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ABSTRACT 

 

Omapatrilat, a vasopeptidase inhibitor, inhibits both neutral endopeptidase (NEP) and 

angiotensin converting enzyme (ACE) with similar potency. The aim of this study 

was to investigate whether omapatrilat prevents or reverses cardiovascular 

remodelling and hypertension in deoxycorticosterone acetate (DOCA)-salt rats. Male 

Wistar rats (313±2 g, n=114) were uninephrectomized (UNX) with or without further 

treatment with DOCA and 1% NaCl in the drinking water. Compared with UNX 

control rats, DOCA-salt rats developed hypertension, cardiovascular hypertrophy, 

perivascular and interstitial cardiac fibrosis and inflammation, endothelial dysfunction 

and prolongation of ventricular action potential duration within 4 weeks. 

Administration of omapatrilat (40 mg/kg/day po) for two weeks commencing two 

weeks after surgery attenuated the development of cardiovascular hypertrophy, 

inflammation, fibrosis and ventricular action potential prolongation. In contrast, 

omapatrilat treatment did not lower systolic blood pressure nor improve endothelial 

dysfunction. We conclude that the renin-angiotensin-aldosterone, natriuretic peptide 

and bradykinin systems are directly involved in the pathogenesis of cardiovascular 

remodelling in the DOCA-salt model of hypertension in rats, which may be 

independent of their effects on blood pressure. 
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INTRODUCTION 

 

Dual inhibition of angiotensin converting enzyme (ACE) and neutral endopeptidase 

(NEP), termed vasopeptidase inhibition, augments the beneficial actions of natriuretic 

peptides, adrenomedullin and bradykinin on regulating blood pressure and 

cardiovascular function, whilst preventing the detrimental effects of angiotensin II 

(1). Vasopeptidase inhibitors, which include omapatrilat, offer a new approach to the 

treatment of hypertension and heart failure (2-4). In experimental hypertension, 

omapatrilat lowered blood pressure irrespective of renin and volume status (5) and the 

response elicited was significantly greater than selective inhibition of either NEP or 

ACE alone (6,7). Blood pressure control alone, however, is no longer considered 

adequate therapeutic management of hypertensive patients. Novel antihypertensives 

should also exert beneficial effects on cardiovascular remodelling and other 

associated end-organ damage, key risk factors in the morbidity and mortality of heart 

disease. 

 

Considering the complex interplay between the neurohumoral systems, omapatrilat 

represents a potentially important therapeutic approach to hypertension and associated 

end-organ damage (1-5). It has the advantage of blocking a mechanism inducing 

remodelling via ACE inhibition, whilst, as a NEP inhibitor, simultaneously 

stimulating a mechanism to reduce remodelling by reducing the degradation of 

natriuretic peptides, bradykinin and adrenomedullin. One potential drawback is that 

NEP is also involved in the degradation of endothelin (8,9) and thus NEP inhibition 

could be deleterious by increasing circulating levels of this potent vasoconstrictor and 

trophic peptide.   

 

This study has administered the potent, balanced vasopeptidase inhibitor, omapatrilat, 

to DOCA-salt hypertensive rats for two weeks starting two weeks after induction of 

hypertension. This is a well-established model of volume-dependent hypertension 

(10), characterized by low plasma renin activity and elevated atrial natriuretic peptide 
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(ANP) levels (11). In addition, increased endothelin is believed to be a key 

mechanism for the induction of cardiac and vascular damage in DOCA-salt 

hypertensive rats via augmentation of vascular superoxide production by NADPH 

oxidase (12-14). Our aim was to determine whether omapatrilat prevents the further 

development of hypertension and cardiovascular remodelling, reverses existing 

structural changes and normalises cardiovascular function in this rat model of human 

hypertension. 

 

METHODS 

 

Ethical clearance 

All experimentation was approved by the Animal Experimentation Ethics Committee 

of The University of Queensland under the guidelines of the National Health and 

Medical Research Council of Australia. 

 

DOCA-salt hypertensive rats 

Male Wistar rats weighing 300-330 grams (~8 weeks old) were obtained from the 

Central Animal Breeding House of The University of Queensland. All rats were 

uninephrectomied under anaesthesia with intraperitoneal tiletamine (25 mg/kg) and 

zolazepam (25 mg/kg)(Zoletil®) combined with xylazine (10 mg/kg)(Ilium Xylazil®). 

Kidneys were visualised by a left lateral abdominal incision. The left kidney was 

removed after ligation of adjoining renal vasculature and ureter with sutures. 

Uninephrectomized rats were given either no further treatment (UNX rats) or 1% 

NaCl in the drinking water with subcutaneous injections of deoxycorticosterone 

acetate (DOCA; 25mg in 0.4ml dimethylformamide every fourth day) (DOCA-salt 

rats). After 14 days, subgroups of UNX and DOCA-salt rats received daily oral 

gavaging of omapatrilat (40 mg/kg) or no treatment, for a further 14 days. 

Experiments were performed either 14 or 28 days after surgery.  

 

Assessment of physiological parameters 

Systolic blood pressure was measured by tail-cuff plethysmography (ADInstruments) 

in rats lightly anaesthetised with intraperitoneal tiletamine (10 mg/kg) and zolazepam 

(10 mg/kg). Rats were euthanased with pentobarbitone (200 mg/kg ip). After adequate 

anaesthesia and prior to death, blood was taken from the abdominal vena cava, just 
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caudal to the insertion of renal veins, centrifuged and the plasma immediately frozen 

for subsequent measurement of sodium and potassium concentrations by flame 

photometry. The heart was removed and weighed immediately after death, and heart 

weight was expressed as a ratio of the tissue weight (mg) to the total body weight (g). 

 

Isolated Langendorff heart preparation 

Rats were anaesthetized with sodium pentobarbitone (100 mg kg-1 ip) and heparin 

(200 IU) was administered via the femoral vein. After allowing two minutes for the 

heparin to circulate, the heart was excised and placed in cooled (0°C) crystalloid 

perfusate (modified Krebs-Henseleit solution of the following composition in mM: 

NaCl 119.1, KCl 4.75, MgSO4 1.19, KH2PO4 1.19, CaCl2 2.16, NaHCO3 25.0, 

glucose 11.0). A cannula was then placed in the heart with its tip immediately above 

the coronary ostia of the aortic stump. The cannula was used to perfuse the heart in a 

non-recirculating Langendorff fashion at 100cm of hydrostatic pressure. The 

perfusate temperature was maintained at 37°C and bubbled with 95% O2 / 5% CO2. 

The apex of the heart was pierced to facilitate thebesian drainage and paced at 250 

bpm by electrodes placed on the surface of the right atrium.   

 

Left ventricular developed pressure was measured using a balloon catheter inserted 

into the left ventricle through the mitral orifice. The catheter was connected via a 

three-way tap to a micrometer syringe and to a MLT844 Physiological Pressure 

Transducer (ADInstruments) and PowerLab data acquisition unit (ADInstruments). 

The outer diameter of the catheter was similar to the mitral annulus to prevent 

ejection of the balloon during the systolic phase. After a 5 minute stabilization period, 

steady-state left ventricular pressure was recorded from isovolumetrically beating 

hearts. Increments in balloon volume were applied to the heart with left ventricular 

end-diastolic pressure recorded at approximately 0, 5, 10, 15, 20 and 30 mmHg. At 

the end of the experiment, the atria and right ventricle were dissected away leaving 

the left ventricle and septum, which were blotted then weighed. Myocardial diastolic 

stiffness was calculated as the diastolic stiffness constant (k, dimensionless), the slope 

of the linear relation between tangent elastic modulus (E, dyne/cm2) and stress (σ, 

dyne/cm2) (15, 16).  
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Isolated thoracic aortic rings 

Thoracic aortic rings (approximately 4 mm in length) were suspended in 25mL organ 

baths with a resting tension of 10 mN. Force of contraction was measured 

isometrically with Grass FT03C force transducers. Cumulative concentration-

response curves were performed for noradrenaline and either acetylcholine or sodium 

nitroprusside in the presence of a submaximal (~70%) contraction to noradrenaline.  

 

Quantification of left ventricular collagen 

Collagen content was determined by image analysis of picrosirius red-stained sections 

of the hearts (17). Tissue collagen content was also measured by a modified 

hydroxyproline assay (18). Approximately 5.0 mg samples of left ventricle were dried 

for 6 hours at 40°C. Tissues and standards were then hydrolyzed in 6M HCl at 107°C 

for 18 hours. The acid was blown off by filtered compressed air and the hydrolysate 

reconstituted in distilled water. Chloramine T reagent was added to each sample for 

the oxidation step to progress, followed by Ehrlich’s reagent to enable chromophore 

development. Absorbance of each sample was read at 550nm in a spectrophotometer 

and hydroxyproline content established from a standard curve. 

 

Width of media in thoracic aorta 

The width of the media in the thoracic aorta of rats was measured by image analysis 

of picrosirius red-stained sections. Section preparation, staining, image acquisition 

and analysis were similar to those mentioned above. Three different cross-sectional 

areas of each aorta were measured and the results averaged. 

 

Grading of inflammation in left ventricle 

The degree of left ventricular inflammation was determined by blinded semi-

quantitative analysis of haematoxylin and eosin-stained transverse sections. Slides 

were visualised under bright field illumination at 40x magnification. A zero to four 

grading scale was used to quantify the degree of inflammatory cell infiltration in the 

left ventricle. 0 = no inflammatory cells present; 1 = low level of inflammatory cells 

throughout the left ventricle; 2 = moderate levels of inflammatory cells throughout the 

left ventricle and concentrated in mild scarring; 3 = high levels of inflammatory cells 

throughout the left ventricle and concentrated in moderate scarring; 4 = high levels of 

inflammatory cells throughout the left ventricle and concentrated in heavy scarring. 
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Microelectrode studies of isolated left ventricular papillary muscles 

Electrophysiological recordings of cardiac action potentials were obtained by 

microelectrode single cell impalements of ex vivo, left ventricular papillary muscles, 

as described previously (17). 

 

Data analysis 

All results are given as mean ± SEM. The negative log EC50 of the increase in force of 

contraction in mN was determined from the concentration giving half-maximal 

responses in individual concentration-response curves. These results were analysed by 

one-way analysis of variance followed by the Tukey post test to determine differences 

between treatment groups; p<0.05 was considered significant. 

 

Drugs 

Omapatrilat (BMS-186716) was provided by Bristol-Myers Squibb, Princeton, NJ, 

USA. Deoxycorticosterone acetate, 4-aminopyridine, acetylcholine, sodium 

nitroprusside and noradrenaline were purchased from Sigma Chemical Company, St 

Louis, MO, USA. Noradrenaline, sodium nitroprusside and acetylcholine were 

dissolved in distilled water and deoxycorticosterone acetate was dissolved in 

dimethylformamide with mild heating.  

 

 

RESULTS 

 

Over the four-week treatment period, DOCA-salt rats gained significantly less weight 

than UNX controls and became hypernatraemic, hypokalaemic and hypertensive 

(Table 1, Figure 1). These rats developed significant cardiac remodelling, including 

left ventricular and aortic hypertrophy, inflammation, perivascular collagen 

deposition and cardiac action potential prolongation, in addition to an increased 

remnant kidney wet weight (Tables 1 and 2, Figure 2). These changes were already 

evident after two weeks of DOCA-salt administration. An additional two weeks of 

DOCA-salt administration saw further significant increases in these parameters of 

cardiac remodelling, as well as elevations in left ventricular interstitial collagen and 

hydroxyproline contents and kidney weight (Table 1, Figure 2).  
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Omapatrilat therapy for two weeks commencing two weeks after surgery attenuated 

the additional increase in left ventricular wet weight and prevented further cardiac 

collagen deposition and inflammatory cell infiltration without changes in body 

weight, systolic blood pressure or kidney weight (Tables 1, Figures 1 and 2). In 

addition, further aortic medial hypertrophy in DOCA-salt rats was prevented by 

omapatrilat intervention (Table 1). Omapatrilat did not significantly decrease diastolic 

stiffness in hypertensive rats (Table 1). The vasopeptidase inhibitor was without 

effect on plasma sodium concentrations, but normalised plasma potassium 

concentrations in DOCA-salt rats and also augmented the concentrations of this 

electrolyte in UNX animals (Table 1). 

 

The maximal contractile responses to noradrenaline and relaxant responses to 

acetylcholine in isolated thoracic aortic rings were unchanged in two week DOCA-

salt rats, but were significantly reduced after four weeks of DOCA-salt treatment 

(Figure 3A and B). There was also an increased potency of noradrenaline after both 

two and four weeks of DOCA-salt treatment (Figure 3A, Table 2). Responses to 

sodium nitroprusside were unchanged between groups except in two week DOCA-salt 

animals, where relaxation was augmented at concentrations of 1µM and 3 µM (Figure 

3C). Omapatrilat was without effect in DOCA-salt rats on these indicators of vascular 

function (Figure 3A, B and C, Table 2). 

 

In microelectrode recordings of isolated left ventricular papillary muscles, resting 

membrane potential and action potential amplitude were unchanged in the five study 

groups (Table 3). Two week DOCA-salt rat papillary muscles, however, demonstrated 

prolonged action potentials at 90% of repolarization (APD90). Four week DOCA-salt 

controls exhibited further lengthening of APD90, as well as APD20 and APD50 (Table 

3). Omapatrilat therapy from 2 to 4 weeks of the study period prevented further 

lengthening of APD90 in DOCA-salt rats (Table 3). 
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DISCUSSION 

 

In the treatment of cardiovascular disease, omapatrilat has the advantage of 

concomitantly blocking mitogenic and hypertensive responses to angiotensin II as an 

ACE inhibitor while also stimulating anti-mitogenic and hypotensive mechanisms via 

NEP inhibition. In the current study, we observed that omapatrilat therapy attenuated 

further increases in left ventricular hypertrophy, fibrosis and inflammation, cardiac 

action potential prolongation, and aortic medial hypertrophy without antihypertensive 

action in DOCA-salt rats and without reversing existing remodelling. 

 

Previous studies have shown that omapatrilat reduced blood pressure irrespective of 

renin status (5) with NEP inhibition most valuable in low renin forms of hypertension, 

where ACE inhibition is less effective, such as the DOCA-salt hypertensive rat (5, 19-

21). This is consistent with the observation that hypertension is accelerated in this 

model with administration of antibodies to ANP (22). In the current study, however, 

we showed no change in blood pressure with omapatrilat in DOCA-salt rats using a 

reversal protocol, despite using a relatively high dose of the drug as in the previous 

studies (5,19-21). However, our blood pressure findings must be interpreted with 

caution given the limitations of tail cuff plethysmography versus telemetry. 

Nonetheless, our results are in agreement with Elmarakby et al. (9) who demonstrated 

with telemetry that omapatrilat was ineffective at lowering arterial pressure in the 

DOCA-salt hypertensive rat whether given after the establishment of hypertension, as 

in our study, or for the duration of DOCA-salt treatment. These authors hypothesized 

that abrogated metabolism of endothelin by NEP inhibition (8) may limit the 

antihypertensive effects of the dual ACE/NEP inhibitor in this setting. Consistent with 

this, they found urinary endothelin excretion in DOCA-salt rats increased almost two-

fold with omapatrilat treatment suggesting augmented endothelin survival (9). Thus, 

with the DOCA-salt model characterized by elevated levels of vascular and 

circulating endothelin-1 (23,24) and the peptide implicated in the development and 

maintenance of hypertension in this model (9,12-14,24), omapatrilat therapy may 

potentially increase circulating levels of this potent vasoconstrictor to prevent a 

reduction in blood pressure.  
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However, intervention with omapatrilat attenuated further cardiovascular hypertrophy 

and fibrosis. We have previously shown that cardiac fibrosis, but not hypertrophy, 

associated with DOCA-salt hypertension was corrected by inhibition of the renin-

angiotensin system with the ACE inhibitor captopril, the AT1 receptor antagonist 

candesartan or the aldosterone antagonist spironolactone, without reduction of blood 

pressure (15). Our findings suggest that NEP inhibition may play an additional role in 

the prevention of both cardiac and vascular remodelling, particularly of left 

ventricular and aortic medial hypertrophy. In vitro, natriuretic peptides inhibited the 

hypertrophy and proliferation of cardiomyocytes (25,26), vascular smooth muscle 

cells (27) as well as the proliferation and collagen matrix production by fibroblasts 

(28-30). In vivo, knockout inactivation of the natriuretic peptide receptor (NPR)-A in 

mice (Npr1-/-) increased ventricular mass and fibrosis disproportionately with the 

small rise in blood pressure (31,32), suggesting that natriuretic peptides can regulate 

cardiovascular remodelling independent of blood pressure. Further, given their anti-

mitogenic effects on cardiac fibroblasts and myocytes, there is a possible role for 

bradykinin (33) and adrenomedullin (34,35) in the cardioprotective effects of 

omapatrilat in the current study. 

 

NEP inhibition, and therefore presumably natriuretic peptides, may show anti-

inflammatory responses since treatment with omapatrilat or the NEP inhibitor, CGS 

25462, suppressed the increased expression of NF-κB, monocyte chemotactic protein 

(MCP)-1, surface adhesion molecules and macrophage infiltration associated with 

cardiac fibrosis in DOCA-salt rats (20). This is in agreement with our results, where 

omapatrilat prevented further inflammatory cell infiltration into the left ventricular 

interstitium.  

 

Action potential prolongation is a common electrophysiological disturbance in 

hypertrophied myocardium (36), including DOCA-salt hypertensive rats (37). 

Depression of the calcium-independent transient outward K+ current (Ito) in DOCA-

salt rats was responsible for this prolongation, such that an absence of enhanced Ito 

channel expression concurrent with hypertrophy resulted in a reduced channel density 

per unit surface area (37). Furthermore, non-pharmacological regression of LV 

hypertrophy in DOCA-salt rats normalized the Ito current and APD (37). Thus, the 
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prevention of further cardiac action potential prolongation with omapatrilat is most 

likely secondary to its amelioration of left ventricular hypertrophy. Importantly, this 

improvement in cardiac electrophysiology with omapatrilat would presumably render 

the rats less susceptible to ventricular arrhythmias, as shown with the ACE inhibitor, 

captopril, in a renovascular model of left ventricular hypertrophy (38). 

 

In our study, isolated aortic rings from 4 week DOCA-salt treated rats showed a 

reduced responsiveness to acetylcholine, which acts through an endothelium-

dependent mechanism. This indicates a diminished reactivity of endothelial cells to 

the activation or production of nitric oxide or both. In addition, dual ACE/NEP 

inhibition with omapatrilat failed to attenuate this endothelial dysfunction. This is in 

contrast to previous work where omapatrilat therapy improved endothelial function in 

hypertensive rat models (39-41), including DOCA-salt hypertensive rats (21). Unlike 

our results, these studies also demonstrated hypotensive responses with omapatrilat, 

which is the most likely mechanism responsible for this discrepancy. DOCA-salt (2 

and 4 week) rats also exhibited normal or enhanced responses to the nitric oxide-

donor, SNP, indicating preservation or even augmentation of the downstream 

pathway of nitric oxide, guanylate cyclase (and cGMP) in the vascular smooth muscle 

of these animals.  

 

This study shows that omapatrilat attenuated the signs of further cardiovascular 

remodelling, especially aortic medial thickening, myocardial inflammation and 

fibrosis, left ventricular hypertrophy and action potential prolongation, in DOCA-salt 

hypertensive rats. Further, these effects of omapatrilat may be independent of an anti-

hypertensive action. This suggests that the renin-angiotensin-aldosterone, natriuretic 

peptide and bradykinin systems may be directly involved in the pathogenesis of 

cardiovascular remodelling in the DOCA-salt model of hypertension in rats.  
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Table 1: Physiological parameters in UNX, DOCA-salt and omapatrilat-treated rats. 
 
 UNX UNX+OMA DOCA-salt 

(2 week) 
DOCA-salt 
(4 week) 

DOCA-salt 
+OMA 

Initial body 
weight (g) 

316±5 
(n=8) 

309±4 
(n=10) 

314±2 
(n=12) 

315±3 
(n=13) 

312±6 
(n=11) 

Final body 
weight (g) 

417±5 
(n=8) 

393±7 
(n=10) 

332±7* 
(n=12) 

321±6* 
(n=13) 

340±7* 
(n=11) 

LV+septum 
weight (mg/g) 

1.81±0.04 
(n=8) 

1.74±0.04 
(n=10) 

2.27±0.05*#

(n=12) 
3.00±0.07* 
(n=13) 

2.54±0.07*#

(n=11) 
Remnant 
kidney weight 
(mg/g) 

5.0±0.2 
(n=8) 

4.8±0.1 
(n=10) 

7.5±0.2* 
(n-12) 

10.1±0.5*# 
(n=13) 

9.4±0.3*# 
(n=11) 

Plasma Na+ 
concentration 
(mM) 

129.6±0.5 
(n=10) 

132.5±0.4 
(n=10) 

136.5±0.3* 
(n=10) 

135.6±1.3* 
(n=10) 

136.3±0.8* 
(n=10) 

Plasma K+ 
concentration 
(mM) 

3.5±0.1 
(n=10) 

5.1±0.4* 
(n=10) 

2.2±0.2* 
(n=10) 

1.9±0.2* 
(n=10) 

3.0±0.2#

(n=10) 

Diastolic 
Stiffness 
Constant (κ) 

21.4±0.4 
(n=9) 

21.7±0.4 
(n=9) 

22.1±0.3#

(n=8) 
24.6±0.5* 
(n=9) 

23.2±0.4* 
(n=10) 

Left 
Ventricular 
Hydroxyproline 
Content (mg/g) 

1.07±0.05 
(n=7) 

1.20±0.05 
(n=9) 

1.20±0.08#

(n=10) 
1.60±0.08* 
(n=8) 

1.20±0.05#

(n=10) 

Aortic Media 
Thickness (μm) 

78.5±4.2 
(n=7) 

82.9±3.7 
(n=7) 

91.1±2.5#

(n=7) 
121.6±5.2* 
(n=7) 

103.8±3.7*#

(n=8) 
Inflammatory 
Score 

0.7±0.2 
(n=7) 

0.7±0.2 
(n=8) 

2.4±0.5*# 
(n=7) 

3.8±0.1* 
(n=7) 

2.3±0.2*#

(n=8) 
* p<0.05 compared to UNX, # p<0.05 compared to DOCA-salt (4 week), 
OMA=omapatrilat 
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Table 2: Potency of vascular reactions to noradrenaline, acetylcholine and sodium 
nitroprusside 
 
 UNX 

 
UNX 
+OMA 

DOCA-salt 
(2 week) 

DOCA-salt 
(4 week) 

DOCA-salt 
+OMA 

Noradrenaline   
-log EC50 (M) 

7.1±0.1 
(n=15) 

7.0±0.1 
(n=15) 

7.7±0.1* 
(n=15) 

7.9±0.1* 
(n=15) 

7.8±0.1* 
(n=14) 

Acetylcholine    
-log EC50 (M) 

6.8±0.1 
(n=12) 

6.7±0.1 
(n=14) 

6.6±0.1 
(n=14) 

6.6±0.1 
(n=14) 

6.7±0.1 
(n=14) 

Sodium 
Nitroprusside    
-log EC50 (M) 

7.3±0.1 
(n=15) 

7.5±0.1 
(n=15) 

7.3±0.1 
(n=14) 

7.1±0.1 
(n=14) 

7.3±0.1 
(n=13) 

* p<0.05 compared to UNX; EC50 = concentration giving a half maximal response; 
OMA = omapatrilat
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Table 3: Cardiac electrophysiological parameters in UNX, DOCA-salt and 
omapatrilat-treated rats. 
 
 UNX 

(n=7) 
UNX 
+OMA 
(n=6) 

DOCA-salt 
(2 week) 
(n=9) 

DOCA-salt 
(4 week) 
(n=9) 

DOCA-salt 
+OMA 
(n=9) 

Resting 
Membrane 
Potential (mV) 

-73±3 -74±5 
 

-69±2 
 

-74±2 
 

-75±2 
 

Action Potential 
Amplitude (mV) 

93±3 
 

93±2 
 

87±2 
 

93±3 
 

91±2 
 

APD20 (ms) 8.3±1.1 
 

8.4±0.7 
 

12.5±1.0 
 

17.6±1.9* 
 

14.4±1.5* 
 

APD50 (ms) 18.4±1.6 
 

17.8±1.4 
 

29.6±1.9#

 
45.3±3.9* 
 

38.1±3.0* 
 

APD90 (ms) 50.2±2.1 
 

48.5±3.7 
 

84.1±5.6*#

 
115.1±4.2* 
 

92.8±5.0*#

 
* p<0.05 compared to UNX, # p<0.05 compared to DOCA-salt (4 week); APD20, 
APD50, and APD90 = Action Potential Duration at 20%, 50% and 90% of 
repolarization respectively; OMA = omapatrilat 
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FIGURE 1. 
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FIGURE 2. 
 

 



FIGURE 3.    
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Legends to figures 
 
FIGURE 1: Effect of omapatrilat (OMA) therapy on blood pressure. Data represent the 
comparison of systolic blood pressure in UNX, OMA-treated UNX, DOCA-salt 
hypertensive and OMA-treated DOCA-salt hypertensive groups over the 4 week protocol 
period. Values are mean ± SEM; * p<0.05 vs UNX; # p<0.05 vs DOCA-salt (4 week). 
Numbers in parentheses represent animal numbers. 
 
FIGURE 2: Graphical representations of left ventricular interstitial collagen area (A) and 
perivascular collagen area (B) in UNX, omapatrilat (OMA)-treated UNX, DOCA-salt 
hypertensive (2 and 4 weeks) and OMA-treated DOCA-salt hypertensive groups over the 
4 week protocol period. Values are mean ± SEM; * p<0.05 vs UNX; # p<0.05 vs DOCA-
salt (4 week). Numbers in parentheses represent animal numbers. 
 
FIGURE 3: Concentration-response curves to noradrenaline (A) for UNX (filled square, 
n=15), omapatrilat (OMA)-treated UNX (open square, n=15), 2 week DOCA-salt (open 
circle, n=15), 4 week DOCA-salt (filled triangle, n=15) and OMA-treated DOCA-salt 
(open triangle, n=14). Concentration-response curves to acetylcholine (B) for UNX 
(filled square, n=12), OMA-treated UNX (open square, n=14), 2 week DOCA-salt (open 
circle, n=14), 4 week DOCA-salt (filled triangle, n=14) and OMA-treated DOCA-salt 
(open triangle, n=14). Concentration-response curves to sodium nitroprusside (C) for 
UNX (filled square, n=15), OMA-treated UNX (open square, n=15), 2 week DOCA-salt 
(open circle, n=14), 4 week DOCA-salt (filled triangle, n=14) and OMA-treated DOCA-
salt (open triangle, n=13); * p<0.05 vs UNX. 
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