
Spectral schemes on triangular elementsby Wilhelm Heinrichs and Birgit I. LochAbstractThe Poisson problem with homogeneous Dirichlet boundary conditions is considered on a tri-angle. The mapping between square and triangle is realized by mapping an edge of the squareonto a corner of the triangle. Then standard Chebyshev collocation techniques can be applied.Numerical experiments demonstrate the expected high spectral accuracy. Further, it is shownthat �nite di�erence preconditioning can be successfully applied in order to construct an e�cientiterative solver. Then the convection-di�usion equation is considered. Here �nite di�erence pre-conditioning with central di�erences does not overcome instability. However, applying the �rstorder upstream scheme, we obtain a stable method. Finally, a domain decomposition techniqueis applied to the patching of rectangular and triangular elements.Keywordsspectral, collocation, triangle, preconditioning, Poisson, convection-di�usion, domain decompo-sition.IntroductionPseudospectral collocation methods give good approximations to smooth solutions of elliptic par-tial di�erential equations. However, there is a huge disadvantage as these methods are con�nedto rectangles. Additionally, the spectral operator is ill conditioned compared to �nite di�erenceor �nite element operators and requires preconditioning to construct an e�ective iterative solver.Here, we apply the standard Chebyshev collocation method for solving partial di�erential equa-tions on certain right triangles. We introduce a transformation between the triangle and thestandard square where spectral collocation can be applied. This transformation maps one edgeof the square onto one corner of the triangle so that the non-equally spaced collocation pointscluster in that corner. In [6] a di�erent approach has been examined. The results are compared.This method is then applied to the Poisson equation with homogeneous Dirichlet boundaryconditions on a right triangle. It is numerically shown that for smooth solutions high spectralaccuracy can be achieved. Then we introduce a singularity caused by the singular behaviour ofthe right-hand side leading to a somewhat slower convergence of the approximation. Precondi-tioning by �nite di�erences yields a condition number increasing as O(N).After that the convection-di�usion equation is considered. To overcome the instability for small� we choose N to be odd (see [1]). Preconditioning by central �nite di�erences yields an un-bounded condition number such that an upwind method has to be applied.Finally, domain decomposition problems are investigated. The Poisson problem is numericallysolved on patchings of rectangular and triangular elements. A Dirichlet Neumann interface re-laxation is iterated until continuity of normal derivatives is achieved. By numerical results thee�ciency of this treatment is demonstrated. 1



Transformation of the right triangleThe standard Chebyshev collocation scheme (see [6]) is de�ned for the non-equally spacedChebyshev-Gauss-Lobatto nodes (si; tj) = (cos i�N ; cos j�N ) on the square [�1; 1]2. Using lin-ear transforms, arbitrary rectangles can be considered. However, if we are interested in tri-angular domains the mapping is more complicated. In [6] a mapping applying polar coor-dinate transformation and bending of an edge of the triangle was introduced and analyzed.Numerical results showed the e�ectiveness of this method. Here we consider a new transfor-mation between the standard square R = f(x; y) j � 1 < x; y < 1g and the right triangleT = f(x; y) j 0 < x; y < 1 and x + y < 1g. The original mapping is given in [7] and has beenchanged for our purposes. The transformation readsx = 14(xR + 1)(1 � yR); y = 12(yR + 1)xR = 2x1�y � 1; yR = 2y � 1and is displayed in Figure 1.6
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Figure 1: Horizontal transformationWe will call this the horizontal transform as every node is actually moved horizontally. Thevertical transform isx = 12(xR + 1); y = 14 (yR + 1)(1 � xR)xR = 2x� 1; yR = 2y1�x � 1and will be considered later.This transformation is no longer injective. We will see that this does not disturb the accuracyof our approximation. The upper edge of R is mapped onto P(0,1) on T. As this edge belongsto the border of our domain boundary conditions are applicable which are treated separatelyanyway. 2



Partial derivatives must be transformed, too. Using the horizontal transform we deriveux = 2ux1 = 41�yRuxRuxx = 4ux1x1 = 16(1�yR)2uxRxRuy = 2uy1 = 2xR+11�yR uxR + 2uyRuyy = 4uy1y1 = 4 (xR+1)2(1�yR)2 uxRxR + 8xR+11�yR uxRyR + 8 xR+1(1�yR)2uxR + 4uyRyR :The Laplacian then reads as follows�u = uxx + uyy= 44+(xR+1)2(1�yR)2 uxRxR + 8xR+11�yR uxRyR + 8 xR+1(1�yR)2uxR + 4uyRyR :The Poisson problemNumerous spectral algorithms for the numerical simulation of physical phenomena demand theapproximative solution of one or more Poisson problems in a bounded domain.We now study the problem�u = f in T;u = 0 on @T;where @T denotes the boundary of T. We apply the standard Chebyshev collocation scheme tothe exact solutionu(x; y) = xy(ex+y � e): (1)This function obviously ful�lls the boundary condition.Table 1 shows the discrete L2 error E2 := ku�uNk2N . One observes the exponential decay of theerror. N E2 E2 in [6]4 1:94 � 10�5 1:89 � 10�48 2:04 � 10�11 8:85 � 10�716 2:12 � 10�16 1:84 � 10�1132 4:29 � 10�16 1:78 � 10�16Table 1: Error using horizontal transformation and [6]As we see the high spectral accuracy can also be reached on the triangle T. We have the bestapproximation of the solution at P(0,1) as the collocation points cluster there. Figure 2 showsthe position of the collocation points for N=16 on the triangle and on the square.3
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1 ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� ����������������� �����������������Figure 2: Positions of the Chebyshev collocation nodes for N = 16Comparison of these results to those in [6] using polar coordinate transformation (see Table1) shows that our mapping yields a faster convergence of the approximation. Here roundingerror accuracy is already reached for N=16. N=4 and N=8 give results which are more exactby 1 or 5 digits. This can be explained by the position and way of numbering the collocationnodes. Figure 3 shows that the jumps occuring when changing the row (e.g. from third to fourthpoint) are decreasing while those in [6] seem to be larger. The speed of convergence is probablyin
uenced by greater jumps.
@@@@@@@@@�3 �2 �1�4�5�6 �7,8,9 @@@@@@@@@

�1�2 �3,6,9 �4�5 �7�8Figure 3: Order of collocation points for N = 2 compared to [6]Next we consider a singular problem where f � �1. We compare the results for N=4, 8, 16and 32 to those obtained for N=36 at the �xed points displayed in Figure 4. These points arethe collocation nodes for N=4 which are also used for larger N divisible by 4. We expect theerror to be smallest close to y=1 because there the collocation nodes cluster. We deal with thefollowing nodes:P1(0; 0); P2(p22 ;�p22 ); P3(�p22 ; p22 ); P4(p22 ; p22 ) and P5(�p22 ;�p22 ):4
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Figure 4: Positions of the �ve nodesThe approximation converges more slowly than in the last example. That makes sense becausehere the di�erential equation and its boundary condition are not compatible any more.To get an overview we present ER = juN � u36j which is the absolute value of the di�erence forevery node, in a diagram (Figure 5).
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Figure 5: Poisson problem with constant fNext we choose f discontinuous:f(x; y) = ( �1 for y � x > 00 for y � x � 0:As Figure 6 shows the triangle is now bisected. The transformation of the line y = x on thetriangle gives the hyperbola y = 2x+1x+3 � 1 on the square.5
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Figure 6: Transformation of the lineThe results can be found in Figure 7.
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Figure 7: Poisson problem with discontinuous fThe approximation is relatively bad close to the separating line. Since f is discontinuous thesolution of the partial di�erential equation is no longer smooth and there is no high spectralaccuracy any more. We only have a �rst order method.PreconditioningWe are interested in a good condition number of our spectral operator which does not increasetoo fast such that e�cient iterative solvers can be found. Here the maximum eigenvalues of thespectral Laplacian on the triangle scale as O(N8) (Table 2). On the square one has O(N4) whichis certainly preferrable. We are looking for a preconditioner to improve the condition so that itscales as O(N) or even independently of N. A good preconditioner also has to be a good approx-imation of the inverse of the spectral operator. We found that the condition number is already6



reduced if we multiply the operator by (1� yR)2 . The partial derivatives contain this factor inthe denominator. For y close to 1 the in
uence of the appropriate partial derivative is extremelyhigh. The discretized operator is called L2;SP . Table 3 shows �max := maxfj�j j � eigenvalueg,�min := minfj�j j � eigenvalueg and cond � �max�min .Here the condition number scales as O(N4).N �max �min cond �max=N84 5:39 � 103 5:36 � 101 1:01 � 102 0:088 1:10 � 106 4:94 � 101 2:23 � 104 0:0716 2:71 � 108 4:93 � 101 5:49 � 106 0:0632 6:86 � 1010 4:93 � 101 1:39 � 109 0:06Table 2: The spectral operator LSPN �max �min cond �max �min cond4 6:36 � 102 5:41 � 101 1:18 � 101 1:15 � 102 5:10 2:26 � 1018 9:77 � 103 5:35 � 101 1:83 � 102 1:89 � 103 4:58 4:15 � 10216 1:56 � 105 5:32 � 101 2:94 � 103 3:07 � 104 4:39 7:00 � 10332 2:50 � 106 5:30 � 101 4:71 � 104 4:93 � 105 4:29 1:15 � 105Table 3: The spectral operator L2;SP and results in [6]Our results are comparable to those in [6].We now study the �nite di�erence preconditioner LFD which is the discretization of the Lapla-cian by second order �nite di�erences. The �rst and second derivatives arew0(sj) = 12(�
j�1w(sj�1)� (
j � 
j�1)w(sj) + 
jw(sj+1));w00(sj) = 2�j(
j�1w(sj�1)� (
j + 
j�1)w(sj) + 
jw(sj+1))where�j = 1sj+1 � sj�1 ;
j = 1sj+1 � sj for j = 1; : : : ; N � 1 (see [6]).Table 4 shows the improved results.N �max �min cond �max �min cond4 1:73 1:00 1:73 1:71 0:99 1:738 2:13 0:89 2:41 2:12 0:99 2:1316 2:50 0:71 3:53 2:41 0:80 3:0132 2:91 0:60 4:89 2:83 0:66 4:31Table 4: (LFD)�1LSP and results in [6]7



Now we obtained a condition number scaling as O(N). We could construct an e�ective iterativesolver now.Figure 8 shows the positions of the eigenvalues for N=32. Their imaginary parts are fairly smalland the real parts are contained in [0:5; 3].
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REFigure 8: Eigenvalues of (LFD)�1LSP for N = 32One could apply higher order FD-methods for an even better condition number. However, thiswould result in an extended e�ort for solving the FD problem.In summing up, we state that this transformation between triangle and square gives comparableor better results than the transformation by polar coordinates in [6].
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The convection-di�usion equationModelling of purely convectional or convection dominated processes is a central problem in areaslike e.g. meteorology or investigation of aerodynamical or geophysical 
ows. A model boundaryvalue problem is the convection-di�usion equation���u+ aux + buy = f in T;u = 0 on @T;which can be used for describing the expansion of temperature in a 
uent. Temperature expandsuniformly di�usive in every direction which is expressed by ���u. It is spread by current, too,called convection and is described by aux + buy (a and b being the velocities in x- and in y-direction).As usual, � is the viscosity of our material and represents a measure for interior friction. Asthe partial di�erential equation is of di�erent type for � > 0 and � = 0 (in the �rst case it iselliptic and in the latter it is hyperbolic) we talk about singular behaviour. In the interior ofour domain u� and u0 are close together but getting to the boundary they di�er extremely.Homogeneous Dirichlet boundary conditions are not applicable to hyperbolic problems such thatwe have to deal with boundary layers now. Boundary layers are environments where derivativesof u� scale as O(1� ). Those systems are also called sti� systems. Unphysical oscillations occurin the numerical solution and the discretization is instable. Figure 9 shows the situation in 1D(see [4]).
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xFigure 9: Boundary layerWe are looking for a method to resolve the boundary layers. There are schemes which stilluse spectral methods like adding arti�cial viscosity, spectral viscosity or streamline di�usion.However, here we only choose odd N. Oscillation always arises and is increased for even N with�� N�2 while this is not the case if N is odd.The following table contains the discrete L2 error for decreasing � which develops when dis-cretizing the convection-di�usion equation by spectral collocation. Here we choose (a,b)=(1,1)9



and (-1,1) as these two cases are good representatives for other choices of (a,b). We have testedthe algorithm with example (1). In the case of pure convection (� = 0) the method is unstable.With decreasing � the singular behaviour is increasing and one has to choose a �ner grid (largerN) to obtain results comparable to � = 1.As mentioned above, we now choose N odd which usually leads to a decreased error. This be-haviour was analyzed in [1] in 1D on the square. It can be transferred to the triangle with onlyfew restrictions concerning the choice of parameters. If N is even there exists an interpolationpolynomial which ful�lls the boundary conditions and whose derivative vanishes at the colloca-tion points. This polynomial is responsible for the instability. On the contrary, if N is odd one�nds the proof in [1] that this polynomial does not exist. Apparently, there are parameters (a,b)for which the spectral method is unstable even for odd N. For the stable case (1,0) we actuallyhave the regular operator @@x on the square multiplied with a factor. For (-1,1) we have exactlythat combination of the �rst derivatives on the square where there are at least two equal rows inthe derivative matrix. The partial derivatives are based on the matrix DN . As the collocationpoints on the square are symmetric (for every positive node we �nd a corresponding negativeone) there is annulation in the derivative matrix. The following example for N=3 shows theconnection.uy = 2xR+11�yR uxR + 2uyR yields the derivative matrix0BBBBBB@ �s1(1�s1)2 � s1(1�s21) �2(s1+1)(1�s1)(s1�s2) �2s1�s2 0�2(s2+1)(1�s1)(s2�s1) �s2(1�s1)(1�s2) � s11�s21 0 �2s1�s2�2s2�s1 0 �s1(1�s2)(1�s1) � s21�s22 �2(s1+1)(1�s2)(s1�s2)0 �2s2�s1 �2(s2+1)(1�s2)(s2�s1) �s2(1�s2)2 � s21�s22
1CCCCCCAAs s1 = �s2 (symmetry) we have equal second and third row and the matrix is singular. (-1,1)shows the same behaviour.For (1,1) we do not have annulations and the method is stable. Table 5 displays the results.(0,1) can be stabilized by using the vertical transformation where x and y are exchanged.E2 for(a; b) N � = 1 � = 10�2 � = 10�4 � = 10�6 � = 0(1; 1) 3 2:75 � 10�4 2:21 � 10�3 2:15 � 10�3 2:15 � 10�3 2:15 � 10�37 8:75 � 10�10 4:08 � 10�9 7:77 � 10�9 7:77 � 10�9 7:77 � 10�915 3:77 � 10�16 5:32 � 10�17 1:81 � 10�16 1:50 � 10�16 1:14 � 10�1631 5:08 � 10�16 1:72 � 10�16 2:27 � 10�16 5:64 � 10�16 3:67 � 10�16(�1; 1) 3 2:56 � 10�4 3:75 � 10�3 1:69 � 10�1 1:68 � 101 1:09 � 10137 8:76 � 10�10 5:16 � 10�9 1:86 � 10�7 1:86 � 10�5 1:59 � 10815 1:06 � 10�16 7:53 � 10�17 1:86 � 10�16 2:70 � 10�14 5:75 � 10�131 4:25 � 10�16 2:27 � 10�16 4:74 � 10�16 2:90 � 10�14 4:36 � 100Table 5: Error for the convection-di�usion equationNext a constant right-hand side is considered. Di�erential equation and boundary condition arenot compatible here, i.e.���u+ aux + buy = 1 in T; 10



u = 0 on @T:Table 6 shows the di�erence ER between u36 and uN at P1(0,0). P1(0,0) is in the center ofthe triangle and therefore far away from any boundary. It is the only collocation point (out ofP1-P5) where stability is achieved for (1,1) for small �.ER for(a; b) N � = 1 � = 10�2 � = 10�4 � = 10�6 � = 0(1; 1) 4 1:34 � 10�4 1:99 � 10�1 9:53 � 10�2 2:72 � 10�2 4:11 � 10�18 1:86 � 10�6 5:99 � 10�2 7:82 � 10�2 4:83 � 10�3 1:14 � 10�116 1:12 � 10�8 1:24 � 10�3 6:20 � 10�2 7:03 � 10�3 8:06 � 10�132 8:91 � 10�11 1:68 � 10�7 1:26 � 10�2 1:58 � 10�3 2:89 � 10�2(�1; 1) 4 6:80 � 10�5 2:20 � 10�1 2:34 � 101 2:35 � 103 1:79 � 10158 1:56 � 10�6 6:71 � 10�2 1:43 � 100 1:41 � 102 1:27 � 101516 1:11 � 10�8 2:10 � 10�3 1:75 � 10�3 2:45 � 101 1:27 � 101532 8:88 � 10�11 1:31 � 10�5 6:21 � 10�2 2:17 � 100 2:06 � 1015Table 6: Error for constant f in P1A discontinuous right-hand sidef(x; y) = ( �1 for y � x > 00 for y � x � 0yields an even slower convergence rate than the last example (Table 7).ER for(a; b) N � = 1 � = 10�2 � = 10�4 � = 10�6 � = 0(1; 1) 4 1:53 � 10�3 1:68 � 10�1 1:08 � 10�1 2:00 � 10�2 3:69 � 10�18 4:29 � 10�4 2:00 � 10�2 7:42 � 10�2 1:66 � 10�2 8:56 � 10�216 1:36 � 10�4 3:64 � 10�4 4:14 � 10�2 2:37 � 10�2 8:89 � 10�132 9:35 � 10�5 5:88 � 10�4 1:89 � 10�2 1:73 � 10�3 3:08 � 10�2(�1; 1) 4 1:70 � 10�3 1:39 � 10�1 5:46 � 100 5:48 � 102 3:43 � 10148 4:94 � 10�4 6:86 � 10�2 1:93 � 100 1:96 � 102 9:23 � 101416 1:53 � 10�4 4:65 � 10�3 2:35 � 10�1 3:61 � 101 5:63 � 101432 1:02 � 10�4 1:79 � 10�3 3:64 � 10�2 3:08 � 10�1 8:96 � 1014Table 7: Error for discontinuous f in P1PreconditioningFor the construction of an e�ective iterative solver we now examine the condition number of thespectral operator L2;� of (1� yR)2(���+ aux + buy).11
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Figure 10: Eigenvalues of L�2;SP for N=15, (a,b)=(1,1)Figures 10 and 11 show the positions of the eigenvalues for � = 1 and � = 10�6 for (a,b)=(1,1),N=15. � = 1 � = 0(a; b) N �max �min cond �max �min cond(1; 1) 3 2:20 � 102 5:91 � 101 3:72 � 100 8:76 � 100 2:43 � 100 3:60 � 1007 5:71 � 103 5:36 � 101 1:06 � 102 8:63 � 101 7:02 � 10�1 1:23 � 10215 1:20 � 105 5:32 � 101 2:26 � 103 4:43 � 102 1:73 � 10�2 2:57 � 10331 2:20 � 106 5:30 � 101 4:15 � 104 1:96 � 103 4:24 � 10�2 4:62 � 104(�1; 1) 3 2:22 � 102 5:82 � 101 3:82 � 100 3:27 � 100 0:00 � 1007 5:75 � 103 5:36 � 101 1:07 � 102 5:03 � 101 2:60 � 10�16 1:93 � 101715 1:21 � 105 5:32 � 101 2:27 � 103 2:86 � 102 6:61 � 10�16 4:33 � 101731 2:20 � 106 5:30 � 101 4:15 � 104 1:29 � 103 6:52 � 10�16 1:98 � 1018Table 8: L�2;SPTable 8 gives �max; �min and cond and demonstrates that there really is an eigenvalue close to0 for (-1,1).Applying the inverse of the FD operator L�FD as preconditioner, we observe decreased conditionnumber if � = 1 while for small �, �max is unbounded for (1,1). This preconditioner obviouslydoes not stabilize.Figures 12 and 13 show the positions of the eigenvalues. For small � they are relatively densepositioned with few peak values.In general, FD methods applied to singular disturbance problems are stable if the step sizehi < 2�. Contrary, if hi � � they are unstable. To obtain stability one could increase thenumber of collocation points which reduces the step size. A more promising attempt is the use12
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Figure 11: Eigenvalues of L�2;SP for N=15, (a,b)=(1,1)of the upwind method. The �rst derivatives @@x and @@y , the convectional part, is discretizedby one-sided stream-directed �nite di�erences while the di�usive part is treated with centraldi�erences. We lose one order in convergence but stability is achieved.We havea � ux = a � 41� yR � uxR andb � uy = b � (2xR + 11� yR � uxR + 2uyR):According to the factor the derivatives uxR and uyR are discretized by left- or right-di�erencesin stream direction:uxR(xi; yj) �= 8<: u(xi+1;yj)�u(xi;yj)xi+1�xi if a � 0u(xi;yj)�u(xi�1;yj)xi�xi�1 if a < 0for i = 0; : : : ; N � 1 or i = 1; : : : ; N . Analogously for uyR . The upwind method is not uniformlyconvergent. An adaptive re�nement might help here.Figures 14 and 15 show that by applying the upstream method the positions of the eigenvalueshave completely changed for small �. They are complex, bounded and symmetric. Table 9 givesthe numerical results for the upstream scheme.
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Figure 12: Eigenvalues of L�1FDLSP for N=15, (a,b)=(1,1)
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Figure 13: Eigenvalues of L�1FDLSP for N=15, (a,b)=(1,1)
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Figure 14: Eigenvalues of the upstream operator for N=15, (a,b)=(1,1)

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5 0 0.5 1 1.5 2 2.5

eps=1
eps=0

Figure 15: Eigenvalues of the upstream operator for N=15, (a,b)=(-1,1)
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(a; b) (1; 1) (�1; 1)� N �max �min cond �max �min cond1 3 1:40 9:28 � 10�1 1:51 1:41 9:35 � 10�1 1:507 2:06 8:61 � 10�1 2:39 2:06 8:58 � 10�1 2:4015 2:39 6:99 � 10�1 3:42 2:39 6:97 � 10�1 3:4331 2:85 5:91 � 10�1 4:82 2:85 5:91 � 10�1 4:8210�2 3 6:04 � 10�1 3:04 � 10�1 1:98 2:86 � 10�1 1:11 � 10�1 2:587 1:37 2:99 � 10�1 4:56 1:46 2:67 � 10�1 5:4915 2:18 4:09 � 10�1 5:34 2:19 4:81 � 10�1 4:5531 2:37 4:34 � 10�1 5:47 2:37 5:08 � 10�1 4:6710�4 3 6:66 � 10�1 3:15 � 10�1 2:11 3:33 � 10�1 1:41 � 10�3 2:35 � 1027 1:14 1:50 � 10�1 7:61 1:19 3:10 � 10�3 3:84 � 10215 1:29 8:44 � 10�2 15:3 1:30 8:37 � 10�3 1:56 � 10231 1:82 8:08 � 10�2 22:5 1:82 1:74 � 10�2 1:05 � 10210�6 3 6:67 � 10�1 3:15 � 10�1 2:11 3:33 � 10�1 1:42 � 10�5 2:34 � 1047 1:15 1:50 � 10�1 7:65 1:20 3:11 � 10�5 3:85 � 10415 1:31 7:79 � 10�2 16:8 1:31 8:41 � 10�5 1:55 � 10431 1:41 5:72 � 10�2 24:7 1:34 1:79 � 10�4 7:50 � 1030 3 6:67 � 10�1 3:15 � 10�1 2:11 3:33 � 10�1 2:25 � 10�17 1:48 � 10167 1:15 1:50 � 10�1 7:65 1:20 1:84 � 10�18 6:48 � 101715 1:31 7:78 � 10�2 16:8 1:31 6:61 � 10�18 1:98 � 101731 1:41 5:69 � 10�2 24:8 1:34 5:21 � 10�17 2:58 � 1016Table 9: Upstream methodIt is not satisfactory that there are cases (eg. (-1,1)) in which no stability can be achieved. Apossibility to overcome this may lie in the introduction of an additional collocation point. Thesystem is then overdetermined. This method has been examined and successfully applied onthe square in [1]. A further method may be the use of staggered grids which possibly leads to�min > 0. Two di�erent sets of grids are used - one for the solution and the other one for itsderivative. For the advection-di�usion equation there were positive results in [2].Instead of using the Gauss algorithm for solving the linear systems, one could apply iterativemethods. As many other iterative methods do not support complex eigenvalues we recommendthe use of the GMRES method (see [5]) - a method of minimized residuals. The linear systemBv = g whereB is a non-symmetric and large matrix is solved as follows. v0 is the initial solution,r0 = g�Bv0 and we de�ne the m-th Krylov space Km := spanfr0; Br0; : : : ; Bm�1r0g. Then we�nd the approximation vm 2 v0 +Km such that the m-th residual rm ful�lls jrmj = min!.Domain decompositionWe are now interested in applying the spectral method to more complex domains. We use thepatching method (see [3]) where the domain is separated into square or triangular subdomainson which Gauss-Lobatto nodes are de�ned. The di�erential equation is solved at the interiornodes. At the interface we require continuity of the solution and its normal derivative. We16



consider the Poisson equation with Dirichlet boundary condition�u = f in 
;u = g on @
:At the interface � between two subdomains, information is exchanged until continuity is reached.In one direction Dirichlet information is transfered and in the other direction it is Neumanninformation. We use an interface relaxation as proposed in [3] i.e. at the Dirichlet side we handover a weighted sum of subsolutions at the interface. We iterate until the error at the interfaceis smaller than 10�14. Thus we iteratively solve a sequence of Dirichlet Neumann problems. Webegin with a domain composed of one patched triangle and square 
 = T [R whileT = f(x; y) j 0 < x; y < 1 and x+ y < 1g andR = f(x; y) j 0 < x < 1 and � 1 < y < 0g:6
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Figure 16: Domain 
The interface is � = (0; 1) � f0g (Figure 16). Initial conditions are u01 = u02 � 0 on 
 andu11 = g on �. We then iterate�um1 = f in T;um1 = g on @T n �;um1 = �m�1um�12 + (1� �m�1)um�11 on �and�um2 = f in R;um2 = g on @R n �;@@yum2 = @@yum1 on �:Here �m denotes the relaxation parameter which is chosen dynamically. This dynamical choiceusually accelerates the convergence. �m = � is the unique number which minimizes k zm(�) �zm�1(�) k22 where zm(�) = �um2 + (1� �)um1 . �m is calculated by�m = (em1 ; em1 � em2 )k em1 � em2 k22 ; 17



where (:; :) denotes the discrete L2 inner product andemi = umi � um�1i for i = 1; 2is the di�erence of two consecutive iterates on the two subdomains. �m should be in (0; 1].We cannot use example (1) because this function vanishes at the interface. Therefore no newinformation is exchanged which makes an iterative method super
uous, as it converges after the�rst step. Thus we introduce the following oscillating exampleu(x; y) = sin(�x) sin(�y + �4 ): (2)N It E2T E2R4 15 1:36 � 10�2 1:28 � 10�28 17 2:42 � 10�5 1:64 � 10�516 17 8:01 � 10�13 4:24 � 10�1332 17 1:00 � 10�14 1:60 � 10�14Table 10: 
 with (2)Table 10 shows the number of iterations and the discrete L2 error on square and triangle. Wereach the tolerance after relatively few steps. The convergence is fairly slow because of theoscillatory behaviour of the solution. The number of iterations is constant and independent ofN. Machine accuracy is reached for N=16.The second domain 
1 to be studied consists of 
 and an additional triangle T1 attached to thealready existing one (Figure 17). 6
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Figure 17: Domain 
1We begin with triangle T with interface boundaries �1 = (0; 1)� f0g and �2 = f0g � (0; 1) and� = �1 [ �2. Then we solve on R and T1. This should be realized on a parallel computer. Thealgorithm reads�um1 = f in T; 18



um1 = g on @T n �;um1 = �m�11 um�12 + (1� �m�11 )um�11 on �1;um1 = �m�12 um�13 + (1� �m�12 )um�11 on �2;and�um2 = f in R;um2 = g on @R n �1;@@yum2 = @@yum1 on �1;and �um3 = f in T1;um3 = g on @T1 n �2;@@xum3 = @@xum1 on �2:N It E2T E2R E2T14 65 1:04 � 10�2 9:62 � 10�3 1:25 � 10�28 83 6:98 � 10�6 5:67 � 10�6 2:68 � 10�516 84 6:85 � 10�13 4:01 � 10�13 1:02 � 10�1232 90 2:31 � 10�13 8:30 � 10�14 9:90 � 10�14Table 11: 
1 with (3)Initial values are analogous to the last example. We apply this algorithm to the exampleu(x; y) = sin(�x+ �4 ) sin(�y + �4 ): (3)The results are listed in Table 11. The number of iterations is extremely increased if a furthertriangle is added. Unfortunately, �mi tends to leave the interval (0; 1]. Whenever this happens,the following approximation is worse than the one before. Nevertheless, the method �nallyconverges. This dynamical choice of �mi is not optimal. We have derived results for �xed �mi = 12in Table 12. N It E2T E2R E2T14 34 4:89 � 10�4 2:82 � 10�4 1:51 � 10�38 41 9:29 � 10�9 2:30 � 10�9 6:82 � 10�816 46 1:78 � 10�13 3:70 � 10�14 1:83 � 10�1332 87 9:68 � 10�13 8:40 � 10�14 1:01 � 10�12Table 12: 
1 with (3) and �m = 0:5The number of iterations is smaller and there are no 'backward steps' any more.19



Finally, we study the domain 
2 = R [ T1 [ T2 [ T3 [ T4 (Ti triangles) which is symmetric tothe origin (Figure 18). We consider the following exampleu(x; y) = sin(3�x+ �4 ) sin(3�y + �4 ): (4)6
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Figure 18: 'wind wheel' 
2The algorithm is analogous to the last one and we �rst solve on the square and then on thetriangles. The results in Table 13 are fairly good for symmetry reasons considered that wenow deal with �ve subdomains. The number of iterations is constant and machine accuracy isreached for N=16.N It E2R E2T1 E2T2 E2T3 E2T48 75 9:00 � 10�2 5:86 � 10�2 7:55 � 10�2 4:89 � 10�2 7:13 � 10�216 72 4:33 � 10�5 2:08 � 10�5 4:70 � 10�5 1:79 � 10�5 4:63 � 10�532 69 3:83 � 10�13 5:10 � 10�14 1:06 � 10�13 6:60 � 10�14 8:60 � 10�14Table 13: 
2 with (4)Summing up we constate that this spectral method is e�ective for domain decomposition prob-lems, too. Now, we can also deal with partial di�erential equations on complex domains usingspectral methods as long as those domains can be separated into rectangular and triangularelements.

20
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