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Abstract

Rainfall probability charts have been used to quantify the effect of

the Southern Oscillation Index on rainfall for many years. To better

understand the effect of the SOI phases, we discuss forming confidence
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intervals on the predicted rainfall quantiles using percentile bootstrap

methods.
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1 Introduction

The relationship between the Southern Oscillation Index (SOI) and rainfall

has been well known for many years (for example, Troup (1965), Quinn and

Burt (1972) and others). Using the SOI, Stone and Auliciems (1992) con-

structed five phases of the SOI which can then be used to study the effect of

the SOI. The use of phases has proved to be far more constructive than using

just the raw SOI itself. The phases have since been used to study the effects

on cropping (for example, Meinke et al., 1996), frost (for example, Willcocks

and Stone, 2000 and Stone et al., 1996a), assessing planting opportunities

(Stone and McKeon, 1993), wheat crop management (Hammer et al. 1996),

the effects of sorghum ergot on sorghum production (Meinke and Ryley 1997)

and other phenomena. In addition, the SOI phases have been used in the

APSIM computer simulation software (McCown et al. (1995)) to model the
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growing of crops.

Despite the successful use of the method, one shortcoming, however, is

that no confidence bands have been placed on the quantiles used in such

applications. Indeed, the determination of confidence limits for quantiles

on rainfall is a difficult, if not impossible, problem analytically. Confidence

bands would also serve to indicate the accuracy of the results reported in

the rainfall probability charts. Using the bootstrap method, however, such

confidence intervals can be generated using computer simulation.

In this paper, we add bootstrap confidence intervals to the rainfall prob-

ability charts (introduced by Stone and Auliciems (1992)) commonly used

to show the effects of the SOI phases on rainfall quantiles. In the past,

Kruskall-Wallis or Kolmogorov-Smirnoff non-parametric tests (see, for ex-

ample, Conover (1999)) on medians have been used to quantify the effects

of the SOI (for example, Stone and Auliciems 1992). Confidence intervals

provide more information, and enable the results to potentially be carried

into calculation based on the SOI phases.

In the next section, we briefly discuss the SOI phases. We then dis-

cuss the bootstrap method in Section 3, and different bootstrap methods for

confidence intervals in Section 4. In Section 5, we examine rainfall proba-
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bility charts produced using the bootstrap confidence intervals. Finally, in

Section 6, we conclude and make further comments.

2 The SOI Phases

Many attempts have been made to quantify the relationship between the

SOI and rainfall. The novel approach taken by Stone and Auliciems (1992)

is based on a principal components analysis and cluster analysis of the SOI.

This results in the monthly SOI and the changes in the monthly SOI being

used to classify the SOI trend into five different “phases”. Broadly speaking,

the five phases correspond to the SOI falling rapidly, staying consistently neg-

ative, staying consistently near zero, staying consistently positive, and rising

rapidly. Based on historical records, the rainfall (or any other phenomenon)

at any location with sufficient records can be gathered for each of the five

different phases, and the distributions of rainfall for these phases can be dis-

played using boxplots or rainfall probability charts. These charts usually

plot the proportion of years for which the rainfall exceeds given levels. For a

more complete discussion of the SOI phases, see Stone and Auliciems (1992).

Stone et al. (1996b) recently applied the phases to global rainfall prediction,
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and to the effect of the SOI on rainfall in the whole of Australia (Stone et

al. (1999).

In seasonal rainfall prediction, the SOI phases are usually used to predict

the total rainfall in the three months following the month in which the average

monthly SOI is calculated. We then define the pth rainfall quantile, rp,

as that value of rainfall below which a proportion p of years have received

greater rainfall. That is, the pth rainfall quantile of rainfall R is defined as

Pr(R > rp) = p. Note that this is different to the usual statistical definition

of quantiles, where we would have Pr(R < rp) = p.

3 The Bootstrap Method

The bootstrap method is a technique used for determining, among other

things, the accuracy of statistics. It relies heavily on computer simulations.

Traditionally, standard errors have been calculated using well known formu-

lae often based on assumptions that are not satisfied or only approximately

satisfied, or perhaps worse, where it is not known if the assumptions hold

or not. The use of bootstrap methods overcomes these problems. For an

excellent, easy to understand introduction to the subject, the reader is re-
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ferred to Efron and Tibshirani (1993) or DiCiccio and Efron (1996). More

mathematical details can be found, for example, in Hall (1992). In essence,

the bootstrap method relies on resampling with replacement from the given

sample and calculating the required statistic from these repeated samples.

The values of the statistic from the repeated sampling can then be used to

generate standard errors and confidence intervals for the statistic. It may

be clear to some readers that the bootstrap method shares come common

elements with other computational methods, such as the jackknife and cross-

validation. An illustrative, easy to follow example can be found in Efron and

Tibshirani (1993), Chapter 1.

One of the assumptions made, even in the bootstrap, is that the data are

independent. See Zwiers (1990), Remark 2.2 of Singh (1981), for example;

Wilks (1997), Künsch (1989) and Liu and Singh (1992) discuss blocking

bootstrap as a solution. The SOI series and the rainfall series themselves

naturally exhibit serial correlation. However, the current application does

not use the straight SOI or rainfall series, but selections from these that

satisfy certain criteria of SOI phase and month. For example, if we are

interested in the rainfall distribution for the three months starting in July

based on a June with an SOI Phase 5, our entire data set would comprise

6



the three month rainfall totals from the 28 years 1890, 1891, 1894, 1895,

1898, 1899, 1907, 1908, 1913 and so on, and serial correlation is not an issue.

Indeed, the autocorrelation function of the rainfall for the above years shows

no significant autocorrelations.

4 Applying the Bootstrap Method

More formally, we suppose a random sample of size n, x = (x1, x2, . . . , xn)

from an unknown population distribution F . We let the parameter of interest

be θ = t(F ), estimated from the sample x. We wish to find an estimate of θ

(say θ̂) using the information in the sample x; we let this statistic of interest,

then, be θ̂ = s(x). We then define a bootstrap sample as x∗ as a random

sample of size n drawn with replacement from the given sample x. From

this bootstrap sample, the statistic of interest can again be determined; this

bootstrap replication of θ̂ determined from x∗ is then denoted by θ̂∗. The

bootstrap estimate of the standard error of θ is then the standard error of θ̂

for the datasets of size n randomly drawn with replacement from F̂ .

In the context of confidence intervals, there are many bootstrap meth-

ods available. The percentile-t method uses the sample itself to generate
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the equivalent of t-scores in the usual normal theory confidence intervals.

These intervals are transformation respecting (Efron and Tibshirani (1993),

page 175). If an estimate is transformation respecting, the confidence in-

terval of the transformation of the parameter of interest, m = T (θ), is just

[mlow, mupp] = [T (θ̂low), T (θ̂upp)]. In practice, we can see how the confidence

intervals of rainfall quantiles would be used in further dependent studies (in

cropping simulations for example), and the transformation respecting prop-

erty may be of some importance.

The bias-corrected and accelerated version, usually abbreviated to BCa,

allows for bias correction, and also introduces a skewness adjustment. A

major shortcoming of the BCa method is that of undercoverage with small

samples and large values of α (Hall, 1992, §3.10.5). It is quite possible that

small samples will arise in this application (for example, when a particular

SOI phase has not historically occurred very often in a particular month).

The BCa method is also transformation respecting and second order accurate

(see Efron and Tibshirani, 1993, §14.3 for further details). The percentile

method is only first order accurate.

A further method is the approximate bootstrap confidence intervals, that

attempt to reduce the computation involved. This method, however, uses a
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Taylor series expansion and hence requires that θ̂ = s(x) be smooth, which

is not the case for quantiles.

There are numerous methods for confidence intervals; we have just pre-

viewed some of those. For the present application, we must be aware the

quantiles are not smooth, and in particular, finding confidence for quantiles

close to 0 and 100 must be treated carefully. For example, Johns (1988) uses

the concept of importance resampling to reduce the number of bootstrap

samples that need to be taken to produce desirable properties.

We decide that the percentile-t method is the best compromise to use in

the current application.

The idea of percentile intervals is reasonably simple. Suppose we generate

nB bootstrap samples from our data, and for each sample we determine the

statistic of interest, θ̂∗ = s(x∗). (The statistics of interest in our application

are the rainfall quantiles.) If we let the distribution function of θ̂∗ be F̂ (θ̂∗),

we can hence determine the 1 − 2α confidence interval as

[F̂−1(α), F̂−1(1 − α)].
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We can then define F̂−1(α) = θ̂∗(α), and write the confidence interval as

[θ̂∗(α), θ̂∗(1−α)].

Essentially, we determine the statistic for each bootstrap replication, and the

100(1−α) confidence interval is the αth and (1−α)th empirical percentiles.

5 Application of the Bootstrap to Rainfall

Quantiles

The percentile bootstrap method discussed in the previous section can now

be applied to the forming of rainfall quantiles based on phases of the SOI,

and displayed using rainfall probability charts. The calculations themselves

are relatively straight forward. The calculations were done in matlab (The

MathWorks Inc (1997)) but could also have be done in C++, FORTRAN,

S-Plus (MathSoft (1997)) or something else. matlab was chosen since the

code is more transparent.

For the purpose of an example, we use the rainfall records at Charleville

to demonstrate the technique. In the Figures, we plot the rainfall probability
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Figure 1: The 95% Confidence Intervals on the Rainfall Percentiles for Pre-
dicted Rainfall from August to October Based on a Phase 2 SOI in the
Previous July.

Figure 2: The 95% Confidence Intervals on the Rainfall Percentiles for Pre-
dicted Rainfall from September to November Based on a Phase 2 SOI in the
Previous June.

charts with the 95% confidence intervals supplied in dotted lines. We select

a few cases to show the types of plots that result. In practice, we found that

at least 1000 bootstrap samples were needed for reasonably stable bootstrap

confidence intervals, in line with the discussion in Efron and Tibshirani (1993)

§19.3.

It is clear from the figures that there is some measure of confidence that

we can place on the predicted rainfall quantiles. For example, using Figure 1,

the probability of obtaining at least 100mm of rain from August to October

based on a Phase 2 SOI in July is about 45%. We can also add some measure

of confidence to the prediction, stating that the 95% confidence interval is

between approximately 30% and 60%. These confidence intervals could po-

tentially be useful in modelling situations and computer simulations based on

Figure 3: The 95% Confidence Intervals on the Rainfall Percentiles for Pre-
dicted Rainfall from March to April Based on a Phase 3 SOI in the Previous
February.
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Figure 4: The 95% Confidence Intervals on the Rainfall Percentiles for Pre-
dicted Rainfall from November to January Based on a Phase 2 SOI in the
Previous October.

Figure 5: The 95% Confidence Intervals on the Rainfall Percentiles for Pre-
dicted Rainfall from January to March Based on a Phase 4 SOI in the Pre-
vious December.

the SOI, as discussed earlier, to introduce a confidence interval into forecasts.

6 Conclusion and Discussion

In this paper, we have discussed using SOI phases to predict rainfall patterns.

We have introduced the notion of adding confidence limits on predicted rain-

fall quantiles using the percentile form of the bootstrap. The results provide

useful bounds on the predicted rainfall quantiles based on SOI phases, which

serve to indicate the accuracy of the rainfall probability charts used by Stone

and Auliciems (1992). The methods could also be used to provide bounds

on other quantities that are based on SOI phases.

The concept of importance resampling (see Lange (1999), Johns (1988)

or Efron and Tibshirani (1993)) could also be used to increase the efficiency

of the procedure when finding quantiles with small or large α.
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