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Geometric modeling of 3D woven
preforms in composite T-joints

Shibo Yan, Xuesen Zeng, Louise Brown and Andrew Long

Abstract

A common method to fabricate net-shaped three-dimensional (3D) woven preforms for composite T-joints is to weave

flat 3D preforms via a standard weaving machine with variation in binder yarn path and then separate the preform in the

form of a bifurcation. Folding introduces fiber architecture deformation at the 3D woven bifurcation area. In this paper, a

geometric modeling approach is proposed to represent the realistic fiber architecture, as a preprocessor for finite

element analyses to predict composite structural performance. Supported by X-ray micro-computed tomography (mCT),

three important deformation mechanisms are observed including yarn stack shifting, cross-section bending, and cross-

section flattening resulting from the folding process. Furthermore, a set of mathematical formulae for simulation of the

deformations in the junction region are developed and satisfactory agreement is observed when compared with mCT

scan results.
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Three-dimensional (3D) woven composites are
reinforced by 3D woven preforms containing yarns in
x, y, and z directions. 3D woven preforms, specifically
for composite applications, are generally classified into
orthogonal, through-the-thickness angle interlock, and
layer-to-layer angle interlock patterns. Design and
manufacturing of emerging multi-axis 3D woven
preforms incorporating bias yarn layers has also been
proposed but the development is still at an early stage
for applications.1 3D woven composites have drawn
great attention in recent decades for their advantages
such as higher through-thickness properties that can
help to overcome the problem of delamination encoun-
tered by two-dimensional (2D) laminates.1 The
exploration of 3D reinforced composites has also
been extended to load-bearing profiles like T-, I-, and
Pi-shaped joints. There are three basic ways to manu-
facture 3D reinforced composite joints with woven pre-
forms. The first method is to use 2D woven fabric lay-
ups, reinforcing the through-thickness direction with
stitching or Z-pinning.2,3 The second way is to weave
flat 3D preforms via a standard weaving machine with
variation of binder yarn path to form locally
unreinforced planes (bifurcations) and then fold the
preforms into the desired shape.4–7 The third way is

to fabricate the preform directly into a complex 3D
shape through a specially developed 3D weaving
loom.8–10 Although composites reinforced by the first
method can offer better damage tolerance in terms of
delamination than 2D laminated joints subjected to
equivalent loads,2,11 they can be less competitive in
in-plane properties because of geometric defects or
fiber damage caused by retrospectively inserting
through-thickness reinforcements.12 In addition, due
to the high investment and innovation needed for
developing a special 3D loom for the third kind of pre-
form, 3D preforms woven by a conventional loom are
popular for current composite T-joints.

However, deformation is likely to occur when fold-
ing a flat woven preform into a 3D shape. Because the
internal architecture of a woven preform is complex, its
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variability in geometry can directly affect material
properties such as permeability and formability.13,14

At the micro-scale, the fiber misalignment in fiber bun-
dles was also found to have an influence on many
aspects of composite behaviour.15 Previous studies
have also shown that reinforcement geometry plays
an important role in determining the composite’s mech-
anical properties, as two types of 3D woven composite
T-joints with only weave variation at the 3D woven
bifurcation area (in which the formed resin pocket is
usually referred to as the ‘‘noodle’’) were tested under
the same tensile loading case but very different load–
displacement responses were observed (Figure 1(a)).16

Thus, in order to closely predict the properties of
composite T-joints reinforced by a flat woven 3D pre-
form, it is necessary to model the fiber architecture as
realistically as possible.

Characterizing the realistic fiber architecture of 3D
woven composites is difficult because of the complexity
of the internal geometry, but this can benefit from the
use of X-ray micro-computed tomography (mCT).17,18

Some general frameworks for geometric modeling of
woven preforms with respect to characterization of
yarn path, crimp, and cross-section shape have been
provided in the literature.19–22 Furthermore, compac-
tion-induced yarn crimp and cross-section shape
change were studied with a number of models;23,24

however, as they are based on beam theory, numer-
ically solved by the finite element method, they are
computationally intensive. Some mathematical meth-
ods were also proposed to model yarn cross-section
shape under compression. An energy-based method
used to characterize yarn deformation in compression
was developed by Lomov and Verpoest,25 but the
method asks for a measurement of the mechanical
properties of yarns in bending and compression.
Chen et al. modeled yarn cross-section deformation
of both single and multi-layer woven preforms under
compaction at the mesoscopic level based on the
assumption that yarn width deformation is negligible
compared with the deformation of yarn thickness.26,27

The model is not applicable when yarn width change
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Figure 1. (a) Load–displacement curves for the two types of 3D woven composite T-joints in comparison with an equivalent 2D twill

woven T-joint.16 (b) Schematic woven structures for the T-joints showing weave variation at the junction (dashed line area), with

binders omitted.
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is significant, for instance for a yarn subjected to
bending load. Cornelissen and Akkerman observed
yarn cross-section flattening in a cantilever experi-
ment of yarns bending under their own weight.28

They concluded that cross-section flattening would
affect the yarn wflexural rigidity by one order of
magnitude but they were not able to derive a trend
from the experiment. However, yarn cross-section
deformation in bending is significant as observed in
this study via mCT analysis and an effective model is
needed to capture this feature.

This paper focuses on the geometric modeling of 3D
woven preform deformation caused by folding a flat
woven preform into a T-piece, which is a typical fabri-
cation process for composite T-joints. Through the
mCT analysis of a compacted preform, three important
deformation mechanisms specifically for this type of
preform were observed, namely yarn stack shifting,
cross-section bending and cross-section flattening
resulting from the folding process. These features
have been geometrically modeled and the models have
been validated against mCT analysis data of a 3D
woven T-joint preform.

Material characterization

The example preform reinforcing the composite
T-joints is a 3D orthogonal weave provided by
Sigmatex, UK, based on Hexcel IM7 12K carbon
fiber, which is woven flat on a Jacquard machine and
folded into a T shape. 3D orthogonal weaves are 3D
structures containing straight warp and weft yarns in
the x, y directions and binders (also called ‘‘warp
weavers’’) that interlace with other yarns, at times,
orientated in the through-thickness direction, providing
high stiffness under tensile loading due to low yarn
waviness.10 The preform consists of eight layers of
warp yarns and nine layers of weft yarns in the web,
and four layers of warp yarns and five layers of weft
yarns in the flange. A schematic woven structure for
this preform before and after bifurcation is shown as
‘‘3D woven type 1’’ in Figure 1(b).

To characterize the intrinsic geometric features of
this type of preform for composite T-joints, the dry
preform was compacted into a T-shape acrylic fixture
and analyzed via mCT, as shown in Figure 2. The web
section of the preform was firstly fitted in the fixture
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Figure 2. mCT scan of the preform: (a) preform visualized via volume rendering from mCT showing the yarn directions; (b) sche-

matic 3D orthogonal weave pattern (created by TexGen); (c) mCT section view of the preform with the numbers showing the

numbering of weft layers.
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before bifurcation of the flange section, thus no
deformation in the web is likely to be expected from
preform bifurcation and the part of the preform con-
tacting the fixture corner would conform to its radius of
curvature. The GE phoenix vjtomejx m machine used a
current of 240 mA and a voltage of 120 kV to achieve
the imaging resolution of 30 mm per pixel in scanning.
The compaction leads to an average fiber volume frac-
tion of 45% which is calculated based on the preform
areal weight with 4mm thickness in the web and 2mm
in the flange. The preform has two geometric changes in
its left-hand side: one is that the warp yarns at the junc-
tion (curved region) are in twice the filament count as
those in the web; the other is a weft layer in the web
(numbered as 4’(5’) in Figure 2) is formed of twofold
weft yarns as used in other layers and separated into
two layers (layer 4’ and 5’) at the flange, for the purpose
of yarn layer balance in the flange. Meanwhile, the
flange part of the preform was woven with warp
yarns of 24k filament count.

In order to validate the proposed geometric model-
ing approach, necessary geometric parameters mea-
sured from the preform are listed in Table 1. In
addition, the intra-yarn fiber volume fractions at

different locations inferred from the cross-sectional
data were given, assuming a rectangular cross-section
for the yarns. Measurements of each parameter were
made using the software ImageJ at a number of mCT
slices covering different yarns, from which the average
and standard deviation (SD) were obtained. The fold-
ing process introduces additional yarn deformation at
the junction, and three significant features were
observed as described in the following sections.

Warp yarn shift

The first distinctive deformation is the shift of the warp
yarn stack at the junction, in the direction orthogonal
to the yarn length direction. The warp yarns within the
same stack are aligned vertically with each other before
folding the preform, but their relative position is shifted
after folding due to the rigid body transformation at
the junction. However, the warp yarn shift could be
suppressed by the surrounding binder yarns.

The shift begins in the warp yarn stack at the bend as
marked in Figure 3, and is followed by the next 1–2
stacks in the flange. It is noted from the mCT scan that
this phenomenon is most evident in the noodle area,

Table 1. Measured geometric parameters of the 3D woven preform through mCT.

Location Yarn Height (SD) (mm) Width (SD) (mm)

Intra-yarn fiber

volume fraction

Number of

measurements

Web warp (surface)a 0.32 (�0.04) 1.72 (�0.08) 46.30% 20

warp (internal)b 0.29 (�0.02) 1.97 (�0.08) 44.61% 50

weft (surface) 0.35 (�0.03) 1.71 (�0.07) 40.22% 20

weft (internal) 0.32 (�0.03) 2.00 (�0.13) 39.82% 50

Web

crossoverc
warp (surface) 0.22 (�0.04) 1.81 (�0.08) 64.00% 20

warp (internal) 0.17 (�0.02) 2.02 (�0.12) 74.21% 20

weft (surface) 0.30 (�0.04) 1.65 (�0.12) 51.48% 20

weft (internal) 0.19 (�0.04) 1.87 (�0.09) 71.73% 20

Flange warp (surface) 0.35 (�0.04) 3.61 (�0.14) 40.34% 20

warp (internal) 0.31 (�0.03) 3.85 (�0.08) 42.71% 20

Section A-A weft layer 1 0.28 (�0.01) 2.63 (�0.08) 34.61% 20

weft layer 2 0.29 (�0.03) 3.01 (�0.11) 29.20% 20

weft layer 5 0.29 (�0.02) 3.57 (�0.04) 24.62% 20

Spacing in the

same layer (mm)

Spacing between

through-thickness

layers(mm)

warp 2.71 (�0.03) 0.45 (�0.10) 20

weft 3.33 (�0.16) 0.44 (�0.04) 20

aSurface yarns are those on the layers next to compaction fixture surfaces.
bInternal yarns are all other yarns except surface yarns.
cCrossover refers to the locations where warp and weft yarns intersect.
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and the level of shift reduces in the following stacks of
warp yarns in the flange. To quantify the shift of the
warp yarn stack, shift in the bend can be represented by
angle shift S�, which is measured as the angle between
the two lines connecting centers of yarns to the normal
direction of each yarn. Shift of the following stack is
depicted as displacement shift Sd representing the hori-
zontal distance between two yarn centers, as illustrated
in Figure 3.

Warp yarn cross-section bending

Bent cross-sections of warp yarns were observed at
the junction. As shown in Figure 3, each warp yarn
bends about the centerline (or center-plane) of its
cross-section uniformly along its length direction
and its shape complies with the curvature of the adja-
cent weft yarn layers. For this 90� folded preform,
the centerline of each weft layer in the bend follows
the path of a quarter of the circumference of a circle.
As a result, the centerlines of bent warp yarn cross-
sections could be approximated with circular paths of
different radii. The measured radii of curvature of
centerlines of bent warp cross-sections (Rwarp

n in
Figure 6) and weft yarn layers (Rweft

n in Figure 5)
are listed in Table 2.

Weft yarn cross-section flattening

In Figure 4, section view A-A of Figure 2 shows the
cross-sections of weft yarns at the middle of the bend
arc, while section B-B denotes cross-sections of weft
yarns in the flat region. It is obvious that the cross-
sections of weft yarns at section A-A are significantly
flattened, i.e. an increase in yarn width and decease in
yarn height, especially for those not sitting in the peak
or trough of the binder yarn path since here yarn
flattening is not constrained by binders. The cross-sec-
tion data of flattened weft yarns without binder

constraint at position A-A were measured from the
mCT scan and results are listed in Table 1. The layer
sequence of weft yarns in section A-A is numbered as
Figure 2 shows. From further observation of mCT
images, the most slender cross-section of weft yarn
occurs at position A-A in Figure 2, from where it
transitions symmetrically back to the dimension of
the yarn cross-section in the flat part of the preform.
It is also observed that the length of yarn width tran-
sition varies for yarns on different layers, but all the
flattened yarns are of almost same height, as shown in
Table 1.

Meanwhile, a number of gaps in yarn cross-sections
at section A-A were observed, which caused serrated
cross-section shapes in most of the weft yarns, as
marked in Figure 4. A number of different slices near
section A-A indicate this phenomenon and therefore it
is unlikely to be an artefact of the mCT scan. The pos-
ition of each gap appears random as observed and the
cross-sectional gap is simply quantified by its maximum
width that is named gap distance Gd. The value of Gd is
no more than 1.5mm from several measurements. The
flattening and cross-sectional gaps of weft yarns at the
bend partly result from fiber migration when the pre-
form is folded.15

Geometric modeling

Warp yarn shifting

The warp yarn shift is inevitable due to the rigid
body transformation at the junction. Each warp
yarn has a different radius of curvature of cross-sec-
tional centerline to the fillet origin O. As illustrated
in Figure 5, half of a flat piece of 3D woven preform
(left) is folded to a 90� angle (right). Rweft

1 , Rweft
2 , and

Rweft
3 are the radii of curvature of centrelines for weft

yarns on layers 1, 2, and 3, respectively. As the
radius of the inner surface of a T-piece is confined

Table 2. Measured and calculated radii of curvature of center-

lines of bent warp yarn cross-sections and weft yarn layers, here

subscript n is the yarn layer number (mm; 5 measurements)

Measured values

Calculated

values (equation (1))

Rweft
n Rwarp

n Rweft
n Rwarp

n

Layer 1 2.19 (�0.07) 2.38 (�0.10) 2.18 2.4

Layer 2 2.42 (�0.12) 2.78 (�0.15) 2.62 2.84

Layer 3 3.11 (�0.08) 3.11 (�0.14) 3.06 3.28

Layer 4 3.63 (�0.12) 3.71 (�0.13) 3.5 3.72

Layer 5 4.25 (�0.10) 3.94

1st shifted
warp stack

1234warp

binder

warp
stack
warp
stack

x
y

2 mm 

Figure 3. Warp yarn shift quantification at the junction (weft

yarns not shown); numbers show the numbering of warp layers.
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by the mould corner radius Rm, the following can be
obtained:

Rweft
1 ¼ Rm þ

Hweft

2

Rweft
2 ¼ Rweft

1 þDweft

Rweft
3 ¼ Rweft

2 þDweft

Rwarp
n ¼ ðRweft

n þ Rweft
nþ1Þ=2

ð1Þ

where Hweft is the height of the weft yarn, Dweft is the
spacing between through-thickness weft layers, and
Rwarp

n is the radius of curvature of centerline for the
warp yarn cross-section on layer n.

Assuming there is no yarn sliding, angle shit S�
between warp yarn layer 1 and layer 2 (in radians) in
Figure 5 can be expressed as

S� ¼
2ðDwarp � doÞ

Rweft
1 þ Rweft

2

�
2ðDwarp � doÞ

Rweft
2 þ Rweft

3

¼ ðDwarp � doÞ
1

R
warp
1

�
1

R
warp
2

� � ð2Þ

where Dwarp is the warp yarn spacing within the same
layer and do the offset distance from the centre of near-
est unbent weft yarn describing the position where the
weft yarns start to bend; therefore Dwarp � d denotes the
arc length in between bending onset position and bent
yarn centre along the bend.

Also, the displacement shift Sd in adjacent layers for
the following stacks of weft yarns can be described as

Sd ¼
�

2

Rweft
2 þ Rweft

3

2
�
Rweft

1 þ Rweft
2

2

 !
¼
�

2
Dweft ð3Þ

Warp yarn cross-section bending

Yarn cross-section shapes have been approximated by a
number of researchers by elliptical, power elliptical,
and lenticular shapes which can be defined by paramet-
ric equations in two dimensions.19 Therefore, it is con-
venient to model the cross-section deformation by a
parameterized transformation that can apply to every
current parametric cross-section shape rather than
defining a new description for a curved cross-section.
The cross-section of one warp yarn is presented in
Figure 6 prior to and after deformation, where x and
y represent the original yarn width and yarn height

Section: A-A

Section: B-B

1
2
3
4
5

1
2
3
4
5
4'(5')
3'
2'
1'

weft binder

Figure 4. mCT images showing weft yarn flattening (A-A: flattened; B-B: non-flattened); serrated cross-section shapes are marked in

Section A-A.
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directions, and the origin is at the yarn center.
Accordingly the x and y coordinates of the original
cross-section (the dashed line in Figure 6) can be
defined by

CðtÞx ¼ f ðtÞ 0 � t � 2�

CðtÞy ¼ qðtÞ 0 � t � 2�
ð4Þ

It is assumed that the bent shape is a result of a
simple conformation of the major axis from the axis x
to the arc in radius Rwarp

n (equation (1)). Thus, for each
point on the upper half of the edge of a bent cross-
section, the transformation can be achieved by adding
(�x, �y) to the coordinates of corresponding points
on the original cross-section, where �x, �y can be
defined by

�x ¼ ðRwarp
n �Hwarp=2Þ sin

CðtÞx
R

warp
n �Hwarp=2

� �
� CðtÞx

�y ¼ ðRwarp
n �Hwarp=2Þ 1� cos

CðtÞx
R

warp
n �Hwarp=2

� �� �
ð5Þ

where Hwarp is the height of the warp yarn. Similarly,
for the point on the lower half of the edge of a bent
cross-section, �x, �y are given by

�x ¼ ðRwarp
n þHwarp=2Þ sin

CðtÞx
R

warp
n þHwarp=2

� �
� CðtÞx

�y ¼ ðRwarp
n þHwarp=2Þ 1� cos

CðtÞx
R

warp
n þHwarp=2

� �� �
ð6Þ

Usually the value of Hwarp=2 is quite small compared
with Rwarp

n , thus the above equations can be simplified

into one transformation for all the points on the cross-
section:

�x ¼ Rwarp
n sin

CðtÞx
R

warp
n

� �
� CðtÞx

�y ¼ Rwarp
n 1� cos

CðtÞx
R

warp
n

� �� � ð7Þ

Weft yarn cross-section flattening

As shown in Figure 5 for half of a T-joint, each weft
yarn is under a bending load. An idealized fiber distri-
bution in the weft yarn would consist of parallel layers
with concentric arcs whose arc lengths are dependent
on each layer’s radial position. For illustration,
Figure 7 represents a multi-filament yarn by inner,
middle, and outer fibers/layers.

The model assumes that a fiber with high stiffness,
such as carbon or glass fiber, has negligible axial
deformation in a bent yarn. After folding a straight
yarn (Figure 7(a)), it is clear that the assumed fiber
arrangement in Figure 7(b) would lead to a fiber
length difference which would not be realistic, in
order to satisfy the boundary condition that a fiber
bundle is undisturbed beyond the bending location.
Meanwhile, Figure 7(c) shows another scenario where
a fiber bundle with constant length complies with a 90o

bend resulting in fiber ends at a sheared angle, which
contradicts the real boundary condition. Therefore, to
maintain constant fiber length at a localized 90� bend,
fibers tend to migrate and rearrange resulting in a flat-
tened yarn cross-section, as observed in Figure 4.

Taking the outermost layer of fibers in Figure 7(b) as
a reference line for fiber movement, the rest of the fibers
have to migrate to maintain their lengths. The positions
of fibers except the reference ones in Figure 7(b) are
considered as base positions for the movement. Hence
the length differences between fiber on a specific fiber
layer and fiber on the reference layer can be
expressed as

Ld ¼
�

2
d ð8Þ

where d is the distance from a specific fiber layer within
the yarn to the reference layer. In practice, d can be a
series of discrete values depending on the fiber arrange-
ment within the yarn.

There are two possible mechanisms for a fiber to
migrate that maintains fiber length at a bending
corner. One mechanism is to move in the yarn height
direction, referred to as in-plane migration (i.e. in the
x–y plane shown in Figure 8). The other way is to move
in the yarn width direction, referred to as out-of-plane

ΔyΔx x

y

warp yarn

weft yarn

Figure 6. Schematic view of warp yarn cross-section bending.
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migration (z direction in Figure 9). In-plane fiber
migration will result in a reduction of yarn height
while out-of-plane migration will increase the yarn
width.

In-plane fiber migration. A reference fiber and a fiber on a
neighboring layer before and after migration are shown
in Figure 8. The fiber loci in the bend can be approxi-
mated by circular paths as shown in Figure 3, thus in
this model each single fiber path is described by one
quadrant and two tangential straight lines, such as
R0, l

0
a and l0a in Figure 8 for example(where script 0 or

d refers to reference or neighboring layer). The pos-
itions of the two tangent straight lines are assumed to
be fixed in migration based on the mCT observation
that weft yarn height is almost unchanged in the
region away from the bend. According to the length
relation in two axial directions shown in Figure 8, the
following expressions can be obtained:

l0a þ R0 ¼ lda þ Rd þ d ð9Þ

l0a þ R0 ¼ lda þ Rd þ d ð10Þ

where R0 is the radius of curvature of the reference fiber
that can be expressed by the sum of radius of curvature
of yarn centerline and half of the flattened yarn height;
Rd is radius of curvature of the fiber that is distance d
away from the reference fiber.

If a proportion � of the above defined arc length
difference as shown in equation (8) is compensated by
in-plane fiber migration, the arc length difference
between migrated and base fibers is �da=2: Thus the
relation between the length of the reference fiber
and a migrated fiber on a layer distance d away can
be given as

l0a þ
�

2
R0 þ l0b ¼ lda þ

�

2
Rd þ ldb þ Ld ð1� �Þ ð11Þ

Hence, the in-plane path of a migrated fiber at dis-
tance d away from the reference fiber is described by

Rd ¼ R0 � d�
�ad

4� �

lda ¼ l0a þ
�ad

4� �

ldb ¼ l0b þ
�ad

4� �

ð12Þ

Out-of-plane fiber migration. Since a proportion � of the
defined fiber length difference is compensated by in-
plane fiber rearrangement, the rest of the length differ-
ence, i.e. (1 � �) of the whole length difference, has to
be compensated by out-of-plane fiber migration to meet

0
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0
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migrated fiber

base fiber

x
y

Figure 8. Schematic view of in-plane fiber migration.
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the assumption that the folding process would not
increase the arc length of each fiber within a 90� bent
yarn. In theory fibers can migrate in both directions
across the yarn width.

In Figure 9, LABCD is the arc of a fiber which had in-
plane but no out-of-plane migration so that its arc
length is given by

LABCD ¼ ABþ cBCþ CD ¼ 2ðl0 � Rd Þ þ
�

2
Rd ð13Þ

where l0 is the length of yarn width transition, denoted
by length between A(or D) and G, from where the yarn
width starts to change.s

To calculate the arc length of a post-migration fiber
LAEFD, it is assumed that its radius of curvature is still the
same asLABCD.GH denotes the distance that the fiber has
migrated laterally, therefore in �ADH we can have

sin2
�

2
¼

AD=2

AH

� �2

ð14Þ

Also, in �AGH and �ADG we can have

AH
2
¼ AG

2
þ GH

2
;AD

2
¼ AG

2
þ GD

2
ð15Þ

Hence, equation (14) is given by

sin2
�

2
¼

1
2 l

2
0

l20 þ w2
ð16Þ

where for simplicity l0 equals AG or DG; w equals GH.

From trigonometry we can say that

tan2
�

2
¼

l20
l20 þ 2w2

ð17Þ

Hence, in �EHO EH is given by

EH ¼
EO

tan �2
¼

Rd

tan �2
ð18Þ

The arc length of migrated fiber LAEFD is

LAEFD ¼AEþ cEFþFD¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20þw2

q
�
Rd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20þ 2w2

q
l0

0@ 1A
þRd �� 2 tan�1

l20
l20þ 2w2

� �� �
ð19Þ

Thus, the relation between fiber arc length differ-
ences caused by out-of-plane fiber migration can be
represented by

LAEFD � LABCD ¼ Ld ð1� �Þ ð20Þ

Substituting equations (13) and (19) into equation
(20), the displacement for out-of-plane migration w
can be obtained for a fiber at a distance d away from
the reference fiber.

Yarn cross-section. The process of fiber migration result-
ing from bending is complex, as each single fiber may
have a different value of � for its in-plane and out-of-
plane migrations. Ideally, if all fibers on the same layer
move with the same � and direction for out-of-plane
migration, the cross-section of a weft yarn, assuming a
square array for fiber packing, at Section A-A in
Figure 2 would have a parallelogram shape as shown
in Figure 10(b), where Figure 10(a) is the fiber arrange-
ment before flattening with its left-hand layer as refer-
ence for in-plane migration (Figure 8). Since there are
thousands of fibers in a single yarn, a large number of
fibers presumably might migrate uniformly in the above
way, i.e. without a change to their initial relative spatial
sequence, as shown for the fibers represented by black
dots in Figure 10(c) which remain in their ideal pos-
itions as in Figure 10(b). Meanwhile, a few fibers, not
following the above ideal migration law, can penetrate
into a position out of their own layers through more in-
plane migration once out-of-plane migration of fibers
on prior layers makes a space, as indicated by grey dots
in Figure 10(c), which can cause a random serrated
cross-section shape as observed in Figure 4.
Additionally, a second possible cross-section shape is
shown in Figure 10(d) if it is assumed fibers move with
the same � but in both directions for out-of-plane
migration. Hereafter the first large group of fibers fol-
lowing the pre-migration relative spatial sequence are
named ideally migrated fibers, and the second small
group are called randomly migrated fibers. Under this
assumption, the values of � for the ideally migrated
fibers are supposed to be identically denoted by �.
Therefore the yarn height could be characterized by
the distance between two corresponding fibers on the
outermost layer (reference) and on the innermost layer,
respectively, as shown in Figure 11.

If the flattened yarn height (at Section A-A in
Figure 2) can be measured from a mCT scan, the
value of � for ideally migrated fibers on the innermost
layer could be calculated by solving the following equa-
tion after substituting Rdmax

with equation (12):

Hfla
weft ¼ R0 � Rdmax

�
ffiffiffi
2
p

dx ð21Þ
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where dmax is the maximum value of d which is the
original yarn height; ð�dx, � dyÞ in Figure 11 is the
position of the center of curvature of a fiber on the
innermost layer in the coordinate system of reference
fiber with its center of curvature as origin, which is
given by

dx ¼ dy ¼ R0 � Rdmax
� dmax ð22Þ

Theyarnwidth is determinedby the fibers thathadout-
of-plane migration. Irrespective of randomly migrated
fibers and considering all fibers to be ideal ones migrating
in the yarnwidth direction with an identical �, the relative
migration displacement w could be obtained by solving a
combination of equations (13), (19), and (20). In this case,
if the yarn extension, defined as the area beyond its ori-
ginal cross-section (area of fibers outside of the dotted
rectangle in Figure 10(b)), for the flattened yarn is full of
ideally migrated fibers, the total fiber area for fibers in the
yarn extension can be roughly estimated by

Areaext ¼
Xnf
k¼1

wkdf ð23Þ

where df is the fiber diameter and nf is the number of
total fiber layers along the yarn height direction before
flattening; wk is the displacement of out-of-plane migra-
tion for a fiber on layer k.

In reality, ideally migrated and randomly migrated
fibers coexist in a bent yarn so that a flattened cross-
section can be near to rectangular with the observed

gap (Figure 4) rather than a parallelogram (Figure 10
(b)) if all fibers are considered ideally migrated fibers.
Some of the fibers, namely randomly migrated fibers, in
the yarn extension do not have to move that much in
the yarn width direction because there is enough space
ahead of them to accommodate in-plane migration in
the yarn height direction, in the meantime the bending
force will prioritize in-plane migration. Therefore a
rectangular cross-section is likely to be formed, and a
rough prediction of weft yarn width extension Wext

weft in
terms of constant fiber area in the yarn extension can be
made by

Wext
weft ¼ Areaext=H

fla
weft ð24Þ

Figure 10. Schematic cross-section of fiber arrangement for a weft yarn showing fiber migration mechanisms: (a) pre-migration,

square packing fiber arrangement; (b) post-migration, idealized migration; (c) and (d) post-migration, possible realistic migration

accounting for serrated cross-section shape.
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5 / 4 
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innermost layer/fiber
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Figure 11. Yarn in-plane section view (�¼ 0.4; dmax¼ 0.35).
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where the value of Hfla
weft should be known in advance.

However, it is not possible that different fibers on the
same layer can move in both directions simultaneously
for out-of-plane migration as shown in Figure 10(d),
because the measured Gd is much smaller than double
the value of maximum wk as calculated in the following
section. Hence the predicted flattened yarn width can be
expressed as

Wfla
weft ¼Wweft þWext

weft ð25Þ

where Wweft is the original weft yarn width. This model
is capable to predict the change of yarn cross-section if
Hfla

weft can be determined.

Validation

Three proposed models for warp yarn shifting, cross-
section bending, and weft yarn cross-section flattening
were compared to experimental data from the standard
orthogonal weave region of the preform as listed in
Table 1.

Warp yarn shifting

The value of Rm is 2mm which equals the radius at the
junction of the acrylic fixture contacting the preform.
Based on equation (1), the radii of curvature of center-
lines for warp cross-sections and weft yarns on different
yarn layers can be obtained as listed in Table 2, which
shows good agreement with the measured values.

The offset distance d0 for the preform is measured as
2.0mm and thus the relative angle shift of a warp yarn
can be derived by equation (2). Furthermore, the dis-
placement shift in adjacent layers can be determined by
equation (3). Since the yarn shift is not significant for
this preform, the angle shit measurements were only
taken between yarns on layer 1 and yarns on other
layers, whilst the displacement shift measurements
were carried out between yarns on layer 2 and 3, as
numbered in Figure 3. The warp yarns shift in a uni-
form manner but show a deviation along the yarn
length direction. The measured shift values taken at
different cross-sections along the length direction with
standard deviations are shown in Table 3 in compari-
son with predicted values.

It is noticed that the measured angle shit between
layer 1 and 3 is negative, which means the warp yarn
on layer 3 has slid to the flange while folding. Also it is
the same with displacement shit for yarns on layer 1
and 4 in the next warp stack.

Warp yarn stack shift can be observed but the trend
does not always agree closely with the model since
binder yarns influence the movement of warp yarns as
well as yarn sliding induced by the weaving process.

Warp yarn cross-section bending

A bent cross-section shape can be obtained by the
transformation defined in equation (7) on the basis of
an original parameterized cross-section description.
Figure 12(a) is based on an elliptical cross-section and
its radius of curvature of centerline is 3mm;
Figure 12(b) is transformed from a super-ellipse (equa-
tion (26)) with m¼ 0.4 where radius of curvature of
centerline of bent yarn cross-section is 2.4mm.

It is observed that a real warp cross-section shape for
this preform in the flat region can be better approxi-
mated with a super-ellipse than an ellipse, thus valid-
ation of warp yarn bending is based on the cross-
section function for super-ellipse (m¼ 0.4) with yarn
height and width measured from the unbent region in
the web, where equation (4) can be expressed as

CðtÞx ¼
Wwarp

2
cosðtÞ0 � t � 2�

CðtÞy ¼

Hwarp

2 sinmðtÞ0 � t � �

�
Hwarp

2 ð� sinðtÞÞm� � t � 2�

8<:
ð26Þ

Then the bent cross-sections for different radii of
curvature can be plotted and compared with real
yarns, as shown in Figure 13. The modeled cross-
section gives good agreement with realistic bent cross-
section shapes.

Weft yarn cross-section flattening

Validation of cross-section flattening was carried out
for yarns on three different layers in order to cover
the full radius of curvature values which are the most
essential parameters in yarn bending. The three layers

Table 3. Warp yarn shift measured and predicted results (10 measurements)

Angle shift S� (�) between
Displacement shift Sd(mm)

between layers 2 and 3layers 1 and 2 layers 1 and 3 layers 1 and 4

Measured value 2.96 (�0.23) �1.48 (�0.17) 6.48 (�0.25) 0.87 (�0.13)

Predicted value 2.63 4.55 6.01 0.69
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selected are layers 1, 2, and 5 in section A-A of
Figure 4. Weft yarn cross-section transition length l0
is obtained from measurement for each layer, and
radius of curvature of the reference fiber R0 is derived
based on calculated radius of curvature yarn centerline
and flattened yarn height.

The total number of fiber layers along the yarn
height direction before flattening nf (equation (23)) is
estimated based on yarn dimensions before flattening
and filament count as well as the assumption that the
cross-section was a rectangular shape with square fiber
packing. Based on the flattened yarn height, � can be
obtained by solving a combination of equations (12),
(21), and (22). Then the displacement of fiber out-of-
plane migration along the yarn height if all the fibers
are ideally migrated ones can be obtained by solving a
combination of equations (13), (19), and (20), as
plotted in Figure 14. Yarn extension width can be
calculated from equation (23) and (24), and all the
parameters for the prediction model are listed in
Table 4.

Furthermore, the measured yarn width and pre-
dicted yarn width for the flattened weft yarns are com-
pared in Figure 15 and reasonable agreement is
observed.

Although the prediction accuracy is good, the model
is semi-empirical based on the input parameters of flat-
tened yarn height and cross-section transition length.
However, it is interesting that all the flattened weft
yarns with different radii of curvature have nearly the
same height while the length over which cross-section
transitions occur seems to increase linearly with radius
of curvature in bending, both of which are merit further
investigation.
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Figure 12. Transformation of bent yarn cross-section shapes: dashed lines for original shapes and solid lines for bent shapes.

(a) elliptical cross-section, (b) super-elliptical cross-section.
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Conclusions

To characterize the relationship between the fiber archi-
tecture and composite mechanical performance, a
numerical simulation requires a realistic geometric
model as input. In this study, three geometric features,
yarn shifting, cross-section bending, and flattening,
caused by the bifurcation of a 3D flat woven preform
for composite T-joints were identified by mCT analysis
and approximated analytically. A simple model based
on rigid body movement was used to approximate warp
yarn shifting but the experimentally observed trend
does not always agree closely with the model. The
model would benefit from considering the influence of
binder yarns on movement of warp yarns as well as
yarn sliding induced by the weaving process but this
would complicate the model significantly. Yarn cross-
section bending was modeled by a transformation of
the existing parameterized description of cross-section
shape instead of proposing a new shape function, and
good agreement was obtained when compared with
mCT results. Lastly, weft yarn flattening was described
in detail and a semi-empirical model was developed to
predict the flattened yarn width and satisfactory agree-
ment with experiments was observed. However, it is
worthwhile to further study the preform compaction

behavior and form a fully predictive model for yarn
flattening.
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