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Estimating the Value of Conjunctive Water Use at a System-Level Using
Nonlinear Programing Model

Abstract
Uncertainty and shortages of surface water supplies, as a result of global climate change and flow regulation
and harvesting regimes, necessitate development of groundwater in many irrigation management areas.
Groundwater can be expensive to pump, but provides a reliable supply if managed sustainably. Groundwater
can be used optimally in conjunction with surface water supplies. The use of such conjunctive systems can
significantly decrease the risk associated with a stochastic availability of surface water supply.

We propose an innovative nonlinear programing model for the optimisation of profitability and productivity
in an irrigation command area with conjunctive water use options. The model, rather than using exogenous
yields and gross margins, uses crop water production and profit functions to endogenously determine yields
and water use, and associated gross margins, respectively, for various conjunctive water use options. The
model allows the estimation of the potential economic benefits of conjunctive water use and derives an
optimal use of regional level land and water resources by maximising the net benefits and water productivity
under various physical and economic constraints.

The proposed model is applied to the Coleambally Irrigation Area (CIA) in south eastern Australia to explore
potential economic benefit of conjunctive water use. The results show that optimal conjunctive water use can
offer significant economic benefit, especially at low levels of surface water allocation and pumping cost. At
lower levels of surface water allocation the results show that conjunctive water use potentially generate
additional AUD 57.3 million. On the other hand, at higher levels of surface water allocation, additional benefit
of conjunctive water use is AUD 9.4 million. The model could be applied to analyse the impact of escalating
energy prices for groundwater dependent irrigation systems, and other irrigation systems, to maximise the
potential of conjunctive water use.

Keywords
Surface water, groundwater, conjunctive water use model, agricultural production and profit functions,
optimal multicrop production
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1. Introduction 

 
Water is the most important input in irrigated agriculture, with timely and reliable 

supply being a major determinant in cropping decisions (Khan, Yuanlai and 

Blackwell, 2006). Irrigators, however, often have to make key decisions on crop 

acreage and input investments in the absence of reliable information on water 

availability. This is especially the case with surface water resources which depend 

upon rainfall and water stored in reservoirs. Climate change and climate 

variability make seasonal rainfall less predictable and seasonal irrigation supplies 

more uncertain, potentially eroding agricultural production and farming 

profitability. Uncertain surface water allocations also deter irrigators from making 

long-term investments or entering into seasonal water trading and insurance 

contracts (Dwyer, Loke, Appels, Stone and Peterson, 2005). In addition to the 

stressors of climate variability, new urban, industrial, and environmental water 

demands have priority for water allocation over agriculture, and are thus putting 

even further strain on the ever dwindling water resources available to farmers 

(Ward, Booker and Michelsen, 2006; Wichelns and Oster, 2006). 
 
Development of optimum land uses and water allocation plans and operable water 

delivery schedules are valuable for irrigation schemes in arid and semi-arid 

regions. Surface water usually has low delivery and extraction costs, but is subject 

to high variability in supply. Uncertainty and shortages of surface water supplies 

necessitate development of groundwater in many irrigation management areas. 

While groundwater can be expensive to pump, it may provide a reliable supply 

where managed sustainably. Groundwater can be used optimally in conjunction 

with surface water supplies. Such conjunctive use systems can significantly 

decrease the risk associated with a stochastic availability of surface water supply 

and safeguard against risks of losing investment (Gemma and Tsur, 2007; Tsur 

and Graham-Tomasi, 1991).  

 
Conjunctive use models developed and reported in the literature include 

simulation models e.g. (Chalves-Morales, Marino and Holzapfel, 1992; Latif and 

James, 1991), dynamic programming models e.g. (Onta, Gupta and Harboe, 1991; 

Provencher and Burt, 1994), linear programming models e.g. (Lakshminarayana 

and Rajagopalan, 1997; Rogers and Smith, 1970), hierarchical optimisation 

models e.g. (Paudyal and Gupta, 1990), nonlinear programming models e.g. 

(Matsukawa, Finney and Willis, 1992; Montazar, Riazi and Behbahani, 2010) and 

others. The present study estimates the maximum economic value of conjunctive 

water use strategies using a nonlinear programming model, reflecting the 

nonlinear nature of most conjunctive water use management problems.  
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The innovation of our approach is the use of production and profit functions to 

estimate agricultural yields and gross margins, respectively, for various surface 

water allocation levels and conjunctive water use options. The present approach 

differs from the commonly used method based on given crop yields and gross 

margins. The model endogenously determines suitable levels of water uses and 

associated optimal production for a given water availability and maximises net 

return. Another key feature of the model is that it allows water trading 

(buy/selling) to maximise the net benefit. 
 

The specific objectives of the present study are to develop a mathematical 

programming model to explore the economic potential of conjunctive water use 

options, and to achieve an optimal use of water resources by maximising net 

benefits and water productivity under various physical and economic constraints. 

The proposed model is applied to the Coleambally Irrigation Area (CIA) in south 

eastern Australia. 

 

2. Model formulation 
 
We model yields and gross margins under various water allocation levels and 

conjunctive water use options using production and profit functions, rather than 

using exogenous crop yields and gross margins. Production functions represent 

the yield of main crops in response to water use and are estimated using yearly 

rainfall data and applied irrigation of specified amounts at set dates during the 

growing period. Given total water inputs, i.e. irrigation plus rainfall, crop yield 

production functions are derived for various crops using the SWAGMAN-Destiny 

model (Edraki, Smith, Humphreys, Khan, O’Connell and Xevi, 2003). Developed 

production functions are obtained by fitting the following nonlinear curve using 

ordinary least squares (OLS) regression analysis: 

 

εββββ +−++= 3

3

2

210)( WWWWY                                         (1) 

 

where Y is the yield (tonne per ha), W is the water use (ML per  ha), βi (i =0, 1, 

2, 3) are coefficients and ε is the error term. 
 
The profit function of a crop represents the net return after subtracting the input 

cost and water cost from the output revenue of that crop, i.e. 
 

[ ]XWpWpXCXWYpXWP ggss )()()()()(),( ×+×−×−××=                 (2) 

where p is the output price (AUD per tonne) of the crop; X is the area (ha); C is 

the growing cost excluding water costs (AUD per ha); p
(s)

 is the surface water 
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price (AUD per ML); p
(g)

 is the groundwater pumping cost (AUD per ML); and 
)(s

W and )(g
W  are surface and groundwater uses of a crop, respectively. We have: 

 

� � )(s
W � )( g

W                                           �3� 

                                                 

The total gross margin (TGM) denoted by Π for crop production and water trading 

of the whole farming business is calculated as 

Π � 	 
����, 
�� � ��
��� � ������ � ������                         �4�

�

���
 

                                         

where i is the crop index of a crop grown in the farm; ��
���

is the temporary water 

trading price (AUD per ML); and ����� and ����� are the quantities of surface 

water and groundwater trading, buying when �����, ����� < 0 or selling  when 

�����, ����� > 0 (in ML). 

 
A nonlinear programming (NLP) model is generated here with the aim of 

maximising the TGM in (4) subject to several land, water, technical and 

administrative constraints. The model is represented in the form of vector 

functions as follows. 
 

               maximise Π � ��xxxx�   xxxx   !"
subject to )��xxxx� � 0,    +  ,
                    )��xxxx� - 0,    +  ..

                                          (5) 

 

It can be seen that the objective function f(x) represents the right hand side of (4) 

with x being a vector of the input variables including the surface and groundwater 

use and area of each crop and the quantities of trading water. The functions ci(x), i 

= 1, 2. . . n are additional constraint functions, and E and I are the index sets of 

equality and inequality constraints, respectively. In the present work, the objective 

function is a nonlinear function while the constraint functions can be either linear 

or nonlinear. More details about the constraint functions are given below: 

 
Surface water constraint 

Total surface water use must not exceed the corresponding announced water 

allocation for the water year, as shown below: 

	 ��
���

�

���
� 
� 0 1� � 2                                                        �6� 
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where ��
���

 is the crop surface water use (ML per ha) of crop i, SW is the total 

surface water entitlement for an irrigation system, and A is the surface water 

allocation (%) in a given month.  
 
Groundwater constraint 

Groundwater licenses/withdrawal of water should not exceed the maximum 

sustainable yield, as represented through      

  
	 ��

��� � 
� 0 4���5�
�

���
                                                       �7� 

 

where ��
���

 is the crop groundwater use (ML per ha) of crop i, GW
(sy)

 is the 

sustainable groundwater, based on the extraction limit.         
 
Land constraint 

Land allocated to various crops must not exceed the total cultivable area during 

the summer and winter seasons, i.e.      
                   

	 
� 0 72
�

���
                                                                 �8� 

 

where TA is the total cultivated area available. 
 
Allowable area constraints 

Management considerations, market conditions, machinery capacity of the farm, 

and climatic conditions restrict the minimum or maximum land acreages for 

certain crops such as rice to meet the regulations on local land use in the area. For 

instance 

(a) Lower bound           
� - 9�:�"72                                                                    �9�  
(b) Upper bound           
� 0 9�:<=72                                                                 �10� 

 

where 9�:�"and 9�:<= are minimum and maximum fractions, respectively, of the 

cultivated area under crop i. 
 
Water market constraint 

Water markets are subject to a set of rules and regulations. These involve placing 

limits on where water can be traded and the mechanisms for establishing the 

price, as well as limiting maximum tradable volumes (Khan, Taiq, Hanjra and 

Zirilli, 2009). For instance 
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����� 0 ?:<=1� � 2                                                                 �10� 
 

where ?:<= is a fraction of the total allocation that can be traded on temporary 

water markets. 
 
Non-negativity constraints 
The non-negativity constraints which ensure the solution remains feasible are 

given as follows. 

� - 0.                                                                         �12� 

 
A sequential quadratic programming (SQP) technique is used to solve the 

mathematical model (5). SQP methods represent the state of the art in nonlinear 

programming. Schittkowski (Schittkowski, 1985), for example, has implemented 

and tested a version that outperforms every other tested method in terms of 

efficiency, accuracy, and percentage of successful solutions, over a large number 

of test problems. The SQP technique achieves the solution of a constrained 

nonlinear programming problem via sequentially solving quadratic programming 

subproblems in which the nonlinear constraints are linearized (Fletcher, 1991). 

Computer codes for the SQP algorithm are written in MATLAB
®
 language. 

 

3. Application example 
 
The developed model is generally valid and its application has allowed an 

estimate of the benefits of conjunctive water use for the Coleambally Irrigation 

Area (CIA), a major irrigated agricultural region located in the Murray-Darling 

Basin (MDB) in the south eastern New South Wales (Figure 1). 

 
Figure 1: CIA irrigation management area located in south eastern New South Wales 
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3.1 Irrigation command area 
3.1.1 Surface water 
 
Surface water for the CIA is stored in Burrinjuck and Blowering dams and is 

diverted to the area via the Murrumbidgee River at the Gogeldrie Weir. CIA 

irrigation system consists of 41 km of main canal from the Murrumbidgee River, 

477 km of supply channels, and a further 734 km of drainage channels. 

Coleambally Irrigation Cooperative Limited (CICL) is a leading exponent of open 

channel irrigation management and has invested over AUD 40 million since 2000 

improving their land and water management practices and enhancing local 

biodiversity. Rainfall in the CIA is in the range of 400-450 mm per year. There 

are over 360 landholdings with a total area of 79 000 ha, and a total bulk water 

license of 629 GL. Prolonged drought severely impacts water availability; for 

example, surface water deliveries declined significantly from 629 GL in 

1996/1997 to 36 GL in 2007/2008 and increased to 427 GL in 2011/2012 

following good seasonal rains (Figure 2).  

 

Available surface water supplies are allocated on a priority basis; first to high 

security water and then to general security water. High security consumptive 

water licenses include town water supplies and permanent crops (e.g. tree crops). 

Irrigators with high security water usually receive close to full entitlement (e.g. at 

95% allocation during 2005/2006). General security water licenses represent most 

of the CIA’s farming business. The first irrigation allocation announcement for 

general security water users in the CIA is at the beginning of the irrigation season 

around July-August. This announcement is usually conservative based on a high 

level of reliability (i.e. that there is a 99% chance that the announced allocation 

will be available). General security allocations build gradually over the irrigation 

season as inflows into storages and rivers occur. Figure 3 shows the trend in the 

general security allocation for the period, July-December 2011. 

 
3.1.2 Groundwater 

 
CIA groundwater sources include all water contained in the Shepparton 

Formation, Calivil Formation and Renmark Group unconsolidated alluvial 

aquifers. There are two groundwater sources including shallow and deep sources. 

The shallow groundwater source extends to a depth of 40 m, or the bottom of the 

Shepparton formation, whichever is the deeper. The deep groundwater source 

extends from the base of the shallow groundwater source down to bedrock at a 

depth ranging from 200 m to 270 m, which is generally represented by the Calivil 

Formation and the Renmark Group. 
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Figure 2: Annual diversion in the CIA

Figure 3: Announced allocation of the CIA for the period, 1 July 2011 

December 2011 (CICL, 2012)

 

 
Annual diversion in the CIA (CICL, 2012).  

 

 

Announced allocation of the CIA for the period, 1 July 2011 

(CICL, 2012).  

 

 

Announced allocation of the CIA for the period, 1 July 2011 – 1 
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Groundwater management policy for the region has been developed since 1955 

starting with all water bores constructed requiring a license. Licences were issued 

in perpetuity with no area or volume based restrictions until 1984 when the 

volumetric allocation basis was introduced. The annual groundwater entitlement 

was increased gradually from 147 GL in 1983/1984 to a peak amount of 529 GL 

in 2000/2001 (Kumar, 2002). In 2003, a 10-year water sharing plan (the Plan) for 

groundwater sources was developed. The Plan uses the average annual 

groundwater recharge of about 400 GL as the basis for sharing water between 

extractive users and the environment. It provides for a portion of the estimated 

recharge to be reserved for the environment allowing the remainder to be 

available for extraction. The Plan was implemented in 2006 with total 

entitlements reduced from 307 GL to the target of 270 GL in 2015/2016. Table 1 

presents the annual extraction limits of groundwater for the ten years of the Plan 

from 2006-2016. 

  

Table 1: The Plan of annual extraction limits for CIA groundwater source  

 

Year of Plan Water Year Extraction Limit (ML) 

1 2006-2007 307,076 

2 2007-2008 302,957 

3 2008-2009 298,837 

4 2009-2010 294,718 

5 2010-2011 290,598 

6 2011-2012 286,478 

7 2012-2013 282,359 

8 2013-2014 278,239 

9 2014-2015 274,120 

10 2015-2016 270,000 

  Source: Kumar, 2009. 

 

3.1.3 Land and water use 

 
In the CIA, rice and corn/maize are the main summer crops, with wheat, barley 

and pasture being the main winter crops. Table 2 shows the change in the area and 

water use over the last five years of seven major crops in the CIA. Prior to the 

commencement of drought in 2002/03, 2001/02 data indicate that over two-thirds 

of CICL’s water supplies were used by rice (CICL, 2013). Since 2002/03 the 

proportion of water supplied to rice crops reduced to less than half of total 

deliveries in most seasons. Minimum diversion occurred in 2007/2008 with only 

1.4 % of total water supplied by CICL used for growing rice. 2010/11 marked the 

end of drought, with 65% of water being used on rice, reflecting a return to pre-
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2002/03 levels. The areas committed to the production of soybeans, corn, wheat, 

pasture and canola have varied greatly over the last five years in response to the 

availability of water and changes in commodity prices. 

 

3.2 Model application 

 
We modeled productivity in CIA for seven crops including wheat, maize, 

soybean, pasture, lucerne, rice and tomato. More crops can be added to the model 

straightforwardly, if required. The production functions for the main crops in CIA 

(Table 3) were developed using the yearly rainfall data for Griffith for the last 30 

years. The total cultivated area available (TA) is the total area of CIA (79 000 ha). 

The total surface water entitlement (SW) is 629 GL, the total bulk water license. 

The sustainable groundwater volume GW
(sy)

 is set as the extraction limits before 

and after the Plan. A typical value of 471 GL is used as the extraction limit before 

the Plan while the extraction limits of the Plan are as given in Table 1. 

 

The value of temporary traded water was estimated using a regression model 

involving the monthly average water trade price and water allocation data from 

the years 2001/2002 to 2005/2006. The resulting high R
2
 value (0.93) indicates 

that water allocation is the key factor determining the water market price. The 

following estimated function was used in the application of the model: 

��
��� � 407.72 A 10.172 � 0.072B                                            �13� 

where A is the general security water allocation (%) in a given month. 

 

 

Table 2: Land area and consumptive water use of main crops in the CIA 

 

Source: CICL, 2013. 

Crops 

2008/09 2009/10 2010/11 2011/12 2012/13 

Land 

use 

(ha) 

Water 

use 

(%) 

Land 

use 

(ha) 

Water 

use 

(%) 

Land 

use 

(ha) 

Water 

use 

(%) 

Land 

use 

(ha) 

Water 

use 

(%) 

Land 

use 

(ha) 

Water 

use 

(%) 

Rice 2135 33.1 3668 46 14512 68.3 16745 62.1 19071 52.7 

Corn/Maize 2472 3.4 311 2 4367 7.2 4767 8.2 4872 7.7 

Soybeans 308 1.4 495 1 1240 1.5 2238 2.7 2583 3.9 

Cotton 0 0 0 0 885 1.4 5280 7.9 2089 3.0 

Wheat 4215 9.5 10635 10 11334 5.1 15989 8.7 13698 7.2 

Pasture 4481 16.3 6903 12 8119 4.2 7472 4 6545 3.6 

Canola 1471 4.9 2523 2 3381 1.5 5244 1.6 4182 1.3 

Total 15082 68.6 24535 73 43838 89.2 57735 95.2 53040 79.4 
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Table 3: Estimated water yield production functions for the main crops in CIA 

 

 

 

 

 

 

 

 

 

 

 

4. Results 

 
The optimisation model, in general, is assumed to have a short term focus and is 

estimated under the assumption of a relevant output price range and relatively 

inelastic demand for water. Over the years 2008–2012 the average price of surface 

water including fixed and variable charges was AUD 35.65 per ML.  

 

It is desirable when dealing with optimisation problems that the global optimum 

be found. To search for the global rather than local optimum, we used the median 

values of crop water use as starting values. Average crop water use can be found 

in (CICL, 2013). 

 

Figure 4 displays the convergence behaviour of the algorithm applied to the 

present NLP model at two surface water allocation levels. It can be seen that the 

algorithm converges well to the maximum value of the objective function after 

about 210 and 70 iterations at 10% and 50% surface water allocation, 

respectively. At a certain surface water allocation level, the NLP model is firstly 

run with surface water use only (groundwater extraction limit is set to zero) to 

obtain the corresponding total gross margin (TGM) of surface water use. We then 

run the model with conjunctive water use by setting the groundwater extraction 

limit to the values before and after the Plan. The additional economic benefit of 

groundwater (“conjunctive benefit”) owing to conjunctive water use is defined as 

the difference between the TGM of conjunctive water use and the TGM of surface 

water use only: 

 

Crops Production functions 

Wheat -0.005 W
3
+0.008 W

2
+0.974 W 

Maize -0.011 W
3
+0.128 W

2
+0.724 W 

Soybean -0.005 W
3
+0.079 W

2
+0.029 W 

Lucerne -0.020 W
3
+0.315 W

2
+0.640 W 

Winter pasture -0.042 W
3
+0.377 W

2
+0.930 W 

Tomato -0.003 W
3
+0.790 W

2
+1.145 W 

Rice -0.007 W
3
+0.120 W

2
+0.345 W 

Source: SWAGMAN-Destiny model outputs. 
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Figure 4: Convergence behaviour of the SQP algorithm applied to the present 

NLP model 

 
Conjunctive benefit=TGM�conjunctive water� - TGM�surface water�             �15� 
 

Table 4 and 5 shows the economic benefit of conjunctive water use at different 

surface water allocation levels for two scenarios of groundwater price i.e. 
)()( sg pp = and )()( 2 sg pp = , respectively. Table 5 presents the results for the case 

of 100% increase of groundwater price compared to the groundwater price used to 

obtain the results in Table 4. The increase of groundwater price here is assumed 

due to the projected increase in energy price but not due to the dynamic of 

groundwater table which will be considered in future work with a dynamic model 

being developed. As expected, the conjunctive benefit is high at lower levels of 

surface water allocation compared to those at higher levels of allocation. The 

maximum benefit appears at 0% surface water allocation with a negative value for 

the TGM of surface water use. The negative TGM is a result of the area constraint 

requiring the farmer to buy water at a high price for growing certain compulsory 

crops. The use of groundwater at 0% surface water allocation can potentially 

result in maximum economic benefit of AUD 57.29 and AUD 40.92 million, 

respectively, for the two cases of groundwater price while minimum benefit of 

AUD 9.35 and AUD 4.79 million appears at 100% and 90% surface water 

allocation, respectively, in the two cases. The conjunctive benefit in Table 5 

shows significant reductions compared to those in Table 4 when the groundwater 

price is increased by 100%. The reductions (%) of conjunctive benefit at different 

surface water allocation levels are presented in Figure 5 where a maximum 

reduction of 65% appears at 90% allocation. Groundwater demand reduces from 
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the groundwater extraction limit at 0% surface water allocation to 155 GL and 

158 GL, respectively, at 100% allocation. In contrast to the conjunctive benefit, 

the total gross margin of conjunctive water use in the first scenario (Table 4) 

firstly increases as the surface water allocation increases to 50% allocation then 

becomes numerically flat. For the second scenario (Table 5) the TGM increases as 

the surface water allocation increases. The TGM trends result in a difference of 

greater than 50% allocation between the two scenarios, probably due to the 

contribution of surface water to TGM which is more significant in the second 

scenario where the groundwater price is high. 

 

Table 4: Economic benefit of conjunctive water use for different levels of surface 

water allocations with )()( sg pp =  

Surface 

water 

allocation 

TGM of surface 

water use 

(AUDm) 

Groundwat

er demand 

Optimal TGM of 

conjunctive water use 

(AUDm) 

Conjunctive 

benefit 

(AUDm) 

0% -3.51 471.20 53.78 57.29 

10% 12.63 454.67 56.18 43.54 

20% 20.43 466.48 60.70 40.27 

30% 28.14 455.38 63.60 35.46 

40% 34.40 440.89 66.39 31.96 

50% 38.58 465.00 70.53 31.96 

60% 43.42 403.00 70.29 26.86 

70% 47.70 341.00 70.18 22.48 

80% 52.64 267.08 70.21 17.58 

90% 56.83 206.38 70.22 13.39 

100% 61.35 155.00 70.70 9.35 

 

Table 5: Economic benefit of conjunctive water use for different levels of surface 

water allocations with )()( 2 sg pp =  

Surface 

water 

allocation 

TGM of surface 

water use 

(AUDm) 

Groundwat

er demand 

Optimal TGM of 

conjunctive water use 

(AUDm) 

Conjunctive 

benefit 

(AUDm) 

0% -3.51 471.20 37.41 40.92 

10% 12.63 471.20 42.35 29.72 

20% 20.43 471.20 46.10 25.67 

30% 28.14 471.20 49.31 21.17 

40% 34.40 471.20 52.58 18.18 

50% 38.58 467.64 55.36 16.78 

60% 43.42 405.64 57.08 13.66 

70% 47.70 343.64 59.07 11.37 

80% 52.64 281.64 61.35 8.71 

90% 56.83 148.04 61.62 4.79 

100% 61.35 157.64 66.74 5.39 
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Figure 5: Reduction in economic benefit of conju

groundwater price increases by 100%

 

Figure 6 shows the proposed optimal cropping areas, associated water use and net 

profit of the seven crops at 10%, 30% and 50% allocations, yielding TGMs of 

AUD 56.18, 63.60 and 70.53 million, respectively

allocation, due to the shortage of surface water resources farmers make a tactical 

decision to grow crops with high net profits and the total cr

to 53,54 ha which is smaller than the available cropping area in the CIA. The 

average profit for cropping land

990 per ha. In contrast, at 50% allocation, farmers have enough water resources to 

grow all crops on the 79,000 ha of available cropping area. The average profit for 

cropping land for this scena

even though the net profit of maize might be high compared to wheat as shown in 

the case of 50% allocation (Figure 6c

allocation is zero due to the area constraint betw

6a). The area constraint also results in the area of soybean exceeding that of maize 

in the case of 50% allocation (Figure 6a

use requirement (Figure 6b

 

Figure 7 presents the marginal value of groundwater and its linear fitting lines for 

three levels of surface water allocation

agreement with expectation as the derived willingness to pay for the groundwater 

increases as the surface water allocation decreases. In each surface water 

allocation level, the groundwater marginal value decreases as the groundwater 

demand increases. 

 
 

Reduction in economic benefit of conjunctive water use when 

groundwater price increases by 100%. 

shows the proposed optimal cropping areas, associated water use and net 

profit of the seven crops at 10%, 30% and 50% allocations, yielding TGMs of 

AUD 56.18, 63.60 and 70.53 million, respectively, with )()( sg pp = . At 10% 

e shortage of surface water resources farmers make a tactical 

decision to grow crops with high net profits and the total cropping area is reduced 

ha which is smaller than the available cropping area in the CIA. The 

average profit for cropping land is high in this case and is estimated to be AUD 

per ha. In contrast, at 50% allocation, farmers have enough water resources to 

grow all crops on the 79,000 ha of available cropping area. The average profit for 

cropping land for this scenario is estimated to be AUD 883 per ha. It is noted that 

even though the net profit of maize might be high compared to wheat as shown in 

ase of 50% allocation (Figure 6c) the cropping area of maize at 30% 

allocation is zero due to the area constraint between maize and soybean (Figure 

). The area constraint also results in the area of soybean exceeding that of maize 

ase of 50% allocation (Figure 6a) even though soybean has a higher 

use requirement (Figure 6b) and yields lower net profit (Figure 6c).  

presents the marginal value of groundwater and its linear fitting lines for 

three levels of surface water allocation with )()( sg pp = . The lines are in 

agreement with expectation as the derived willingness to pay for the groundwater 

creases as the surface water allocation decreases. In each surface water 

allocation level, the groundwater marginal value decreases as the groundwater 

ctive water use when 

shows the proposed optimal cropping areas, associated water use and net 

profit of the seven crops at 10%, 30% and 50% allocations, yielding TGMs of 

. At 10% 

e shortage of surface water resources farmers make a tactical 

opping area is reduced 

ha which is smaller than the available cropping area in the CIA. The 

and is estimated to be AUD 

per ha. In contrast, at 50% allocation, farmers have enough water resources to 

grow all crops on the 79,000 ha of available cropping area. The average profit for 

per ha. It is noted that 

even though the net profit of maize might be high compared to wheat as shown in 

) the cropping area of maize at 30% 

and soybean (Figure 

). The area constraint also results in the area of soybean exceeding that of maize 

) even though soybean has a higher water 

presents the marginal value of groundwater and its linear fitting lines for 

. The lines are in 

agreement with expectation as the derived willingness to pay for the groundwater 

creases as the surface water allocation decreases. In each surface water 

allocation level, the groundwater marginal value decreases as the groundwater 
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Figure 6: )()( sg pp = : proposed optimal cropping areas (a), associated water use 

(b) and net profits (c) of the seven crops at 10%, 30% and 50% surface water 

allocations 
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Figure 7: )()( sg pp = : groundwater demand lines for three levels (10%, 30% and 

50%) of surface water allocation 

 

5. Discussion 
 

The model developed in this study can be applied to any irrigation command area 

to help farmers in making management decisions for irrigation and productivity in 

the face of the climate variability. The irrigation management capability of the 

model enables an optimal and sustainable volume of groundwater use to be 

determined for a given or projected level of surface water availability. Such 

capability helps reduce the risk associated with the high variability of surface 

water supply.  

 

The decisions around optimising productivity (e.g. crop type, cropping area, crop 

water use) are endogenous outputs of the model which are valuable for farmers. 

As an example, in Figure 8, we compare the model results of land and water use 

for several crops with those reported for the CIA in the irrigation year 2011/12 

(CICL, 2012). The surface water allocation is assumed to be the average surface 

water allocation from Figure 3 which is about 50%. It can be seen that there is a 

potential improvement in productivity using the model to determine optimal 

levels of land and water use at the regional level. Model results encourage the 

increase of crop areas to high value crops such as paster. In regards to potential 

for improved crop water uses, model results suggest potential to reduce water use 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

60

80

100

120

140

160

180

200

220

Groundwater demand (ML)

M
a
rg

in
a
l 

v
a
lu

e
 (

A
U

D
 p

e
r 

M
L

)

 

 

10% surface water allocation

Linear fit

50% surface water allocation

Linear fit

80% surface water allocation

Linear fit

15

An-Vo et al.: Conjunctive Water Use Benefit at a System-Level

Published by ePublications@SCU, 2015



for rice while allocating more water to other crops such as wheat, maize and 

pasture to increase economic returns of the CIA irrigation system. 

 
 

 
 

 

 
 
Figure 8: Land area (a) and water uses (b) for the CIA from the reported data for the 

irrigation year 2011/2012 and from the model results at 50% surface water allocation 
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6. Conclusion and policy implications 
 

We have developed a nonlinear programming model as an innovative tool for the 

optimisation of productivity in an irrigation command area with conjunctive water 

use. The model uses production and profit functions to estimate yield and gross 

margins for various water allocation levels, which is conceptually different from 

the commonly used approach based on given crop yields and gross margins. The 

model has been applied to the CIA and has been proven able to project the 

conjunctive water use benefit, marginal value of groundwater at different surface 

water allocation and groundwater demand levels. Critically, the current model can 

be integrated with a surface water forecasting model for the effective management 

of water resources in an irrigation command area such as the CIA. Though the 

developed model is static, the extension of this model to a more dynamic model 

that can capture the groundwater variability and groundwater management is our 

aim in future works. 

 

With regard to the policy implication of this study, the findings suggest integrated 

management of surface and groundwater management to realise optimal 

outcomes. Particularly, this will allow to stabilising groundwater resource during 

high water allocation years, when marginal value of water is relatively low, and 

allow storing additional groundwater to provide buffer during extremely low 

water allocation years.  Also, careful economic benefit estimation incorporating 

increases in energy prices and associated environmental impacts would be a key 

before the implementation conjunctive water management systems. 
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