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ABSTRACT

In this paper, we define (i) unrestricted (UT), (ii) restricted (RT) and (iii) pre-test (PTT)
tests for testing the significance of a subset of the parameters of a multiple regression model
when the remaining parameters are (i) completely unspecified, (ii) specified at fixed values
or (iii) suspected at fixed values. The M-estimation methodology is used to formulate
the three tests. The asymptotic distribution of the test statistics are used to derive the
asymptotic power function of the tests. Analytical and graphical comparisons of the three
tests are obtained by studying the power functions with respect to the size and power of the
tests. The PTT shows a reasonable dominance over the other two tests asymptotically.
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1 Introduction

The multiple regression model is arguably the most commonly used statistical model in
many real life problems. In many cases a large number of explanatory variables are in-
cluded in the multiple regression model. Not all the explanatory variables contribute sig-
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nificantly to the prediction of the response variable. There are several methods available to
exclude the non-significant explanatory variables from the model. In the context of testing
hypotheses on any arbitrary subset of regression parameters, one may use the non-sample
prior information on the explanatory variables to improve the power of the test on the coef-
ficients of the remaining explanatory variables. Depending on the type of prior information
various tests may be derived. It is important to investigate and compare the properties of
the tests in order to select a test with the maximum power.

Let Xi, i = 1, . . . ,n, be n observable response variables of a multiple regression model,

Xi = β′ci + ei, (1.1)

where β′ = (β1,β2, . . . ,βp) is a p-dimensional row vector of unknown regression param-
eters, c′i = (c1i, . . . , cpi) is a p-dimensional row vector of known real constants of the in-
dependent variables, ei is the error term which is identically and independently distributed
symmetric about 0 with a distribution function, Fi, i = 1, . . . ,n. The vector of p-regression
parameters can be expressed as β′ = (β′1, β′2) where β′1 is a sub-vector of order r and β′2
is a sub-vector of dimension s such that r + s = p. Similarly, partition c′i as (c′i1, c′i2) with
c′i1 = (c1i, . . . , cri) and c′i2 = (c(r+1)i, . . . ,cpi).

Consider testing the significance of the sub-vector β1 under three conditions on the
values of the sub-vector β2: (i) unspecified (ii) specified and fixed (iii) uncertain. For case
(i), we want to test H?

0 : β1 = 0 against H?
A : β1 > 0 with test function, φUT

n . This test is
called the unrestricted test (UT). For case (ii), the test for testing of H?

0 : β1 = 0 against
H?

A : β1 > 0 with test function φRT
n is called the restricted test (RT). For case (iii), testing

H(1)
0 : β2 = 0 is recommended to remove the uncertainty of the suspicious values of β2 = 0

before testing the significance of β1. The testing on H(1)
0 : β2 = 0 against H(1)

A : β2 > 0
with test function φPT

n is known as a pre-test (PT). If the null hypothesis of this pre-test is
rejected, the UT is used to test H?

0 , otherwise the RT is used. The ultimate test for testing
H?

0 following a pre-testing on H(1)
0 is defined as the pre-test test (PTT) and the test function

is denoted by φPT T
n .

Many studies considered the estimation of parameters with non-sample prior informa-
tion on the values of the parameters for various models. This includes commonly known
preliminary test and Stein-type shrinkage estimators (see for instance, Khan and Saleh,
1997 and 2001, [1, 2]). However, in this paper we pursue the testing problem of the inter-
cept parameter under non-sample prior information on the slope parameter. Some studies
on the effect of the PT on the power of the PTT are found in literature for parametric cases
[3, 4] as well as for the non-parametric cases [5, 6, 7]. Tamura (1965) [5] investigated
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the performance of the PTT for one sample and two samples non-parametric problems.
Saleh and Sen (1982, 1983) [6, 7] proposed UT, RT and PTT based on rank test for sim-
ple linear model and simple multivariate model in two separate articles. Using sampling
distribution theory of rank statistics, they developed the procedures to obtain the power
functions for each test. Other than these two regression models, the UT, RT and PTT are
also proposed for the parallelism model. As such, Lambert et al. (1985) [8] derived size
and power of the UT, RT and PTT using the tests that are based on the least-squares (LS)
estimators. Although the tests based on LS estimators do not depend on the assumptions of
the underlying distribution of the error term, the LS estimates are identical to the maximum
likelihood (ML) estimates when the distribution of the error term is assumed to be normally
distributed. Both ML estimates and LS estimates are non robust with respect to deviation
from the assumed (normal) distribution (c.f. [9, p.21]). So, it is suspected that the tests
based on LS estimators are also non robust. The robust R-estimators are derived from the
rank tests because rank tests are asymptotically distribution free under the null hypothesis
(c.f. [10, p.281]). However, rank tests often preserve information about the order of the
data but discard the actual values, thus overlook information that may have led to a better
solution [11]. The most popular robust estimation method, however, is the M-estimation.
The M-estimation method is applied to the actual data, hence, its statistical test does not
suffer the same kind of lost of information as the rank test. One of the robust tests formu-
lated using the M-estimation methodology is the M-test. The M-test is originally proposed
by Sen (1982) [12] using the score function in the M-estimation methodology. It is ex-
pected that the M-test formulated by the M-estimation procedures inherits the robustness
properties of the estimation method, so the test is less sensitive to departures from model
assumptions. Sen (1982) [12] introduced the M-test for testing the significance of β2 only.
Recently, few unpublished papers [13] have used M-test for the UT, RT and PTT in the
regression model to investigate the performance of the tests.

In this paper, the M-tests for the UT, RT and PTT are proposed for the multiple re-
gression model. To author’s knowledge, no research has been done in investigating the
performance of the UT, RT and PTT for multiple regression model. There is no article
found in literature proposing UT, RT and PTT for this model based on rank tests. So, this
paper is the first attempt to the study of comparing the performance of UT, RT and PTT for
the multiple regression model. The asymptotic distribution theory of the test statistics that
are based on the score function in the M-estimation methodology developed by Jurečková
(1977) [14] and Jurečková and Sen (1996) [9, Ch. 5] is used in this paper. Although the
asymptotic results of [9, Ch.5] are used in deriving the distribution of the proposed test
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statistics; here these results are adopted for a different model in the context of testing after
pre-test.

The investigations on the comparisons of the UT, RT and PTT for simple multivariate
model [7] and parallelism model [8] are limited to analytical discussion only; the compu-
tational comparisons of the UT, RT and PTT are not provided in these papers. Perhaps, the
computational comparison of the UT, RT and PTT could not be given due to the nonexis-
tence tool to compute the power functions at that time. To compute the power of the PTT,
the bivariate integral of the non-central chi-square distribution is required. However, the
proposed bivariate non-central chi-square distribution in literature at the time their papers
were published are very complicated and not practical for computation. In this paper, we
refer to Yunus and Khan (2009b) [15] for the computation of the bivariate integral of the
non-central chi-square distribution. For simple multivariate model and parallelism model,
according to Saleh and Sen (1983) [7] and Lambert et al. (1985) [8], the power of the PTT
may be between those of the UT and RT. However, this statement is not clearly supported
by arguments in their papers probably due to the complicated form of the bivariate non-
central chi-square distribution that they used in the papers. Although multiple regression
model is considered in this paper, we obtain quite similar findings as the simple multi-
variate and parallelism models because the test statistic for the PTT is bivariate noncentral
chi-square distribution for all of these models. We discussed their statement in the findings
of this paper and support our findings with clear arguments and through simulated studies.

Along with some preliminary notions, the method of M-estimation is presented in Sec-
tion 2. The UT, RT and PTT are defined in Section 3. In Section 4, the asymptotic distri-
bution of the proposed test statistics are derived. These distributions are used to obtain the
power functions of the tests in Section 5. The analytical comparisons of the UT, RT and
PTT are also given in Section 5. The comparisons of the power function of the UT, RT
and PTT through simulation example are provided in Section 6. The final section presents
discussions and concluding remarks.

2 The M-estimation

Given an absolutely continuous function ρ : ℜ → ℜ, M-estimator of β is defined as the
solution of minimizing the objective function

n

∑
i=1

ρ
(

Xi−β′ci

Sn

)
(2.1)
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with respect to β ∈ ℜp. Here Sn is an appropriate scale statistic for some functional S =
S(F) > 0. If F is N(0,σ2), Sn = MAD/0.6745 is an estimate of S = σ, where MAD is the
mean absolute deviation ([16, p.78], [17, p.387]). If ψ = ρ′, then the M-estimator of β is
the solutions of the system of equations,

n

∑
i=1

ciψ
(

Xi−β′ci

Sn

)
= 0. (2.2)

For any r and s dimensional column vectors, t1 and t2 (r,s ∈ ℜ), consider the statistics
below

Mn1(t1, t2) =
n

∑
i=1

ci1ψ
(

Xi− t ′1ci1− t ′2ci2

Sn

)
, (2.3)

Mn2(t1, t2) =
n

∑
i=1

ci2ψ
(

Xi− t ′1ci1− t ′2ci2

Sn

)
. (2.4)

For a nondecreasing ψ : ℜ→ℜ, let β̃2 be the constrained M-estimator of β2 when β1 = 0,
that is, β̃2 is the solution of Mn2(0, t2) = 0 and it may be conveniently be expressed as

β̃2 = [sup{t2 : Mn2(0, t2) > 0} + inf{t2 : Mn2(0, t2) < 0}]/2 (2.5)

(cf. [12]). Note that for nondecreasing ψ function, Mn2(0, t2) is decreasing as t2 is increas-
ing (c.f. [9, p.85]). Similarly, let β̃1 be the constrained M-estimator of β1 when β2 = 0, that
is, β̃1 is the solution of Mn1(t1,0) = 0 and conveniently be expressed as

β̃1 = [sup{t1 : Mn1(t1,0) > 0} + inf{t1 : Mn1(t1,0) < 0}]/2. (2.6)

Theorem 1. Given the asymptotic properties of Mn1(·, ·) and Mn2(·, ·) in equations (A.1),
(A.2) and (A.3) in the Appendix A, asymptotically,

(i) n−
1
2 Mn1(0, β̃2)

d→ Nr(0,σ2
0Q?

1) under H?
0 : β1 = 0, (2.7)

(ii) n−
1
2 Mn2(β̃1,0) d→ Ns(0,σ2

0Q?
2) under H(1)

0 : β2 = 0, (2.8)

where Q?
1 = Q11−Q12Q−1

22 Q21 and Q?
2 = Q22−Q21Q−1

11 Q12.

Here, Nr(· , · ) represents an r-variate normal distribution with appropriate parameters.

Let σ2
0 =

R ∞
−∞ ψ2

(
X−β′c

S

)
dF(X −β′c). Here σ2

0 is the second moment of ψ(·) while the

first moment is zero by assuming F is symmetrically distributed at 0 and ψ is a skew sym-
metric function. Take Q11 = limn→∞

1
n Qn11 = limn→∞

1
n ∑n

i=1 ci1c′i1, Q12 = limn→∞
1
n Qn12 =

limn→∞
1
n ∑n

i=1 ci1c′i2, Q21 = limn→∞
1
n Qn21 = limn→∞

1
n ∑n

i=1 ci2c′i1 and Q22 = limn→∞
1
n Qn22

= limn→∞
1
n ∑n

i=1 ci2c′i2. Assume that |Q11| 6= 0, |Q22| 6= 0, |Q?
1| 6= 0 and |Q?

2| 6= 0.
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3 The UT, RT and PTT

3.1 The unrestricted test (UT)

If β2 is unspecified, φUT
n is the test function of H?

0 : β1 = 0 against H?
A : β1 > 0. Under H?

0 ,

Xi = β′2ci2 + ei. We consider test statistic

TUT
n =

Mn1(0, β̃2)
′
Q?

n1
−1Mn1(0, β̃2)

S(1)
n

2 ,

where β̃2 (given in equation (2.5)) is a constrained M-estimator of β2 under H?
0 . It follows

from equation (2.8) that TUT
n is χ2

r (chi-square distribution with r degrees of freedom) under

H?
0 as n→ ∞, with Q?

n1
= Qn11 −Qn12Q−1

n22
Qn21 and S(1)

n
2
= ∑ψ2

(
Xi−β̃′2ci2

Sn

)
/n.

Let `UT
n,α1

be the critical value of TUT
n at the α1 level of significance. So, for the

test function φUT
n = I(TUT

n > `UT
n,α1

), the power function of the UT becomes ΠUT
n (β1) =

E(φUT
n |β1) = P(TUT

n > `UT
n,α1

|β1), where I(A) is an indicator function of the set A. It takes
value 1 if A occurs, otherwise it is 0.

3.2 The restricted test (RT)

If β2 = 0, φRT
n is the test function for testing H?

0 : β1 = 0 against H?
A : β1 > 0. The proposed

test statistic is

T RT
n =

Mn1(0,0)′Qn11
−1Mn1(0,0)

S(2)
n

2 .

It follows from equation (A.3) that for large n, T RT
n

d→ χ2
r under H0 : β1 = 0,β2 = 0 where

S(2)
n

2
= ∑ψ2

(
Xi
Sn

)
/n. Again, let `RT

n,α2
be the critical value of T RT

n at the α2 level of sig-

nificance. So, for the test function φRT
n = I(T RT

n > `RT
n,α2

), the power function of the RT
becomes ΠRT

n (β1) = E(φRT
n |β1) = P(T RT

n > `RT
n,α2

|β1).

3.3 The pre-test (PT)

For the preliminary test on the slope, φPT
n is the test function for testing H(1)

0 : β2 = 0 against
H(1)

A : β2 > 0. Under H(1)
0 , Xi = β′1ci1 + ei. The proposed test statistic is

T PT
n =

Mn2(β̃1,0)
′
Q?

n2
−1Mn2(β̃1,0)

S(3)
n

2 ,
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where β̃1 (given in equation (2.6)) is a constrained M-estimator of β1. It follows from

equation (2.7) that T PT
n

d→ χ2
s under H(1)

0 , where Q?
n2

= Qn22 −Qn21Q−1
n11

Qn12 and S(3)
n

2
=

∑ψ2
(

Xi−β̃′1ci1
Sn

)
/n.

3.4 The pre-test test (PTT)

Let φPT T
n be the test function for testing H(1)

0 following a pre-test on β. Since the PTT is a
choice between RT and UT, define,

φPT T
n = I[(T PT

n < `PT
n,α3

,T RT
n > `RT

n,α2
) or (T PT

n > `PT
n,α3

,TUT
n > `UT

n,α1
)], (3.1)

where `PT
n,α3

is the critical value of T PT
n at the α3 level of significance. The power function

of the PTT is given by

ΠPT T
n (β1) = E(φPT T

n |β1) (3.2)

and the size of the PTT is obtained by substituting β1 = 0 in equation (3.2).

4 Asymptotic distribution of UT, RT, PT and PTT

In this section, the asymptotic distributions of UT, RT, PT and PTT are derived under local
alternative hypotheses, {Kn} (see below). These distributions are essential to obtain the
power functions of the UT, RT and PTT. To derive the power function of the PTT, we
require to find the joint distributions of

[
TUT

n ,T PT
n

]
and

[
T RT

n ,T PT
n

]
.

Theorem 2. Let {Kn} be a sequence of local alternative hypotheses, where

Kn : (β1,β2) = (n−
1
2 λ1,n−

1
2 λ2), (4.1)

with λ1 = n
1
2 β1 > 0 and λ2 = n

1
2 β2 > 0 are (fixed) real numbers. Under {Kn}, asymptoti-

cally,

(i) 
 n−

1
2 Mn1(0, β̃2)

n−
1
2 Mn2(β̃1,0)


 d→ Np




 γQ?

1λ1

γQ?
2λ2


 ,σ2

0


 Q?

1 Q?
12

Q?
21 Q?

2





 , (4.2)

(ii)

 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


 d→ Np





 γ(Q11λ1 +Q12λ2)

γQ?
2λ2


 ,σ2

0


 Q11 0

0 Q?
2





 , (4.3)
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where Q?
12 = Q12Q−1

22 Q21Q−1
11 Q12 −Q12, Q?

21 = Q21Q−1
11 Q12Q−1

22 Q21 −Q21 and γ = 1
S

R ∞
−∞ ψ′

(
X−β′c

S

)
dF(X −β′c).

Theorem 3. Under {Kn}, asymptotically (T RT
n ,T PT

n ) are independently distributed as bi-
variate noncentral chi-square distribution with (r,s) degrees of freedom and (TUT

n ,T PT
n )

are distributed as correlated bivariate noncentral chi-square distribution with (r,s) degrees
of freedom and noncentrality parameters,

θUT =
γ2

σ2
0
(λ′1Q?

1λ1), (4.4)

θRT =
γ2

σ2
0
(λ′1Q11λ1 +λ′1Q12λ2 +λ′2Q21λ1 +λ′2Q21Q−1

11 Q12λ2), (4.5)

θPT =
γ2

σ2
0
(λ′2Q?

2λ2). (4.6)

Proof. The proof of this theorem is directly obtained using Theorem 2 and Theorem 1.4.1
of Muirhead (1982) [18].

5 Asymptotic properties for UT, RT and PTT

Using results in Section 4, under {Kn}, the asymptotic power function for the UT is

ΠUT (λ1,λ2) = lim
n→∞

ΠUT
n (λ1,λ2) = lim

n→∞
P(TUT

n > `UT
n,α1

|Kn) = 1−Gr(χ2
r,α1

;θUT ), (5.1)

the asymptotic power function for the RT is

ΠRT (λ1,λ2) = lim
n→∞

ΠRT
n (λ1,λ2) = lim

n→∞
P(T RT

n > `RT
n,α2

|Kn) = 1−Gr(χ2
r,α2

;θRT ), (5.2)

and the asymptotic power function for the PT is

ΠPT (λ1,λ2) = lim
n→∞

ΠPT
n (λ1,λ2) = lim

n→∞
P(T PT

n > `PT
n,α3

|Kn) = 1−Gs(χ2
s,α3

;θPT ), (5.3)

where Gk(χ2
k,αν

;θh) is the cumulative density function of the noncentral chi-square distri-
bution with k degrees of freedom (d.f) and noncentrality parameter θh in which h is any of
the UT, RT and PTT. The level of significance, αν,ν = 1,2,3 is chosen together with the
critical values `h

n,αν for the UT, RT and PT. Here, χ2
k,α is the upper 100α% critical value

of a central chi-square distribution and `UT
n,α1

→ χ2
r,α1

under H?
0 , `RT

n,α2
→ χ2

r,α2
under H0 and

`PT
n,α3

→ χ2
s,α3

under H(1)
0 .
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When θRT ≥ θUT , the asymptotic size of the RT is larger than that of the UT but the
asymptotic power of the UT is smaller than that of the RT. For testing H?

0 following a pre-
test on β2, using equation (3.1) and the results in Section 4, the asymptotic power function
for the PTT under {Kn} is given by

ΠPT T (λ1,λ2)

= lim
n→∞

P(T PT
n ≤ `PT

n,α3
,T RT

n > `RT
n,α2

|Kn)+ lim
n→∞

P(T PT
n > `PT

n,α3
,TUT

n > `UT
n,α1

|Kn)

= Gs(χ2
s,α3

;θPT ){1−Gr(χ2
r,α2

;θRT )}+
Z ∞

χ2
r,α1

Z ∞

χ2
s,α3

φ?(w1,w2)dw1dw2, (5.4)

where φ?(·) is the density function of a bivariate noncentral chi-square distribution. It
is observed that Gs(χ2

s,α3
; θPT ) is decreasing as the value of θPT is increasing and 1−

Gr(χ2
r,α2

;θRT ) is increasing as the value of θRT is increasing.
The probability integral in (5.4) is given by

Z ∞

χ2
r,α1

Z ∞

χ2
s,α3

φ?(w1,w2)dw1dw2

=
∞

∑
j=0

∞

∑
k=0

∞

∑
δ1=0

∞

∑
δ2=0

(1−ρ2)(r+s)/2 Γ( r
2 + j)

Γ( r
2 ) j!

Γ( s
2 + k)

Γ( s
2 )k!

ρ2( j+k)

×
[

1− γ?

(
r
2

+ j +δ1,
χ2

r,α1

2(1−ρ2)

)][
1− γ?

(
s
2

+ k +δ2,
χ2

s,α3

2(1−ρ2)

)]

×e−θUT /2(θUT /2)δ1

δ1!
e−θPT /2(θPT /2)δ2

δ2!
, (5.5)

with (r,s) degrees of freedom, noncentrality parameters, θUT and θPT and correlation coef-
ficient,−1 < ρ < 1. Here, γ?(v,d) =

R d
0 xv−1e−x/Γ(v)dx is the incomplete gamma function.

For details on the evaluation of the bivariate integral, see Yunus and Khan (2009b) [15]. The
density function of the bivariate noncentral chi-square distribution given above is a mixture
of the bivariate central chi-square distribution of two central chi-square random variables
with different degrees of freedom (see [19, 20]) with the probabilities from the Poisson dis-
tribution. Let ρ2 = ∑p

j=1
1
p ρ2

j , the mean correlation, where ρ j is the correlation coefficient

for any two different elements of the augmented vector
[

n−
1
2 Mn1(0, β̃2),n

− 1
2 Mn2(β̃1,0)

]

in equation (4.2).
We observe that when ρ 6= 0 and θRT ≥ θUT , then (i) ΠPT T < ΠUT ≤ ΠRT for small

(large) λ1 and large (small) λ2, (ii) ΠUT ≤ΠPT T ≤ΠRT for small λ1 and λ2. These results
are derived in Appendix B.
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This confirms that the asymptotic size of the PTT is larger than that of the UT but less
than that of the RT. For small and moderate values of λ1 and λ2, the asymptotic power of
the PTT is larger than that of the UT but less than that of the the RT. But for large λ1 or λ2,
the asymptotic power of the PTT may be smaller than that of the UT as well as the RT.

6 Illustrative example

For this illustrative example, we consider samples of size 100 from the multiple linear
regression model in equation (1.1) with p = 3, r = 1 and s = 2. The random errors, ei’s
(i = 1,2, . . . ,100) are generated from the standard normal distribution using a code in R.
Then, set βν = 1 for ν = 1,2,3. Let c1i = 1 while c2i and c3i are 0 or 1 with 50% for each.
In practice, often the normality assumption is not met due to the presence of contaminants
in the collected data. In this example, to create contaminated observations, we randomly
choose to replace m(< n) of the n responses with some additive contamination, such that the
contaminated responses X ′i is X ′i = β1 +β2c2i +β3c3i +di with di is generated from uniform
distribution, U [−5,−3.5] and U [3.5,5] with 50% for each. Only 10% contamination in
the data is considered for simulation. For the contaminated data, the power functions of
the UT, RT and PTT are calculated by equations (5.1), (5.2) and (5.4) using the Huber
ψ-function, ψH(Ui) = −k if Ui < −k, Ui if |Ui| ≤ k, k if Ui > k, where Ui = (Xi −
β1−β2c2i−β3c3i)/Sn with Sn = MAD/0.6745 and MAD is known as the mean absolute
deviation. As suggested in many reference books (e.g [16, p.76]), the value of k = 1.28 is
chosen because k = 1.28 is the 90th quantile of a standard normal distribution, so, there is
a 0.8 probability that a randomly sampled observations will have a value between −k and
k. The estimate for σ2

0 is taken to be ∑ψ2
H(Ui)/n. For the estimation of γ, an R-estimate

from the Wilcoxon sign rank statistic is used. The estimate of γ is the value of t such
that S(V1, . . . ,Vn, t) = ∑n

i=1 sign(Vi− t)an(R+
ni
(t)) = 0, where R+

ni
(t) is the rank of Vi− t and

an(k) = k/(n + 1),k = 1, . . . ,n. Here, Vi = ψ′H(Ui)/Sn where ψ′H(Ui) is just the derivative
of the Huber ψ-function.

Let λ1 = [ λ1 ] and λ2 = [ λ2 λ3 ]′. Here, we set αν = 0.05 for ν = 1,2,3 and
consider all the cases when θRT ≥ θUT . In Figure 1, the power of the UT, RT and PTT are
plotted against λ1 for selected values of [λ2, λ3]. As λ1 grows large, power of all tests grow
large too. Although the power of the UT and RT are increasing to 1 as λ1 is increasing, the
power of the PTT is increasing to a value that is less than 1. The analytical findings in the
previous Section supports these graphical results.

Since the UT, RT and PTT are defined based on the knowledge of β2 = [ β2 β3 ]′,
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Figure 1: Graphs of power of the tests as a function of λ1 for selected values of λ2 and
α1 = α2 = α3 = α = 0.05.

the size and power of each test are plotted against b such that λ2 = [ b b ]′ in Figure 2.
Figure 2 depicts that the RT has the largest power but also the largest size as b grows larger.
On the contrary, the UT has constant smallest size regardless of the value of b but constant
smallest power when b < q, where q is some positive value. From the observations, the
PTT is a compromise in minimizing the size and maximizing the power when b < q. This
is because it has smaller size than the RT but larger power than the UT. However, the PTT
has the lowest power than the other tests when b > q. Although the prior information on
the β2 vector may be uncertain, there is a high possibility that the true values are not too far
from the suspected values. Therefore, the study on the behaviour of the three tests when

Yunus and Khan 161



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b, where λ2 =[b,b]T

si
ze

 o
f t

he
 te

st

(a) Size of the test for λ1=[0]

ΠUT

ΠRT

ΠPTT

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b, where λ2 =[b,b]T

po
w

er
 o

f t
he

 te
st

(b) Power of the test for λ1=[1]

ΠUT

ΠRT

ΠPTT

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b, where λ2 =[b,b]T

po
w

er
 o

f t
he

 te
st

(c) Power of the test for λ1=[2]

ΠUT

ΠRT

ΠPTT

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b, where λ2 =[b,b]T

po
w

er
 o

f t
he

 te
st

(d) Power of the test for λ1=[4]

ΠUT

ΠRT

ΠPTT

Figure 2: Graphs of power of the tests as a function of λ2 for selected values of λ1 and
α1 = α2 = α3 = α = 0.05.

b < q is more realistic. The properties of some of the proposed test statistics have already
been studied and used to define preliminary test and shrinkage M-estimators by Ahmed et.
al. (2006) [21].

7 Concluding Remarks

In this paper, the proposed M-tests do not depend on the assumptions on the distribution of
the population. The asymptotic sampling distributions of the UT, RT and PT follow univari-
ate noncentral chi-square distribution under the alternative hypothesis when the sample size
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is large. However, the sampling distribution of the PTT is a bivariate noncentral chi-square
distribution as there is a correlation between the UT and PT. Note that there is no such cor-
relation between the RT and PT. The new R code defined in Yunus and Khan (2009b) [15] is
used for the computation of the distribution function of the bivariate noncentral chi-square
distribution to evaluate the power function of the PTT .

The RT has the largest power among the three tests, but it also has the largest size. On
the other hand the UT has smallest size, but it has the smallest power as well except when
λ1 = n

1
2 β1 or λ2 = n

1
2 β2 is large. So, both UT and RT fail to achieve the highest power and

lowest size simultaneously. The PTT has smaller size than the RT. It also has higher power
than the UT, except for very large values of λ1 or λ2. Therefore if the prior information
is not far away from the true value, that is, λ2 is near 0 (small or moderate) the PTT has
smaller size than the RT and higher power than the UT. Hence is it a better compromise
between the two extremes. Since the prior information is coming from previous experience
or expert knowledge, it is reasonable to expect λ2 should not be too far away from 0,
although it may not be 0, and hence the PTT demonstrate a reasonable domination over the
other two tests in more realistic situation.
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A Appendix A

The following asymptotic results of [9, p.221]), [12, 14] are used in deriving the distribution
of the proposed tests. For simplicity, we assume S is known or consider the nonstudentized
M-estimator, so we omit condition M1 of [9, p.217] and let Sn = S in equation (5.5.29) of
[9, p.221]. Thus,

• Under β1 = a,β2 = b where a and b are r and s dimensional column vectors of any
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real numbers, as n grows large,

sup{n−
1
2 |Mn1{(a,b)+(t1, t2)}−Mn1(a,b)+nγ(Q11t1 +Q12t2)| :

|t1| ≤ n−
1
2 K, |t2| ≤ n−

1
2 K} p→ 0, (A.1)

sup{n−
1
2 |Mn2{(a,b)+(t1, t2)}−Mn2(a,b)+nγ(Q21t1 +Q22t2)| :

|t1| ≤ n−
1
2 K, |t2| ≤ n−

1
2 K} p→ 0. (A.2)

• Under β1 = 0,β2 = 0, as n grows large,

n−
1
2


 Mn1(0,0)

Mn2(0,0)


 d→ Np





 0

0


 ,σ2

0


 Q11 Q12

Q21 Q22





 , (A.3)

where Np(· , · ) represents a p-variate normal distribution with appropriate parameters
and K ∈ℜ.

Proof of part (i) of Theorem 1. By equations (A.1) and (A.2), we find

n−
1
2 Mn1(0, β̃2) = n−

1
2 Mn1(0,β2)−n

1
2 γQ12(β̃2−β2)+op(1) and (A.4)

n−
1
2 Mn2(0, β̃2) = n−

1
2 Mn2(0,β2)−n

1
2 γQ22(β̃2−β2)+op(1) (A.5)

under H?
0 . Then, we obtain

n−
1
2 Mn1(0, β̃2) = n−

1
2 Mn1(0,β2)−n−

1
2 Q12Q−1

22 Mn2(0,β2)+op(1) (A.6)

by equations (2.5), (A.4) and (A.5) after some simple algebra.
Further, the distribution of n−

1
2 Mn1(0, β̃2) under H?

0 is the same as the distribution
of n−

1
2 Mn1(0,0)− n−

1
2 Q12Q−1

22 Mn2(0,0) under H0 : β1 = 0,β2 = 0 using equation (A.6)
and the fact that the distribution of Mn1(a,b) under θ = a,β = b is the same as that of
Mn1(θ−a,β−b) when θ = 0,β = 0, and similarly for Mn2(0,0) (c.f. [22, p.322]).

Therefore, utilizing equation (A.3), under H?
0 : β1 = 0 as n→∞, the proof of part (i) of

Theorem 1 is completed.

The proof for part (ii) of Theorem 1 is obtained in the same way as in part (i).

Proof of part (ii) of Theorem 2. Under H0 : β1 = 0, β2 = 0, with relation to (A.1) and (A.2),

 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)


+


 0

n
1
2 γQ21β̃1


 p→


 0

0


 . (A.7)
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Note also that under H0,

n−
1
2 Mn1(β̃1,0) = n−

1
2 Mn1(0,0)−n

1
2 γQ11β̃1 +op(1) (A.8)

and definition (2.6) reduce equation (A.8) to

n−
1
2 Q21Q−1

11 Mn1(0,0) = n
1
2 γQ21β̃1 +op(1). (A.9)

Therefore, under H0, equation (A.7) becomes

 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)−n

1
2 Q21Q−1

11 Mn1(0,0)


 (A.10)

=


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(β̃1,0)


−


 Ir 0

−Q21Q−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)


 p→


 0

0


 . (A.11)

Now utilizing the contiguity of probability measures (see [23, Ch.7]) under {Kn} to those
under H0, the equation (A.11) implies that

[
n−

1
2 M′

n1
(0,0) n−

1
2 M′

n2
(β̃1,0)

]′

under {Kn} is asymptotically equivalent to the random vector

 Ir 0

−Q21Q−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




under H0. But the asymptotic distribution of the above random vector under {Kn} is the
same as 

 Ir 0

−Q21Q−1
11 Is





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)




under H0 by the fact that the distribution of Mn1(a,b) under θ = a,β = b is the same as that
of Mn1(θ−a,β−b) under θ = 0,β = 0, and similarly for Mn2(0,0) (c.f. [22, p.322]).

Note that under H0, with relation to (A.1) and (A.2),

 n−

1
2 Mn1(n

− 1
2 λ1,n−

1
2 λ2)

n−
1
2 Mn2(n

− 1
2 λ1,n−

1
2 λ2)


 =


 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)




+


 γ(Q11λ1 +Q12λ2)

γ(Q21λ1 +Q22λ2)


+


 op

op


 .

(A.12)
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Hence, by equation (A.3), under H0,

 n−

1
2 Mn1(n

− 1
2 λ1,n−

1
2 λ2)

n−
1
2 Mn2(n

− 1
2 λ1,n−

1
2 λ2)


→ Np





 γ(Q11λ1 +Q12λ2)

γ(Q21λ1 +Q22λ2)


 , σ2

0


 Q11 Q12

Q21 Q22





 .

(A.13)

Thus, as n→ ∞, the distribution of
[

n−
1
2 M′

n1
(0,0) n−

1
2 M′

n2
(β̃1,0)

]′

under {Kn} is p-variate normal with mean vector

 Ir 0

−Q21Q−1
11 Is





 γ(Q11λ1 +Q12λ2)

γ(Q21λ1 +Q22λ2)


 =


 γ(Q11λ1 +Q12λ2)

γ(Q22−Q21Q−1
11 Q12)λ2




and covariance matrix

 Ir 0

−Q21Q−1
11 Is


σ2

0


 Q11 Q12

Q21 Q22





 Ir 0

−Q21Q−1
11 Is



′

= σ2
0


 Q11 0

0 Q?
2


 .

Since the two statistics n−
1
2 Mn1(0,0) and n−

1
2 Mn2(β̃1,0) are uncorrelated, asymptotically,

they are independently distributed normal vectors.

Proof of part (i) of Theorem 2. Under H0 : β1 = 0, β2 = 0, with relation to (A.1) and (A.2),
(2.5), (A.9),

 n−

1
2 M′

n1
(0, β̃2)

n−
1
2 M′

n2
(β̃1,0)


−


 Ir −Q12Q−1

22

−Q21Q−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)


 p→


 0

0


 .(A.14)

Now utilizing the contiguity of probability measures under {Kn} to those under H0, the
equation (A.14) implies that

[
n−

1
2 M′

n1
(0, β̃2) n−

1
2 M′

n2
(β̃1,0)

]′

under {Kn} is asymptotically equivalent to the random vector

 Ir −Q12Q−1

22

−Q21Q−1
11 Is





 n−

1
2 Mn1(0,0)

n−
1
2 Mn2(0,0)
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under H0. But the asymptotic distribution of the above random vector under {Kn} is the
same as 

 Ir −Q12Q−1
22

−Q21Q−1
11 Is





 n−

1
2 Mn1(−n−

1
2 λ1,−n−

1
2 λ2)

n−
1
2 Mn2(−n−

1
2 λ1,−n−

1
2 λ2)




under H0. Then, equation (4.2) follows from equation (A.13) after some algebra. Since
n−

1
2 Mn1(0, β̃2) and n−

1
2 Mn2(β̃1,0) are uncorrelated, asymptotically, they are independently

distributed normal vectors.

B Appendix B

Write the second term on the right hand side of the equation (5.4) as
Z ∞

χ2
r,α1

Z ∞

χ2
s,α3

φ?(w1,w2)dw1dw2 = [1−Hr(χ2
r,α1

;θUT )][1−Hs(χ2
s,α3

;θPT )], (B.1)

where Hr(χ2
r,α1

;θUT )= ∑∞
j=0 ∑∞

δ1=0
(1−ρ2)r/2Γ( r

2 + j)ρ2 j

Γ( r
2 ) j! γ?

(
r
2 + j +δ1,

χ2
r,α1

2(1−ρ2)

)
e−θUT /2(θUT /2)δ1

δ1!

and Hs(χ2
s,α3

;θPT )= ∑∞
k=0 ∑∞

δ2=0
(1−ρ2)s/2Γ( s

2 +k)ρ2k

Γ( s
2 )k! γ?

(
s
2 + k +δ2,

χ2
s,α3

2(1−ρ2)

)
e−θPT /2(θPT /2)δ2

δ2! .

Note, Hr(χ2
r,α1

;θUT ) ≥ Gr(χ2
r,α1

;θUT ) and Hs(χ2
s,α3

;θPT ) ≥ Gs(χ2
s,α3

;θPT ). Equality is
achieved when ρ = 0, or when λ1 = 0 and λ2 = 0.

Consider all the cases when θRT ≥ θUT and ρ 6= 0. So, using equation (B.1), we write
equation (5.4) as

ΠPT T (λ1,λ2) ≤ ΠRT (λ1,λ2)[1−ΠPT (λ1,λ2)]+ΠUT (λ1,λ2)ΠPT (λ1,λ2). (B.2)

Equality in equation (B.2) is achieved when both λ1 and λ2 are 0. Obvious, ΠPTT (λ1,λ2) <

ΠRT (λ1,λ2)−ΠPT (λ1,λ2)v2 for 0≤ v2 < 1, and it follows that ΠPTT (λ1,λ2)≤ΠRT (λ1,λ2)
for any λ1 and λ2. Equality holds when both λ1 and λ2 are 0.

Rewrite equation (5.5) as
Z ∞

χ2
r,α1

Z ∞

χ2
s,α3

φ?(w1,w2)dw1dw2

= 1−Hr(χ2
r,α1

;θUT )−Hs(χ2
s,α3

;θPT )+
Z χ2

r,α1

0

Z χ2
s,α3

0
φ?(w1,w2)dw1dw2. (B.3)

When λ2 is not large but not 0 and λ1 is sufficiently large, the first term on the right hand
side of the equation (5.4) becomes G(χ2

s,α3
;θPT ) because θRT is sufficiently large. The
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second and fourth terms on the right hand side of the equation (B.3) becomes 0 because
θUT is large. Also, note that Hs(χ2

s,α3
;θPT ) > Gs(χ2

s,α3
;θPT ). So, ΠPT T < ΠUT = 1 for

sufficiently large λ1 and not so large λ2 (6= 0).
Let α1 = α2 = α3 = α. When λ2 = 0 and λ1 is sufficiently large, the first term on the

right hand side of the equation (5.4) becomes 1−α because θRT is large. Both Hr(χ2
r,α;θUT )

and
R χ2

r,α
0

R χ2
s,α

0 φ?(w1,w2)dw1dw2 of the equation (B.3) become 0 while Hs(χ2
r,α;θPT ) be-

comes 1−α. So, ΠPT T = ΠUT = 1 when λ1 is sufficiently large and λ2 = 0.
In the same manner, we observe results given in (c)-(f) below

(a) When λ2 ( 6= 0) is not large and λ1 is sufficiently large, then, ΠPT T < ΠUT = 1.

(b) When λ2 = 0 and λ1 is sufficiently large, then, ΠPT T = ΠUT = 1.

(c) When λ1 is not large but λ2 is sufficiently large, then, ΠPTT < ΠUT = 1.

(d) When λ1 = 0 and λ2 is sufficiently large, then, ΠPT T = ΠUT = α.

(e) When both λ2 and λ1 are sufficiently large, then, ΠPT T < ΠUT .

(f) When both λ1 and λ2 are 0, then ΠPT T = ΠUT = α.

Also, we find from equations (5.4) and (B.1) that ΠPT T > ΠUT if ΠRT

Hr(χ2
r,α;θUT )

>
Hs(χ2

s,α;θPT )
(1−ΠPT ) .

We observe, when both λ1 and λ2 are 0, the ΠUT = ΠRT = ΠPTT = α. As λ1 grows larger
and λ2 fixed at 0, ΠUT , ΠRT and ΠPT T grow larger and approach 1 with ΠUT ≤ ΠPT T ≤
ΠRT .

When λ1 = 0 and λ2 is small (6= 0), we find ΠPT T (0,λ2) > ΠUT (0,λ2) = α if ΠRT

α >
Hs(χ2

s,α;θPT )
(1−ΠPT ) . As λ1 grows larger and λ2 fixed at some small positive vector, ΠUT and ΠRT

grow large and approach 1, however, ΠPT T grows large and approaches a value less than
1. Note, ΠUT ≤ΠPT T ≤ΠRT when 0 < λ1 ≤ q1, and ΠPT T ≤ΠUT ≤ΠRT when λ1 > q1,
where q1 is some positive vector.
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