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Abstract—Unsupervised graph embedding method generates node embeddings to preserve structural and content features in a graph

without human labeling burden. However, most unsupervised graph representation learning methods suffer issues like poor scalability

or limited utilization of content/structural relationships, especially on attributed graphs. In this paper, we propose SAGES, a graph

sampling based autoencoder framework, which can promote both the performance and scalability of unsupervised learning on

attributed graphs. Specifically, we propose a graph sampler that considers both the node connections and node attributes, thus nodes

having a high influence on each other will be sampled in the same subgraph. After that, an unbiased Graph Autoencoder (GAE) with

structure-level, content-level, and community-level reconstruction loss is built on the properly-sampled subgraphs in each epoch. The

time and space complexity analysis is carried out to show the scalability of SAGES. We conducted experiments on three medium-size

attributed graphs and three large attributed graphs. Experimental results illustrate that SAGES achieves the competitive performance

in unsupervised attributed graph learning on a variety of node classification benchmarks and node clustering benchmarks.

Index Terms—Machine learning, unsupervised graph learning, graph neural network

Ç

1 INTRODUCTION

GRAPHS are powerful to model complex relationships in
different real-life applications, such as citation net-

works, economic graphs, and social networks. Among the
various graphs, the attributed graph has attracted much
attention in recent years [1], [2]. As shown in Fig. 1, unlike
the plain graphs where only the topological structure is
available, nodes in the attributed graph have rich features
and attributes associated with them. For example, nodes
(articles) in an academic citation graph have substantial text
information about the article’s topic, and the nodes (users) in
a social network post their profiles as the attribute. These
informative attributes can benefit graph analysis [3]. There-
fore, the utilization of node attributes information is impor-
tant to study the attributed graph.

The representation learning for attributed graphs, which
generates low-dimensional embeddings of nodes to pre-
serve graph topology structure and attributes, is shown to
be effective for various graph-based tasks [1], [4]. According

to the need for data labeling, these methods are roughly cat-
egorized into supervised, semi-supervised [5] and unsuper-
vised learning [6]. This paper focuses on unsupervised
learning. Compared with supervised learning, unsuper-
vised learning does not incur a substantial labeling burden.
Besides, the node embeddings learned by unsupervised
ways can be reused for different downstream applications,
such as node classification and node clustering.

The existing graph representation learning can be roughly
divided into three categories: factorization based [7], random
walk based [8], and graph autoencoder (GAE) based models
[6]. The first two models (factorization based and random
walk based) are limited by their shallow architecture, while
GAE based models can capture both non-linear graph struc-
tures and content by using deeper architectures in neural
networks. Therefore, a large amount of GAE based models,
such as AGE [9], GALA [10], and DGI [11], are proposed to
strengthen the representation power of graph embedding
models. Although these GAE based models show their
power in various tasks (link prediction, node clustering,
etc.), they are hard to scale because of the full-batch training.
To make the GAE scalable and applicable to large graphs,
some sampling-based approaches are developed. GraphS-
AGE [12] adopts uniform sampling to obtain a fixed size
neighborhood in the encoder, and reconstructs the structural
information by negative sampling in the decoder. A scalable
GAE is proposed in [13], which trains GAE on the smaller k-
core version of the graph, and then propagates node repre-
sentations to other nodes via a fast heuristics. FastGAE [14]
performs importance sampling in encoder like FastGCN
[15], and reconstruct structural information of the sampled
subgraph in decoder. Nevertheless, these scalable GAE
based methods have three major drawbacks on large attrib-
uted graph embeddings.

First, the graph structure and node attribute information
are not well utilized by the sampling strategy. The existing
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scalable GAE methods either simply sample nodes uni-
formly across layers [12] or sample subgraph based on
graph topology (k-core number or degree of nodes) [13],
[14], but ignore node attributes. However, the utilization of
node attributes in sampling proved to be essential [16].

Second, different sampling strategies result in non-iden-
tical node and edge sampling probability, and introduce
bias in the forward propagation in GAE each minibatch.
This bias should be considered by models.

Third, the most existing GAE based methods only con-
sider simple local structural information in the decoder. In
the experiment, we find that the performance of GAE,
which only reconstruct adjacency information, is seriously
degraded after subgraph sampling. There is no such prob-
lem in supervised scalable GNNs, such as Cluster-GCN [4],
because they have a clear label after subgraph sampling.
Intuitively, structural information may be disturbed after
subgraph sampling while node attribute information is still
intact. Besides, the incorporation of community structure in
network embedding can make the node representations
more discriminative [2]. Therefore, we argue that both the
node attributes and community relationships are crucial on
the attributed graph.

In this paper, aiming at the following question: Can we
design an efficient and effective graph embedding framework for
attributed graphs, such that all of the above three challenges can
be tackled? We propose our framework Scalable Attributed
Graph Embedding with Sampling (SAGES) to efficiently
train GAE over large attributed graphs. To make the model
scalable, SAGES first samples the training subgraphs, and
then builds a full GAE on each subgraph. We apply the fol-
lowing three measures to overcome the issues of scalable
GAE methods: iÞ To better utilize graph structure and node
attributes during sampling, SAGES utilizes a light-weight
subgraph-sampling algorithm, which considers both the
node attributes and graph topological information. Thus,
nodes with greater influence on each other have a higher
probability of forming subgraphs. iiÞ To eliminate biases
caused by the sampler, we propose normalization techni-
ques so that the feature learning does not give preference to
nodes more frequently sampled. iiiÞ To overcome the diffi-
culty in yielding high-quality node embeddings after sam-
pling, we focus on the graph structure, node content, and
community information in the decoder. Note that we natu-
rally have communities based on our graph sampler, which
offers an obvious advantage for SAGES to capture commu-
nity-level information without extra cost.

Our contributions can be summarized as follows:

� We develop SAGES, an unsupervised graph learning
framework, to learn node representations over large
attributed graphs. SAGES samples subgraphs accord-
ing to the similarity about the node attributes and
graph structure. Then SAGES applies the unbiased
graph autoencoder models into the subgraphs with
highly correlated nodes. The time and space complex-
ity analysis illustrate the scalability of SAGES.

� To learn meaningful node representations capturing
local/global information of the attributed graph,
SAGES introduces the reconstruction loss of node
attributes and the mutual information between node
and community as another two important guides in
the decoder, as well as the reconstruction loss of
graph structure.

� We conduct the experimental studies on three
medium-size attributed graphs and three large attrib-
uted graphs under both transductive and inductive
learning setups. The results show that SAGES is com-
petitive on both node classification and link prediction
tasks. Specially, we observe improvements of 2:5%,
1:2%, and 7:5% respectively compared with STOA
unsupervised method DGI [11] on three large graphs
in node classification tasks. Our code is available on
https://github.com/SAGESAlgorithm/SAGES.

2 RELATED WORK

2.1 Attributed Graph Embedding

Nodes in a graph are often affiliated with various content,
such as abstract text in the citation graph, user attribute in
the social network, and item description information in the
e-commerce network. Such graphs are called attributed
graphs, and the rich attributed information of nodes can ben-
efit graph analysis. For example, Marsden [17] has proved
that node attributes can reflect and affect the community
structures in social science. Thus utilizing node attributes
information is critical to study attributed graphs.

Most existing graph embedding methods mainly focus
on graph topological information. For example, Deepwalk
[8], and node2vec [18] only leverage graph structure and
learn node representation by extracting different patterns
through different random walk strategies. M-NMF [2] gen-
erates node representation through modularized nonnega-
tive matrix factorization. PME [19] learn both first-order
and second-order proximities in heterogenous graph. How-
ever, the above methods ignore the node attributes. To learn
node embeddings which can preserve various proximities
in both node attributes and topological structure, a wide
variety of attributed graph embedding methods are pro-
posed. TADW [20] regards DeepWalk as an inductive
matrix factorization method and adds node attributes (text)
for representation learning. LANE [1] leverages spectral
techniques to project the adjacency matrix, node feature
matrix, and node label matrix into a common vector space.
Planetoid [21] trains node embedding by jointly predicting
the class label and the neighborhood context in the graph.

However, most attributed graph embedding methods are
either non-deep learning methods (matrix factorization and

Fig. 1. An illustration of the attributed graph. Nodes with different colors
have different labels. A and X represent the adjacency matrix and the
node attribute matrix of the graph, respectively. A good unsupervised
attributed graph embedding method should consider the graph struc-
ture, node attribute, and community information.
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random walks) or shallow models, which are difficult to use
deep architectures of neural networks to capture the highly
non-linear and high-order property of graphs.

2.2 Supervised Graph Neural Network

Graph neural networks (GNNs) [22] are deep neural net-
works that capture the dependence of graphs via message
passing between the nodes of graphs, and show their power
in graph representation learning. Early GNN focused on
model structure rather than scalability. Graph Convolutional
Networks (GCN) [5], which extends convolution operation
to the graph domain, is a powerful model for attributed
graph representation learning. Graph Attention Networks
(GAT) [23] introduces an attention mechanism to better cap-
ture neighbor features by dynamically adjusting edge
weights. Despite effective performance achieved, GCN and
GAT suffer poor scalability because they train in a full batch
manner.

Various methods are proposed to scale GNNs. They can
be roughly separated into layer sampling and graph sam-
pling methods.

Layer sampling methods first construct a complete GCN
and then sample nodes or edges in each layer to form mini-
batchs. GraphSAGE [12] reduces receptive field size
through uniform node sampling. PinSage [24] develops effi-
cient random walks to sample neighborhoods. GraphCSC
[25] utilizes centrality-biased random walks and centrality-
based negative sampling approaches to scale algorithm. S-
GCN [26] further restricts the receptive field by utilizing the
historical activations in the previous layer to avoid redun-
dant re-evaluation. AS-GCN [27] leverages an adaptive
sampling strategy to restrict the neighbor expansion factor.
FastGCN [15] applies importance sampling to reduce vari-
ance and ensures constant sample size for each layer.

Graph sampling methods first sample subgraphs each
minibatch and then train a complete GCN on each sub-
graph. LouvainNE [28] learns node embeddings by a hierar-
chical clustering approach. COSINE [29] utilizes graph
partitioning methods to graph and builds parameter shar-
ing dependency of nodes based on the result of partitioning.
Cluster-GCN [4] first partitions the training graph into
densely connected clusters, samples subgraphs by ran-
domly combining clusters, and then performs GCN on each
sampled subgraph. GraphSAINT [30] samples subgraph
based on the random walk, and proposes a normalization
technique to eliminate the bias of graph sampling method.
Graph sampling methods are more flexible and efficient
especially when we use deep GNNs models [4].

2.3 Unsupervised Graph Neural Networks

Unsupervised graph neural networks aim to generate fea-
ture-preserving node representations without explicit user
labeled data. Unlike some structure-based graph embed-
ding methods, unsupervised GNNs exploit both topological
information and node features simultaneously through
deep neural networks. Most of these methods follow the
standard autoencoder framework [31] and involve the com-
bination of two stacked models. First, they use the encoder
based on GNNs to map the node features into the latent
embedding space, and then the decoder tries to reconstruct

the information of original graph from the nodes latent
embeddings. For example, GAE and VGAE [6] use Graph
Convolutional Networks (GCN) as the encoder and simply
reconstruct the adjacency matrix. ARGA [32] enforces node
embedding to match a prior distribution via an adversarial
training scheme. DGI [11] maximizes mutual information
between node and graph summary representations in the
decoder. GALA [10] proposes Laplacian sharpening as a
decoder to prevent over-smoothing when reconstructing
node features. MVGRL [33] learns graph representation by
contrasting structural views of graphs. AGE [9] applies a Lap-
lacian smoothing filter as the encoder and utilizes adaptive
learning to train embeddings. These unsupervised GNNs
have been widely adopted to tackle challenging problems in
the graph, such as node classification [3] node clustering [32],
[34], link prediction [6], and graph generation [35].

Although the above GAE based methods perform well in
medium-size graph datasets, they are hard to use in large
graph because of the scalability problems. Some scalable
GAE frameworks [13], [14] are proposed to solve this issue,
while they focus more on graph structure but neglect the uti-
lization of attribute in sampling and training stage. In addi-
tion, most of the existing GAE based methods guide the
training using the reconstruction loss for the local relation-
ships, while we argue that community relationships play
key roles especially when there is no explicit label signal.

3 PROBLEM STATEMENT

3.1 Notation

We use bold upper-case letters to denote matrices, bold
lower-case letters to represent vectors, and non-bold itali-
cized letters to denote scalars. Moreover, we use AT to
denote the transpose of a matrix A. Ai;j denotes the entry of
matrix A at the i�th row and the j�th column. Table 1 sum-
marizes the frequently used notations in this paper.

3.2 Problem Definition

Suppose an unsupervised attributed graph representation
learning setup: An attributed graph is represented as G ¼
ðV; E;XÞ, where V ¼ vif g contains N nodes, and E ¼ eij

� �
consists of a set of edges. The structural information between
nodes can be represented by an adjacency matrixA 2 RN�N .

TABLE 1
Notations Frequently Used in the Paper

Symbol Definition

G Undirected attributed graph
N;E;L The number of nodes, edges and layers in the graph
V; E Vetrex and Edge set of the graph G
F The dimension of node attributes
F 0 The dimension of hidden node embeddings
fð‘Þ The number of node embedding dimensions

in the l-th encoder/decoder layer
A Adjacency matrix of the graph G
X Node attributed matrix of the graph G
Y Node labels of the graph G
Z Node representation matrix learned by GAE
HðlÞ Node representation matrix of the l-th encoder layer
Ĥ
ðlÞ

Node representation matrix of the l-th decoder layer
xi The node representation of node i in X
N i The neighborhood of node i
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We assume the graph to be unweighted in this paper, which
means Ai;j ¼ 1 if vi; vj

� � 2 E; otherwise Ai;j ¼ 0. X ¼
x1; x2; . . . ; xNf g, and xi 2 RF represents the features of node

i. Our objective is to learn node representations Z ¼
z1; z2; . . . ; zNf g, where zi 2 RF 0 denotes the latent represen-

tation of node i. These representations can be used for down-
stream tasks.

4 OUR APPROACH

In order to improve the scalability of model and ensure the
quality of generated node embeddings, we present SAGES
framework. In this section, we first show the overall archi-
tecture of SAGES framework. Then each part of SAGES is
described in detail. Finally, the time complexity and space
complexity of SAGES algorithm are analyzed.

4.1 Overall Framework

The overall training algorithm of SAGES is shown in Algo-
rithm 1. The core idea behind SAGES is to scale graph
autoencoder to handle large attributed graphs by exploiting
sampling subgraphs. Roughly, SAGES first extracts appro-
priately connected subgraphs by graph sampler considering
the information of node connections and attributes. Then
SAGES employs an attribute sensitive graph autoencoder on
each sampled subgraphs. GAE here can capture local/com-
munity relationships (both content and structure) between
nodes. We use a normalization technique to eliminate bias
caused by graph sampling in SAGES.

The overview of the GAE in SAGES is illustrated in
Fig. 2. The encoder of SAGES is flexible and can be many
GNN architecture variants, such as GCN [5], GAT [23], and
JK-Networks [36]. The decoder of SAGES consists of three
loss functions: structure loss, content loss, and community
loss. Structure loss relies on a simple inner product decoder
to reconstruct edges the subgraph. Content loss reconstructs
node features of the subgraph. Community-level loss is
based on local-community mutual information maximiza-
tion to capture community information of the subgraph.
Through the training process in Algorithm 1, SAGES can
combine information of extracted subgraphs together so
that the training process overall learns a good representa-
tion of the full graph.

Algorithm 1. SAGES Training Algorithm

Input: Graph GðV; EÞ ¼ ðA;XÞ; Graph Sampler SAMPLE.
Output: The GAE model with trained weights;
1: G  construct training graph of G. ⊳ Inductive setting
2: Preprocessing: Caculating influence matrix ~X;
3: Setup the SAMPLE parameters;
4: Compute normalization coefficients a; �.
5: for each minibatch do
6: Gt Vt; Etð Þ  SAMPLEðGÞ.
7: GAE construction on Gt.
8: Zt  Forward propagation of At;Xtf g by the

encoder of SAGES, normalized by a.
9: Ât; X̂t  Reconstruct At;Xt based on Zt

by attribute-sensitive decoder.
10: LA  Compute �u;v-normalized

structure loss At; Ât

� �
.

11: LX  Compute �v-normalized
content lossðXt; X̂tÞ.

12: Lc  Compute community-level loss.
13: Backward propagation according to LA;LX and Lc.
14: Update weights.
15: end for

4.2 Proposed Method: SAGES

4.2.1 Structure & Content Sensitive Graph Sampler

The full-batch GAE is not scalable on the large attributed
graph because its training requires the calculation of all
node representations per layer. As discussed in Section 2.2,
different sampling-based methods have been proposed to
train supervised GNNs. Similar to [30], we choose the sub-
graph sampling based method instead of layer sampling
methods to reduce the sampling complexity.

In our model, we first sample subgraphs using the pro-
posed sampler. Thenwe train ourmodel on the self-support-
ive subgraphs to generate unsupervised representations for
each node. The goal of our proposed sampler is to extract
subgraphs with losing little structure and content informa-
tion. Intuitively, nodes with higher influence with each other
should have a higher probability of being sampled into the
same subgraph. According to [37], [38], for attributed graphs,
ignoring node attributes when sampling nodes may omit
informative samples and introduce noises if neighbors with

Fig. 2. The architecture of SAGES. Given a graph, we sample subgraphs by graph sampler and train an unbiased graph autoencoder, which contains
structure, content and community loss in the decoder, on each minibatch.
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inconsistent contents are sampled, which reduces the ability
of GNN-based models for downstream tasks. Our intuition
is that a good sampler should consider both the node attrib-
utes and the graph structure.

Previous works such as VR-GCN [39], LADIES [40] and
GraphSAINT [30] have shown that reducing the variance of
estimations of the node embeddings caused by sampling in
mini-batch GCN training leads to higher model accuracy and
higher convergence speed.We prove that the sampler SAGES
we proposed in this section is a near optimal solution of mini-
mizing the estimation variance under Equation 8. Details are
in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2022.3148272.

Specifically, based on the calculation formula of the node
embeddings in each layer of our model presented in Equa-
tion (8), we can derive the variance of estimations of the
node embeddings in the complete multi-layer GCN model
following GraphSAINT [30]. We consider a sampling strat-
egy where we sample neighbors for the current node in
each step. The proportion of the probabilities of neighbors
v1 and v2 being sampled conditioned on the current node u
can be calculated by Equation (27). We derive that pvkju /
cosuk, where pvkju is the probability of the node vk being sam-
pled conditioned on the current node u, and uk is the angle
between the node embeddings of u and vk. Compared to
neighbor vj, vi is more likely to influence u if the hidden
embeddings of neighbor vi is more similar to the current
node u’s embedding. The embeddings here are related to
node attributes and the graph structure according to the
definition in Equation (25), which agrees with our intuition
that the optimal sampler should consider both the node
attributes and the graph structure. We perform a simple lin-

ear K-hop graph convolution transformation: ~X ¼ SKX. We

use ~X to approximate the node embeddings in each layer.
Then we derive the near optimal sampling probability
pvkju / cos < ~xu; ~xvk > to minimize the variance of estima-
tions of the node embeddings calculated by Equation (8).

We present the simple linear K-hop graph convolution
transformation to generated ~X:

~X ¼ SKX; S ¼ eD�12 eAeD�12 (1)

where eA ¼ Aþ I, I is identity matrix, and eD is the degree
matrix of eA. Notably, [41] has proved that the simple linear
graph convolution transformation can capture the informa-
tion of graph structure and node attributes. This is because
the expressive power of GCN originates primarily from the
repeated graph propagation rather than the nonlinear fea-
ture extraction.

We also emphasize that the renormalization trick (add
self-loops to original graph) [5] is very helpful here. The
simple linear graph convolutional transformation with
renormalization trick acts as a lowpass filter in graph spec-
trum perspective that produces smooth features over the
graph. This can lead nearby nodes with similar content tend
to share similar representations.

To show the effectiveness of the simple linear graph con-
volutional transformation, we visualize the Cora dataset in a
two-dimensional space by applying the t-SNE [42] algorithm
on raw node feature matrix X and the node embedding

matrix ~X, respectively. We use a linear 2-hop graph convo-
lution transformation to generate ~X here. The result in
Fig. 3 demonstrates that the node representation after lin-
ear graph convolution transformation is more meaningful
than the raw node feature. Compared with the raw node
feature, our node embeddings’ 2D projections exhibit dis-
cernible clustering. Thus, we can sample subgraphs with
highly correlated nodes, according to the similarity of node
embeddings in ~X.

Algorithm 2. Graph Sampling Algorithms SAMPLE

Input: Graph G; Node representation matrix ~X;
Sample MeasureM; Batch size b; Sample depth h;

Output: Sampled graph Gs Vs; Esð Þ;
1: Vroot  b root nodes sampled randomly according to
2: Sample MeasureM from V of G
3: Vs  Vroot
4: for v 2 Vroot do ⊳ Be able to run in parallel
5: u v
6: for d ¼ 1 to h do
7: PneiðrÞ :¼ softmaxðcos< ~xu ; ~xr >

temp Þ; r 2 N u

8: u node sampled fromN u according to PneiðuÞ
9: Vs  Vs [ fug
10: end for
11: end for
12: return Gs  Node induced subgraph of G from Vs

Algorithm 2 outlines the graph sampling method used in
SAGES. Its basic idea is to sample subgraphs that meet the
above three requirements by selecting similar nodes in ran-
dom walk. In Algorithm 2, we first sample b root nodes for
random walk by sample measureM. There are two alterna-
tive measures for M: Uniform Sampling, which samples
nodes from V uniformly. Degree Sampling, which is inspired
by [15], [30], samples nodes according to a node probability
distribution P ðuÞ / ~A:;u

�� ��2. Here, ~A:;u ¼
PN

i¼1 ~Ai;u. In prac-
tice, we find that Uniform Sampling is good enough most of
the time. Starting from getting the root nodes, we walk
h�hops for each walker. In each hop of the walker, we ran-
domly sample one neighbor node of the current node u
according to Pnei defined in line 7 of Algorithm 2. Pnei can
measure influence between node and its neighbors, temp is
temperature in softmax to control the smoothness of the dis-
tribution [43]. Thus, Pnei can adapt to different node repre-
sentation space distribution by controlling temp. In the end,

Fig. 3. The t-SNE visualizations of the node embeddings on the Cora
dataset. The left visualization illustrates the node embeddings from the
raw node features matrix X, and the right visualization illustrates the
node embeddings from node influence representation matrix ~X. The
clusters of the right visualization based on node influence representation
matrix ~X are clearly defined.
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we induce a well-connected subgraph whose nodes are
highly related according to Vs.

As shown in Fig. 4, compared with the graph sampler
which only considers graph structure, our graph sampler con-
sidering both graph structure and node features, is a better
choice. Note that our graph sampler will not cost too much
time. The process of sampling each subgraph is independent,
so we can sample subgraphs in parallel. For preprocessing
part, wewill give a detailed explanation in Section 4.3.

4.2.2 Unbiased Attributed Graph Encoder on Subgraph

SAGES framework is relatively flexible, and many GNNs
architecture variants are suitable to be our encoder. For sim-
plicity, we will introduce GCN as our encoder. GCN incor-
porates spectral convolutions into neural networks to learn
node representations. We denote encoder GCN as F. Given
the subgraph Gt ¼ ðVt; Et;XtÞ with adjacency matrix At, the
l-th layer of encoder F is as follows:

Ht
ðlþ1Þ ¼ s StHt

ðlÞWðlÞ
� �

; St ¼ fDt
�12fAt

fDt
�12 (2)

where Ht
ðlÞ is the node embedding of the l-th layer, WðlÞ 2

Rfð‘Þ�fð‘þ1Þ are trainable parameters of node transformation,

and St is the symmetric normalization matrix ofAt with self-

loops. s is the activation function here, it can be Identity

Function : fðxÞ ¼ x or RELU Function : fðxÞ ¼ max x; 0ð Þ.
For layer 0 toL� 1, we use Identity Function. For layerL, we

use RELU. The initial node representations are just the origi-

nal input features, which meansHt
ð0Þ ¼ Xt. After applying L

encoder layers, we consider the output of the last layer as the

final node representations matrix Zt learned by GAE. Thus

for GCN encoderFwe have

FðAt;Xt;QFÞ ¼ Zt; Zt ¼ Ht
ðLÞ (3)

where all trainable parameters of encoderF can be expressed
as

QF ¼ WðlÞ
n o

l¼0;���;L�1
(4)

Note that, to sample appropriate subgraph, our graph sam-
pler preserves connectivity characteristics of G and pushes
the nodes with high impact to gather together. This will result
in a skewed sampling of nodes and edges. Therefore, it is

inevitable that this sampler will introduce bias into the mini-
batch estimation. So we propose a normalization technique to
eliminate bias of forward propagation and back propagation
in trainingGAE, andwe focus on encoder in this part.

For simplicity, we only analyze GCN here, and other
GCN architecture variants can be extended from it. Analysis
of the complete multi-layer GCN with nonlinear activation
is difficult, and sometimes removing the nonlinear activa-
tion function will preserve or even improve performances.
Thus, we analyze feature propagation of each layer inde-
pendently. Given node v 2 Vt, and u 2 V, we can compute
the aggregated feature of v in the ðlþ 1Þ-th layer as:

hðlþ1Þv ¼
X
u2N v

Sv;u WðlÞ
� �T

hðlÞu 1ujv (5)

where node u is the neighbor of node v, hðlÞu is the node u’s
representation in the l�th layer, Sv;u is the element of row v
and column u in S. And 1ujv 2 f0; 1g is the indicator func-
tion indicating whether u is in the subgraph (i.e., 1ujv ¼ 0 if
ðu; vÞ =2 Es; 1ujv ¼ 1 if ðu; vÞ 2 Es).

Define pv as the probability of the node v being sampled
in a subgraph, and pu;v ¼ pv;u as the probability of the edge
ðu; vÞ 2 E being sampled in the subgraph. Then, we have

E 1ujv
� � ¼ P ððu; vÞ sampled jv sampledÞ ¼ pu;v

pv
(6)

Equation (6) (conditional edge probability) holds is due to
the initial condition that v is sampled in a subgraph. Then,
because the linearity of expectation, the estimation of aggre-
gator in a minibatch is as follow:

E hðlþ1Þv

� �
¼
X
u2V

Sv;u

au;v
WðlÞ
� �T

hðlÞu ; au;v ¼ pu;v
pv

(7)

So we can get an unbiased estimator of the aggregation of
node v in full GCN of G each minibatch by calculating node
embedding as:

hðlþ1Þv ¼
X
u2N v

Sv;u

au;v
WðlÞ
� �T

hðlÞu 1ujv (8)

where hðlþ1Þv is the node v representation in the ðlþ 1Þ�th
layer. au;v is called aggregator normalization coefficients, it is
used to normalize eliminate bias.

4.2.3 Joint Loss Function in Decoder

In this section, we carefully design three regulators to
restrict the generated unsupervised node embeddings from
different aspects. Specifically, LA restricts the generated
embeddings to preserve the connectivity information hid-
den in the graph; LX restricts the generated embeddings to
preserve the own content information of each node; and Lc

restricts the node embeddings to preserve the community
information, which is relevant to which subgraph each
node belongs to (similar to DGI[11]). We describe them
respectively in the following.

Sample-Aware Attribute Sensitive Decoder. Most existing
GAE based methods only focus on local structure in
decoder and use inner product decoder to reconstruct At as
follows:

Fig. 4. An illustration of different sampling methods. Nodes with different
colors have different labels. The dotted line delineated area represents a
sampled subgraph. For the left sampler that only depends on graph
topology, the nodes in the subgraph sampled may differ relatively from
each other in attribute, which makes the model difficult to learn useful
information in the subgraph.
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Ât ¼ sigmoid ZtZt
>� �

; LA ¼ lossðAt; ÂtÞ (9)

where LA is structure reconstruction loss. Specially, for edge
ðu; vÞ 2 Et, the loss function is as follow:

Lu;v ¼ �log 1

1þ exp �zTu zv
� � !

(10)

Although LA is flexible enough when training on the
entire graph, it is not sufficient on attributed graphs to focus
only on structure loss. With the graph sampling, structural
information may be distorted due to the missing of partial
edges, while the node content information is still intact.
Therefore we also reconstruct node feature matrix in the
decoder. To gain latent representations that better preserve
node attributes on Gt, we need to generate X̂t from the
nodes latent embeddings Zt and make X̂t as close as possi-
ble to original input Xt, so we design attribute-sensitive
decoder C At;Zt;QCð Þ ¼ X̂t. Here, the decoder C is a single
graph attention layer. We first compute the attention matrix
Ct 2 RNt�Nt as follows:

Ct ¼ Softmax Sigmoid cMs þcMr

� �� �
(11)

Ms ¼ At � vss WattZtð Þð Þ (12)

Mr ¼ At � vrs WattZtð Þð Þ (13)

where � is element-wise multiplication with broadcast-
ing capability and s is RELU. The trainable parameters
include Watt 2 RF 0�F 0 , vs 2 R1�dðkÞ , and vr 2 R1�dðkÞ . Then
the decoderC is as follow:

C At;Ztð Þ ¼ s CtZtð Þ (14)

For node v 2 Vt, and the node feature matrix X, the con-
tent reconstruction loss is defined as:

Lv ¼ xv � x̂vk k2; LX ¼ loss Xt; X̂t

� �
(15)

Further, sampling strategies lead to the non-identical
node/edge probabilities, which introduces biases into mini-
batch estimation [30]. So we introduce �v ¼ 1

pv
as content nor-

malization coefficients and �u;v ¼ 1
pu;v

as edge normalization
coefficients to eliminate biases. We can calculate the unbiased
structure reconstruction lossLX as

LX ¼ 1

Nt

X
v2Vt

�vLv (16)

where Nt is the number of nodes in Gt. And the unbiased
structure reconstruction loss LA can be calculate as

LA ¼ 1

Et

X
ðu;vÞ2Et

�u;vLu;v (17)

where Et is the number of edges in Gt.
To learn better node latent representations which capture

both node features and graph structure, we minimize the
reconstruction error of At and Xt of the subgraph as follows:

Lr ¼ LX þ brLA (18)

where br � 0 controls the balance between structure and
content. LA is as Formula (9).

Feature propagation and calculating loss function within
subgraphs require normalization factors au;v, �v and �u;v,
and these factors depend on pv and pu;v. In general, pv and
pu;v is hard to be derived analytically. Thus, we perform
pre-processing for estimation. We repeatedly sample Nsa

subgraphs by utilizing our sampler, and use counter Cv and
Cu;v to count times the node or edge appears. Then, we set
pv ¼ Cv

Nsa
and pu;v ¼ Cu;v

Nsa
. Note that these sampled subgraphs

can be reused as training minibatches. Therefore, the over-
head of pre-processing is small.

Local-Community Mutual Information Maximization. We
can naturally own the community structure without extra
cost, because nodes within the same subgraph have a high
influence on each other both in connection and information
perspective. Thus, we design a variant of DGI [11] to incor-
porate community-level information into the node latent
representations. The original DGI focuses on local and
global relationships in the entire graph, while we focus on
local and community relationships. Here, we maximize the
mutual information between the node-level embedding and
community-level embedding. We can get the node latent
representations Zt by the encoder on Gt. Then, we compute
the community-level summary representation st by leverag-
ing a Readout FunctionR : RNt�F 0 ! RF 0

st ¼ R Ztð Þ ¼ s
1

Nt

XNt

i¼1
zi
ðtÞ

 !
(19)

where zi
ðtÞ is the embedding of node i in Zt, and st summa-

rizes the node latent embeddings into a community-level
embedding. s is a logistic sigmoid nonlinearity function.
Then we employ a Discriminator Function D : RF 0 �RF 0 ! R

to measure the probability scores for node-community pair
(should be higher for nodes and their corresponding com-
munity). The definition of D is as follows:

D z
ðtÞ
i ; st

� �
¼ s st

TWdz
ðtÞ
i

� �
(20)

where s is the logistic sigmoid nonlinearity, and Wd 2
RF 0�F 0 is trainable parameters. Then, we generate negative
examples for D in community Gt by utilizing a Corruption
Function C :

CðAt;XtÞ ¼ ð~At; ~XtÞ

where we keep graph structure At unchanged, and corrupt
the attribute matrix Xt by shuffling it in the row-wise man-
ner like [11]. Then we use the encoder F to generate nega-
tive node latent representations ~Zt ¼ F ~At; ~Xt;QF

� �
. Next,

given Zt; ~Zt and st, we compute a noise-contrastive commu-
nity-specific cross entropy

Lc ¼
XNt

i¼1
logD z

ðtÞ
i ; st

� �
þ
XNt

j¼1
log 1�D ~z

ðtÞ
j ; st

� �� �
(21)

Joint Learning. To enable the model to learn both node-
level and community-level information, the loss function of
the whole model is as follows:
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J ¼ Lr þ bLc (22)

where b controls the balance between local and community
relationships.

Remark. We expand Equation 22 and explain the settings
of hyper-parameters as follows:

J ¼ 1

Nt

X
v2Vt

�v xv � x̂vk k2

� br

1

Et

X
ðu;vÞ2Et

�u;vlog
1

1þ exp �zTu zv
� � !

þ b
XNt

i¼1
logD z

ðtÞ
i ; st

� �
þ
XNt

j¼1
log 1�D ~z

ðtÞ
j ; st

� �� � !
(23Þ

There are four parameters, �v, �u;v, br and b. First, �v and
�u;v can be computed as �v ¼ 1

pv
and �u;v ¼ 1

pu;v
given an input

graph, where pv and pu;v can be estimated in the preprocess-
ing stage — In the preprocessing stage, we run the sampler
repeatedly to obtain a set of Nsa subgraphs, where Nsa is the
number of subgraphs. Then pv and pu;v can be computed as
pv ¼ Cv

Nsa
, pu;v ¼ Cu;v

Nsa
, where Cu;v is the number of times that

the edge (u; v) appears in the subgraphs, andCv is the number
of times that the node v appears in the subgraphs. Moreover,
users can tune br and b to set different weights for different
regulators for a given graph to get the best performance.

4.3 Complexity Analysis

In this section, we discuss the preprocessing and analyze
the time and space complexity of SAGES to show its scal-
ability. The discussion is divided into two parts: graph sam-
pling and model training.

In graph sampling,wewill calculate node influence repre-
sentation matrix ~X mentioned in Formula (1). Note that, the
dimension of input feature of graph will not be large,
because the raw feature is usually processed by dimension
reduction methods [44], [45]. In addition, A is typically
sparse, and K is usually small. Thus, we can exploit fast
sparse-dense matrix multiplication [46] to compute ~X. In our
experiment, it takes only 80 seconds to compute the influence
representation matrix of a graph (Amazon) with one million
of nodes and hundreds of millions of edges.

For model training, we only focus on the complexity of
encoder, because the cost of calculating content loss in
decoder is the same as that in encoder, and the calculation
of structure loss and community loss is not the bottleneck.
Here, kAtk0 and kAk0 are the number of non-zero elements

in At and A, respectively. D is the maximum dimension of
all layers, and b is the number of nodes of the largest sub-
graph. Since we only train the encoder within one subgraph
per batch, the computation will purely be matrix products as
Formula 2.We needOðbLD2Þ time to transform node embed-
dings and OðLkAk0DÞ time to perform the node aggregation
function per batch. Therefore, the overall time complexity
per batch becomes O bLD2 þ LkAtk0D

� �
, and the overall

time complexity per epoch is O NLD2 þ LkAk0D
� �

. On aver-
age, we only require computing OðbLÞ embeddings each
batch, which is linear instead of exponential to L. In terms of
space complexity, in each batch, we only need to load b nodes
and store their embeddings, resulting in OðbLF þ LF 2Þ
memory complexity.

5 EXPERIMENTS

In this section, we evaluate the proposed SAGES framework
on three medium-size attributed graphs and three large
attributed graph datasets. To test the effectiveness and gen-
erality of latent representation generated by SAGES encoder,
node classification, link prediction and node clustering tasks
are conducted. We also take ablation studies to demonstrate
that each component of the loss in the decoder is important.
All experiments are conducted on a machine with two GPUs
(NVIDIA RTX 2080 Ti GPU 12G) and 64 CPUs (Intel Xeon
Gold 5218 CPU 2.30GHz). We implement SAGES via the
PyTorch Geometric (PyG) [47] package.

5.1 Datasets

SAGES has been studied in six real-world attributed graphs.
The details about graph datasets can be found in Table 2.
The three medium-size attributed graph datasets used in
our experiment include Cora, Citeseer, and Pubmed [21].
They are citation networks that consist of scientific publica-
tions as nodes and citation relationships as edges. The node
features of these citation networks are unique words in each
document. They are widely used for assessment of attrib-
uted graph analysis [5].

Besides, there are three large attributed graph datasets,
including Flickr, Reddit, and Amazon. Flickr dataset origi-
nates from the SNAP website1, and it forms links between
images sharing common metadata from Flickr, the node in
Flickr represents one uploaded image, and we create the
edge when two images share some common properties. The
Reddit dataset is constructed by Reddit posts. The node label
is the community that a post belongs to, and node features

TABLE 2
The Statistics of the Benchmark Datasets

Dataset Task Nodes Edges Features Classes Degree Train/Val/Test Nodes

Cora Transductive 2,708 5,429 1,433 7 2.0 140/500/1,000
Citeseer Transductive 3,327 4,732 3,703 6 1.4 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 2.2 151,708/23,699/55,334
Flickr Inductive 89,250 899,756 500 7 10.1 44,625/22,312/22,312
Reddit Inductive 232,965 11,606,919 602 41 50.0 153,932/23,699/55,334
Amazon Inductive 1008,606 116,196,671 200 47 115.2 857,315/50,431/400,860

Task indicates experimental settings of node classification.

1. https://snap.stanford.edu/data/web-flickr.html
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are word embeddings of the post. More details of Reddit can
be found in [12]. Amazon dataset is collected from [30].
Nodes of the Amazon dataset are products on the website
and the edges of the Amazon dataset are created if two prod-
ucts are bought by the same customer. The node feature is
the word embeddings of the text reviews, and the node label
represents the product category (e.g., movies, books, shoes).
Note that, we remove the unlabeled nodes from the original
Amazon dataset in [30], select the most important category
(the category that contains the most products) as the label,
and reconstruct the graph on the remaining nodes.

5.2 Node Classification

We compare our SAGES against the state-of-the-art algo-
rithms on a variety of node classification tasks (transductive
as well as inductive) and obtain competitive results. Induc-
tive tasks require generalization to the unseen graph, while
transductive can see the whole graph during training, and
the detailed difference between them is given by [12]. Like
the experiment setting in [11], in each case, SAGES and other
unsupervised algorithms will learn node representations in
a fully unsupervised manner. Then we will use a simple lin-
ear (logistic regression) classifier on learned embeddings,
and evaluate different representation methods on the node-
level classification results.

5.2.1 Baslines

� Competitors on Medium-size graphs: DeepWalk [8]
only uses structure based on short random walks.
Node2vec [18] relies on a biased random walk genera-
tion. Graph Auto-Encoder (GAE) [6] utilizes GCN as
encoder and reconstructs edges. VGAE is a varia-
tional version of GAE. STNE [48] is a deep model
that capture both first-order and second-order prox-
imity of nodes in embedding with only structural
information being considered. DGI [11] maximizes
the mutual information between node and graph
representations. GALA [10] utilizes Laplacian sharp-
ening to reconstruct node features in decoder.
MVGRL [33] learns graph representation by contrast-
ing structural views of graphs. AGE [9] uses a non-
parametric Laplacian smoothing filter as the encoder
and utilizes adaptive learning in the decoder. LP [49]
uses label propagation. Planetoid [21] learns node
representations by predicting available class labels
and the neighborhood context. GCN [5] incorporates
spectral convolutions into graph domain.

� Competitors on large attributed graphs: GraphSAGE
[12] scales GNNs by sampling uniformly and aggre-
gating features from a node’s local neighborhood.
As our setup is unsupervised, we compare against
the unsupervised GraphSAGE version. FastGCN [15]
scales GNNs by subsampling the receptive field for
each layer. AS-GCN [27] uses adaptive sampling to
scale graph neural network.

5.2.2 Experiment Setting

Following the general settings in GNNs like [11], [23], we
conduct transductive tasks on three medium-size graphs

(Cora, Citeseer, and Pubmed), and perform inductive tasks
on three large graphs (Flickr, Reddit, and Amazon). We use
mean classification accuracy on transductive tasks and use
the micro-averaged F1 score on inductive tasks. We follow
the same settings (i.e., the train/validation/test split) as [11]
on the transductive tasks and take the same setting as [30]
on the inductive tasks.

For transductive tasks, we reuse the metrics already
reported in [5], [11], [21], [49] for the performance of Deep-
Walk, GCN, Label Propagation (LP), Planetoid, and DGI. For
all GAE basedmodels and the SAGESmodel, we use a 2-layer
GCN with 512 node embedding dimensions as the encoder.
Other hyperparameter settings are shown in Table 5.

For inductive tasks, we reuse the metrics reported in [11]
for the performance of GraphSAGE, DGI on Reddit, as well
as the FastGCN and AS-GCN [30] on Flickr and Reddit. For
SAGES, we also use a 2-layer GCN as encoder, the dimen-
sion of hidden layer is set to 256 for Flickr and Reddit, and
128 for Amazon. Other hyperparameter settings are shown
in Table 5.

For all competitors, we adopt the early stopping, which
wait 20 steps until no progress on the validation set. Adam
optimizer [50] is used here. We perform a hyperparameter
sweep on initial learning rates 10�3; 10�4; 10�5

� �
for

medium-size graphs and 10�1; 10�2; 10�3
� �

for large graphs
respectively

5.2.3 Experiment Results

Table 3 shows the evaluation results on transductive tasks.
The results demonstrate that SAGES outperforms all unsu-
pervisedmethods. Particularly, we observe an improvement
of 1:2%, 0:7%, and 3:7% over the state-of-the-art unsuper-
vised model DGI (a full-batch training method) on Cora,
Citeseer, and Pubmed, respectively. This indicates that learn-
ing node representation will benefit from considering con-
tent information and community-level information of the
subgraph composed of closely related nodes in the decoder.

Table 4 shows the evaluation results on inductive tasks.
We compare SAGES with the state-of-the-art unsupervised
scalable GNN models and some supervised scalable GNNs
models. The results show the scalability and effectiveness of
our framework. Notice that the Reddit dataset is the large
attributed graph widely used for assessment of scalable
GNNs, and the Amazon dataset has one million of nodes
and hundreds of millions of edges. It is worth noting that
GALA, MVGRL, and AGE are not scalable to train in Reddit
and Amazon. We further observe that SAGES outperforms
the previous unsupervised sampling-based GCN variants
DGI on three datasets by more than 2:4%, 1:0%, and 7:0%,
respectively. To our best knowledge, our unsupervised
SAGES achieves state-of-the-art test F1 score 52.1 on the
Flickr dataset. It confirms the empirical superiority of our
graph sampling and three loss function.

5.3 Node Clustering

We compare SAGES with various graph embedding based
approaches for node clustering on Cora and Citeseer. Nodes
of two datasets are clustered in 6 and 7 topic classes respec-
tively, acting as ground-truth communities. Pubmed is not
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suitable for node clustering tasks here because it has only
three communities.

5.3.1 Baselines

In addition to themethods listed above, some baselines which
are designed for clustering are also included.K-means is a clas-
sical clustering method. Graph Encoder [51] trains stacked
autoencoder to get node embedding. DNGR [52] utilizes
stacked denoising autoencoder for graph embedding. To
learn node representations, RTM [53] considers both text and
citation, RMSC [54] employs a multi-view method, TADW
[20] applies matrix factorization. ARGA [32] uses adversari-
ally regularized graph autoencoders to learn graph

embedding, and ARVGA is a variational version of ARGA.
SAGES is ourmethod.

5.3.2 Experiment Setting

For node clustering tasks, we have the same experiment set-
tings as [9]. For representation learning methods, we apply
Spectral Clustering on the generated embeddings, and select
the best epoch by DaviesBouldin index (DBI) [55]. In particu-
lar, the node embeddings here are scaled to the ½0; 1� interval
by min-max scaler for variance reduction. For other works
that specify on the node clustering task, we reuse the metrics
already reported in [32]. For metrics, we follow [54], and
employ three metrics to validate the results: accuracy (ACC),
normalized mutual information (NMI), and average rand
index (ARI). All metrics used in node clustering are related to
the labels. A better result should lead to higher values for all
the metrics. For SAGES, some hyperparameter settings are
shown in Table 5. Other parameters and experiment settings
are the same as the node classification task.

5.3.3 Experiment Results

Table 6 shows the results of the node clustering tasks.
SAGES outperform other methods across most of the evalu-
ation metrics. We can observe that the models using both

TABLE 4
Node Classification Results on Large Graphs (Micro-F1)

Available Data Approach Flickr Reddit Amazon

A;X GraphSAGE-GCN 0:489	 0:001 0:908	 0:002 0:703	 0:001
A;X GraphSAGE-mean 0:487	 0:002 0:897	 0:001 0:725	 0:003
A;X GraphSAGE-LSTM 0:451	 0:003 0:907	 0:004 0:687	 0:002
A;X GraphSAGE-pool 0:456	 0:001 0:892	 0:001 0:692	 0:002
A;X AGE 0:493	 0:002 - -
A;X DGI 0:497	 0:002 0:940	 0:001 0:751	 0:002
A;X SAGES (ours) 0:522	 0:001 0:952	 0:013 0:823	 0:013

A;X;Y FastGCN 0:504	 0:001 0:924	 0:001 0:549	 0:013
A;X;Y AS-GCN 0:504	 0:002 0:958	 0:001 -

Available Data is the same meaning as Table 3. The symbol ‘-’ denotes that the competitor is not scalable on the datasets.

TABLE 5
Hyperparameter Settings

Dataset temp K Subgraph Size br b

Cora 0.5 3 600 5.0 3.0
Citeseer 0.5 6 600 20.0 1.0
Pubmed 1.0 2 2000 5.0 1.0
Flickr 0.5 2 5000 10.0 1.0
Reddit 0.3 2 8000 10.0 1.0
Amazon 1.0 2 8000 10.0 1.0

TABLE 3
Node Classification Accuracies on Cora, Citeseer, and Pubmed

Available Data Train Graph Approach Cora Citeseer Pubmed

X - Raw features 47:9	 0:4% 49:3	 0:2% 69:1	 0:3%
A;Y Full Graph LP 68:0% 45:3% 63:0%
A Full Graph DeepWalk 67.2% 43.2% 65.3%
A Full Graph Node2vec 68.2% 47.2% 69.3%

A;X Full Graph DeepWalk + features 70:7	 0:6% 51:4	 0:5% 74:3	 0:9%
A;X Full Graph GAE 80:7	 0:5% 69:0	 0:7% 76:1	 0:6%
A;X Full Graph STNE 79:8	 0:5% 68:2	 0:7% 74:1	 0:6%
A;X Full Graph DGI 82:3	 0:6% 71:8	 0:7% 76:8	 0:6%
A;X Full Graph GALA 81:0	 0:3% 72:1	 0:2% 76:5	 0:4%
A;X Full Graph MVGRL 82:0	 0:1% 71:6	 0:2% 75:8	 0:4%
A;X Full Graph AGE 80:0	 0:2% 72:0	 0:1% 76:8	 0:5%

A;X Subgraph SAGES (ours) 84:5	 0:3% 73:2	 0:3% 80:5	 0:4%

A;X;Y Full Graph Planetoid 75:7% 64:7% 77:2%
A;X;Y Full Graph GCN 81:5% 70:3% 79:0%

Available Data shows the type of data used during training for each method. Data types can be found in Table 1. Y here means labels. Train Graph refers to the
graph used in training.
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content and structure information generally perform better
than other autoencoder methods. For example, GALA,
AGE, and our methods outperform all the baselines without
GNNs encoder. In particular, AGE benefits from adaptive
learning that performs well in this task, but it is not scalable
and performs mediocre in node classification, while SAGES
are competitive in all kinds of tasks. The reasons for this are
that iÞ the attribute-sensitive decoder can better capture
node feature and graph structure than a simple inner-prod-
uct decoder. iiÞMaximizing the local mutual information of
the community is beneficial to capture the relevant informa-
tion of clustering.

5.4 Link Prediction

We compare SAGES with various graph representation
methods for link prediction on Cora and Citeseer. The com-
parision algorithms are listed in 5.2.1.

5.4.1 Experiment Setting

We partition the datasets following the experimental set-
tings of AGE [9], removing 5% edges for validation and 10%
edges for test. To predict whether there is a potential edge
existing between two nodes, we use Â ¼ sigmoid ZZ>

� �
for

the node latent embeddings Z. For metrics, we follow [9],
and report Area Under Curve (AUC) and Average Precision
(AP) scores. A higher value indicates better performance. The

training procedures and hyperparameters are consistent with
the node classification tasks.

5.4.2 Experiment Results

Table 7 shows the results of the link prediction tasks. We
report mean scores of Area Under Curve (AUC) and Aver-
age Precision (AP) with 10 random initializations. Compared
with state-of-the-art methods, SAGES outperform them on
both AUC andAP.

5.5 In-Depth Analysis

5.5.1 Network Visulization

To qualitatively investigate the effectiveness of the node
embeddings learned by SAGES, we utilize t-SNE [42] to proj-
ect the learned node embeddings of different models into a
two-dimensional space. We focus our analysis exclusively
on the Cora dataset, because the Cora dataset has the small-
est number of nodes, and this significantly aiding clarity.

In Fig. 5, we give the t-SNE visualizations of four kinds of
node embeddings in Cora, including node embeddings from
raw features, node embeddings learned from a GAE model,
node embeddings learned from a DGI model, and node
embeddings learned from our SAGES model. Here, all three
unsupervised GNNs models follow the graph autoencoder
framework, they all use a 2-layer GCN layer as the encoder,
and the dimension of node embeddings in all hidden layers
is set as 512. In the decoder, the GAE model utilizes inner-
product layer to reconstruct edge information in the graph,
the DGI model maximizes the mutual information between
local patches of a graph and the global representation of the
entire graph, and our SAGES model reconstruct structure-
level, content-level, and community-level information from
properly-sampled subgraphs.

TABLE 6
Clustering Results on Cora and Citeseer

Cora Citeseer

ACC NMI ARI ACC NMI ARI

K-means 0.492 0.321 0.230 0.540 0.305 0.279
Spectral 0.367 0.127 0.031 0.239 0.056 0.010
GraphEncoder 0.325 0.109 0.006 0.225 0.033 0.010
DeepWalk 0.484 0.327 0.243 0.337 0.088 0.092

RTM 0.440 0.230 0.169 0.451 0.239 0.023
RMSC 0.407 0.255 0.090 0.295 0.139 0.049
TADW 0.560 0.441 0.332 0.455 0.291 0.228

GAE&VGAE 0.609 0.436 0.346 0.408 0.176 0.124
ARGA 0.640 0.449 0.352 0.573 0.350 0.341
ARVGA 0.638 0.450 0.374 0.544 0.261 0.245
GALA 0.746 0.577 0.532 0.693 0.441 0.446
MVGRL 0.732 0.567 0.523 0.658 0.409 0.402
AGE 0.768 0.607 0.565 0.702 0.448 0.457
SAGES(ours) 0.770 0.612 0.566 0.703 0.449 0.460

Fig. 5. The t-SNE visualizations of the node representations in the Cora dataset from the raw features (Raw Feature), a learned Graph Autoencoder
model (GAE), a learned Deep Graph Infomax model (DGI), and a learned SAGES model (SAGES). Node colors denote classes. The clusters of the
learned SAGESmodel’s embeddings are clearly defined.

TABLE 7
Link Prediction Results on Cora and Citeseer

Cora Citeseer

AUC AP AUC AP

GAE 0.910 0.920 0.895 0.899
VGAE 0.914 0.926 0.908 0.920
ARGA 0.924 0.932 0.919 0.930
ARVGA 0.924 0.926 0.924 0.930
GALA 0.921 0.922 0.944 0.948
MVGRL 0.918 0.920 0.933 0.945
AGE 0.942 0.943 0.963 0.965
SAGES(ours) 0.955 0.963 0.969 0.974
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By analyzing the t-SNE visualizations in Fig. 5, we have
the following observations: iÞ Compared to the raw fea-
tures, all three unsupervised GNN models exhibit discern-
ible clustering in the 2D projected space. iiÞ The node
embeddings of GAE model are more meaningless than the
other two models, we can see more overlap and confusion
in visualizations of GAE, which shows only reconstructing
structural information is not enough to learn meaningful
node embeddings. iiiÞ The node embeddings of DGI model
are already meaningful. We can observe seven discernible
clusters, although the red, black, and green parts of figure
are somewhat overlapped. ivÞ By combining reconstruction
loss of structure, content, and community information, the
node embeddings become more evident in SAGES model,
with less overlapping and each group of nodes gathered
together, especially in the green and black parts.

5.5.2 Ablation Study

To measure the impact of each component of the decoder in
SAGES, we conduct an ablation study of SAGES on Cora
and Reddit dataset. The experimental results are shown in
Table 8. The approach SAGES(S) means that SAGES only
reconstructs structural information in the decoder, and so
on in other cases. The hyperparameter setting here is the
same as the above experimental part. By analyzing the table,
we have the following observations: iÞ SAGES outperforms
other simplified versions, indicating that each component
contributes to the overall performance of our architecture.
iiÞ Even in the case of using one loss function, SAGES still
maintains good performance, which shows the effectiveness
and robustness of our graph sampler. iiiÞ Graph structural
information is crucial for representation learning of nodes,
while reasonably combining node content information and
community-level information can have a better impact on
node embedding learning.

Then, we conduct ablation study on Cora and Reddit to
manifest the efficacy of graph sampling methods of SAGES.
The sampling method of comparison is as follows: Uniform
Sampling method samples nodes uniformly to form a sub-
graph in each minibatch. Degree Sampling method samples
nodes according to Degree Sampling mentioned in Sec-
tion 4.2.1. Core Sampling method sample nodes according to
core number [14]. The core number of a node corresponds
to the largest value of k for which node is in the k�core [56].
Random Walk Sampling method use a regular random walk
sampler, which selects r root nodes uniformly in random

and goes h hops. The experimental results are shown in
Table 9. We can observe that our sampling method is signifi-
cantly better than other methods. In addition, degree-based
sampling and core-based sampling are empirically more
effective than uniform sampling, while the effect of the reg-
ular random walker is not stable. The results give verifica-
tion to the rationality of the graph sampler of SAGES.

We also investigate the influence of K value in the For-
mula (1) on the performance of SAGES and report the results
in Fig. 6. It shows that the accuracy of SAGES increases at first
and then decreaseswith the increase ofK. This is as expected,
as nodes usually get information from their neighbors at the
beginning. However, as K increases, although linear graph
convolutional transformation has the renormalization trick, it
also suffers over-smoothing [57] problem. Besides, consider-
ing the efficiency and effectiveness of the graph sampling
algorithm, we choose a smaller K value for large datasets in
the experiment.

5.5.3 Runtime

We also report the running time of SAGES and GraphSAGE
on the largest attributed graph Amazon. The time cost is
shown in Table 10. The GraphSAGE here is GraphSAGE-
LSTM, and we sample 10 and 25 neighbors at the first and
second level respectively to build receptive field. The prepro-
cessing of GraphSAGE refers to the process of generating
negative sampling by random walk. The size of subgraph in
SAGES is 8000. The preprocessing of SAGES refers to the
process of calculating influence matrix and sampling sub-
graphs to setup normalized parameters. We can find that
SAGES improves the performance of the model without

TABLE 8
Ablation Study of Loss Function

Cora Reddit

ACC F1

SAGES(C) 81.5% 0.910
SAGES(X) 80.7% 0.894
SAGES(S) 81.9% 0.920
SAGES(S,X) 82.8% 0.926
SAGES(S,C) 83.0% 0.925
SAGES(X,C) 82.5% 0.912
SAGES 84.5% 0.95

S means structure loss, X means content loss, C means community loss.

TABLE 9
Sampling Method in Cora and Citeseer

Cora Reddit

ACC F1

Uniform Sampling 78.5% 0.890
Degree Sampling 80.8% 0.910
RandomWalk Sampling 76.0% 0.921
Core Sampling 79.5% 0.905
SAGES Sampling 84.5% 0.950

Fig. 6. K value of SAGES.
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consuming too much time. We can also observe that the
training time of SAGES is shorter than that of GraphSAGE. It
agrees with the proposition [30], [39], [40] that reducing the
variance of estimations of the node embeddings caused by
sampling in mini-batch GCN training leads to higher model
accuracy and higher convergence speed.

6 CONCLUSION

This paper proposes SAGES, a scalable unsupervised repre-
sentation learning framework on attributed graphs. SAGES
utilizes a structure and content sensitive sampler to locate
highly related nodes into subgraphs, on which an unbiased
graph autoencoder is applied to learn the latent node repre-
sentation with guide of structure, content and community
loss. Thus, SAGES promotes both the effectiveness and scal-
ability in unsupervised graph learning. Experimental results
show that SAGES outperforms the competitors. For example,
SAGES achieves new state-of-the-art F1 scores for Reddit
(0.950) and Flickr (0.522).
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