensus has taken a novel approach to address
some of the challenges facing blockchain technology. Par-
ticular variance from the common consensus mechanisms
is as follows:

Transaction pool: All transactions are collected in a pool,
and each transaction includes a timestamp that is utilised
for the selection of the forger and vetters. The selection
of the forger and vetters is initiated when the number of
transactions in the transaction pool reaches a predeter-
mined algorithmic threshold.
Forger and vetter selection: During the creation of a new
block, a forger and two vetters are chosen. The selection
process involves using the timestamp from the last trans-
action in the pool and a seven-digit subset of the hash to
select the forger and vetters from a list of eligible nodes.
Nodes are deemed eligible if they have not participated
as a sender or recipient in any transactions of the current
block, and if their local blockchain is up-to-date by com-
paring the hash of the last block in each node’s blockchain
with the hash of the last block in the forger, vetter1, and
vetter2’s blockchains.

	 B. Sello et al.

Block creation: The forger constructs a new block con-
taining transactions from the pool and total transaction
fees. The block contains the hash of the previous block
and addresses of the forger and vetters. The ‘Block‘ class
has been structured to include the forger and vetters as
attributes, which are included in the calculation of the
block’s hash. In addition, a Merkle tree of the included
transactions is generated. Figure 3 shows the full block
structure.
Block verification: The two vetters verify the new block.
If both vetters agree that a block is valid, it is added to
the blockchain. The verification process is conducted in
two phases. First, after a forger has created a prospective
block with all the necessary block details, the first vetting
commences and is performed by Vetter1. Upon successful
vetting by Vetter1, the forger adds reward transactions to
the block. Rewards are allocated as predetermined per-

centages of the total block transaction fees, which are
fixed amounts per transaction. These rewards are distrib-
uted to the forger, Vetter1, and Vetter2 as well as a calcu-
lated surplus sent in a separate transaction to the network
for blockchain network management and maintenance.
A new Merkle tree, including the new transactions, is
created and replaces the original one, and a new hash
is calculated. This updated block is then sent to Vetter2
for the second vetting. The second vetting confirms the
modified block. Upon successful confirmation, the forger
appends the block to the chain and all wallets related to
the transactions in the new block are updated.
Blockchain update: All nodes in the network update their
blockchain to include the new block, ensuring that all
nodes have the same version of the blockchain, which is
essential for the security and reliability of the network.

4 � Erdos Architecture

4.1 � Forger and Vetter Selection

The key to the uniqueness of the Erdos algorithm is the
selection of a node that adds a new block to the block-
chain. In contrast, the Proof of Work employs the energy-
inefficient method of mining which, regardless of both
extensive and wasteful resource consumption, still results
in the possibility of selfish mining, double spending, and a
51% attack risk due to the non-deterministic finalisation of
a block. The Erdos algorithm selects three random nodes
using multiple layers of randomness, including the genera-
tion of a unique subset, as shown in Fig. 4.

These three nodes consist of a forger and two vetters,
who perform the following tasks:

The forger is ultimately responsible for creating a new
prospective block, which then undergoes the first vetting
conducted by Vetter1. Upon passing the first vetting, the
forger then adds reward transactions to the transactions in
the prospective block, after which a second vetting, con-
ducted by Vetter2, verifies that the newly added reward
transactions are valid. With the second vetting successful,
the forger proceeds to add a newly created block to the
blockchain.

The fact that only one forger, one vetter1, and one vet-
ter2 can ever be selected in the creation of the next block
to be added to the chain, and no other block can be added
until the process of this forging is completed, eliminates
the risk of having a longer chain resulting from selfish
mining.

Fig. 3   Erdos block structure

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

Algorithm 1   Select Forger and Two Vetters

The function detailed in Algorithm 1 introduces a method
for selecting forgers and vetters based on the latest transac-
tion timestamp and a randomised process with the aim of
ensuring fairness and unpredictability in the selection pro-
cess. There is an additional check to ensure that only nodes
with the latest blockchain information are eligible for selec-
tion. It avoids potential biases by excluding recent transaction
participants and relies on cryptographic hashing for secure
and random selections, thereby contributing to the overall
integrity and decentralisation of the blockchain network.

Step 1 Hashing the Last Transaction Timestamp: The
function begins by extracting the timestamp of the last
transaction in the transaction pool. This timestamp is
converted into a string and hashed using the SHA256
algorithm to produce an initial hash.
Step 2 Generating a Random Subset Index: A random
starting index is generated within the range of the initial
hash’s length minus seven. This index is used to select a
seven-digit subset from the initial hash.

Step 3 Hashing the Subset: The selected seven-digit sub-
set of the initial hash is hashed again using SHA256 to
create a subset hash.
Step 4 Excluding Addresses: The function compiles a
set of excluded addresses, comprising the senders and
recipients of all transactions in the current block. These
addresses are excluded from the selection process to
maintain impartiality.
Step 5 Identifying Eligible Nodes: The function creates
a list of eligible nodes, including all nodes in the net-
work, except those with excluded addresses. Additionally,
it ensures that only nodes with up-to-date information
about the last block are considered, thereby enhancing
the integrity of the process.
Step 6 Selecting Forger and Vetters: This function
employs a min-heap to identify the nodes closest to the
subset hash. The closest node is chosen as the forger, and
the next two closest nodes are selected as vetters.

	 B. Sello et al.

Step 7 Validation of Eligible Nodes: If fewer than three
eligible nodes, the function returns an error message,
indicating insufficient nodes for selection.
Step 8 Returning the Selection: The function returns a
tuple containing the addresses of the selected forger and
two vetters.

4.2 � First Vetting

Algorithm 2 describes a function that evaluates whether
a given block in a blockchain network passes the initial
criterion set for vetting by the first designated vetter. It is
crucial to maintain the integrity and security of the block-
chain, ensuring that only blocks that meet the defined cri-
teria are considered valid and are added to the chain

Algorithm 2   First Level Vetting of a Block

Step 1 Node Address Verification: Initially, the function
checks whether the address of the current node matches
the address of the first vetter (vetter1). If not, the function
returns false, indicating that this node is not authorised to
perform the first vetting.
Step 2 Transaction Verification: The function iterates
through each transaction (tx) in the block. Two checks
are performed for each transaction. The first is signature
verification, which checks whether the transaction’s sig-
nature is valid by using the verify_signature method of
the sender’s wallet. This ensures that the transaction was
indeed initiated by the sender and has not been tampered
with. The second is Transaction Validity, which checks
if the transaction is valid based on prescribed criteria; if
any transaction fails, the function returns false.

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

Step 3 Forger and Vetter Verification: The function veri-
fies that the forger and the second vetter (vetter2) of the
block are the same as those specified in the inputs. If there
is a mismatch, it returns false. This step ensures that the
block was proposed and vetted by the correct nodes.
Step 4 Block Consistency Check: The function retrieves
the last block from the current blockchain (self.chain) and
first, it compares the previous_hash of the current block
with that of the last block. These must match in order
for the block to be considered valid. Second, it checks
whether the index of the current block is exactly one more
than that of the last block, ensuring the correct sequence
in the blockchain. Any discrepancy in these checks results
in false-return values.

Step 5 Transaction Fee Calculation: The function calcu-
lates the total transaction fees in the block and compares
it with the transaction_fees field of the block. If there is a
mismatch, it returns false.
Step 6 Merkle Tree Validation: The function constructs a
Merkle tree using the transactions from the last transac-
tion pool and compares it with the Merkle tree included
in the block. If they do not match, it returns False.
Step 7 Successful Vetting: If all checks pass, the function
returns True, indicating that the block has successfully
passed the first level of vetting.

Fig. 4   Subset_Hash generation

	 B. Sello et al.

4.3 � Second Vetting

Algorithm 3   Second Level Vetting of a Block

The Second_Vetting function detailed in Algorithm 3 is
designed to perform a secondary-level validation on a new
block in a blockchain network. It specifically focuses on
verifying the integrity of the block’s Merkle tree. It acts
as a safeguard, ensuring that only blocks with verified and
consistent transaction data are accepted into the blockchain.

Step 1	� Vetter Verification: The function begins by confirm-
ing whether the address of the current node matches
that of the second vetter (vetter2). This step ensures
that only the designated second vetter can perform
this level of vetting. If the addresses do not match,
the function immediately returns false, indicating
that the node is not authorised to vet the block.

Step 2	� Merkle Tree Reconstruction: The function recon-
structs the Merkle tree from the transactions pre-
sent in the new block. This is achieved by convert-
ing each transaction (tx) into a dictionary format

(tx.__dict__), and then using these dictionaries to
create a new Merkle tree.

Step 3	� Merkle Tree Verification: The function then com-
pares the newly constructed Merkle tree with the
Merkle tree already present in the new_block. This
comparison is crucial because it ensures the integ-
rity and consistency of the transaction data within
the block. If the Merkle trees do not match, it signi-
fies a discrepancy in the transaction data, and the
function returns false.

Step 4	� Successful Vetting: If the reconstructed Merkle tree
matches that in the block, the function returns True.
This indicates that the block passed the second level
of vetting, verifying the integrity of its transactions
and their organisation within the Merkle tree.

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

4.4 � Finalisation

Algorithm 4   Finalize Block

Algorithm 4 describes the finalize_block function that is
responsible for finalising a block in a blockchain network.
It achieves this by distributing rewards, updating the block-
chain with the new block, and managing wallet balances.

Step 1 Reward Calculation: The function starts by calcu-
lating the total transaction fees in the new_block. It then
computes the reward for the forger and the two vetters,
which is 75% of the total fees divided equally between
them. The remaining 25% of fees, termed surplus, is allo-
cated to the network. These values were set arbitrarily for
the purposes of this study.
Step 2 Creating Reward and Surplus Transactions:
Reward transactions are created for forger, vetter1, and
vetter2. Additionally, a surplus transaction is created for
the network, where the network itself is both the sender
and recipient.
Step 3 Adding Transactions to the Block: All new rewards
and surplus transactions are added to the new_block.

Step 4 Merkle Tree Update: A new Merkle Tree, includ-
ing all transactions in the new_block, is created and
assigned to the block, ensuring accurate representation
of all transactions.
Step 5 Second Vetting: The updated block undergoes a
second vetting process. If the block fails, the function
returns a message, indicating that the second vetting has
failed.
Step 6 Block Hash Calculation: Assuming that the second
vetting is successful, the hash of new_block is recalcu-
lated to reflect the inclusion of the new transactions.
Step 7 Updating the Blockchain: The newly finalised
block is appended to the blockchain (self.chain) and the
transaction pool (self.transaction_pool) is cleared.
Step 8 Updating Wallet Balances: The wallets of the
forger, vetter1, and vetter2 are updated with their respec-
tive rewards. In addition, the wallet of the network is
updated with the surplus amount.
Step 9 Final Output: The function returns a message indi-
cating successful finalisation and addition of the block to
the blockchain.

	 B. Sello et al.

 This function ensures the integrity of the blockchain by
finalising the blocks using a rigorous process of reward dis-
tribution, Merkle tree construction, vetting, and blockchain
update. This is a critical step in maintaining the consistency
of the blockchain and incentivising nodes participating in
the block validation and creation process. Figure 5 shows
the block creation process from start to finish.

4.5 � Transaction Pooling

Algorithm 5   Add Transaction to Pool

The add_transaction_to_pool function described in Algo-
rithm 5 adds new transactions to the transaction pool in the
blockchain network. It validates transactions, manages the
transaction pool, and triggers block creation when the pool
reaches its capacity.

Step 1 Transaction Signature and Validation: Initially, the
function generates a signature for the transaction using
the sender’s wallet, and assigns this signature to the trans-
action. It then verifies the validity of the transaction. If

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

the transaction is invalid, the function returns an error
message indicating an invalid transaction.
Step 2 Adding to the Transaction Pool: If transaction is
valid, it is appended to the pool.
Step 3 Checking the Pool Size and Block Creation: The
function checks whether the transaction pool has reached
its maximum capacity (assumed to be five transactions in
this case). This value was chosen arbitrarily for this study.
If the pool is full, the function initiates the block-creation
process by first creating a Merkle tree from the transac-
tions in the pool. Then, the Merkle tree is converted into
a string format, after which the function selects the forger
and two vetters using the select_forger_and_two_vetters
method. A new block is created using the selected forger
and vetters.
Step 4 Block Vetting and Finalisation: If the vetting by
both vetters is successful, the block is finalised using
the finalize_block method and the block is added to the
blockchain, the function returns a message stating that a

new block has been added to the blockchain. In the event
that the block fails in the second round of vetting during
finalisation, the function returns a message indicating this
failure.
Step 5 Return Message: If the transaction pool has not
reached its maximum capacity, the function simply
returns a message confirming that the transaction has
been added to the pool.

4.6 � Node Chain Synchronisation

To overcome the longest-fork issue when synchronising
node chains, the normal path for obtaining the longest chain
from the blockchain node list is used. The identified long-
est chain must be verified, and this is done by checking it
against the last block’s forger and two vetters, as these are
the most reliable nodes because they had been vetted for
the process of producing the previous block. Algorithm 6
illustrates how this is achieved.

Algorithm 6   Check If Last Block is Up-To-Date

	 B. Sello et al.

Fig. 5   Erdos block creation overview

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

This function verifies the current status of a node’s block-
chain by comparing its latest block with those of key net-
work participants: the previous forger and two vetters. This
method is employed to ensure consistency across different
nodes in the blockchain network.

Step 1 Hash Extraction: The function begins by obtaining
the hash of the last block in the given node’s blockchain.
This hash serves as the node’s current Blockchain status
identifier.
Step 2 Comparison with Key Nodes: The function
retrieves the hash of the last block from the blockchains
of the previous forger, previous_vetter1, and previous_
vetter2.
Step 3 Up-to-Date Validation: The function checks
whether all three hashes (from the forger, vetter1, and vet-
ter2) match the node’s last block hash. If they all match,
it indicates that the node’s blockchain is up-to-date with
the key participants’ blockchains.
Step 4 Returning the Status: The function returns TRUE
if the node’s last block is up-to-date, meaning that it
matches the last blocks of the forger and both vetters,
and FALSE if there is a mismatch, indicating that the
blockchain of the node might not be synchronised with
the rest of the network.

 This function is crucial in that it ensures that a node’s block-
chain is aligned with that of the main validators (forger and
vetters). This helps to mitigate issues related to blockchain
forks and synchronisation discrepancies, which are common
challenges in distributed ledger systems.

This function is crucial in that it ensures that a node’s
blockchain is aligned with those of the main validators
(forger and vetters). This helps mitigate issues related to
blockchain forks and synchronisation discrepancies, which
are common challenges in distributed ledger systems.

5 � Discussion

Erdos presents a novel consensus mechanism that addresses
the key concerns surrounding security, scalability, decentrali-
sation, and fairness. While PoW and PoS provide high security
through computational work and stake size, respectively, they
remain vulnerable to 51% attacks. Erdos tackles this problem
by relying on randomly chosen vetters, independent of min-
ing power or stake, and deterministic block finalisation. This
eliminates the advantage of majority control and mitigates the
risk of forking, which is crucial for preventing 51% attacks.

Double spending, another potential security threat, is
eliminated in Erdos through the involvement of two vetters

alongside the forger for each block. This selection process
ensures that no single node has an undue influence, and the
vetting process itself acts as a safeguard against malicious
transactions. Even if a forger attempts to sneak in fraudulent
transactions, the vetters have a final say before finalisation,
effectively preventing double spending.

Scalability is often a bottleneck in consensus mecha-
nisms. In the case of Erdos, the forger and vetter selection
processes could be potential choke points. The proof-of-con-
cept deployment, which was written in Python and deployed
in a local development environment, shows an efficient algo-
rithm with O(n + m) complexity, where n is the number of
transactions and m is the number of nodes. Testing a large-
scale implementation could further shed light on Erdos’s
capabilities.

Decentralisation is a core principle of blockchain technol-
ogy, and Erdos delivers this promise through a random vetter
selection process. Every participant has an equal chance of
being chosen, eliminating the possibility of a central author-
ity or bias.

Fairness is another key aspect of well-designed consen-
sus mechanisms. Erdos ensures a fair reward distribution by
granting all participants an equal opportunity to be selected
as a forger or vetter. Only those involved in transactions or
with outdated blockchains are excluded from participation
in a given block cycle to ensure a transparent and equitable
system.

5.1 � Future Work

Although the proposed Erdos consensus algorithm presents
a promising approach to address the challenges of security,
decentralisation, and fairness in blockchain systems, several
areas warrant further exploration and research.

5.1.1 � Large‑scale Implementation and Performance
Evaluation

This study introduced the theoretical foundation of the Erdos
algorithm; however, it is crucial to implement and evaluate
its performance on a large-scale blockchain network. Such
implementation would enable a comprehensive assessment
of the scalability, robustness, and practical performance of
the algorithm under real-world conditions. This involves
deploying the Erdos algorithm on a distributed network
with a substantial number of nodes and conducting rigorous
performance tests to evaluate metrics, such as transaction
throughput, latency, and resource utilisation. Additionally,
this large-scale implementation would provide insights into
the behaviour of the algorithm and potential bottlenecks
when operating at scale.

	 B. Sello et al.

5.1.2 � Formal Security Analysis and Potential Attack Vectors

Although the Erdos algorithm introduces novel mechanisms
to enhance security and mitigate potential threats, thorough
formal security analysis is essential. This analysis should
aim to identify potential attack vectors and vulnerabili-
ties, such as Sybil attacks, Eclipse attacks, and Distributed
Denial of Service (DDoS) attacks. By formally modelling
and analysing the algorithm’s security properties, poten-
tial weaknesses can be uncovered and insights can be pro-
vided towards developing countermeasures or algorithmic
improvements to enhance the overall security and resilience
of the Erdos consensus mechanism.

5.1.3 � Governance and Decision‑making Mechanisms

As blockchain networks continue to grow and evolve, effec-
tive governance and decision-making mechanisms have
become increasingly crucial. Future research could explore
how the Erdos algorithm can be extended or adapted to sup-
port on-chain governance, voting mechanisms, and decen-
tralised decision-making processes. This would involve
developing frameworks and protocols that enable network
participants to propose and vote on changes or updates to
the blockchain system, while maintaining the principles of
decentralisation, transparency, and fairness. Such govern-
ance mechanisms could facilitate the long-term sustainabil-
ity and continuous improvement of blockchain networks
based on the Erdos consensus algorithm.

By addressing these future research directions, the Erdos
consensus algorithm can be further refined, validated, and
adapted to meet the ever-evolving demands of the blockchain
technology and its diverse applications.

6 � Conclusion

The Erdos consensus algorithm is a significant contribu-
tion to the field of blockchain technology as it addresses
key issues of security, decentralization, and fairness. By
employing a deterministic block finalization process, the
algorithm eliminates risks such as double-spending and
provides fork resistance, thus ensuring the authenticity
of the blockchain. Furthermore, the multi-tiered vetting
process and fair reward distribution mechanism help to
mitigate centralization.

However, as with any new consensus mechanism, it is
important to thoroughly test and gradually implement the
Erdos algorithm to validate its potential in future blockchain
applications. As it has not been tested on a large-scale net-
work, the performance and robustness of the algorithm in a
real-world situation remain undetermined.

Author Contributions  B. Sello: conception, design and writing. J. Yong
& X. Tao: review, edit, consultation.

Funding  The authors did not receive support from any organization
for the submitted work.

Data Availibility  Not Applicable.

Code Availibility  Not Applicable.

Declarations 

Conflict of interest  The authors have no Conflict of interest to declare
that are relevant to the content of this article.

Ethical Approval  Not Applicable.

Consent to Participate  Not Applicable.

Consent for Publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Akbar NA, Muneer A, Elhakim N, Fati SM (2021) Distributed
hybrid double-spending attack prevention mechanism for proof-
of-work and proof-of-stake blockchain consensuses. Future Inter-
net 13(11):285

	 2.	 Alam S (2023) The current state of blockchain consensus mech-
anism: issues and future works. Int J Adv Comput Sci Appl
14(8):84–94

	 3.	 Apostolaki M, Zohar A, Vanbever L (2017) Hijacking bitcoin:
Routing attacks on cryptocurrencies. pp 375–392

	 4.	 Bissias G, Levine B (2020-01). Bobtail: improved blockchain
security with low-variance mining

	 5.	 Blackshear S, Chursin A, Danezis G, Kichidis A, Kokoris-
Kogias L, Li X, Zhang L (2023) Sui lutris: a blockchain com-
bining broadcast and consensus. arXiv.​org,

	 6.	 Bünz B, Kiffer L, Luu L, Zamani M (2020) FlyClient: Super-
light clients for cryptocurrencies. pp 928–946

	 7.	 Dong S, Abbas K, Li M, Kamruzzaman J (2023) Blockchain
technology and application: an overview. PeerJ Comput Sci
9:e1705–e1705

	 8.	 Dou H, Yin L, Lu Y, Xu J (2022) A probabilistic proof-of-stake
protocol with fast confirmation. J Inf Aecur Appl 68:103268

	 9.	 Gencer AE , Basu S, Eyal I, Renesse Rv, Sirer EG (2018)
Decentralization in bitcoin and ethereum networks. arXiv.​org

	10.	 Guru A, Mohapatra H, Altrjman C, Yadav A (2023) A survey
on consensus protocols and attacks on blockchain technology.
Appl Sci. https://​doi.​org/​10.​3390/​app13​042604

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/org
http://arxiv.org/abs/org
https://doi.org/10.3390/app13042604

Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic…

	11.	 Halpin H (2020) Deconstructing the decentralization trilemma.
In: Proceedings of the 17th international joint conference on
e-business and telecommunications. SCITEPRESS - Science
and Technology Publications. https://​doi.​org/​10.​5220/​00098​
92405​050512

	12.	 Jiang Y, Liu X, Dai J (2020) A novel pricing mechanism for
user coalition in blockchain. Wirel Commun Mobile Comput.
https://​doi.​org/​10.​1155/​2020/​88851​79

	13.	 Kaur M, Khan MZ, Gupta S, Noorwali A, Chakraborty C, Pani
SK (2021) Performance analysis of large scale mainstream
blockchain consensus protocols. Ieee Access. https://​doi.​org/​
10.​1109/​access.​2021.​30851​87

	14.	 Kohli V, Chakravarty S, Chamola V, Sangwan KS, Zeadally S
(2023) An analysis of energy consumption and carbon footprints
of cryptocurrencies and possible solutions. Digital Commun
Netw 9(1):79–89

	15.	 Lamriji Y, Kasri M, Makkaoui KE, Beni-Hssane A (2023) A
comparative study of consensus algorithms for blockchain. In:
2023 3rd international conference on innovative research in
applied science, engineering and technology (IRASET) (pp.
1–8). IEEE

	16.	 Lin C, Ma N, Wang X, Liu Z, Chen J, Ji, S (2018) Rapido: a layer2
payment system for decentralized currencies. arXiv.​org

	17.	 Moroz DJ , Aronoff DJ, Narula N, Parkes DC (2020) Double-
spend counterattacks: threat of retaliation in proof-of-work sys-
tems. arXiv.​org

	18.	 Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system.
Decentralized business review

	19.	 Noh SW, Shin SJ, Rhee KH (2020) PyRos: a state channel-based
access control system for a public blockchain network. Secur
Commun Netw. https://​doi.​org/​10.​1155/​2020/​88911​83

	20.	 Rebello GAF, Camilo GF, Guimarães LCB, de Souza LAC,
Thomaz GA, Duarte OCMB (2022) A security and performance
analysis of proof-based consensus protocols. Annal Télécommun
77(7):517–537

	21.	 RoÅman N, Corn M, Åkulj G, Diaci J, PodrÅaj P (2022) Scal-
ability solutions in blockchain-supported manufacturing: a survey.

StrojniÅiki vestnik. J Mech Eng 68:585–609. https://​doi.​org/​10.​
5545/​sv-​jme.​2022.​355

	22.	 Saad M, Spaulding J, Njilla L, Kamhoua CA, Shetty S, Nyang D,
Mohaisen A (2020) Exploring the attack surface of blockchain: a
comprehensive survey. Ieee Commun Surv Tutorials. https://​doi.​
org/​10.​1109/​comst.​2020.​29759​99

	23.	 Sahin H, Akkaya K, Ganapati S (2022) Optimal incentive mecha-
nisms for fair and equitable rewards in PoS blockchains. In: 2022
IEEE international performance, computing, and communications
conference (IPCCC) pp 367–373. IEEE. ISSN: 2374-9628

	24.	 Schreiber Z (2020) k-root-n: An efficient algorithm for avoiding
short term double-spending alongside distributed ledger technolo-
gies such as blockchain. Information 11:2. https://​doi.​org/​10.​3390/​
info1​10200​90

	25.	 Shi E (2019) Analysis of deterministic longest-chain protocols.
pp 122–12213

	26.	 Wang S, Qu X, Hu Q, Wang X, Cheng X (2023) An uncertainty-
and collusion-proof voting consensus mechanism in blockchain.
IEEE/ACM Trans Netw 31(5):1–13

	27.	 Wang W, Hoang DT, Hu P, Xiong Z, Niyato D, Wang P, Kim
DI (2019) A survey on consensus mechanisms and mining
strategy management in blockchain networks. IEEE Access
7:22328–22370

	28.	 Wilhelmi F, Guerra E, Dini P (2022) On the decentralization of
blockchain-enabled asynchronous federated learning

	29.	 Yadav AK, Singh K, Amin AH, Almutairi L, Alsenani TR, Ahma-
dian A (2023) A comparative study on consensus mechanism with
security threats and future scopes: blockchain. Comput Commun
201:102–115

	30.	 Yadav AS, Singh N, Kushwaha DS (2023) Evolution of block-
chain and consensus mechanisms & its real-world applications.
Multimed Tools Appl 82(22):34363–34408

	31.	 Zhou S, Li K, Xiao L, Cai J, Liang W, Castiglione A (2023) A
systematic review of consensus mechanisms in blockchain. Math-
ematics (Basel) 11(10):2248

https://doi.org/10.5220/0009892405050512
https://doi.org/10.5220/0009892405050512
https://doi.org/10.1155/2020/8885179
https://doi.org/10.1109/access.2021.3085187
https://doi.org/10.1109/access.2021.3085187
http://arxiv.org/abs/org
http://arxiv.org/abs/org
https://doi.org/10.1155/2020/8891183
https://doi.org/10.5545/sv-jme.2022.355
https://doi.org/10.5545/sv-jme.2022.355
https://doi.org/10.1109/comst.2020.2975999
https://doi.org/10.1109/comst.2020.2975999
https://doi.org/10.3390/info11020090
https://doi.org/10.3390/info11020090

	Erdos: A Novel Blockchain Consensus Algorithm with Equitable Node Selection and Deterministic Block Finalization
	Abstract
	1 Introduction
	2 Related Work
	2.1 An Overview of Blockchain Technology
	2.2 Consensus Mechanisms
	2.2.1 Fairness
	2.2.2 Energy Consumption
	2.2.3 Centralisation
	2.2.4 51% Attack
	2.2.5 Double Spend
	2.2.6 Longest Fork and Probabilistic Block Finalisation
	2.2.7 Scalability

	3 Erdos Overview
	4 Erdos Architecture
	4.1 Forger and Vetter Selection
	4.2 First Vetting
	4.3 Second Vetting
	4.4 Finalisation
	4.5 Transaction Pooling
	4.6 Node Chain Synchronisation

	5 Discussion
	5.1 Future Work
	5.1.1 Large-scale Implementation and Performance Evaluation
	5.1.2 Formal Security Analysis and Potential Attack Vectors
	5.1.3 Governance and Decision-making Mechanisms

	6 Conclusion
	References

