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A B S T R A C T

In this study, we systematically review various ripplon solutions to the Kadomtsev–Petviashvili
equation with positive dispersion (KP1 equation). We show that there are mappings that allow
one to transform the horseshoe solitons and curved lump chains of the KP1 equation into
circular solitons of the cylindrical Korteweg–de Vries (cKdV) equation and two-dimensional
solitons of the cylindrical Kadomtsev–Petviashvili (cKP) equation. Then, we present analytical
solutions that describe new nonlinear highly localized ripplons of a horseshoe shape. Ripplons
are two-dimensional waves with an oscillatory structure in space and a decaying character
in time; they are similar to lumps but non-stationary. In the limiting case, the horseshoe
ripplons reduce to solitons decaying with time and having bent fronts. Such entities can play
an important role in the description of strong turbulence in plasma and other media.

‘‘The ink of a scholar is more holy than the blood of a martyr.’’ – Prophet Muhammad

. Introduction

Currently, it is known the existence of numerous solutions to the KP equation — see, for example, Refs. [1–3] and references
herein. Among them, one can mention solutions describing stationary formations such as plane solitons, lumps, and lump chains [4–
], as well as solutions describing resonant interactions between these formations [10–17]. There are also solutions to the KP
quation dubbed ripplons [18–21]; they describe nonlinear excitations decaying in time and having an oscillatory structure in space.
owever, an interesting class of solutions – highly localized ripplons – has been missed. In this paper, we introduce such entities

hrough exact and analytical solutions and investigate their properties.
The well-known KP equation can be presented in the traditional dimensionless form:

(

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥
)

𝑥 + 3𝛼2𝑢𝑦𝑦 = 0. (1.1)

ere subscripts 𝑥, 𝑦 and 𝑡 denote partial derivatives. The parameter 𝛼 determines the type of the KP equation; when it is purely
maginary, 𝛼 = 𝑖, then Eq. (1.1) describes waves in positive dispersion media (e.g., waves in a magnetized plasma) and is dubbed
P1, whereas when it is purely real, 𝛼 = 1, then Eq. (1.1) describes waves in negative dispersion media (e.g., waves in oceans) and

s dubbed KP2. Here we consider the former case with 𝛼2 = −1.
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Exact solutions to Eq. (1.1) can be constructed, for example, by means of the Zakharov–Shabat method [2,22] or through the
arboux–Matveev transform [3]. To this end, we use the formula derived in [4,18]:

𝑢 = 2 𝜕2

𝜕𝑥2
lnℎ(𝑥, 𝑦, 𝑡), (1.2)

here the auxiliary function ℎ(𝑥, 𝑦, 𝑡) is presented through the determinant of an 𝑀 ×𝑀 matrix:

ℎ(𝑥, 𝑦, 𝑡) = det
[

𝑐𝑗𝑘 +
⟨

𝜙+
𝑗 , 𝜙

−
𝑘

⟩]

(1.3)

ith the matrix elements containing integrals:
⟨

𝜙+
𝑗 , 𝜙

−
𝑘

⟩

= ∫

+∞

𝑥
𝜙+
𝑗
(

𝑥′, 𝑦, 𝑡
)

𝜙−
𝑗
(

𝑥′, 𝑦, 𝑡
)

𝑑𝑥′, (1.4)

nd 𝑐𝑗𝑘 are arbitrary constants. Functions 𝜙+
𝑗 are solutions to the linear set of equations:

𝑖𝜙+
𝑦 + 𝜙+

𝑥𝑥 = 0,

𝜙+
𝑡 + 4𝜙+

𝑥𝑥𝑥 = 0,
(1.5)

nd functions 𝜙−
𝑗 are solutions to the complex conjugate set of equations.

Solutions to these linear equations can be presented in the exponential and polynomial-exponential forms:

𝜙+
𝑗 =

(

𝜙−
𝑗

)∗
=

𝑁1
∑

𝑠=1
𝐴𝑗𝑠e

𝜃𝑗𝑠 +
𝑁2
∑

𝑠=1
𝐵𝑗𝑠

𝜕
𝜕𝜆𝑗𝑠

e𝜃𝑗𝑠 +
𝑁3
∑

𝑠=1
𝐶𝑗𝑠

𝜕2

𝜕2𝜆𝑗𝑠
e𝜃𝑗𝑠 +⋯ (1.6)

ere asterisk stands for the complex conjugate and 𝜃𝑗𝑠 = 𝜆𝑗𝑠𝑥 + 𝑖𝜆2𝑗𝑠𝑦 − 4𝜆3𝑗𝑠𝑡 and 𝐴𝑗𝑠, 𝐵𝑗𝑠, 𝐶𝑗𝑠, and 𝜆𝑗𝑠 are real constants.
The typical simplest solutions presented in such a form encompass line solitons [23], 2D solitons (lumps) [4,24], lump

hains [6,7,25], and their stationary combinations [8,9,13,17,26]. Solutions based on functions (1.6) allow one to describe normal
nd resonance interactions of solitons, lumps, and lump chains [13,15–17,27]. There are also solutions that describe ripplons,
.e. solutions based on the Airy function Ai(𝑧) that decay in time and have bent front with the oscillating structure in space (the
etails will be shown below). Such solutions were derived in different ways by Johnson & Tompson [18] and later by Nakamura [20];
e will call them JTN ripplons. JTN ripplons have a horseshoe shape but are not localized in space, their fronts last up to infinity.

In the hierarchy of these solutions, at least one class of localized ripplon-type solutions was missed. In this paper, we will fill
n the gap and describe a variety of decaying solutions to the KP1 equation and present our recent advancements in this field. In
ection 2, we outline JTN ripplons and horseshoe solitons with a subsequent discussion on their relation to the exact solutions of
he cKdV equation. In Section 3, we revisit recently derived lump-chain ripplons [21] and transform them into two-dimensional
olitons and circular lump chains of the cKP equation via an appropriate mapping. The lump-like ripplons are revisited in Section 4
ith the notation that they correspond to exact solutions of the cKP1 equation. In Section 5, we introduce new ripplon solutions
nd horseshoe solitons that are localized in space. In the Conclusion, we discuss the results obtained in this paper.

. JTN ripplons

As aforementioned, solutions in the form of Eq. (1.6) are not unique; there are other solutions to the linear set of Eqs. (1.5).
ohnson & Thompson [18] and independently Nakamura [20] have found a solution to Eqs. (1.5) in the form:

𝜙+ = 𝜌 (12𝑡)−1∕3Ai (𝑍) 𝑒𝑖𝜃 , 𝜙− = 𝜌 (12𝑡)−1∕3Ai (𝑍) 𝑒−𝑖𝜃 , (2.1)

here Ai(𝑍) is the Airy function of the first kind, 𝜌 is an arbitrary real parameter, and

𝑍(𝑥, 𝑦, 𝑡) = (12𝑡)−1∕3
(

𝑥 −
𝑦2

12𝑡

)

, 𝜃(𝑥, 𝑦, 𝑡) =
𝑦
12𝑡

(

𝑥 −
𝑦2

18𝑡

)

.

This solution represents a ripplon (the term was introduced by Nakamura [20]), a non-singular ripple that slowly decays with time
as 𝑡−2∕3, whereas its characteristic scale increases as 𝑡1∕3 [18,20,21]. The auxiliary function of the simplest ripple-type solution is:

ℎ = 1 + 𝜌2(12𝑡)−2∕3 ∫

+∞

𝑥
Ai2 (𝑍) d𝑥 = 1 +

𝜌2
3
√

12𝑡

{

[

Ai′ (𝑍)
]2 −𝑍Ai2 (𝑍)

}

, (2.2)

here Ai′ is the derivative of the Airy function with respect to its argument. One can prove that function ℎ(𝑥, 𝑦, 𝑡) in Eq. (2.2) is
ssentially positive for 𝑡 > 0; this secures the non-singularity of the ripplon solution shown in Fig. 1. The solution is not localized in
pace; at any fixed time moment, the ripplon amplitude is constant along the line 𝑍(𝑥, 𝑦, 𝑡) = constant. However, the line curvature
ecreases with time 𝑥 = 𝑦2∕(12𝑡) + 𝐶 where 𝐶 is some constant. For a big |𝑍|, the ripplon solution has the following asymptotics:

𝑢 ∼

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

3
√

12

6𝑡2∕3
√

|𝑍|

cos
( 4
3
|𝑍|

3∕2
)

, 𝑍 → −∞,

𝜌2

12𝜋𝑡
exp

(

−4𝑍3∕2

3

)

, 𝑍 → +∞.

(2.3)
2

⎩
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Fig. 1. Horseshoe ripplon solution (2.2) with 𝜌 = 1 at 𝑡 = 1.

Fig. 2. Horseshoe soliton as per Eq. (2.2) with 𝜌 = 105 at 𝑡 = 1.

As one can see from these formulae, the JTN ripplon decays rather slowly as 𝑢 ∼ |𝑍|

−1∕2 when 𝑍 → −∞; therefore the integral
in the infinite limits ∫ 𝑢2𝑑𝑥 does not converge, whereas the integral ∫ 𝑢 𝑑𝑥 converges.

For a big value of the parameter 𝜌, the ripplon solution reduces to the solution describing a decaying soliton of a horseshoe
shape in space [21] — see Fig. 2.

Note that the solution for the JTN ripplon can be derived from the exact solution of the cylindrical Korteweg–de Vries (cKdV)
equation [28–32] through the simple change of variables. As was shown by Johnson [33] (see also [21,34,35]), all solutions to the
cKdV equation,

𝜐𝑟 + 6𝜐𝜐𝜏 + 𝜐𝜏𝜏𝜏 +
𝜐
2𝑟

= 0, (2.4)

can be transferred to the solutions of KP equation by means of the transformation:

𝜏 = 𝑥 +
𝑦2

, 𝑟 = 𝑡. (2.5)
3

12𝛼2𝑡
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Fig. 3. Solution to the cKdV equation (2.6) in the form of a cylindrical outgoing soliton with the following parameters: 𝜌 = 105 and 𝜏0 = 0. Here 𝑟 is the radial
variable and 𝜑 — the polar angle.

Solution of the KP1 equation with the auxiliary function (2.2) can be transformed into the ring soliton of the cKdV equation (2.4)
through the mapping (2.5):

𝜐 = 2 𝜕2

𝜕𝜏2
ln𝐻 (𝜏, 𝑟), 𝐻 = 1 +

𝜌2

3
√

12𝑟

{

[

Ai′ (𝑋)
]2 −𝑋Ai2 (𝑋)

}

, (2.6)

where 𝑋 =
(

𝜏 − 𝜏0
)

∕ 3
√

12𝑟, and 𝜌 ≫ 1. The amplitude of this ring wave decays with a distance as 𝑟−2∕3, see Fig. 3. More details on
exact solutions to the cKdV equations can be found in Refs. [28–32,36].

3. Ripplon chains

Because the system of Eqs. (1.5) is linear then, one can obtain another particular solution in the form of a linear combination
of two functions like in Eq. (2.1) with different parameters. The corresponding auxiliary function ℎ(𝑥, 𝑦, 𝑡) as per Eq. (1.3) is:

ℎ(𝑥, 𝑦, 𝑡) = 2𝜌1𝜌2
Ai

(

𝑍1
)

Ai′
(

𝑍2
)

− Ai′
(

𝑍1
)

Ai
(

𝑍2
)

𝑥1 − 𝑥2
cos

[
(

𝑦 + 𝑦0
) (

𝑥1 − 𝑥2
)

12𝑡

]

+
𝜌21

3
√

12𝑡

{

[

Ai′
(

𝑍1
)]2 −𝑍1Ai

2 (𝑍1
)

}

+
𝜌22

3
√

12𝑡

{

[

Ai′
(

𝑍2
)]2 −𝑍2Ai

2 (𝑍2
)

}

,

(3.1)

where 𝑍1,2 =
(

𝑥 + 𝑥1,2
)

(12𝑡)−1∕3 −
(

𝑦 + 𝑦0
)2 (12𝑡)−4∕3, and 𝜌1,2, 𝑥1,2, and 𝑦0 are arbitrary real parameters.

When |𝜌2∕𝜌1| → 1, Eq. (3.1) describes countless ripplon chains, consisting of lump chains that decay over time and bend in space
as shown in Fig. 4(a). Chains curvatures gradually decrease with time. In another limit, when |𝜌2∕𝜌1| → 0, Eq. (3.1) describes a
lump chain with constant amplitude lumps accompanied by a small amplitude decaying oscillatory tail (see Fig. 4(b)). The distance
between lumps gradually increases with time; more details of this solution can be found in Ref. [21].

There is one more mapping (the LMS mapping after Lipovskii, Matveev, and Smirnov [37])

𝑡 = 𝑟, 𝑥 = 𝜏 −
𝑟𝜑2

12𝛼2
, 𝑦 = 𝑟𝜑 (3.2)

that allows one to transfer the KP equation (1.1) into the cylindrical Kadomtsev–Petviashvili (cKP) equation:

𝜕
𝜕𝜏

(

𝜕𝜐
𝜕𝑟

+ 6𝜐 𝜕𝜐
𝜕𝜏

+ 𝜕3𝜐
𝜕𝜏3

+ 𝜐
2𝑟

)

+ 3𝛼2

𝑟2
𝜕2𝜐
𝜕𝜑2

= 0. (3.3)

Using the mapping (3.2) with 𝛼 = 𝑖, a solution with the auxiliary function (3.1) can be transferred into a lump chain of the cKP
equation:

𝜐 = 2 𝜕2 ln𝐻 (𝑟, 𝜏, 𝜑), (3.4)
4

𝜕𝜏2
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Fig. 4. Surface plot of the solution to the KP1 equation with the auxiliary function (3.1). Panel (a) shows countless sets of lump chains with the choice
of parameters

{

𝑡 = 2, 𝑥1 = 36, 𝑥2 = 0, 𝜌1 = 1, 𝜌2 = −1
}

; panel (b) shows one lump chain with constant amplitude lumps; the parameters are:
{

𝑡 = 4, 𝑥1 = 36, 𝑥2 = 0, 𝜌1 = 1, 𝜌2 = −10−10
}

. The trailing oscillatory tail accompanying the lump chain is invisible in this figure due to the small amplitude and
big distance from the chain.

Fig. 5. Solution of the cKP equation (3.4) at two different time with the following parameters: 𝜏1 = 36, 𝜏2 = 0, 𝜌1 = 1, 𝜌2 = −10−10.

with

𝐻 = 2𝜌1𝜌2
Ai

(

𝑋1
)

Ai′
(

𝑋2
)

− Ai′
(

𝑋1
)

Ai
(

𝑋2
)

𝜏1 − 𝜏2
cos

( 𝜏1 − 𝜏2
12

𝜑
)

+
𝜌21

3
√

12𝑟

{

[

Ai′
(

𝑋1
)]2 −𝑋1Ai

2 (𝑋1
)

}

+
𝜌22

3
√

12𝑟

{

[

Ai′
(

𝑋2
)]2 −𝑋2Ai

2 (𝑋2
)

}

.

This solution describes a lump chain consisting of |
|

𝜏1 − 𝜏2|| ∕12 lumps (see Fig. 5) when |𝜌2∕𝜌1| ≪ 1. Here 𝑋1,2 =
(

𝜏 + 𝜏1,2
)

∕ 3
√

12𝑟,
and 𝜏1,2 are real parameters. For the periodicity of the solution on the angular variable 𝜑, |

|

𝜏1 − 𝜏2|| must be an integer multiple of
12.

With the help of the mapping (3.2) with 𝛼 = 𝑖, one can transform a horseshoe ripplon solution of the KP1 equation shown in
Fig. 4 into multiple circular lump-chains of the cKP1 equation (3.3). The mapping can be used in the reverse order too to transform
exact solutions of the cKP1 equation (see, for example, [36]) into the corresponding horseshoe lump or ripplon solutions of the KP1
equation.
5
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Fig. 6. Lump ripplons at different times as per solution with function (4.1), where 𝑥0 = 𝑦0 = 0.

4. Lump ripplons

An interesting solution describing ripplons with pronounced lumps riding on ripplons was recently obtained in Ref. [21]. This
solution can be presented through the following auxiliary function:

ℎ(𝑥, 𝑦, 𝑡) =
𝜌2

36𝑡

{

[𝑍Ai(𝑍)]2 −𝑍
[

Ai′(𝑍)
]2 − 2Ai(𝑍)Ai′(𝑍) + 3

(

𝑦 + 𝑦0
)2

[

Ai′(𝑍)
]2 −𝑍Ai2(𝑍)

(12𝑡)
4
3

}

, (4.1)

where 𝑍 = (12𝑡)−1∕3
[

𝑥 + 𝑥0 −
(

𝑦 + 𝑦0
)2 ∕12𝑡

]

. Unlike the JTN ripplons discussed in Section 2, a solution with the auxiliary function
(4.1) contains lumps sitting on each wavefront as illustrated by Fig. 6. Lump amplitudes gradually decrease in space as 𝑢 ∼ |𝑍|

−1∕2

when 𝑥 → −∞. The whole solution decays in time as ∼ 𝑡−2∕3. We call such formations lump ripplons.
The solution describing the lump ripplon with the auxiliary function (4.1) can be formally transferred to the solution of the cKP

equation through the mapping (3.2). However, the corresponding auxiliary function

𝐻(𝑟, 𝜏, 𝜑) =
𝜌2

36𝑟

{

[𝑋Ai(𝑋)]2 −𝑋
[

Ai′(𝑋)
]2 − 2Ai(𝑋)Ai′(𝑋) + 3𝜑2

[

Ai′(𝑋)
]2 −𝑋Ai2(𝑋)

(12𝑟)4∕3

}

, (4.2)

where 𝑋 =
(

𝜏 + 𝜏0
)

∕ 3
√

12𝑟, is not periodic on the angular variable 𝜑. Because of this, this solution, apparently, is out of physical
meaning.

5. Highly localized ripplon solution

In this section, we derive new solutions to the KP1 equation that generalize the solution derived in Refs. [18,20] and contain
both highly localized ripplons and horseshoe solitons. These solutions cannot be presented in terms of meaningful solutions to the
cKdV equation or cKP equations by means of the Johnson transformation (2.5) or LMS transformation (3.2).

To this end, we note that the linear set of Eqs. (1.5) has a solution in the form (for details see Appendix):

𝜙+ = 𝜌 𝑡−1∕3Ai (𝜁 ) 𝑒𝛩, 𝜙− = 𝜌 𝑡−1∕3Ai
(

𝜁∗
)

𝑒𝛩
∗
, (5.1)

where 𝜁 =
𝑎2 + 4𝑖𝑎𝑦 − 4𝑦2

48 3
√

12𝑡4∕3
+ 𝑥

3
√

12𝑡
, 𝛩 =

(𝑎 + 2𝑖𝑦)3

1728𝑡2
+

𝑥(𝑎 + 2𝑖𝑦)
24𝑡

.

Here 𝑎 > 0 is a real parameter. The auxiliary function corresponding to the ripplon solution is:

ℎ(𝑥, 𝑦, 𝑡) = 1 +
𝜌2

𝑡2∕3 ∫

+∞

𝑥
Ai (𝜁 ) Ai

(

𝜁∗
)

exp
[

𝑎
2𝑡

(

𝑥 −
12𝑦2 − 𝑎2

432𝑡

)]

d𝑥. (5.2)

The parameter 𝑎 in Eq. (5.2) controls the degree of spatial localization of the ripplon; this is illustrated by Fig. 7. This figure
shows that the tail in the cross-section 𝑢(𝑥, 0, 𝑡) of the ripplon becomes shorter when the parameter 𝑎 increases. If the parameter 𝑎
is big enough then, there are no oscillatory tails behind the ripplon — see, for example, the cross-section of the ripplon with 𝑎 = 10
in Fig. 7b). When 𝑎 → 0, the derived solution reduces to the nonlocalized JTN ripplon — see Fig. Fig. 7a). As one can see from
Fig. 7(c), this solution is localized in all directions. It has a maximum at 𝑦 = 0 and decreases along the front on both sides from the
maximum owing to the exponential factor in Eq. (5.2).

The influence of the exponential factor diminishes when the time elapses. To a certain extent, this is equivalent to a decrease
of the parameter 𝑎. As a result of this, the ripplon becomes wider with time, its oscillatory tail becomes longer, and the amplitude
decreases. The leading maximum of the ripplon shifts to the left so that one can say that the ripplon gradually moves to the left
and experiences dispersion spreading; this is demonstrated by Fig. 8.
6
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Fig. 7. Panels (a) and (b) show the cross-sections of the ripplon solution with the auxiliary function Eq. (5.2) at 𝑦 = 0 (see the legends). Panel (c) shows the
surface plot of the typical highly localized ripplon with 𝑎 = 4. In all these panels, solutions were generated for 𝜌 = 1 and 𝑡 = 1.

Fig. 8. The cross-section of the ripplon solution with the auxiliary function Eq. (5.2) for 𝑦 = 0 at different time moments (see the legend). The plot was generated
for 𝜌 = 1 and 𝑎 = 10.

Solution based on the auxiliary function (5.2) contains two free parameters. We have described the influence of the parameter
𝑎 when 𝜌 = 1, and now, we will demonstrate the effect of the parameter 𝜌 when 𝑎 = constant. When 𝜌 increases, the leading part
in the ripplon cross-section becomes similar to the cross-section of the cylindrical soliton of the cKdV equation [32] — see Fig. 9.
There is a long negative-polarity tail behind the leading pulse which ends up by small-amplitude ripples. Our estimates show that in
7
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Fig. 9. (a) The cross-section of the ripplon solution with the auxiliary function Eq. (5.2) at 𝑦 = 0 and different time moments (see the legend). The plot was
generated for 𝜌 = 105 and 𝑎 = 4. (b) Sample points of local maxima in the oscillating tail behind the ripplons shown in panel (b). The best-fit approximation of
the corresponding lines are 𝑢 = exp (0.3127𝑥 − 1.3349) for 𝑡 = 1, 𝑢 = exp (0.1688𝑥 − 1.7354) for 𝑡 = 2, and 𝑢 = exp (0.1170𝑥 − 2.0094) for 𝑡 = 3.

ontrast to JTN and lump ripplons mentioned in Sections 2 and 4, ripples behind this highly localized ripplon decay exponentially
ith 𝑥 but the decay rate depends on time, i.e. 𝑢 ∼ exp [𝑔(𝑡)𝑥], where 𝑔(𝑡) > 0 for 𝑥 → −∞; see panel (b) in Fig. 9.

Fig. 10 illustrates a spatial structure of the solution that can be considered as the gradually decaying soliton with a horseshoe
ront (unfortunately, we were unable to present a smooth surface plot similar to that shown in Fig. 2 due to the computer memory
estriction). The solution is highly localized and has a relatively high front curvature at small times (see Fig. 10a) but then when
ime elapses, the amplitude of the soliton and its curvature decrease; and it becomes wider in space (see Fig. 10b). The pulse moves
o the right; the position of its maximum increases as 𝑥𝑚 ∼ 𝑡1∕3, whereas its amplitude decreases as 𝐴𝑚 ∼ 𝑡−2∕3. There is some
eviation from these dependences at the early stage of evolution but after a short adjustment time, the asymptotic regime onsets.
his is illustrated by Fig. 11.

It is worth noting that in contrast to the JTN and lump ripplons, the constructed solutions both for the highly localized ripplon
nd horseshoe soliton provide convergence of both integrals ∫ 𝑢 𝑑𝑥 and ∫ 𝑢2𝑑𝑥 in infinite limits and, as a result, the convergence of
wo-dimensional integrals that are related to the mass and energy conservation:

𝐼1 = ∬

+∞

−∞
𝑢(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦, 𝐼2 = ∬

+∞

−∞
𝑢2(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦. (5.3)

hese conserved quantities play an important role in physical applications.
In a similar way, one can construct ripplon-type solutions for the KP2 equation (Eq. (1.1) with 𝛼 = 1) but such solutions are

ingular for all parameters except 𝑎 = 0. In the latter case, solutions were obtained in Refs. [18–21] and represent horseshoe solitons
ith a constant amplitude along the bent front. Qualitatively they look like a horseshoe ripplon shown in Fig. 1(a) or like a horseshoe

oliton shown in Fig. 2(a) but with the fronts bent in the opposite direction. We do not consider here singular solutions because
hey are, apparently, out of physical interest.
8
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Fig. 10. The structure of the localized horseshoe soliton at two instants of time. The plot was generated on the basis of auxiliary function (5.1) with the
following parameters: 𝜌 = 105 , 𝑎 = 4.

Fig. 11. Dependences of the maximum position (a) and amplitude (b) on time in log–log scale as per solution based on the auxiliary function (5.2) with 𝜌 = 1010

and different values of 𝑎 — see the legends. The green lines are the asymptotes log 𝑥 = 1.347 + log 𝑡∕3 and log𝐴 = 0.576 − 2 log 𝑡∕3.

6. Conclusion

In this paper, we have systematically reviewed various ripplon-type solutions to the Kadomtsev–Petviashvili equation, including
JTN ripplons (2.2), ripplon chains (3.1), and lump ripplons (4.1). At certain parameters, ripplon solutions can be reduced to
horseshoe solitons and curved lump chains. These solutions can be mapped into circular solitons (2.6) of the cKdV equation using
the Johnson transformation [33] or to two-dimensional solitons (3.4) of the cKP equation through the LMS transformation [37].

We have also constructed new analytic solutions that are completely localized in space. Within this class of solutions, wave
shapes can vary from two-dimensional ripplons of a horseshoe shape to solitons with a bent front accompanied by long monotonic
tails in the near-field (close to soliton maximum) and small-amplitude ripples in the far-field. All these entities gradually decay in
time as 𝑡−2∕3. They are highly localized in space so that the ‘‘mass’’ and ‘‘energy’’ integrals (5.3) converge. Solutions contain a free
9
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parameter that controls the degree of their localization; they become non-localized JTN ripplons [18–20] or decaying horseshoe
solitons when this parameter vanishes.

Solutions derived can be of interest as elementary nonlinear modes existing in parallel with solitons and lumps in real physical
edia (plasma, solids, Bose–Einstein condensate, and others). An ensemble of such horseshoe highly localized ripplons and solitons

an play an important role in the theory of strong turbulence. We plan to investigate further interactions of these kinds of
ipplons/solitons with plane solitons and lumps.
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Appendix

In this Appendix, we describe how to derive solutions to Eqs. (1.5) for horseshoe ripplons, solitons, and some other solutions.
Let us start with the first equation of the set (1.5):

𝑖𝜙+
𝑦 + 𝜙+

𝑥𝑥 = 0. (A.1)

In this equation, the time variable plays a role of a parameter. Using the solution for the non-localized horseshoe ripplons derived
in [18–20] as the hint (see also [38]), we look for a solution to Eq. (A.1) in the form:

𝜙+ = 𝜌Ai (𝑞) 𝑒𝑤, (A.2)

where Ai(𝑞) is the Airy function 𝜌 is a complex constant and 𝑞 and 𝑤 are functions of 𝑥, 𝑦, and 𝑡. Substituting function 𝜙+ into
Eq. (A.1), we obtain an equation which contains the Airy function and its derivative only, Ai (𝑞), Ai′ (𝑞). The second derivative of
he Airy function can be expressed through the Airy function owing to its property, Ai′′ (𝑞) = 𝑞Ai (𝑞). Then, we equate to zero the
oefficients in front of Ai (𝑞) and Ai′ (𝑞); this leads to the set of equations for 𝑞 and 𝑤:

𝑞
(

𝜕𝑞
𝜕𝑥

)2
+ 𝑖 𝜕𝑤

𝜕𝑦
+
( 𝜕𝑤
𝜕𝑥

)2
+ 𝜕2𝑤

𝜕𝑥2
= 0,

𝑖
𝜕𝑞
𝜕𝑦

+ 2
(

𝜕𝑞
𝜕𝑥

)

𝜕𝑤
𝜕𝑥

+
𝜕2𝑞
𝜕𝑥2

= 0.
(A.3)

Let us look for a solution to this set of equations in the form of polynomials:

𝑞 =
𝑗+𝑠=𝑚
∑

𝑗,𝑠=0
𝐴𝑗𝑠(𝑡)𝑥𝑗𝑦𝑠, 𝑤 =

𝑗+𝑠=𝑚
∑

𝑗,𝑠=0
𝐵𝑗𝑠(𝑡)𝑥𝑗𝑦𝑠, (A.4)

where 𝐴𝑗𝑠(𝑡) and 𝐵𝑗𝑠(𝑡) are unknown complex coefficients that ought to be determined. They can be determined by substituting
xpressions (A.4) into Eq. (A.3) and equating to zero coefficients of each power of 𝑥 and 𝑦.

With the help of symbolic computer manipulation, we get the solution to Eqs. (A.3) in the form:

𝑞 (𝑥, 𝑦) = Rt
(

𝑍3 + 𝑓4
)

(

𝑓4𝑦
2 − 𝑖𝑥 −

𝑖𝑓3
𝑓4

𝑦 −
𝑖𝑓2
𝑓4

+
𝑓 2
3

4𝑓 3
4

)

,

𝑤 (𝑥, 𝑦) = 2𝑖 𝑓 2𝑦3 + 𝑓4𝑥𝑦 + 𝑓3𝑦
2 + 𝑓2𝑦 −

𝑖𝑓3 𝑥 + 𝑓1,

(A.5)
10
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Fig. S1. Visualization of the squared modulus of the function (A.9), |𝜙+
|

2, at 𝑡 = 1. On the line 𝑦 = 0, this function decays algebraically ∼ |𝑥|−1 when 𝑥 → −∞
and exponentially when 𝑥 → +∞. Function values remain constant on each wavefront.

where Rt
(

𝑍3 + 𝑓4
)

is any one of the three complex roots of the equation 𝑍3 + 𝑓4 = 0, and 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are complex functions
of 𝑡.

To determine functions 𝑓𝑖 (𝑖 = 1, 2, 3, 4), we substitute the expression for 𝜙+ from Eq. (A.2) into the second equation of the
system (1.5). Then, we collect the coefficients in front of Ai (𝑞) and Ai′ (𝑞) and equate them to zero. This gives a set of polynomial
equations concerning 𝑥 and 𝑦:

∑

𝐹1,𝑖𝑗
(

𝑓1, 𝑓2, 𝑓3, 𝑓4
)

𝑥𝑖𝑦𝑗 = 0,
∑

𝐹2,𝑖𝑗
(

𝑓1, 𝑓2, 𝑓3, 𝑓4
)

𝑥𝑖𝑦𝑗 = 0.
(A.6)

By setting the coefficients of each power of 𝑥 and 𝑦 equal to zero, we obtain:

𝑓1(𝑡) = −
𝑖𝑎1𝑎2
2𝑡

− ln 𝑡
3

+
𝑎31

1728𝑡2
+ 𝑎3,

𝑓2(𝑡) =
𝑖𝑎21
288𝑡2

+
𝑎2
𝑡
,

𝑓3(𝑡) = −
𝑎1

144𝑡2
, 𝑓4(𝑡) =

𝑖
12𝑡

.

(A.7)

Therefore, the general form of the solution to Eqs. (1.5) is:

𝜙+ =
𝜌
3
√

𝑡
Ai

[

−𝑖 Rt
(

𝑍3 + 𝑖
12𝑡

)

(

𝑥 − 12𝑖𝑎2 +
𝑎21 + 4𝑦(𝑖𝑎1 − 𝑦)

48

)]

× exp

[

𝑥
(

𝑎1 + 2𝑖𝑦
)

+ 12𝑎2
(

2𝑦 − 𝑖𝑎1
)

24𝑡
+

𝑎31∕6 + 𝑖𝑎21𝑦 − 2𝑎1𝑦2 − 4𝑖𝑦3∕3

288𝑡2

]

,

(A.8)

where 𝑎1 and 𝑎2 are arbitrary complex constants. The constant 𝑎3 is unimportant, it can be absorbed in the constant 𝜌.
Owing to the homogeneity of Eqs. (1.5) and its autonomy (the coefficients are constant), the choice of the origin in each variable

can be taken arbitrarily; this implies that function a 𝜙+ with the arbitrarily shifted coordinates, 𝑥 → 𝑥 + 𝑥𝑗 , 𝑦 → 𝑦 + 𝑦𝑗 , 𝑡 → 𝑡 + 𝑡𝑗 ,
remains a solution of Eqs. (1.5). It is clear also that the complex-conjugate function 𝜙− satisfies the complex-conjugate set of
equations.

By choosing now some particular values of constants 𝑎1, 𝑎2, we can obtain different particular solutions. Below we present three
typical cases that demonstrate different families of solutions.

(1) If we set Rt
(

𝑍3 + 𝑖∕12𝑡
)

= 𝑖∕ 3
√

12𝑡 and 𝑎1 = 𝑎2 = 0, we obtain function

𝜙+ =
𝜌
3
√

𝑡
Ai

[

12𝑥𝑡 − 𝑦2

(12𝑡)4∕3

]

exp

[

𝑖𝑦
(

18𝑥𝑡 − 𝑦2
)

216𝑡2

]

. (A.9)

This function and its complex-conjugate provide the ripplon solution derived by Johnson & Thompson [18] and Nakamura [20]
through the auxiliary function (2.2) (cf. Eq. (2.1) for 𝜙+). The spatial structure of the function |𝜑+

|

2 is shown in Fig. S1 for 𝜌 = 1
and 𝑡 = 1.

(2) If we set Rt
(

𝑍3 + 𝑖∕12𝑡
)

= 𝑖∕ 3
√

12𝑡, 𝑎1 ≠ 0, 𝑎2 = 0, we obtain function

𝜙+ =
𝜌
3
√

Ai

[

𝑎21 + 4𝑖𝑎1𝑦 − 4𝑦2

3
√

+ 𝑥
3
√

]

exp

[
(

𝑎1 + 2𝑖𝑦
)3

2
+

(

𝑎1 + 2𝑖𝑦
)

𝑥
]

. (A.10)
11
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Fig. S2. Visualization of the squared modulus of the function (A.10) |𝜙+
|

2 with 𝑎1 = 1 at 𝑡 = 1. This function |𝜙+
|

2 decays exponentially at |𝑥| → ∞, and its
values vary along the fronts havin maxima at 𝑦 = 0.

Fig. S3. Visualization of the squared modulus of the asymmetric function (A.10) |𝜙+
|

2 with 𝑎1 = 1 and 𝑎2 = 1∕20 at 𝑡 = 1. This function decays exponentially in
space but is asymmetric.

This function and its complex-conjugate provide the highly localized ripplon solution derived in this paper through the auxiliary
function (5.2) (cf. Eq. (5.1) for 𝜙+). The spatial structure of the function |𝜙+

|

2 is shown in Fig. S2 for 𝜌 = 1, 𝑎1 = 1, and 𝑡 = 1.
With other choices of constants 𝑎1 and 𝑎2, one can obtain a variety of different solutions. One of them with asymmetric spatial

structure of function |𝜙+
|

2 is shown in Fig. S3 that was generated for 𝜌 = 1, Rt
(

𝑍3 + 𝑖∕12𝑡
)

= 𝑖∕ 3
√

12𝑡, 𝑎1 = 1 and 𝑎2 = 1∕20. The
corresponding function 𝜙+ is:

𝜙+ =
𝜌
3
√

𝑡
Ai

[

1
3
√

12𝑡

(

𝑥 − 12𝑖𝑎2 +
𝑎21 + 4𝑦(𝑖𝑎1 − 𝑦)

48

)]

× exp

[

𝑥
(

𝑎1 + 𝑖𝑦
)

+ 12𝑎2
(

2𝑦 − 𝑖𝑎1
)

24𝑡
+

𝑎31∕6 + 𝑖𝑎21𝑦 − 2𝑎1𝑦2 − 4𝑖𝑦3∕3

288𝑡2

]

.

(A.11)
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