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Abstract
The introduction of blockchain technology has brought about significant transformation in the realm of digital transactions, 
providing a secure and transparent platform for peer-to-peer interactions that cannot be tampered with. The decentralised and 
distributed nature of blockchains guarantees the integrity and authenticity of the data, eliminating the need for intermediaries. 
The applications of this technology are not limited to the financial sector, but extend to various areas, such as supply chain 
management, identity verification, and governance. At the core of these blockchains is the consensus mechanism, which 
plays a crucial role in ensuring the reliability and integrity of a system. Consensus mechanisms are essential for achieving 
an agreement amongst network participants regarding the validity of transactions and the order in which they are recorded 
on the blockchain. By incorporating consensus mechanisms, blockchains ensure that all honest nodes in the network reach a 
consensus on whether to accept or reject a block, based on predefined rules and criteria. The aim of this study is to introduce 
a novel consensus mechanism named Erdos, which seeks to address the shortcomings of existing consensus algorithms, such 
as the Proof of Work and Proof of Stake. Erdos emphasises security, decentralisation, and fairness. One notable feature of 
this mechanism is its equitable node-selection algorithm, which ensures equal opportunities for all nodes to engage in block 
creation and validation. In addition, Erdos implements a deterministic block finalisation process that guarantees the integrity 
and authenticity of the blockchain. The main contribution of this research lies in its innovative approach to deterministic 
block finalisation, which effectively mitigates the various security risks associated with blockchain systems.

Keywords  Blockchain deterministic finality · Blockchain fork-resistance · Blockchain security · Decentralised ledger 
technology

1  Introduction

The paradigm shift brought about by blockchain technol-
ogy cannot be overlooked in our understanding of digital 
trust and transactional transparency. Central to this ground-
breaking technology is the pivotal concept of the consensus 
algorithms. These algorithms play a crucial role in enabling 
disparate and decentralised nodes to reach a consensus on 
the state of a blockchain ledger, thereby guaranteeing the 
accurate and honest confirmation of transactions and the 
proper addition of blocks. This guarantees the immutability 
of transactions.

The utilisation of blockchain technology extends beyond 
the realm of cryptocurrency, encompassing various domains, 
such as supply chain management, identity verification, gov-
ernance, and numerous other sectors. This broad applicabil-
ity is due to the robust consensus algorithms employed by 
blockchain, such as Proof of Work (PoW) and Proof of Stake 
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(PoS), which guarantee enhanced security while simultane-
ously ensuring efficient transaction processing within the 
network. Nevertheless, the existing consensus algorithms 
suffer from certain limitations. For instance, the Proof of 
Work algorithm is not only energy-intensive but also sus-
ceptible to centralisation, posing significant environmental 
and security risks. On the other hand, the Proof of Stake 
algorithm presents challenges related to the concentration 
of wealth. These drawbacks impede widespread network 
participation and prevent the attainment of a harmonious 
equilibrium among decentralisation, security, and scalability 
within the realm of blockchain technology.

To address these obstacles, we proposed a novel consen-
sus mechanism called Erdos. This mechanism prioritises 
security, decentralisation, and fairness, and its compari-
son with PoW and PoS is shown in Fig. 1. It incorporates 
a node-selection method that promotes equal opportunities 
for all nodes to engage in block creation and validation. In 
addition, it implements a deterministic process for finalis-
ing the blocks, ensuring the integrity and authenticity of the 
blockchain. This study makes a significant contribution to 
the field of blockchain technology by introducing a novel 
method for achieving deterministic block finalisation. This 
approach effectively mitigates various security risks inherent 
in blockchain systems.

This study has a clear organizational structure. The intro-
duction is followed by Sect. 2, which offers a comprehensive 
background and examines previous research on blockchain, 
consensus mechanisms, and related challenges. Section 3 
provides an in-depth overview of the Erdos Consensus, and 
Sect. 4 discusses the intricacies of the Erdos architecture. 
Section 5 presents a thorough discussion of our research and 
future work, followed by the conclusion.

2 � Related Work

2.1 � An Overview of Blockchain Technology

Blockchain, or Distributed Ledger Technology (DLT), 
commonly associated with Bitcoin, introduced in 2008 by 
Satoshi Nakamoto, is a tamper-proof distributed ledger sys-
tem known for its decentralisation, immutability, and trans-
parency. Its utility has rapidly evolved from its initial use 
in cryptocurrencies to a versatile tool applicable to diverse 
sectors, including healthcare, banking, food safety, and sup-
ply chain management [7]. There are various types of block-
chains, such as public, private, and consortium blockchains, 
each characterised by unique access controls and govern-
ance models. There is further categorisation, namely permis-
sioned or permissionless blockchains. They differ fundamen-
tally in terms of accessibility and governance mechanisms. 
Permission blockchains, typically private or consortium 
blockchains, restrict network access only to authorised par-
ticipants and manage consensus through a limited number of 
nodes, thereby enhancing scalability, efficiency, and super-
visory control [10].

However, permissionless blockchains are open to anyone 
where individuals can participate in consensus and validate 
transactions without prior permissions, making them capa-
ble of being highly decentralised [31]. While open partici-
pation promotes a higher level of privacy and decentralisa-
tion, as it removes the necessity of a third-party authority 
to ensure the integrity of the chain, it also presents chal-
lenges in a trustless environment. The absence of centralised 
oversight to enforce flexible and adaptive controls, such as 
security, scalability, and general governance, leads to dif-
ficulties in updating and upgrading systems efficiently, even 

Fig. 1   Erdos versus PoW and PoS
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hindering rapid evolution, giving rise to the need for some 
form of autonomous governance across the network [30]; 
hence, blockchain consensus mechanisms have emerged to 
fill this gap.

2.2 � Consensus Mechanisms

A consensus algorithm is pivotal in blockchain systems 
as it serves as a collaborative framework that confirms the 
legitimacy and order of transactions without the need for a 
central authority [2]. Various consensus algorithms, such 
as Proof of Work (PoW) and Proof of Stake (PoS), pos-
sess distinct advantages and drawbacks, impacting aspects 
such as security, throughput, scalability, latency, and energy 
efficiency. They are critical for achieving agreement across 
distributed systems, particularly in the presence of failures 
or malicious actors [29]. Consensus mechanisms allow deci-
sions and agreement on the state of the system, despite such 
adversities. By incorporating consensus mechanisms, the 
blockchain ensures that every honest node in the network 
agrees on the acceptance or rejection of a block based on 
predefined rules and criteria [10]. These mechanisms also 
serve the purpose of determining which node will have the 
authority to add the next block to the blockchain and receive 
a reward for this service to the network. This reward is the 
key to ensuring the liveness of the chain. The concept of 
liveness in consensus mechanisms refers to the ability of the 
system to continue to operate and make progress, ensuring 
that transactions and operations are eventually completed 
despite issues such as network delays or node failures. Live-
ness is highlighted as one of the fundamental components of 
any consensus algorithm [5, 8, 29]. This component is cru-
cial for indicating that all nodes in the network are capable 
of reaching a consensus and confirming transactions within 
a reasonable timeframe, ensuring that the system remains 
active and responsive. Liveness, along with safety, agree-
ment, termination, and fault tolerance, form the backbone of 
a robust consensus algorithm which is necessary for main-
taining the overall health and effectiveness of blockchain 
applications.

2.2.1 � Fairness

However, the reward introduces the problem of fairness 
and equity in the right to produce and add a block to the 
blockchain and receive rewards for one’s efforts. Sahin et al. 
asserted that fairness and equity in the incentive structure of 
a consensus mechanism are core to the cardinal principles 
of blockchain [23]. For example, in PoW, mining a block 
requires a miner to solve a difficult cryptographic puzzle. 
This requires significant computational power, thereby 

making it difficult for a solo miner with limited computing 
power to obtain the opportunity to mine a block. This leaves 
only those that can afford powerful and expensive computing 
power with an unfair advantage [26]. The same applies to 
PoS as participants who have financial resources to afford 
putting forth a higher stake are also advantaged above those 
with fewer resources bringing us to the old adage “the rich 
get richer”. The excessive computational power required for 
PoW also presents the issue of energy consumption.

2.2.2 � Energy Consumption

The Proof of Work (PoW) consensus mechanism, which is 
one of the most commonly utilised in blockchain technolo-
gies such as Bitcoin, dominates the energy consumption in 
cryptocurrencies owing to factors such as redundant opera-
tions, inefficient mining devices, and the type of energy 
sources [14] and is particularly energy-intensive. This is 
because of the requirement for extensive computational 
effort to solve complex mathematical problems, which in 
turn results in high electricity utilisation [2, 15].

2.2.3 � Centralisation

Consensus mechanisms play pivotal roles in how central-
ized or decentralized a blockchain network is. For instance, 
the analysis by Rebello et al. highlights the security vul-
nerabilities associated with consensus mechanisms, such as 
susceptibility to 51% attacks in PoW or the potential for 
collusion in PoS systems, and stresses that these vulnera-
bilities can be exacerbated by the degree of centralisation in 
the network. For example, if a small number of participants 
control significant computing power in PoW or hold large 
stakes in PoS, the network becomes more centralised and, 
thus, more vulnerable to attacks [20]. Although centralised 
mechanisms can provide some benefits in scalability and 
transaction throughput, it comes at the cost of distributed 
trust and security that the blockchain is meant to provide [9, 
11, 27, 28]. Susceptibility to threats, such as the aforemen-
tioned 51% attack, is non-negligible when considering the 
possible enormity of the threat.

2.2.4 � 51% Attack

A 51% attack occurs when an entity gains control over more 
than 50% of a blockchain’s hashing power, allowing them 
to manipulate the network by double-spending coins or pre-
venting other miners from confirming transactions [1].This 
type of attack can be especially detrimental, as it also allows 
attackers to fork the blockchain and create a private version, 
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which can undermine the integrity and trust of the block-
chain network [13]. These attacks can significantly devalue 
the associated cryptocurrency as trust in its stability and 
security is diminished [22].

2.2.5 � Double Spend

Double spending can occur in several ways, but notably via 
a Race Attack or 51% attack.

In a Race Attack, the attacker aims to use the same cur-
rency token for multiple recipients, similar to signing a 
check for two individuals using the same available funds. 
This attack can succeed, for example, because Bitcoin’s PoW 
has a 10 min time lag to confirm a transaction. On average, 
Bitcoin adds a new block within approximately 10 min [4, 
16]. Within that time, transactions that carry higher transac-
tion fees are prioritised by miners when selecting transac-
tions from the transaction pool to be included in a new block. 
This presents a ripe opportunity for race attacks [24].

The anatomy of this attack is as follows: Suppose an 
attacker/user only has $ 10 balance in their blockchain wal-
let and initiates a transaction with a merchant, for example, 
a coffee shop, worth $ 10. The transaction is broadcast to 
the blockchain, and is thus placed in an unconfirmed trans-
action pool. At the same time, using the Unspent Transac-
tion Output (UTXO) method initiates another transaction 
for the same $ 10 but makes this transaction more attractive 
to miners by ensuring that the transaction fees are much 
higher than the original transaction to the merchant. In the 
UTXO model, a transaction output is considered "unspent" 
until it is used as an input in a new transaction. In this case, 
both transactions end up in the unconfirmed transaction 
pool. Miners are more likely to select the second transaction 
because they have higher fees and include it in the next block 
[12]. The merchant, who may not have waited for transaction 
confirmation, would have proceeded to provide the goods 
“purchased”. On the 10 min time elapse for the new block 
to be added to the chain, the fraudulent transaction has been 

Fig. 2   Double-spend example
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included in the block. Eventually, the original transaction 
to the merchant makes it into being selected for inclusion 
in the next block, and it fails to validate regardless of the 
fact that goods or services may have already been issued as 
shown in Fig. 2.

As mentioned earlier, the 51% attack has many serious 
security issues for blockchains but also provides further vul-
nerability with regard to double spending [3]. In the con-
text of double spending, the mechanism of attack can be 
conducted as follows: the attacker or a group of attackers 
aims to acquire over 50% of the network’s hash computing 
power. It is worth noting that this proves challenging in large 
blockchain networks because it is costly to gain over 50% of 
the hash power. However, the smaller chains are particularly 
vulnerable. After gaining 50% of hash power, attacker/s ini-
tiates a legitimate transaction to a merchant or other party. 
This transaction is processed and confirmed normally in a 
new block. Because attacker/s have more computing power 
in the network, they can begin a secret fork, that is, mining 
blocks in secret, thus creating a private fork of the chain [1]. 
In this secret private fork, they can include transactions that 
can send the already spent currency back to themselves, in 
essence, reversing the original transaction. This chain can 
grow faster to become the longest chain because attacker/s 
possess more computing power than the rest of the network 
[17]. Because the PoW protocol dictates that where there 
are multiple forks of a chain, the longest chain is the valid 
one [6, 25], the secret, fraudulent fork will be adopted as 
the legitimate fork, invalidating the original legitimate 
transaction.

2.2.6 � Longest Fork and Probabilistic Block Finalisation

The feature of immutability is core to blockchain technology. 
Probabilistic block finalisation, made possible by the longest 
fork issue, goes against the core principle of immutability in 
the blockchain technology.

The longest-fork issue arises when multiple blocks are 
mined simultaneously, resulting in the creation of multi-
ple competing chains. Risks include selfish mining, block 
orphanings, and chain reorganisation, often referred to as 
chain reorg issues.

Selfish mining is a strategy in which miners attempt to 
gain an advantage by keeping new blocks private instead of 
immediately broadcasting them to the network. By doing so, 
they can potentially increase their chances of mining the next 
block, leading to a longer chain and higher reward. Block 
orphaning, on the other hand, is a situation where a valid 
block, which was added to a forked chain, becomes obsolete 

and is discarded because another valid block on a different 
fork chain becomes dominant.

Chain reorg refers to a situation in which a previously 
accepted chain is replaced by an alternative, longer chain. 
This of course, being the basis of Nakamoto-based block-
chains’ way of dealing with consensus, where the long-
est fork is considered the valid one and thus becomes the 
preferred fork, as it ensures the highest level of security 
and validity, except where it is a malicious chain reorg. A 
malicious chain reorg can open the chain to various other 
vulnerabilities.

2.2.7 � Scalability

Scalability is a critical concern in blockchain technology and 
refers to a network’s ability to handle an increasing load of 
transactions efficiently [21]. Scalability in blockchain net-
works, particularly PoW-based chains, has been attributed to 
the speed of transaction processing, which does not increase 
proportionally with the addition of additional resources [19]. 
In Bitcoin, a new block is created and added to the chain 
approximately every ten minutes [18].

3 � Erdos Overview

The Erdos Consensus has taken a novel approach to address 
some of the challenges facing blockchain technology. Par-
ticular variance from the common consensus mechanisms 
is as follows: 

Transaction pool: All transactions are collected in a pool, 
and each transaction includes a timestamp that is utilised 
for the selection of the forger and vetters. The selection 
of the forger and vetters is initiated when the number of 
transactions in the transaction pool reaches a predeter-
mined algorithmic threshold.
Forger and vetter selection: During the creation of a new 
block, a forger and two vetters are chosen. The selection 
process involves using the timestamp from the last trans-
action in the pool and a seven-digit subset of the hash to 
select the forger and vetters from a list of eligible nodes. 
Nodes are deemed eligible if they have not participated 
as a sender or recipient in any transactions of the current 
block, and if their local blockchain is up-to-date by com-
paring the hash of the last block in each node’s blockchain 
with the hash of the last block in the forger, vetter1, and 
vetter2’s blockchains.
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Block creation: The forger constructs a new block con-
taining transactions from the pool and total transaction 
fees. The block contains the hash of the previous block 
and addresses of the forger and vetters. The ‘Block‘ class 
has been structured to include the forger and vetters as 
attributes, which are included in the calculation of the 
block’s hash. In addition, a Merkle tree of the included 
transactions is generated. Figure 3 shows the full block 
structure.
Block verification: The two vetters verify the new block. 
If both vetters agree that a block is valid, it is added to 
the blockchain. The verification process is conducted in 
two phases. First, after a forger has created a prospective 
block with all the necessary block details, the first vetting 
commences and is performed by Vetter1. Upon successful 
vetting by Vetter1, the forger adds reward transactions to 
the block. Rewards are allocated as predetermined per-

centages of the total block transaction fees, which are 
fixed amounts per transaction. These rewards are distrib-
uted to the forger, Vetter1, and Vetter2 as well as a calcu-
lated surplus sent in a separate transaction to the network 
for blockchain network management and maintenance. 
A new Merkle tree, including the new transactions, is 
created and replaces the original one, and a new hash 
is calculated. This updated block is then sent to Vetter2 
for the second vetting. The second vetting confirms the 
modified block. Upon successful confirmation, the forger 
appends the block to the chain and all wallets related to 
the transactions in the new block are updated.
Blockchain update: All nodes in the network update their 
blockchain to include the new block, ensuring that all 
nodes have the same version of the blockchain, which is 
essential for the security and reliability of the network.

4 � Erdos Architecture

4.1 � Forger and Vetter Selection

The key to the uniqueness of the Erdos algorithm is the 
selection of a node that adds a new block to the block-
chain. In contrast, the Proof of Work employs the energy-
inefficient method of mining which, regardless of both 
extensive and wasteful resource consumption, still results 
in the possibility of selfish mining, double spending, and a 
51% attack risk due to the non-deterministic finalisation of 
a block. The Erdos algorithm selects three random nodes 
using multiple layers of randomness, including the genera-
tion of a unique subset, as shown in Fig. 4.

These three nodes consist of a forger and two vetters, 
who perform the following tasks:

The forger is ultimately responsible for creating a new 
prospective block, which then undergoes the first vetting 
conducted by Vetter1. Upon passing the first vetting, the 
forger then adds reward transactions to the transactions in 
the prospective block, after which a second vetting, con-
ducted by Vetter2, verifies that the newly added reward 
transactions are valid. With the second vetting successful, 
the forger proceeds to add a newly created block to the 
blockchain.

The fact that only one forger, one vetter1, and one vet-
ter2 can ever be selected in the creation of the next block 
to be added to the chain, and no other block can be added 
until the process of this forging is completed, eliminates 
the risk of having a longer chain resulting from selfish 
mining.

Fig. 3   Erdos block structure
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Algorithm 1   Select Forger and Two Vetters

The function detailed in Algorithm 1 introduces a method 
for selecting forgers and vetters based on the latest transac-
tion timestamp and a randomised process with the aim of 
ensuring fairness and unpredictability in the selection pro-
cess. There is an additional check to ensure that only nodes 
with the latest blockchain information are eligible for selec-
tion. It avoids potential biases by excluding recent transaction 
participants and relies on cryptographic hashing for secure 
and random selections, thereby contributing to the overall 
integrity and decentralisation of the blockchain network. 

Step 1 Hashing the Last Transaction Timestamp: The 
function begins by extracting the timestamp of the last 
transaction in the transaction pool. This timestamp is 
converted into a string and hashed using the SHA256 
algorithm to produce an initial hash.
Step 2 Generating a Random Subset Index: A random 
starting index is generated within the range of the initial 
hash’s length minus seven. This index is used to select a 
seven-digit subset from the initial hash.

Step 3 Hashing the Subset: The selected seven-digit sub-
set of the initial hash is hashed again using SHA256 to 
create a subset hash.
Step 4 Excluding Addresses: The function compiles a 
set of excluded addresses, comprising the senders and 
recipients of all transactions in the current block. These 
addresses are excluded from the selection process to 
maintain impartiality.
Step 5 Identifying Eligible Nodes: The function creates 
a list of eligible nodes, including all nodes in the net-
work, except those with excluded addresses. Additionally, 
it ensures that only nodes with up-to-date information 
about the last block are considered, thereby enhancing 
the integrity of the process.
Step 6 Selecting Forger and Vetters: This function 
employs a min-heap to identify the nodes closest to the 
subset hash. The closest node is chosen as the forger, and 
the next two closest nodes are selected as vetters.



	 B. Sello et al.

Step 7 Validation of Eligible Nodes: If fewer than three 
eligible nodes, the function returns an error message, 
indicating insufficient nodes for selection.
Step 8 Returning the Selection: The function returns a 
tuple containing the addresses of the selected forger and 
two vetters.

4.2 � First Vetting

Algorithm 2 describes a function that evaluates whether 
a given block in a blockchain network passes the initial 
criterion set for vetting by the first designated vetter. It is 
crucial to maintain the integrity and security of the block-
chain, ensuring that only blocks that meet the defined cri-
teria are considered valid and are added to the chain

Algorithm 2   First Level Vetting of a Block

Step 1 Node Address Verification: Initially, the function 
checks whether the address of the current node matches 
the address of the first vetter (vetter1). If not, the function 
returns false, indicating that this node is not authorised to 
perform the first vetting.
Step 2 Transaction Verification: The function iterates 
through each transaction (tx) in the block. Two checks 
are performed for each transaction. The first is signature 
verification, which checks whether the transaction’s sig-
nature is valid by using the verify_signature method of 
the sender’s wallet. This ensures that the transaction was 
indeed initiated by the sender and has not been tampered 
with. The second is Transaction Validity, which checks 
if the transaction is valid based on prescribed criteria; if 
any transaction fails, the function returns false.
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Step 3 Forger and Vetter Verification: The function veri-
fies that the forger and the second vetter (vetter2) of the 
block are the same as those specified in the inputs. If there 
is a mismatch, it returns false. This step ensures that the 
block was proposed and vetted by the correct nodes.
Step 4 Block Consistency Check: The function retrieves 
the last block from the current blockchain (self.chain) and 
first, it compares the previous_hash of the current block 
with that of the last block. These must match in order 
for the block to be considered valid. Second, it checks 
whether the index of the current block is exactly one more 
than that of the last block, ensuring the correct sequence 
in the blockchain. Any discrepancy in these checks results 
in false-return values.

Step 5 Transaction Fee Calculation: The function calcu-
lates the total transaction fees in the block and compares 
it with the transaction_fees field of the block. If there is a 
mismatch, it returns false.
Step 6 Merkle Tree Validation: The function constructs a 
Merkle tree using the transactions from the last transac-
tion pool and compares it with the Merkle tree included 
in the block. If they do not match, it returns False.
Step 7 Successful Vetting: If all checks pass, the function 
returns True, indicating that the block has successfully 
passed the first level of vetting.

Fig. 4   Subset_Hash generation
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4.3 � Second Vetting

Algorithm 3   Second Level Vetting of a Block

The Second_Vetting function detailed in Algorithm 3 is 
designed to perform a secondary-level validation on a new 
block in a blockchain network. It specifically focuses on 
verifying the integrity of the block’s Merkle tree. It acts 
as a safeguard, ensuring that only blocks with verified and 
consistent transaction data are accepted into the blockchain. 

Step 1	� Vetter Verification: The function begins by confirm-
ing whether the address of the current node matches 
that of the second vetter (vetter2). This step ensures 
that only the designated second vetter can perform 
this level of vetting. If the addresses do not match, 
the function immediately returns false, indicating 
that the node is not authorised to vet the block.

Step 2	� Merkle Tree Reconstruction: The function recon-
structs the Merkle tree from the transactions pre-
sent in the new block. This is achieved by convert-
ing each transaction (tx) into a dictionary format 

(tx.__dict__), and then using these dictionaries to 
create a new Merkle tree.

Step 3	� Merkle Tree Verification: The function then com-
pares the newly constructed Merkle tree with the 
Merkle tree already present in the new_block. This 
comparison is crucial because it ensures the integ-
rity and consistency of the transaction data within 
the block. If the Merkle trees do not match, it signi-
fies a discrepancy in the transaction data, and the 
function returns false.

Step 4	� Successful Vetting: If the reconstructed Merkle tree 
matches that in the block, the function returns True. 
This indicates that the block passed the second level 
of vetting, verifying the integrity of its transactions 
and their organisation within the Merkle tree.
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4.4 � Finalisation

Algorithm 4   Finalize Block

Algorithm 4 describes the finalize_block function that is 
responsible for finalising a block in a blockchain network. 
It achieves this by distributing rewards, updating the block-
chain with the new block, and managing wallet balances. 

Step 1 Reward Calculation: The function starts by calcu-
lating the total transaction fees in the new_block. It then 
computes the reward for the forger and the two vetters, 
which is 75% of the total fees divided equally between 
them. The remaining 25% of fees, termed surplus, is allo-
cated to the network. These values were set arbitrarily for 
the purposes of this study.
Step 2 Creating Reward and Surplus Transactions: 
Reward transactions are created for forger, vetter1, and 
vetter2. Additionally, a surplus transaction is created for 
the network, where the network itself is both the sender 
and recipient.
Step 3 Adding Transactions to the Block: All new rewards 
and surplus transactions are added to the new_block.

Step 4 Merkle Tree Update: A new Merkle Tree, includ-
ing all transactions in the new_block, is created and 
assigned to the block, ensuring accurate representation 
of all transactions.
Step 5 Second Vetting: The updated block undergoes a 
second vetting process. If the block fails, the function 
returns a message, indicating that the second vetting has 
failed.
Step 6 Block Hash Calculation: Assuming that the second 
vetting is successful, the hash of new_block is recalcu-
lated to reflect the inclusion of the new transactions.
Step 7 Updating the Blockchain: The newly finalised 
block is appended to the blockchain (self.chain) and the 
transaction pool (self.transaction_pool) is cleared.
Step 8 Updating Wallet Balances: The wallets of the 
forger, vetter1, and vetter2 are updated with their respec-
tive rewards. In addition, the wallet of the network is 
updated with the surplus amount.
Step 9 Final Output: The function returns a message indi-
cating successful finalisation and addition of the block to 
the blockchain.
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 This function ensures the integrity of the blockchain by 
finalising the blocks using a rigorous process of reward dis-
tribution, Merkle tree construction, vetting, and blockchain 
update. This is a critical step in maintaining the consistency 
of the blockchain and incentivising nodes participating in 
the block validation and creation process. Figure 5 shows 
the block creation process from start to finish.

4.5 � Transaction Pooling

Algorithm 5   Add Transaction to Pool

The add_transaction_to_pool function described in Algo-
rithm 5 adds new transactions to the transaction pool in the 
blockchain network. It validates transactions, manages the 
transaction pool, and triggers block creation when the pool 
reaches its capacity. 

Step 1 Transaction Signature and Validation: Initially, the 
function generates a signature for the transaction using 
the sender’s wallet, and assigns this signature to the trans-
action. It then verifies the validity of the transaction. If 
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the transaction is invalid, the function returns an error 
message indicating an invalid transaction.
Step 2 Adding to the Transaction Pool: If transaction is 
valid, it is appended to the pool.
Step 3 Checking the Pool Size and Block Creation: The 
function checks whether the transaction pool has reached 
its maximum capacity (assumed to be five transactions in 
this case). This value was chosen arbitrarily for this study. 
If the pool is full, the function initiates the block-creation 
process by first creating a Merkle tree from the transac-
tions in the pool. Then, the Merkle tree is converted into 
a string format, after which the function selects the forger 
and two vetters using the select_forger_and_two_vetters 
method. A new block is created using the selected forger 
and vetters.
Step 4 Block Vetting and Finalisation: If the vetting by 
both vetters is successful, the block is finalised using 
the finalize_block method and the block is added to the 
blockchain, the function returns a message stating that a 

new block has been added to the blockchain. In the event 
that the block fails in the second round of vetting during 
finalisation, the function returns a message indicating this 
failure.
Step 5 Return Message: If the transaction pool has not 
reached its maximum capacity, the function simply 
returns a message confirming that the transaction has 
been added to the pool.

4.6 � Node Chain Synchronisation

To overcome the longest-fork issue when synchronising 
node chains, the normal path for obtaining the longest chain 
from the blockchain node list is used. The identified long-
est chain must be verified, and this is done by checking it 
against the last block’s forger and two vetters, as these are 
the most reliable nodes because they had been vetted for 
the process of producing the previous block. Algorithm 6 
illustrates how this is achieved.

Algorithm 6   Check If Last Block is Up-To-Date
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Fig. 5   Erdos block creation overview
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This function verifies the current status of a node’s block-
chain by comparing its latest block with those of key net-
work participants: the previous forger and two vetters. This 
method is employed to ensure consistency across different 
nodes in the blockchain network. 

Step 1 Hash Extraction: The function begins by obtaining 
the hash of the last block in the given node’s blockchain. 
This hash serves as the node’s current Blockchain status 
identifier.
Step 2 Comparison with Key Nodes: The function 
retrieves the hash of the last block from the blockchains 
of the previous forger, previous_vetter1, and previous_
vetter2.
Step 3 Up-to-Date Validation: The function checks 
whether all three hashes (from the forger, vetter1, and vet-
ter2) match the node’s last block hash. If they all match, 
it indicates that the node’s blockchain is up-to-date with 
the key participants’ blockchains.
Step 4 Returning the Status: The function returns TRUE 
if the node’s last block is up-to-date, meaning that it 
matches the last blocks of the forger and both vetters, 
and FALSE if there is a mismatch, indicating that the 
blockchain of the node might not be synchronised with 
the rest of the network.

 This function is crucial in that it ensures that a node’s block-
chain is aligned with that of the main validators (forger and 
vetters). This helps to mitigate issues related to blockchain 
forks and synchronisation discrepancies, which are common 
challenges in distributed ledger systems.

This function is crucial in that it ensures that a node’s 
blockchain is aligned with those of the main validators 
(forger and vetters). This helps mitigate issues related to 
blockchain forks and synchronisation discrepancies, which 
are common challenges in distributed ledger systems.

5 � Discussion

Erdos presents a novel consensus mechanism that addresses 
the key concerns surrounding security, scalability, decentrali-
sation, and fairness. While PoW and PoS provide high security 
through computational work and stake size, respectively, they 
remain vulnerable to 51% attacks. Erdos tackles this problem 
by relying on randomly chosen vetters, independent of min-
ing power or stake, and deterministic block finalisation. This 
eliminates the advantage of majority control and mitigates the 
risk of forking, which is crucial for preventing 51% attacks.

Double spending, another potential security threat, is 
eliminated in Erdos through the involvement of two vetters 

alongside the forger for each block. This selection process 
ensures that no single node has an undue influence, and the 
vetting process itself acts as a safeguard against malicious 
transactions. Even if a forger attempts to sneak in fraudulent 
transactions, the vetters have a final say before finalisation, 
effectively preventing double spending.

Scalability is often a bottleneck in consensus mecha-
nisms. In the case of Erdos, the forger and vetter selection 
processes could be potential choke points. The proof-of-con-
cept deployment, which was written in Python and deployed 
in a local development environment, shows an efficient algo-
rithm with O(n + m) complexity, where n is the number of 
transactions and m is the number of nodes. Testing a large-
scale implementation could further shed light on Erdos’s 
capabilities.

Decentralisation is a core principle of blockchain technol-
ogy, and Erdos delivers this promise through a random vetter 
selection process. Every participant has an equal chance of 
being chosen, eliminating the possibility of a central author-
ity or bias.

Fairness is another key aspect of well-designed consen-
sus mechanisms. Erdos ensures a fair reward distribution by 
granting all participants an equal opportunity to be selected 
as a forger or vetter. Only those involved in transactions or 
with outdated blockchains are excluded from participation 
in a given block cycle to ensure a transparent and equitable 
system.

5.1 � Future Work

Although the proposed Erdos consensus algorithm presents 
a promising approach to address the challenges of security, 
decentralisation, and fairness in blockchain systems, several 
areas warrant further exploration and research.

5.1.1 � Large‑scale Implementation and Performance 
Evaluation

This study introduced the theoretical foundation of the Erdos 
algorithm; however, it is crucial to implement and evaluate 
its performance on a large-scale blockchain network. Such 
implementation would enable a comprehensive assessment 
of the scalability, robustness, and practical performance of 
the algorithm under real-world conditions. This involves 
deploying the Erdos algorithm on a distributed network 
with a substantial number of nodes and conducting rigorous 
performance tests to evaluate metrics, such as transaction 
throughput, latency, and resource utilisation. Additionally, 
this large-scale implementation would provide insights into 
the behaviour of the algorithm and potential bottlenecks 
when operating at scale.
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5.1.2 � Formal Security Analysis and Potential Attack Vectors

Although the Erdos algorithm introduces novel mechanisms 
to enhance security and mitigate potential threats, thorough 
formal security analysis is essential. This analysis should 
aim to identify potential attack vectors and vulnerabili-
ties, such as Sybil attacks, Eclipse attacks, and Distributed 
Denial of Service (DDoS) attacks. By formally modelling 
and analysing the algorithm’s security properties, poten-
tial weaknesses can be uncovered and insights can be pro-
vided towards developing countermeasures or algorithmic 
improvements to enhance the overall security and resilience 
of the Erdos consensus mechanism.

5.1.3 � Governance and Decision‑making Mechanisms

As blockchain networks continue to grow and evolve, effec-
tive governance and decision-making mechanisms have 
become increasingly crucial. Future research could explore 
how the Erdos algorithm can be extended or adapted to sup-
port on-chain governance, voting mechanisms, and decen-
tralised decision-making processes. This would involve 
developing frameworks and protocols that enable network 
participants to propose and vote on changes or updates to 
the blockchain system, while maintaining the principles of 
decentralisation, transparency, and fairness. Such govern-
ance mechanisms could facilitate the long-term sustainabil-
ity and continuous improvement of blockchain networks 
based on the Erdos consensus algorithm.

By addressing these future research directions, the Erdos 
consensus algorithm can be further refined, validated, and 
adapted to meet the ever-evolving demands of the blockchain 
technology and its diverse applications.

6 � Conclusion

The Erdos consensus algorithm is a significant contribu-
tion to the field of blockchain technology as it addresses 
key issues of security, decentralization, and fairness. By 
employing a deterministic block finalization process, the 
algorithm eliminates risks such as double-spending and 
provides fork resistance, thus ensuring the authenticity 
of the blockchain. Furthermore, the multi-tiered vetting 
process and fair reward distribution mechanism help to 
mitigate centralization.

However, as with any new consensus mechanism, it is 
important to thoroughly test and gradually implement the 
Erdos algorithm to validate its potential in future blockchain 
applications. As it has not been tested on a large-scale net-
work, the performance and robustness of the algorithm in a 
real-world situation remain undetermined.
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