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Abstract
Modified negative stiffness amplifying damper (MNSAD) is a novel vibration control device expected to consist of a nega-
tive stiffness spring with flexible cladding material. In this system, a dashpot is used in conjunction with the negative stiff-
ness spring, and the damping magnification effect is greatly enhanced by amplifying the stoke of the dashpot. The negative 
stiffness property is preserved, and the MNSAD takes into account significant damping magnification effects. In this study, 
displacement and acceleration responses of SDOF systems under air blast load equipped with an MNSAD are investigated, 
which takes stochastic responses into account. Next, the optimum designed parameters yield three key parameters: stiffness 
ratio, damping ratio, and negative stiffness ratio. Following that, the SDOF system's responses to air blast load are calculated. 
It was observed that a significant damping effect is achieved by adding small damping (i.e., 2.8%) to the SDOF system with 
the proposed MNSAD. It was also discovered that replacing NSAD with MNSAD increases the long period structure's energy 
dissipation capacity from 16 to 28%.

Keywords SDOF · Air blast load · Negative stiffness amplifier damper · Modified negative stiffness amplifier damper · 
Stochastic response · Energy ratio · Resilience

1 Introduction

Detection of explosives in densely populated areas prevents 
injuries and saves many lives. Many people nowadays are 
afraid of explosives [1]. Countless people are killed as a 
result of blast load in the majority of the world, particu-
larly in land mine zones and along country borders. In 2015, 
for example, approximately 713 people were killed due to 
explosions in land mine zones. Furthermore, in a more 
recent incident in Afghanistan, nearly 1000 people were 
killed as a result of improvised explosive devices [2–5]. As 
a result of rising terrorist activity, the safety and adaptability 

of infrastructure, particularly critical buildings, have become 
top global priorities [6–9]. Furthermore, hospitals, labora-
tories, technology centers, and computer facilities contain 
numerous non-structural components that are more expen-
sive than the structure itself; as a result, these components 
must be protected against high impulse dynamic loads such 
as wind, blast, and earthquake load [10].

The axial and transverse directions of the blast load acting 
on the equivalent single degree of freedom (SDOF) system 
are studied using both experimental and analytical meth-
ods [11]. Many textbooks, manuals, and reports have used 
examples, charts, and failure mechanisms to describe the 
performance of SDOF systems subjected to non-linear blast 
load [12–15]. To that end, the surface blast load operating 
on the SDOF system's front face, rear face, and roof is com-
puted and then regulated using a load cladding structural 
system [16]. SDOF systems with blast load performance, 
in particular, require fewer input parameters for calculation. 
As a result, many researchers have conducted research on 
the SDOF system when subjected to impact loads [17–20]. 
Similarly, the SDOF system of a blast-loaded plate can 
be experimentally and analytically analyzed, taking into 
account the bending behaviour of the plate [21–24].
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The air blast wave parameters have been predicted experi-
mentally, analytically, and numerically [25–35]. For exam-
ple, for different standoff distances acting on a masonry her-
itage building, air-blast pressure with and without ground 
shock generated by a spherical shaped TNT explosive is 
investigated experimentally and numerically [36]. The per-
formance of an air-blasted polyurea-coated metal plate is 
investigated experimentally and analytically [37]. Others 
investigated the dynamic performance of welded aluminum 
plates subjected to an air blast load using experiments and 
numerical simulations [38]. Several researchers used experi-
mental data and numerical simulations to investigate steel 
tubes subjected to an air blast load [39–41]. Others have also 
investigated the fluid–structure interactions associated with 
air blast loads [6].

Molyneaux pioneered vibration control of a system using 
a negative stiffness damper (NSD) in 1957 [42].

Nagarajaiah et al. [43], Sarlis et al. [44] provide useful 
details about the principle of the negative stiffness damper 
exposed to seismic load in this area. As an example, the 
bilinear SDOF elastic system of NSD placed on the first sto-
rey of the structure evaluates the performance of the MDOF 
system exposed to seismic load [45]. Linear Quadratic Regu-
lator (LQR) algorithm mechanisms, on the other hand, rely 
on the principle of the force–displacement relationship of 
negative stiffness to control seismic responses [46]. For 
more information on the applications of the negative stiff-
ness damper on the vibration control of vehicle suspensions 
and mechanical equipment, see references [47–49]. After 
a while, negative stiffness dampers are used to reduce the 
response of seismic structures [50]. In this context, [48, 
50–58] investigates the improvement of seismic isolated 
structures and bridges using various semi-active damper 
combinations of the NSD. It should be noted that adap-
tive negative stiffness devices (NSDs) use pre-compressed 
springs [59–61].

The purpose of this study is to fill in the gap left by the 
literature review as follows:

 (i) Developing the SDOF system's Modified Negative 
Stiffness Amplifying Damper (MNSAD) under air 
blast load.

 (ii) Optimizing dynamic properties of the MNSAD.

Accordingly, this paper employs MATLAB software to 
perform numerical simulations of the SDOF system before 
investigating the effects of combining the negative stiffness 
device with cladding material. Many researchers have con-
ducted studies on the seismic effects of the SDOF system 
based on the authors' knowledge. However, an attempt is 
made to investigate the responses of the SDOF system when 
subjected to an air blast load, with the responses controlled 

using MNSAD. Finally, the MNSAD and NSAD efficiency 
are compared under stochastic excitations and air blast load.

The background and origins of the research are discussed 
in the following section. Following that, the performance of 
the proposed method is evaluated, and the results are con-
trasted and discussed. Finally, there are conclusions and key 
points derived from this research.

2  Dynamic equations of MNSAD

First, some background information is provided to support 
the proposed strategy. Figure 1a depicts dashpot, positive 
and negative stiffness springs with an NSAD. As shown, the 
negative stiffness spring and dashpot are connected in paral-
lel, whereas the previous configuration is connected in series 
with the positive stiffness spring. In addition, the positive 
spring in the NSAD has been replaced, and a new cladding 
material has been installed, resulting in the Modified nega-
tive stiffness amplifying damper (MNSAD), as illustrated in 
Fig. 1b. If only negative stiffness and series connections are 
made with positive stiffness springs while ignoring dashpot 
and cladding material of the NSAD and MNSAD as shown 
in Fig. 1c, static equilibrium stiffness KTE is demonstrated 
as follows [62]: 

(1)KTE =
KpKns

Kp + Kns

 
(a) NSAD Configuration 

 
(b) MNSAD Configuration 

(c) Series connections of positive and negative stiffness spring 

Fig. 1  Relationship between positive stiffness spring, negative stiff-
ness spring, and dashpot connection
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where  Kp and  Kns are the stiffness of the positive stiffness 
spring and negative stiffness spring, respectively. Static 
equivalent stiffness of the MNSAD is represented below:

where  KMTE and  Kc stand for the Static equivalent stiffness 
of the MNSAD and stiffness of the cladding material.

2.1  MNSAD physical realisation

Figure 2 shows the physical manifestations of the MNSAD. 
In this context, the researchers' previous results for NSAD 
[60, 63–65] are used to reduce seismic force response by 
replacing the viscous damper with cladding material. A 
viscous damper is a passive control device, whereas the 
cladding material is a semiactive control device. A pre-
compressed spring, a pivot plate, a gap spring, and a self-
contained system are all components of an NSAD. Many 
applications of the NSAD in real-world civil engineering 
structures are focused on the seismic effect of the structures. 
Nonetheless, in the current work, the inertia effect of the 
dynamic effect of the NSAD is ignored; this issue is con-
sidered within the analysis of the vibrations control of the 
structures.

Vicous dampers are installed in the NSD by replacing 
two gap springs [66]. The  CD shows the dashpot in Fig. 2, 
and the cladding material and NSD are connected in paral-
lel. An ideal MNSAD configuration includes a dashpot with 
the negative stiffness spring and prior assembly connected 
in series and the positive stiffness spring and prior assembly 
connected in parallel. In this figure,  Kp depicts the positive 
stiffness spring, and the NSAD cladding material is attached 

(2)KMTE =
KCKns

KC + Kns

to the adjacent storey structure via a flexible supporting shelf 
connection.

2.2  MNSAD and transfer function of the equation 
of motion's SDOF systems

Figure 3 shows the simplified SDOF system in a one storey 
and one bay frame. In which  m1 shows the structural mass, 
 k1 is lateral  stiffness, and  c1 is damping.

The dynamic equations of the SDOF system with blast 
load in terms of pressure versus time, ground accelerations 
ẍg is given as

where  C2 is damping coefficient of the MNSAD,  kp shows 
the positive stiffness,  kc is the cladding material stiffness,  k2 
is the positive stiffness of NSAD,  x1 stands for the relative 
displacement of the primary structure and deformations of 

(3)

{

m1ẍ1
+ c1ẋ1 + k1x1 + kp

(

x1 − x2
)

= −m1ẍg
− P(t)

Ccẋ2 + knsx2 + Cẋ1 = k2
(

x1 − x2
)

Fig. 2  MSAD Physical Realisa-
tion

Fig. 3  SDOF systems with a MNSAD of Analytical model
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the MNAD is represented by  x2 of the MNSAD dashpot. 
Also, derivative with respect to time is represented as dots.

We get the following by inserting Eq. (2) into Eq. (1):

where �1, � and � show the damping ratio, stiffness ratio, 
and negative stiffness ratio of the MNSAD, respectively.

where s = iw stand for the complex frequency and i=
√

−1 is 
the imaginary part. By substituting � = w∕w1

 in the Eq. (6) 
we have:

where

Finally, the Square transfer function and the amplitude 
transfer function is derived as below:

2.3  Damping effect of the MNSAD

This section discusses the effect of MNSAD on the damping 
ratio of an SDOF system. To this end, three parameters α, 
γ and �2 are used to assess the performance of the system 
equipped with MNSAD. The horizontal tangent points with 
different damping ratios are considered for the analysis of 
the MNSAD. Figure 4 shows the adjusting values of �2 for 
the curve of the SDOF system with MNSAD. More details 
about the performance of the NSAD with different �2 are 
provided in [66].

Figure 4 shows the amplitudes of the primary SDOF sys-
tem for different MNSAD dampings (γ = 0.5, α = – 0.25). 
The NSAD system equals two series connected the spring 

(4)

w1 =

√

k1

m1

, �1 =
c1

2w1m1

, �2 =
cc

2w2m2

, � =
kns

k1
and � =

k2

k1

(5)

{

ẍ
1
+ 2𝜉1w1ẋ1 + w2

1
x1 + 𝛾w2

1

(

x1 − x2
)

= −ẍ
g
− P(t)

2𝜉1w1ẋ2 + 𝛼w2

1
x2 = 𝛾w2

1

(

x1 − x2
)

(6)

H(s) =
(� + �)w2

1
+ 2�2w1s

[

(1 + �)w2

1
+ s2 + 2�1w1s

][

(� + �)�w2

1
+ 2�2w1s

]

− �3w4

1

(7)

H(iw)w2

1
=

(� + �) + 2�2�i
[

1 + � − �2 + 2�1�i
][

(� + �) + 2�2�i
]

− �2
=

A + Bi

C + Di

A = � + � ,B = 2�2�,C =
(

1 + � − �2
)

(� + �) − �2 − 4�1�2�
2

and D = 2
(

1 + � − �2
)

�2� + 2(� + �)�1�

(8)R(�) =
A2 + B2

C2 + D2

(9)A(�) =

√

A2 + B2

C2 + D2

for �2 = 0 (See Fig.  1c). Also, from Eq.  (1), we have 
 kTE = – 0.5k1; thus, for λ > 1, peak resonant frequency occurs 
when no energy dissipations occur so that NSAD will be 
equal to positive stiffness spring  kp. NSAD dashpot will be 
locked together (i.e., i and s in Fig. 1a) when the damping 
of the NSAD dashpot reaches a considerable value �2 = ∞.

Maximum energy dissipation capacity is observed for the 
optimal value of the MNSAD. As a result, all of the curves 
will begin at the same point, indicating that MNSAD has 
changed its damping coefficient. The detailed optimum pro-
cedure is described in the following section.

3  MNSAD optimal design method for SDOF 
systems

Three  criteria  are  critical  in  determining  the  perfor-
mance of the MNSAD under blast conditions, which are α, 
γ and �2 . The suggested connecting stiffness ratio γ is used 
to determine the optimal negative stiffness ratio α. The fol-
lowing assumptions are taken into account for determining 
the appropriate MNSAD settings.

 i. Transfer functions attain the same value at two fixed 
points (i.e., P and Q in Fig. 4) [67].

 ii. The highest value of the transfer function in Fig. 4 is 
at a non-zero fixed point.

 iii. For the sake of simplicity, we ignore the SDOF sys-
tem's intrinsic dampening.

3.1  Transfer function of the fixed point

In the first step, the fixed points P locations are determined 
by modifying Eq. (8) as follows:

0 0.5 1 1.5 2 2.5 3 3.5 4
=(w/w1)

0

2

4

6

8

10

w
12 |H

(iw
)|

SDOF (ξ1=0.02)
SDOF+MNSAD (ξ2=0)
SDOF+MNSAD (ξ2=0.05)
SDOF+MNSAD (ξ2=0.125)
SDOF+MNSAD (ξ2=0.5)
SDOF+MNSAD (ξ2=0.7)
SDOF+MNSAD (ξ2=0.8)
SDOF+MNSAD (ξ2=0.85)
SDOF+MNSAD (ξ2=infinite)

Fig. 4  Primary SDOF system amplitudes for various MNSAD damp-
ings (γ = 0.5, α = – 0.25)
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By substituting �2 = 0 and �2 = ∞ in the above equation, 
we have:

By simplifying Eq.  (12), the following formula. is 
obtained:

Accordingly, the locations of the fixed point are obtained 
by:

3.2  Optimized negative stiffness ratio

MNSAD increases the static response of SDOF systems 
to minimize system stiffness. Hence, It is not boosting the 
higher response of zero frequency stimulation for lower 
response by providing the proper value of α. According to 
the assumptions, the values of the transfer functions at two 
points P and Q are the same as:

Accodringly, Eq. (15) is reformulated based on the final 
assumptions, ignoring the inherent damping �1.

It is noteworthy that Eq. (15) is transformed since λ2
p
 is a 

non-zero term, so we have:

Finally, the optimal negative stiffness ratio is calculated 
by inserting Eq. (14) into Eq. (17) as follows:

(10)
R(�) =

(� + �)
2 +

(

2�
2
�
)2

[(

1 + � − �2
)

(� + �) − �2 − 4�
1
�
2
�2
]2

+
[

2
(

1 + � − �2
)

�
2
� + 2(� + �)�

1
�
]2

(11)

R0 = R�2=0
=

(� + �)
2

[(

1 + � − �2
)

(� + �) − �2
]2

+
[

2(� + �)�1�
]2

(12)R∞ = R�2=∞
=

(2�)
2

[

4�1�
2
]2

+
[

2
(

1 + � − �2
)

�
]2

(13)R(0) =
(� + �)

2

[

(1 + �)(� + �) − �2
]2

(14)�p =

√

1 + � −
�2

2(� + �)

(15)R0

(

�p
)

= H2(0)

(16)

(� + �)
2

[(

1 + � − �2
p

)

(� + �) − �2
]2

=
(� + �)

2

[

(1 + �)(� + �) − �2
]2

(17)
(

1 + � − �2
p

)

(� + �) − �2 = �2 − (1 + �)(� + �)

3.3  Damping ratio of the MNSAD

In this section, Eq. (10) is rewritten with the assumption of 
ignoring the inherent damping �1:

The transfer function is obtained under non-zero-point 
assumptions, which is the MNSAD's optimization criterion.

To simplify computations, for optimal MNSAD damping, 
differentiate the square of the transfer function rather than 
the transfer function itself [68].

By inserting Eq. (19) into Eq. (21), we reach the follow-
ing formula:

where

Differentiate functions u(�2) and v(�2) with respect to �2 
gives:

Finally, by plugging Eqs. (23)–(26) into Eq. (22), the 
optimum damping MNSAD is calculated as shown below:

(18)�opt =
3�3

2(� + �)
− �

(19)
R(�) =

(� + �)
2 +

(

2�
2
�
)2

[(

1 + � − �2
)

(� + �) − �2 − 4�
1
�
2
�2
]2

+
[

2
(

1 + � − �2
)

�
2
� + 2(� + �)�

1
�
]2

(20)
�
√

R(�)

�� �=�p

= 0

(21)
�
√

R(�)

�� �2=�2
p

= 0

(22)u
�v

��2
− v

�u

��2
= 0,when�2 = �2

p

(23)u(�2) = (� + �)
2 +

(

2�2�
)2

(24)
v(�2) =

[(

1 + � − �2
)

(� + �) − �2
]2

+
[

2
(

1 + � − �2
)

�2�
]2

(25)�u(�2)

��2
= 4�2

2

(26)
�v(�2)

��2
= 2

[

�2 −
(

1 + � − �2
)

(� + �)
]

(� + �)

+ 4
(

1 + � − �2
)2

�2
2
+ 8

(

1 + � − �2
)2

�2
2
�2
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4  Optimal

4.1  MNSAD with SDOF systems

Figure 5 depicts comparisons of uncontrolled SDOF sys-
tems with SDOF systems with cladding, SDOF systems with 
MNSAD, and SDOF systems with cladding and MNSAD 
systems taking transfer function into account. It can develop 
the optimal MNSAD utilizing Eqs. (18)–(27). The param-
eters of the three systems are shown in Table 1. 

Figure 5 demonstrates that by employing cladding mate-
rial, the resonant frequency ratio of the SDOF system is 
decreased to 50%, the resonant frequency ratio of the SDOF 
system and MNSAD is reduced to 75%, and the resonant 
frequency ratio of the SDOF system, MNSAD, and cladding 
is reduced to 83%. Also, it shows stiffness and damping ratio 
comparisons with various SDOF system combinations. A 
considerable damping effect is accomplished by adding a 
small amount of damping ( ξ2 = 2.8%) to the SDOF system 
with MNSAD. The dampening effect of an SDOF system 
with MNSAD is superior to that of an SDOF system with a 
cladding system.

(27)
�2opt =

� + �

2�p
=

� + �

2

√

1 + � −
�2

2(�+�)

Since total equivalent stiffness is reduced in the negative 
stiffness damper, providing extra stiffness to the structural 
system to replace the overall stiffness losses as K Damper 
does reduce the static response of the original structural sys-
tem [69–71]. The primary goal of the paper is to preserve the 
reductions in displacement and accelerations of the SDOF 
system due to the negative stiffness property of the MNSAD 
while avoiding the addition of extra compensating stiffness.

5  Proposed algorithm

The proposed algorithm for calculating the response of the 
SDOF system exposed to air blast load is shown in Fig. 6. 
The first step is to enter the parameters for the SDOF sys-
tem's mass matrix, stiffness matrix, and damping matrix. 
The second step is to perform a non-linear dynamic analysis 
using Newmark's beta method, followed by calculating the 
maximum response of the SDOF system. The displacement, 
velocity, accelerations, pressure, and impulse are all part of 
the response. The force exerted by the modified negative 
stiffness amplifying damping, the cladding material, and the 
MNSAD & Cladding material combinations are calculated. 
The response of the bare SDOF system controls the force 
exerted by the control device.

The three parameters of stiffness ratio, damping ratio, 
and negative stiffness ratio are critical in the operation of 
the negative stiffness damper. For the force exerted by the 
MNSAD, the optimal design parameter of negative stiffness 
is taken into account. The control device with the SDOF 
system absorbs or dissipates the energy dissipated by the 
blast load.

6  Stochastic response of SDOF system 
with MNSAD

This section investigates MNSAD's stochastic response. 
Comparisons are made between bare SDOF systems and 
SDOF systems with MNSAD, cladding, and combinations 
of MNSAD and cladding with SDOF systems.

0 0.5 1 1.5 2 2.5 3 3.5 4
=(w/w1)

0

2

4

6

8

10

w
12 |
H
(i
w
)|

SDOF
SDOF+Cladding
SDOF+MNSAD
SDOF+Cladding+MNSAD

Fig. 5  Comparisons of an uncontrolled SDOF system with a con-
trolled SDOF system with Cladding and MNSAD

Table 1  Uncontrolled SDOF 
system, SDOF system with 
cladding material, MNSAD

Parameter SDOF SDOF + Cladding SDOF + MNSAD SDOF + MNSAD + Clad-
ding

�
1

2.5% 1.5% 0.8% 2.85%
� 0.45 0.25 0.35 0.158
�
2

1.45% 20.85% 33.1% 34.5%
� 0.15 – – –
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6.1  Stochastic excitations description

The following differential equations excite dynamic vibra-
tions and can be approximated as a stationary random pro-
cess ẍg . The Clough–Penzien model uses classical dynamic 
vibrations to simulate excitations [73–75] as shown below:

where üo(t) is the constant intensity of white noise random 
process, wg = 2�∕Tg shows the site of dominant frequency, 

(28)ẍg(t) + 2𝜉f wf u̇g(t) + w2

f
ug(t) = üf (t) + üo(t)

(29)üf (t) + 2𝜉gwgu̇f
(t) + w2

g
uf (t) = −u̇o(t)

�g is the damping ratio of the site, wf = 2�∕Tf  denotes the 
location of the dominant frequency and �f  is the correction 
parameters of the Clough Penzien model.

Combining Eqs. (2) and (29) yields the parameters stud-
ied of stochastic responses of SDOF systems with MNSAD 
(29).

6.2  Impact of the site period

Figure 7 depicts the effect of site period on acceleration 
response. The bold line represents the performance of SDOF 
and MNSAD combinations, while the black line represents 
the bare frame of the SDOF system, the red dotted line indi-
cates SDOF and cladding material system combinations, and 
the blue dotted line indicates SDOF system with cladding 
material and MNSAD system combinations.

Figure 7a depicts the 0.5 s site period of the SDOF system 
with and without control devices. The Site period increases 

Fig. 6  Flowchart of the developed algorithm [72]
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Fig. 7  Absolute acceleration responses for different systems with the 
influence of site period
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until a certain value is reached and then decreases. The 
maximum acceleration of the bare SDOF system is 1.2 g, 
which is reduced to 1 g, 0.82 g, and 0.65 g with the SDOF 
and cladding, SDOF and MNSAD, and SDOF, Cladding, 
and MNSAD combinations, respectively. Figure 7b depicts 
the 1.0 s site period of the SDOF system with and without 
control devices. The Site period increases until a certain 
value is reached and then decreases.

The maximum acceleration of the bare SDOF system is 
0.88 g, which is reduced to 0.82 g, 0.78 g, and 0.69 g with 
the SDOF and cladding, SDOF and MNSAD, and SDOF, 
Cladding, and MNSAD combinations, respectively. Fig-
ure 7c depicts the 3.0 s site period of the SDOF system 
with and without control devices. The acceleration profile 

is a straight line. With the control device combinations, the 
accelerations profile dimness.

The displacement response of the uncontrolled SDOF 
system and combinations of the SDOF system with cladding 
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material and MNSAD of the influence of the site period 
are shown in Fig. 8. The three different site periods are 

considered: 0.5 s, 1.0 s, and 1.5 s. The displacement is 
reduced by combining the SDOF system's various devices.

The middle long period structure indicates the maximum 
period of the site (T1 = 1.0 s), as shown in Figs. 7b and 8b, 
the three systems of the structural response with an increase 
in site period. At the low damping ratio and low cost of 
the SDOF system, both displacement and acceleration are 
reduced by 35% and 42%, respectively. In the long period 
(T1 = 3.0 s), the period of all three structural systems is 
greater than the maximum site period, as shown in FigS. 7c 
and 8c.

6.3  Impact of structural period

Three different systems of the SDOF stochastic response 
with the impact of the structural period are depicted in 
Fig.  9. The mean displacement increases and gradu-
ally decreases in long period structures. The site period 
(Tg = 0.5 s) of three structural systems means that accelera-
tion response increases, reaching maximum structural period 
values and then gradually decreasing. Table 2 shows the 
detailed percentage of reductions in SDOF response with 
control devices.

Table 2  Various systems with maximum responses with the variance of the site period

Maximum response value Site period Statistical parameters Bare
SDOF

SDOF + Cladding SDOF + MNSAD

Displacement (mm) T1 = 0.5 S Mean 321.08 282.3 118.23
STD 6.80 5.28 4.18
STD/Mean 0.175 0.0958 0.0785

T1 = 1.0 S Mean 9113.28 8953.12 7852.3
STD 218.32 208.45 194.6
STD/Mean 0.325 0.285 0.248

T1 = 3.0 S Mean 0.7258 0.6852 0.6682
STD 0.243 0.232 0.218
STD/Mean 0.168 0.528 0.4825

Acceleration (g) T1 = 0.5 S Mean 0.528 0.489 0.398
STD 0.0853 0.0785 0.0689
STD/Mean 0.321 0.238 0.221

T1 = 1.0 S Mean 0.1406 0.1346 0.1258
STD 0.0456 0.0385 0.0285
STD/Mean 0.365 0.315 0.280

T1 = 3.0 S Mean 0.0245 0.0185 0.0175
STD 0.443 0.410 0.320
STD/Mean 0.285 0.262 0.158

Fig. 10  Typical air blast load occurring in the SDOF system
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Fig. 11  Air blast load acting on the SDOF system
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7  Evaluation of the MNSAD under air blast 
load

The air blast load is taken into account for the study's analy-
sis among the various blast loads. The air blast occurs in 
the air medium and the rapid release of energy results in 

the occurrence of the blast wave [76, 77]. The explosive air 
creates the blast wave and travels outward, interacting with 
everything in its path. The interaction of the wave with the 
object results in the failure of the structure or the object due 
to dynamic and impact loads imposed on the object.

The amount of energy released by the explosive in terms 
of pressure. Under-pressure is smaller in magnitude and 
lasts longer than positive pressure, after which overpressure 
occurs. The magnitude of the overpressure influences the 
explosive, standoff distance, and detonation points [78, 79].

Figure 10 depicts a typical air blast load in the SDOF 
system. The width, length, and height of the correspond-
ing dimensions of the SDOF system are 1 m, 4 m, and 2 m, 
respectively. The weight of the air blast load W occurs at a 
distance known as a range from the SDOF system [80]. The 
standoff distance is the height of the air blast load distance 
that occurs above ground level. Blast load occurs in our case 
on the front face of the SDOF system.

Fig. 12  Three storey base isolated structure with NSD installations 
[81]

Table 3  Dynamics properties of Kanai-Tajimi model of SDOF system

Parameter Symbol Default values Variation of range

Period of SDOF 
systems

T1 0.5, 1.0, 3.0 s 0.1–0.4 s

Damping of Inherent of 
SDOF system

ξ1 2% –

Period of the site Tg 0.5 s 0.5 ~ 2 s
Damping of the site ξg 0.6 –
Correction period Tf 0.2Tg –
Correction damping ξf ξg –

Fig. 13  Amplitudes of the pri-
mary SDOF system with NSAD 
damping at γ = 0.5, α = – 0.25
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The air blast load is calculated using the equations listed 
below. The shock density of the jump is determined by 
Rankine–Huguenot jump conditions [81].

where ρs is the density of the shock front, ρo,Po and ao are the 
density, pressure and sound speed at ambient pressure in air, 
respectively, us shows the shock front velocity, γ depicts the 
specific heat ratio (for air, it is 1.4). Figure 11 depicts the 
magnitude of the air blast load in the SDOF system. At 5 s, 
the maximum air blast load is 185 kPa.

8  Validation of SDOF system with NSD

One major step to any analytical and numerical investiga-
tion is to validate the modeling procedure with a reliable 
recent study. In this research, the verification has been done 
comparing the developed models with two studies by Meng 
et al. (2019) and MCEER-13-0005 (2013). The first study 
by Meng et al. 2019 is an analytical simulation, while the 
MCEER report is an extensive experimental investigation on 
NSD devices (Fig. 12). The comparison between the results 
of the current study and the above references are depicted in 
Table 3 and Figs. 13, 14, and 15.    
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9  Results and discussions

The response of the SDOF system to an air-blast load is 
calculated; the response includes displacement, velocity, 
accelerations, and pressure impulse. In the model studied, 
the response of the SDOF system is controlled by clad-
ding material and modified negative stiffness amplifying 
dampers.

9.1  Energy dissipations

Control devices such as cladding material and modified neg-
ative stiffness damping are employed to dissipate the energy 
generated by the air blast load on the SDOF system. Herein, 
two different damping ratios of 2% and 3% are considered. 

Fig. 18  Control of the SDOF 
system's response by a control 
device subjected to air blast 
load
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Figure 16a depicts the normalised energy damping dissipa-
tions of the SDOF system's 2% damping ratio. Cladding, 
MNSAD, and combinations of MNSAD and cladding recep-
tively reduce the energy dissipation ratio from 2.8 to 2.6, 2.4, 
and 2. Figure 15b depicts the normalised energy damping 
dissipations of the SDOF system's 3% damping ratio. Clad-
ding, MNSAD, and combinations of MNSAD and cladding 
receptively reduce the energy dissipation ratio from 2.8 to 
2.5, 2.34, and 2.1. The energy dissipation ratio increases 
dramatically at first, then gradually decreases and becomes 
uniform which is due to the sudden and rapid realisation of 
energy in a fraction of a second (see Fig. 16).

The energy ratio of the SDOF system with and without 
control devices is depicted in Fig. 17a. When damping ratios 
are increased, the energy dissipation capacity of MNSAD 
does not change significantly when compared to the clad-
ding combinations of the SDOF system. The stiffness ratio 
is also important for the performance of the SDOF system 
with MNSAD. The energy ratio of the bare SDOF system is 
reduced to 10,2 and 1.5 for the cladding, MNSAD, and com-
bining MNSAD and cladding, respectively. The displace-
ment ratio of the SDOF with cladding, SDOF with MNSAD, 
and SDOF with Cladding and MNSAD system is reduced 
to 1.3 to 1, 0.8, and 0.6, respectively, as shown in Fig. 17b.

The response reductions of the SDOF system with air 
blast load are shown in Fig. 18 by using MNSAD and clad-
ding. Figure 19 depicts the progression of the Pressure 
impulse curve from the bare SDOF system to the SDOF 
system with cladding and the MNSAD system.

10  Conclusion

The current study focused on the negative stiffness amplify-
ing damper, a novel device proposed with a negative stiffness 
mechanism and cladding material. The modifying fixed-
point methods of the tuned mass damper of the closed-form 
solution with the closed-form expressions were taken into 
account. The performance of the MNSAD and the cladding 
material were stochastically evaluated, investigated, and ana-
lytically analyzed in response to the air blast load acting on 
the SDOF system. Accordingly, the following are the key 
findings of this study:

 i. When a Cladding material is used, the Negative stiff-
ness spring amplifies with the stroke of the dashpot, 
increasing the MNSAD energy dissipation capacity.

 ii. Using the optimal MNSAD parameters, the resonant 
response of the SDOF system is reduced with the 
same total damping coefficient.

 iii. Changes in the damping ratio do not affect the con-
necting stiffness ratio, and the MNSAD's negative 

stiffness ratio is prescribed with the transfer function 
in mind.

 iv. By conducting the stochastic response analysis of the 
MNSAD, the maximum response of the displacement 
and accelerations is reduced by approximately 60%, 
with a small damping ratio of 2.8% and coefficient 
variance of more than 30%.

 v. With an energy dissipation capacity of less than 2%, 
MNSAD improves the energy dissipation capacity by 
6–16 times by employing a small damping coefficient.
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