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Abstract

The Poisson problem with homogeneous Dirichlet boundary conditions is considered on a tri-
angle. The mapping between square and triangle is realized by mapping an edge of the square
onto a corner of the triangle. Then standard Chebyshev collocation techniques can be applied.
Numerical experiments demonstrate the expected high spectral accuracy. Further, it is shown
that finite difference preconditioning can be successfully applied in order to construct an efficient
iterative solver. Then the convection-diffusion equation is considered. Here finite difference pre-
conditioning with central differences does not overcome instability. However, applying the first
order upstream scheme, we obtain a stable method. Finally, a domain decomposition technique
is applied to the patching of rectangular and triangular elements.
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Introduction

Pseudospectral collocation methods give good approximations to smooth solutions of elliptic par-
tial differential equations. However, there is a huge disadvantage as these methods are confined
to rectangles. Additionally, the spectral operator is ill conditioned compared to finite difference
or finite element operators and requires preconditioning to construct an effective iterative solver.
Here, we apply the standard Chebyshev collocation method for solving partial differential equa-
tions on certain right triangles. We introduce a transformation between the triangle and the
standard square where spectral collocation can be applied. This transformation maps one edge
of the square onto one corner of the triangle so that the non-equally spaced collocation points
cluster in that corner. In [6] a different approach has been examined. The results are compared.
This method is then applied to the Poisson equation with homogeneous Dirichlet boundary
conditions on a right triangle. It is numerically shown that for smooth solutions high spectral
accuracy can be achieved. Then we introduce a singularity caused by the singular behaviour of
the right-hand side leading to a somewhat slower convergence of the approximation. Precondi-
tioning by finite differences yields a condition number increasing as O(N).

After that the convection-diffusion equation is considered. To overcome the instability for small
e we choose N to be odd (see [1]). Preconditioning by central finite differences yields an un-
bounded condition number such that an upwind method has to be applied.

Finally, domain decomposition problems are investigated. The Poisson problem is numerically
solved on patchings of rectangular and triangular elements. A Dirichlet Neumann interface re-
laxation is iterated until continuity of normal derivatives is achieved. By numerical results the
efficiency of this treatment is demonstrated.



Transformation of the right triangle

The standard Chebyshev collocation scheme (see [6]) is defined for the non-equally spaced
Chebyshev-Gauss-Lobatto nodes (s;, t;) = (cos &, cos %) on the square [—1,1]?. Using lin-
ear transforms, arbitrary rectangles can be considered. However, if we are interested in tri-
angular domains the mapping is more complicated. In [6] a mapping applying polar coor-
dinate transformation and bending of an edge of the triangle was introduced and analyzed.
Numerical results showed the effectiveness of this method. Here we consider a new transfor-
mation between the standard square R = {(z,y) | — 1 < z,y < 1} and the right triangle
T ={(z,y) | 0 <z,y <landz+y < 1}. The original mapping is given in [7] and has been
changed for our purposes. The transformation reads

z = tr+1)(1—-yr), y=3Wr+1)
o= 21, yr =21

and is displayed in Figure 1.
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Figure 1: Horizontal transformation

We will call this the horizontal transform as every node is actually moved horizontally. The
vertical transform is

z = Lar+1), y=3@r+1)(1—2zr)
TR = 2z-—1 yp= 2L —1
’ 1-x

and will be considered later.

This transformation is no longer injective. We will see that this does not disturb the accuracy
of our approximation. The upper edge of R is mapped onto P(0,1) on T. As this edge belongs
to the border of our domain boundary conditions are applicable which are treated separately
anyway.



Partial derivatives must be transformed, too. Using the horizontal transform we derive

Uy = 2ug, = ﬁum

gy = 4um1:1:1 = ﬁUCIJRCL’R

Uy = 2uy, = Z—B—uxR + 2uy,

Uyy = 4“3/13/1 = 4((IR+1§2 Ugpzp + BTR;_; Uzpyr T 8ﬁu$ﬁt + 4uyRyR'

The Laplacian then reads as follows

Au = Ugy + Uy

4
=4 J(rl(f};;)l‘) Uzper + 8T8 H“arRyR + S(I H)z Uz + 4Uypyp-

The Poisson problem

Numerous spectral algorithms for the numerical simulation of physical phenomena demand the
approximative solution of one or more Poisson problems in a bounded domain.
We now study the problem

Au = finT,
u = 0ondT,

where 0T denotes the boundary of T. We apply the standard Chebyshev collocation scheme to
the exact solution

u(z,y) = zy(e"™ —e). (1)

This function obviously fulfills the boundarPl condition.
Table 1 shows the discrete Ly error Ey : [lu— “N 2 One observes the exponential decay of the
error.

| N Ey E; in [6] |
4 1.94-10° 1.89-10*
8 2.04-1071 885-10°7
16 2.12-107'6 1.84.10~1
32 4.29-10716 1.78.10°16

Table 1: Error using horizontal transformation and [6]

As we see the high spectral accuracy can also be reached on the triangle T. We have the best
approximation of the solution at P(0,1) as the collocation points cluster there. Figure 2 shows
the position of the collocation points for N=16 on the triangle and on the square.



Yy Y,

1 7 -1

Figure 2: Positions of the Chebyshev collocation nodes for N = 16

Comparison of these results to those in [6] using polar coordinate transformation (see Table
1) shows that our mapping yields a faster convergence of the approximation. Here rounding
error accuracy is already reached for N=16. N=4 and N=8 give results which are more exact
by 1 or 5 digits. This can be explained by the position and way of numbering the collocation
nodes. Figure 3 shows that the jumps occuring when changing the row (e.g. from third to fourth
point) are decreasing while those in [6] seem to be larger. The speed of convergence is probably
influenced by greater jumps.
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Figure 3: Order of collocation points for N = 2 compared to [6]

Next we consider a singular problem where f = —1. We compare the results for N=4, 8, 16
and 32 to those obtained for N=36 at the fixed points displayed in Figure 4. These points are
the collocation nodes for N=4 which are also used for larger N divisible by 4. We expect the
error to be smallest close to y=1 because there the collocation nodes cluster. We deal with the

following nodes:

P1(070)7 P2(§7_§)7 P3(_§,§), P4(§,§) and P5(—§,—§),
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Figure 4: Positions of the five nodes

The approximation converges more slowly than in the last example. That makes sense because
here the differential equation and its boundary condition are not compatible any more.

To get an overview we present KR = |uy — usg| which is the absolute value of the difference for
every node, in a diagram (Figure 5).
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Figure 5: Poisson problem with constant f

Next we choose f discontinuous:

) -1 fory—x>0
f(w,y)—{ 0 fory—xz<0.

As Figure 6 shows the triangle is now bisected. The transformation of the line y = x on the

triangle gives the hyperbola y = 2?—1':1,) — 1 on the square.
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Figure 6: Transformation of the line
The results can be found in Figure 7.
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Figure 7: Poisson problem with discontinuous f

The approximation is relatively bad close to the separating line. Since f is discontinuous the
solution of the partial differential equation is no longer smooth and there is no high spectral
accuracy any more. We only have a first order method.

Preconditioning

We are interested in a good condition number of our spectral operator which does not increase
too fast such that efficient iterative solvers can be found. Here the maximum eigenvalues of the
spectral Laplacian on the triangle scale as O(N®) (Table 2). On the square one has O(N*) which
is certainly preferrable. We are looking for a preconditioner to improve the condition so that it
scales as O(N) or even independently of N. A good preconditioner also has to be a good approx-
imation of the inverse of the spectral operator. We found that the condition number is already



reduced if we multiply the operator by (1 —ygz)? . The partial derivatives contain this factor in
the denominator. For y close to 1 the influence of the appropriate partial derivative is extremely
high. The discretized operator is called Ly sp. Table 3 shows A4 := maz{|\| | X eigenvalue},
Amin = min{|A| | A eigenvalue} and cond =~ %

Here the condition number scales as O(N*%).

‘ N Amaz Amin cond  Apaz/N® ‘
4 5.39-10° 5.36-10" 1.01-10% 0.08
8 1.10-10% 4.94.10' 2.23.10% 0.07
16 2.71-10% 4.93-10' 5.49-106 0.06
32 6.86-100 4.93-10' 1.39-10° 0.06

Table 2: The spectral operator Lgp

‘N Amaz Amin cond ‘ Amaz Amin cond ‘
4 6.36-10° 5.41-10" 1.18-10' [ 1.15-10° 5.10 2.26-10"
8 9.77-10® 5.35-10' 1.83-10%|1.89-10° 4.58 4.15-107?
16 1.56-10° 5.32-10" 2.94-10% | 3.07-10* 4.39 7.00-10°
32 2.50-10% 5.30-10' 4.71-10%* | 4.93-10° 4.29 1.15-10°

Table 3: The spectral operator Ly ¢p and results in [6]

Our results are comparable to those in [6].
We now study the finite difference preconditioner Lrp which is the discretization of the Lapla-
cian by second order finite differences. The first and second derivatives are

1
w'(sj) = 5(—%7110(5]‘71) — (75 —vj-Dw(s;j) + vjw(sjt1)),
w'(sj) = 205(vj—1w(sj—1) — (v + vj-1)w(s;) + vjw(sjz1))
where
1
0 = o
j+1 — Sj—1
1
v = ——— forj=1,...,N —1 (see [6]).
Sj+1 7 55

Table 4 shows the improved results.

N ez Amin cond | Mpaz  Amin  cond

4 173 100 1.73| 171 099 1.73
8§ 213 0.89 241 2.12 099 2.13
16 2.50 0.71 3.53 | 241 0.80 3.01
32 291 0.60 4.89 | 283 0.66 4.31

Table 4: (Lpp) 'Lgp and results in [6]




Now we obtained a condition number scaling as O(N). We could construct an effective iterative
solver now.

Figure 8 shows the positions of the eigenvalues for N=32. Their imaginary parts are fairly small
and the real parts are contained in [0.5, 3].
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Figure 8: Eigenvalues of (Lrp) 'Lgp for N = 32

One could apply higher order FD-methods for an even better condition number. However, this
would result in an extended effort for solving the FD problem.

In summing up, we state that this transformation between triangle and square gives comparable
or better results than the transformation by polar coordinates in [6].



The convection-diffusion equation

Modelling of purely convectional or convection dominated processes is a central problem in areas
like e.g. meteorology or investigation of aerodynamical or geophysical flows. A model boundary
value problem is the convection-diffusion equation

—€eAu+aug +buy, = f inT,
u = 0 on JT,

which can be used for describing the expansion of temperature in a fluent. Temperature expands
uniformly diffusive in every direction which is expressed by —eAuw. It is spread by current, too,
called convection and is described by au, + bu, (a and b being the velocities in x- and in y-
direction).

As usual, € is the viscosity of our material and represents a measure for interior friction. As
the partial differential equation is of different type for ¢ > 0 and € = 0 (in the first case it is
elliptic and in the latter it is hyperbolic) we talk about singular behaviour. In the interior of
our domain u, and ug are close together but getting to the boundary they differ extremely.
Homogeneous Dirichlet boundary conditions are not applicable to hyperbolic problems such that
we have to deal with boundary layers now. Boundary layers are environments where derivatives
of ue scale as O(%) Those systems are also called stiff systems. Unphysical oscillations occur
in the numerical solution and the discretization is instable. Figure 9 shows the situation in 1D

(see [4]).
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Figure 9: Boundary layer

We are looking for a method to resolve the boundary layers. There are schemes which still
use spectral methods like adding artificial viscosity, spectral viscosity or streamline diffusion.
However, here we only choose odd N. Oscillation always arises and is increased for even N with
€ < N~2 while this is not the case if N is odd.

The following table contains the discrete Ly error for decreasing e which develops when dis-
cretizing the convection-diffusion equation by spectral collocation. Here we choose (a,b)=(1,1)



and (-1,1) as these two cases are good representatives for other choices of (a,b). We have tested
the algorithm with example (1). In the case of pure convection (e = 0) the method is unstable.
With decreasing e the singular behaviour is increasing and one has to choose a finer grid (larger
N) to obtain results comparable to € = 1.

As mentioned above, we now choose N odd which usually leads to a decreased error. This be-
haviour was analyzed in [1] in 1D on the square. It can be transferred to the triangle with only
few restrictions concerning the choice of parameters. If N is even there exists an interpolation
polynomial which fulfills the boundary conditions and whose derivative vanishes at the colloca-
tion points. This polynomial is responsible for the instability. On the contrary, if N is odd one
finds the proof in [1] that this polynomial does not exist. Apparently, there are parameters (a,b)
for which the spectral method is unstable even for odd N. For the stable case (1,0) we actually
have the regular operator a% on the square multiplied with a factor. For (-1,1) we have exactly
that combination of the first derivatives on the square where there are at least two equal rows in
the derivative matrix. The partial derivatives are based on the matrix Dy. As the collocation
points on the square are symmetric (for every positive node we find a corresponding negative
one) there is annulation in the derivative matrix. The following example for N=3 shows the

connection.
__ oxr+l
Uy = 2

Ugp + 2uy, yields the derivative matrix

1-yr
-1 _ _ 81 —2(s1+1) —2 0
(1—81)2 (l—s%) (1751)(51752) S1—82
—2(sa+1) —so _ s 0 —2
(1751)(52751) (1751)(1752) l—s% $1—S82
9 0 —s1 _ _82 —2(s1+1)
$2—S1 (1752)(1751) l—s% (1752)(51752)
0 _92 —2(s2+1) —S2 _ _ _82
S2—s51 (1—s2)(s2—51) (1—s2)2 1—s2
As s1 = —s9 (symmetry) we have equal second and third row and the matrix is singular. (-1,1)

shows the same behaviour.
For (1,1) we do not have annulations and the method is stable. Table 5 displays the results.
(0,1) can be stabilized by using the vertical transformation where x and y are exchanged.

| [ | E2 for |
| (a,b) [N] e=1 e=102 | e=101 [ e=10° e=0 |
(1,1) | 3 ]2.75-107* [2.21-1073 [2.15-1073 [2.15-1073 [2.15-1073
7 187510710 [ 4.08-107% |7.77-107° |7.77-107° | 7.77-107°
15 [ 3.77-10716 | 53210717 | 1.81-10716 | 1.50- 10716 | 1.14- 10716
31(5.08-10716 | 1.72. 10716 | 2.27- 10716 | 5.64 - 10716 | 3.67 - 1016

(-1,1) | 3 [256-107% [3.75-1072 [1.69-10"1 [1.68-10" [1.09-10"
7 18.76-10710|5.16-107° | 1.86-10"7 | 1.86-107° | 1.59-10%
15 11.06-10"1 | 7.53-10"17 | 1.86-10"16 | 2.70- 10714 | 5.75- 10!
31(4.25-10716]2.27-10716 | 4.74-107'6 | 2.90- 10~* | 4.36 - 10°

Table 5: Error for the convection-diffusion equation

Next a constant right-hand side is considered. Differential equation and boundary condition are
not compatible here, i.e.

—€eAu+aug +buy, = 1 inT,

10



u = 0 onOT.

Table 6 shows the difference ER between usg and uy at P1(0,0). P1(0,0) is in the center of
the triangle and therefore far away from any boundary. It is the only collocation point (out of
P1-P5) where stability is achieved for (1,1) for small e.

| [ | ER for |

| (a,b) [IN] e=1 [ e=102]e=10"]e=10°] e=0 |
(1,1) | 4 [ 1.34-10=* [1.99-107' [ 9.53-1072|2.72- 1072 | 4.11- 107!
8 |1.86-10°% |599-1072|7.82-102|4.83-103|1.14-10°!

16 [1.12-1078 |1.24-107%[6.20-10"2 | 7.03- 1073 | 8.06 - 10~ "
32(891-1071 | 1.68-1077{1.26-10"2|1.58-10"3 | 2.89 - 102
(-1,1) | 4 [6.80-107° [2.20-107'[2.34-10" [2.35-10% [1.79-10'
8 |1.56-107% |6.71-1072 | 1.43-10° |1.41-10% |1.27-10%
16| 1.11-107% |2.10-1073 | 1.75-1073 | 2.45- 10" | 1.27-10'"°
32/888-10711|1.31-107°|6.21-1072 | 2.17-10° | 2.06-10%

Table 6: Error for constant f in P1

A discontinuous right-hand side

Fz,y) { -1 fory—z>0

0 fory—z<0

yields an even slower convergence rate than the last example (Table 7).

‘ ‘ ER for ‘

| (a,b) [N] e=1 [e=102%2]e=10"" ]| e=10°] e=0 |
4
8

1.53-1072 [ 1.68-10~!' [ 1.08 - 10~ [ 2.00 - 102 | 3.69 - 10!
4.29-107%12.00-1072|742-1072 | 1.66-10"2 | 8.56 - 102
16| 1.36-107*|3.64-10"*|4.14-1072 | 2.37-1072 | 8.89- 10!
3219.35-107°|588-10"%|1.89-10"2|1.73-1073 | 3.08 - 102
(-1,1) | 4 [1.70-1073 [ 1.39-107' [ 5.46 - 10° |5.48-10% |3.43-10™
8 14.94-1074(6.86-1072]1.93-10° |1.96-10% |9.23-10%4
16 | 1.53-1074|4.65-1073 | 2.35-10"" | 3.61 - 10" | 5.63-10"
3211.02-107%[1.79-1073 | 3.64-10"2 [ 3.08 - 107! | 8.96 - 104

Table 7: Error for discontinuous f in P1

Preconditioning

For the construction of an effective iterative solver we now examine the condition number of the
spectral operator Ly of (1 — yg)?(—€A + auy + buy).

11
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Figure 10: Eigenvalues of L5 ¢p for N=15, (a,b)=(1,1)

Figures 10 and 11 show the positions of the eigenvalues for ¢ = 1 and € = 1079 for (a,b)=(1,1),
N=15.

| || e =1 | e =0 |
‘ (a,b) ‘N‘ Amaz ‘ Amin ‘ cond ‘ Amaz ‘ Amin ‘ cond ‘
(1,1) | 3 [2.20-10% [ 5.91-10" | 3.72-10° | 8.76 - 10Y | 2.43 - 10° | 3.60 - 10°
7 |5.71-10% | 5.36 - 10" | 1.06 - 10 | 8.63 - 10' | 7.02-10~' | 1.23 - 10?
15| 1.20-10° | 5.32- 10" | 2.26 - 103 | 4.43 - 10% | 1.73- 1072 | 2.57 - 103
311220-10° | 5.30-10' | 4.15-10% | 1.96 - 103 | 4.24 - 1072 | 4.62-10*
(-1,1) | 3 [2.22-10%|5.82-10' | 3.82-10° | 3.27-10° | 0.00 - 10Y
7 |5.75-10% | 5.36 - 10" | 1.07 - 10? | 5.03 - 10! | 2.60 - 10~16 | 1.93 - 10'7
15[ 1.21-10° | 5.32-10" | 2.27-10% | 2.86 - 102 | 6.61 - 1016 | 4.33 - 1017
311(2.20-10°|5.30-10' | 4.15-10%* | 1.29-10% | 6.52-10"16 | 1.98 - 108

Table 8: L§ ¢

Table 8 gives Amaz, Amin and cond and demonstrates that there really is an eigenvalue close to
0 for (-1,1).

Applying the inverse of the FD operator L%, as preconditioner, we observe decreased condition
number if € = 1 while for small €, A\, is unbounded for (1,1). This preconditioner obviously
does not stabilize.

Figures 12 and 13 show the positions of the eigenvalues. For small € they are relatively dense
positioned with few peak values.

In general, FD methods applied to singular disturbance problems are stable if the step size
h; < 2e. Contrary, if h; > € they are unstable. To obtain stability one could increase the
number of collocation points which reduces the step size. A more promising attempt is the use

12
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Figure 11: Eigenvalues of L§ ¢p for N=15, (a,b)=(1,1)

of the upwind method. The first derivatives a% and a%v the convectional part, is discretized
by one-sided stream-directed finite differences while the diffusive part is treated with central
differences. We lose one order in convergence but stability is achieved.

We have
4
a-uy = a-l_yR-uxRand
1
bouy = b-(22ET u,, +2uy,).
l—yr

According to the factor the derivatives u,, and w,, are discretized by left- or right-differences
in stream direction:

w(@iy1,y5)—u(Ti,y;) ifa >0
) o Tip1—; =
Ugp (xuy]) = u(wi,y;)—u(®i—1,Y5)

Ti—Ti—1

ifa <0

fori=0,...,N—1lori=1,...,N. Analogously for u,,. The upwind method is not uniformly
convergent. An adaptive refinement might help here.

Figures 14 and 15 show that by applying the upstream method the positions of the eigenvalues
have completely changed for small e. They are complex, bounded and symmetric. Table 9 gives
the numerical results for the upstream scheme.

13
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Figure 12: Eigenvalues of L1, Lsp for N=15, (a,b)=(1,1)
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Figure 13: Eigenvalues of L1, Lsp for N=15, (a,b)=(1,1)
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\ | (a,b) | (1,1) \ (—-1,1) \

‘ € ‘ N ‘ Amaz ‘ Armin ‘cond‘ Amaz ‘ Amin ‘ cond ‘
1 3 |1.40 9.28-10~' [ 1.51 |1.41 9.35-10~" [ 1.50
7 |2.06 8.61-1071]2.39 | 2.06 8.58 1071 |2.40
15 |2.39 6.99-107! | 3.42 | 2.39 6.97-10~" | 3.43
31 |2.85 5.91-1071 | 4.82 | 2.85 5.91-1071 | 4.82
1072 3 [6.04-1071]3.04-1071]1.98 |2.86-10"1|1.11-10"! |2.58
7 | 1.37 2.99 107" | 4.56 | 1.46 2.67-107" |5.49
15 |2.18 4.09-1071|5.34 | 2.19 4.81-1071 |4.55
31 |2.37 4.34-1071 | 5.47 | 2.37 5.08-10~" | 4.67
10°*] 3 [6.66-10""[3.15-10""]2.11 [3.33-10"' | 1.41-1073 |2.35-107
7 |1.14 1.50-10~1 | 7.61 | 1.19 3.10-1073 | 3.84-102
15 [1.29 8.44-1072{15.3 | 1.30 8.37-1073 | 1.56 - 102
31 |1.82 8.08-1072|22.5 | 1.82 1.74-1072 | 1.05 - 102
10 3 [667-10°1[3.15-1071]2.11 [3.33-101]1.42-10° [2.34-10%
7 |1.15 1.50-10~" | 7.65 | 1.20 3.11-107° | 3.85-10*
15 |1.31 7.79-107% | 16.8 | 1.31 8.41-107° | 1.55-10%
31 |1.41 5.72-1072 | 24.7 | 1.34 1.79-107* | 7.50 - 103
0 3 [6.67-10"1]3.15-10""]2.11 [3.33-10"'[2.25-10"'7 | 1.48-10'6
7 |1.15 1.50-10~! | 7.65 | 1.20 1.84-10718 | 6.48 - 1017
15 [1.31 7.78-1072 | 16.8 | 1.31 6.61-10~18 | 1.98 - 10'7
31 |1.41 5.69-1072 | 24.8 | 1.34 5.21-10717 | 2.58 - 1016

Table 9: Upstream method

It is not satisfactory that there are cases (eg. (-1,1)) in which no stability can be achieved. A
possibility to overcome this may lie in the introduction of an additional collocation point. The
system is then overdetermined. This method has been examined and successfully applied on
the square in [1]. A further method may be the use of staggered grids which possibly leads to
Amin > 0. Two different sets of grids are used - one for the solution and the other one for its
derivative. For the advection-diffusion equation there were positive results in [2].

Instead of using the Gauss algorithm for solving the linear systems, one could apply iterative
methods. As many other iterative methods do not support complex eigenvalues we recommend
the use of the GMRES method (see [5]) - a method of minimized residuals. The linear system
Bv = g where B is a non-symmetric and large matrix is solved as follows. vg is the initial solution,
ro = g — Bvg and we define the m-th Krylov space K,, := span{ry, Bro, ..., B™ 'ry}. Then we
find the approximation v, € vy + K, such that the m-th residual r,, fulfills |r,,| = min!.

Domain decomposition

We are now interested in applying the spectral method to more complex domains. We use the
patching method (see [3]) where the domain is separated into square or triangular subdomains
on which Gauss-Lobatto nodes are defined. The differential equation is solved at the interior
nodes. At the interface we require continuity of the solution and its normal derivative. We
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consider the Poisson equation with Dirichlet boundary condition

Au = fin{,
u = g on 0f.

At the interface I' between two subdomains, information is exchanged until continuity is reached.
In one direction Dirichlet information is transfered and in the other direction it is Neumann
information. We use an interface relaxation as proposed in [3] i.e. at the Dirichlet side we hand
over a weighted sum of subsolutions at the interface. We iterate until the error at the interface
is smaller than 10~'*. Thus we iteratively solve a sequence of Dirichlet Neumann problems. We
begin with a domain composed of one patched triangle and square 2 =T U R while

T = {(z,y)|0<z,y<landz+y <1} and
R = {(z,y)|0<z<land —1<y<0}.

Y
1
T
-1 1 *
R
-1

Figure 16: Domain (2

The interface is I' = (0,1) x {0} (Figure 16). Initial conditions are u = uJ = 0 on Q and
u} = g on I'. We then iterate
Aul* = finT,
u* = gondT\T,

uf' = ™t (1= e ton T

Here 0™ denotes the relaxation parameter which is chosen dynamically. This dynamical choice
usually accelerates the convergence. §™ = ¢ is the unique number which minimizes || z,(0) —
Zm—1(0) ||3 where 2, (8) = dul + (1 — §)uf*. 6™ is calculated by

§m = (egn7 egn - egn)
)
| e —es" |13
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where (.,.) denotes the discrete Lo inner product and

ejt = ug" —ulm_l fori=1,2
is the difference of two consecutive iterates on the two subdomains. ™ should be in (0, 1].

We cannot use example (1) because this function vanishes at the interface. Therefore no new
information is exchanged which makes an iterative method superfluous, as it converges after the
first step. Thus we introduce the following oscillating example

u(z,y) = sin(nzx) sin(ny + %) (2)

IN|It] E2p | E2z |
4 115]1.36-1072 [1.28-1072
8 [17]2.42-107° |1.64-107°
16 | 17 | 8.01-10"1 | 4.24-10713
3217 |1.00-10"™ | 1.60 - 10~ 14

Table 10: Q with (2)

Table 10 shows the number of iterations and the discrete Ly error on square and triangle. We
reach the tolerance after relatively few steps. The convergence is fairly slow because of the
oscillatory behaviour of the solution. The number of iterations is constant and independent of
N. Machine accuracy is reached for N=16.

The second domain 2; to be studied consists of 2 and an additional triangle T attached to the
already existing one (Figure 17).

Y
1
T, T
-1 1 *
R
-1

Figure 17: Domain

We begin with triangle 7' with interface boundaries I'y = (0,1) x {0} and I'y = {0} x (0,1) and
I' =T UT'5. Then we solve on R and 7. This should be realized on a parallel computer. The
algorithm reads

Aul* = finT,
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ul® = gondT\T,
ul Ot 4 (1= Y on Ty,
= St 4 (1= 6 Hu Tt on Iy,
and
Auy® = fin R,
uy' = gon OR\TYy,
8 m m
- = = T
8yu2 8yu1 on 1,
and
Aui' = fin Ty,
ug' = gon 0Ty \I'y,
0
%U/gn = %UT on FQ.
IN|[It] E2p | E2; | E21p |
4 165[1.04-1072 [9.62-103 | 1.25-102
8 18316.98-10% |5.67-1076 |2.68-107°
16 | 84 | 6.85-10713 | 4.01-10713 | 1.02- 1012
32190 (2.31-1071 [8.30-10"|9.90-10"

Table 11: Q; with (3)

Initial values are analogous to the last example. We apply this algorithm to the example

™

u(z,y) = sin(rx + —) sin(ry + z).

4

4

(3)

The results are listed in Table 11. The number of iterations is extremely increased if a further
triangle is added. Unfortunately, 6/ tends to leave the interval (0,1]. Whenever this happens,
the following approximation is worse than the one before. Nevertheless, the method finally

converges. This dynamical choice of 67 is not optimal. We have derived results for fixed 6™ = 1
in Table 12.

IN|It] E2¢ | E2p | E2;1 |
4 [34]489-107* [2.82-10~* |1.51-1073
8 41/9.29-107° |230-107° |6.82-10°8
16 | 46 | 1.78-10713 | 3.70-10~'4 | 1.83 . 10713
32(8719.68-10713|8.40-10714]1.01-1012

Table 12: Q; with (3) and 0™ = 0.5

The number of iterations is smaller and there are no ’backward steps’ any more.
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Finally, we study the domain Q9 = RU T} U T, U T3 U Ty (T; triangles) which is symmetric to
the origin (Figure 18). We consider the following example

u(z,y) = sin(3rz + %) sin(3my + z). (4)

4

Figure 18: 'wind wheel’” 9

The algorithm is analogous to the last one and we first solve on the square and then on the
triangles. The results in Table 13 are fairly good for symmetry reasons considered that we
now deal with five subdomains. The number of iterations is constant and machine accuracy is
reached for N=16.

IN|It] E2x | E2 | E2pp | E2r3 | E2py |
8 |75]9.00-1072 [5.86-1072 |7.55-1072 [4.89-10"2 [7.13-102
16 |72 14.33-107° [2.08-10"° [4.70-10"° |1.79-10"° | 4.63-107°
32169 |3.83-107" |5.10-107™ | 1.06 - 10~ | 6.60 - 10~'* | 8.60 - 10~1*

Table 13: Q9 with (4)

Summing up we constate that this spectral method is effective for domain decomposition prob-
lems, too. Now, we can also deal with partial differential equations on complex domains using
spectral methods as long as those domains can be separated into rectangular and triangular
elements.
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