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Abstract
We consider new numerical schemes to solve two different systems of nonlinear frac-
tional reaction subdiffusion equations. These systemsof equationsmodel the reversible
reaction A + B � C in the presence of anomalous subdiffusion. The first model is
based on the Henry & Wearne [1] model where the reaction term is added to the
subdiffusion equation. The second model is based on the model by Angstmann, Don-
nelly & Henry [2] which involves a modified fractional differential operator. For both
models the Keller Box method [3] along with a modified L1 scheme (ML1), adapted
from the Oldham and Spanier L1 scheme [4], are used to approximate the spatial and
fractional derivatives respectively. Numerical prediction of both models were com-
pared for a number of examples given the same initial and boundary conditions and
the same anomalous exponents. From the results, we see similar short time behaviour
for both models predicted. However for long times the solution of the second model
remains positive whilst the Henry & Wearne based–model predictions may become
negative.

Keywords Fractional reaction subdiffusion equation · Keller Box method ·
Fractional calculus · L1 scheme · Nonlinear reactions systems

Mathematics Subject Classification 35K57 · 26A3 · 47H10 · 34A34

B Sheelan Osman
sheelan.osman@soran.edu.iq

Trevor Langlands
Trevor.Langlands@usq.edu.au

1 Department of Mathematics, Faculty of Sciences, Soran University, Kawa Street, Soran 44008,
KRG, Iraq

2 School of Sciences, Faculty of Health, Engineering and Sciences, University of Southern
Queensland, West Street, Toowoomba, QLD 4350, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-022-00096-2&domain=pdf
http://orcid.org/0000-0002-8757-9101


Numerical investigation of ... 2167

1 Introduction

Fractional reaction subdiffusion equations have been derived from Continuous Time
Random Walk models that take into account the effect of anomalous subdiffusion on
the reaction process by using long–tailed waiting time densities [1, 2, 5–7]. For a
variety of cases, master equations that control the temporal development of particle
density have been derived.Henry andWearne introduced thiswithmass action reaction
terms added to the sub-diffusion term [1]. The study of the solution of a fractional
reaction–subdiffusion equations has becomemore prominent and important since there
is growing estimation that anomalous diffusion is in fact ubiquitous in nature [8]. But
analytic solutions of such equations are seldom available and so numerical techniques
are needed. Even when they available they often involve special functions, such as
the Fox (H-function) function [9] and the Mittag–Leffler function [10], which are
difficult to routinely evaluate. Hence numerical solution schemes are required.

There are a number of numerical schemes that have been used to solve fractional
reaction–diffusion equations, [11–22]. Recently Angstmann, Donnelly, Henry &
Nichols [23] introduced a novel numerical scheme for solving a fractional Fokker–
Planck equation where the numerical scheme was constructed by a discrete time and
space stochastic process. They found that the probability density can be evaluated and
used to approximate the solution of the fractional Fokker–Planck equation. An explicit
numerical method is also developed by Angstmann et al. [24] is based on a stochastic
process and has been used to solve a fractional reaction subdiffusion equation. They
showed, in the diffusion limit, the master equation recovers the fractional partial dif-
ferential equation. In [25] a similar approach was also used to solve sets of fractional
ordinary differential equation for a modified SIR epidemic model. In this article we
consider twomodels of reversible reactions in the presence of anomalous subdiffusion,
which we solve numerically and compare their predictions. In these models we let A,
B and C be three chemical species undergoing a reversible reaction, A + B � C .
In the absence of diffusion, the concentration of A, B, and C can be modelled by the
following system of the reaction kinetic equations

d A

dt
= −k1AB + k−1C , (1.1)

dB

dt
= −k1AB + k−1C , (1.2)

dC

dt
= k1AB − k−1C , (1.3)

where k1 and k−1 are the forward and reverse reaction rates respectively. These equa-
tions correspond to the reaction A + B → C , if k−1 = 0, [26–29]. Reversible
reactions, in the presence of subdiffusion has been modelled by the system of frac-
tional reaction–diffusion equations by using the CTRWmodel as in the work of Henry
& Wearne [1], which we will denote as Model 1,

∂A(x, t)

∂t
= D

∂2

∂x2

(
∂1−γ A(x, t)

∂t1−γ

)
+ R(x, t, A, B,C), (1.4)
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∂B(x, t)

∂t
= D

∂2

∂x2

(
∂1−γ B(x, t)

∂t1−γ

)
+ R(x, t, A, B,C), (1.5)

∂C(x, t)

∂t
= D

∂2

∂x2

(
∂1−γC(x, t)

∂t1−γ

)
− R(x, t, A, B,C), (1.6)

where the reaction term R(x, t, A, B,C) is defined by

R(x, t, A, B,C) = −k1A(x, t)B(x, t) + k−1C(x, t). (1.7)

These equations involve the fractional Riemann–Liouville derivative operator [10,
30], where 0 < γ < 1. The solution of the Model 1 in the case C → A + B was
found by Langlands, Henry & Wearne [31] in the infinite domain. In their results a
negative value was predicted which is physically unrealistic.

We also consider a second model, which we will denote as Model 2, which is
based upon a more recent model from Angstmann, Donnelly & Henry [2] which has
a modified fractional operator. For the reversible reaction A + B � C we have the
following model

∂A(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 B(x,s)ds ∂1−γ

∂t1−γ

(
ek1

∫ t
0 B(x,s)ds A(x, t)

)]

+ R(x, t, A, B,C), (1.8)

∂B(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 A(x,s)ds ∂1−γ

∂t1−γ

(
ek1

∫ t
0 A(x,s)ds B(x, t)

)]

+ R(x, t, A, B,C), (1.9)

∂C(x, t)

∂t
= D

∂2

∂x2

[
e−k−1t ∂1−γ

∂t1−γ

(
ek−1tC(x, t)

)]
− R(x, t, A, B,C). (1.10)

This system includes a non-standard fractional derivative operator L1−γ
t f (t) of the

form

L1−γ
t f (t) = e−k1

∫ t
0 B(x,s)ds ∂1−γ

∂t1−γ

(
ek1

∫ t
0 B(x,s)ds f (t)

)
, (1.11)

which takes into account species may react and therefore be removed before diffusion
can take place. The main difference between the two models is Model 2 contain a
non-standard fractional derivative operator (1.11) but it is not include in Model 1.
Anomalous nodes in a network is an example for both models. Fedotov and Stage
demonstrated that anomalous cumulative inertia overpowers highly connected nodes
in attracting network individuals. This contradicts the classical result that people tend
to gather at high-order nodes [32].

The Keller Box method is an implicit numerical scheme which is second order
accurate in both space and timewhen applied to the standard diffusion equation [33]. In
the Keller Box method the order of spatial derivative in the equation is rewritten as the
first derivative of an introduced additional variable. This method can be used for more
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general equations where we cannot rewrite the fractional partial differential equation
with aCaputo derivative on the left. In thiswork, the currentmethods for approximating
fractional derivatives will need to be modified to approximate the operator in equation
(1.11). We consider numerical solutions for equations (1.4) – (1.6) and equations (1.8)
– (1.10), by applying the Keller Box method with the modification of the L1 scheme
as in [34, 35]. The main contribution is the discretization of the modified fractional
operator, there may be a similar method was used in [7].

2 Derivation of the numerical method for bothmodels

In this section a numerical scheme for solving both models is developed based upon
the Keller Box method. As in [34, 35], we denote the spatial grid points by xi , for
i = 0, 1, 2, . . . , N where x0 = 0 and xN = L with grid spacing �xi = xi − xi−1.
We also use the equally-spaced temporal points as t j = j�t , for j = 0, 1, ..., M with
the constant time step of �t = T /M . In the following sections we discuss in detail
the derivation of the scheme for Model 2. The scheme for Model 1 can be developed
in a similar manner. We approximate the Riemann-Liouville fractional derivative by
using the ML1 scheme developed in [34, 35], given by

[
d1−γ g(t)

dt1−γ

] j+ 1
2

ML1
= σγ

{
β j (γ )g0 + 2

(
1

2

)γ (
g j+ 1

2
− g j

)

+
j∑

k=1

μ j−k(γ ) (gk − gk−1)

}
, (2.1)

where σγ and the weights β j (γ ) and μ j−k(γ ) are given by

σγ = �tγ−1

�(1 + γ )
, β j (γ ) = γ

(
j + 1

2

)γ−1

and μ j (γ ) =
(
j + 3

2

)γ

−
(
j + 1

2

)γ

.

(2.2)

The ML1 scheme has been shown to be convergent of order O(�t1+γ ) for g(t) ∈
C2[0, t j+1/2], [35]. The similar scheme to ML1 scheme was used in [36] but
with different weights and include the estimation at the midpoints tk+1/2, where
k = 0, 1, 2, . . . , j . For the scheme given in [36] the convergence order was simi-
lar to that in [35].

2.1 The scheme for model 2

In this section we consider the second model given by equations (1.8) – (1.10). These
equations include the non-standard fractional derivative operator in equation (1.11).
The current methods for approximating fractional derivatives will need to be modified
to approximate the operator in equation (1.11). To do this we also define the auxiliary
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variables y1 and y2 as

y1(x, t) = e−k1
∫ t
0 B(x,s)ds, and y2(x, t) = e−k1

∫ t
0 A(x,s)ds . (2.3)

Taking the derivative with respect to t of equations (2.3) we then find the following
governing differential equations

∂ y1
∂t

= e−k1
∫ t
0 B(x,s)ds [−k1B(x, t)] = −k1B(x, t)y1(x, t), (2.4)

and

∂ y2
∂t

= e−k1
∫ t
0 A(x,s)ds [−k1A(x, t)] = −k1A(x, t)y2(x, t). (2.5)

These equations are supplemented by the initial conditions y1(x, 0) = 1 and
y2(x, 0) = 1. In the following we denote

δ2xu
j
i = u j

i+1 − 2u j
i + u j

i−1

�x2
and 	u j

i = u j
i+1 + 2u j

i + u j
i−1. (2.6)

Now the numerical scheme for solving the equations for Model 2 will be developed
based on the Keller Box method with the ML1 scheme as given in equations (2.1)
and (2.2). Here we approximate equations (1.8) – (1.10), (2.4), and (2.5) at the point(
xi− 1

2
, t j+ 1

2

)
. We shall only consider the discretisation of equation (1.8) with the

discretised equations corresponding to equations (1.9) and (1.10) can be found using
a similar process. Replacing the spatial derivative in equation (1.8) by

v = ∂

∂x

[
y1

∂1−γ

∂t1−γ

(
A

y1

)]
, (2.7)

then equation (1.8) can be rewritten as

[
∂A

∂t

] j+ 1
2

i− 1
2

= D

[
∂v

∂x

] j+ 1
2

i− 1
2

+ [R]
j+ 1

2

i− 1
2

, (2.8)

where [R]
j+ 1

2

i− 1
2
is defined by

[R]
j+ 1

2

i− 1
2

= −k1 [AB]
j+ 1

2

i− 1
2

+ k−1 [C]
j+ 1

2

i− 1
2

. (2.9)

Equation (2.7) is supplemented by

[
∂

∂x

(
y1

∂1−γ

∂t1−γ

(
A

y1

))] j

i− 1
2

= [v] j
i− 1

2
. (2.10)
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Approximating the first order spatial and time derivatives in equations (2.8) and (2.10),
by using the centred finite difference scheme, we then obtain the equations

1

�t

[
A j+1
i− 1

2
− A j

i− 1
2

]
= D

�xi

(
v
j+ 1

2
i − v

j+ 1
2

i−1

)
+ [R]

j+ 1
2

i− 1
2

, (2.11)

and

1

�xi

([
y1

∂1−γ

∂t1−γ

(
A

y1

)] j

i
−
[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j

i−1

)
= [v] j

i− 1
2
. (2.12)

We then approximate the term [R]
j+ 1

2

i− 1
2
by the corresponding spatial averages at i − 1

and i , and so equations (2.11) and (2.12) then become

1

2�t

[(
A j+1
i + A j+1

i−1

)
−
(
A j
i + A j

i−1

)]

= D

�xi

(
v
j+ 1

2
i − v

j+ 1
2

i−1

)
+ 1

2

(
[R]

j+ 1
2

i + [R]
j+ 1

2
i−1

)
, (2.13)

and

1

�xi

([
y1

∂1−γ

∂t1−γ

(
A

y1

)] j

i
−
[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j

i−1

)
= 1

2

(
v
j
i + v

j
i−1

)
. (2.14)

Solving equation (2.14) for v
j
i−1 and then combining with equation (2.13) gives

1

2�t

[(
A j+1
i + A j+1

i−1

)
−
(
A j
i + A j

i−1

)]
= 2D

�xi
v
j+ 1

2
i + 1

2

(
[R]

j+ 1
2

i + [R]
j+ 1

2
i−1

)

− 2D

�x2i

⎛
⎝[y1 ∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i
−
[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i−1

⎞
⎠ . (2.15)

Using a similar process to above, except now replacing i with i + 1 in equations (2.8)
and (2.10) and eliminating v

j
i+1, we obtain the equation

1

2�t

[(
A j+1
i+1 + A j+1

i

)
−
(
A j
i+1 + A j

i

)]
= − 2D

�xi+1
v
j+ 1

2
i + 1

2

(
[R]

j+ 1
2

i+1 + [R]
j+ 1

2
i

)

+ 2D

�x2i+1

⎛
⎝
[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i+1
−
[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i

⎞
⎠ . (2.16)

Combining these two equations then gives

1

2�t

[
�xi

(
A j+1
i + A j+1

i−1

)
+ �xi+1

(
A j+1
i+1 + A j+1

i

)]
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= 1

2�t

[
�xi

(
A j
i + A j

i−1

)
+ �xi+1

(
A j
i+1 + A j

i

)]

−
[

2D

�xi+1
+ 2D

�xi

]
y1

j+ 1
2

i

[
∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i

+ 2D

�xi+1
y1

j+ 1
2

i+1

[
∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i+1
+ 2D

�xi
y1

j+ 1
2

i−1

[
∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i−1

+ 1

2

[
(�xi + �xi+1) [R]

j+ 1
2

i + �xi [R]
j+ 1

2
i−1 + �xi+1 [R]

j+ 1
2

i+1

]
. (2.17)

After using theML1approximationof the fractional derivative, givenby equation (2.1),
in equation (2.17), replacing the terms at t = t j+ 1

2
by their corresponding temporal

averages and using the notation in equation (2.6), we then have the following equation,
given in the case of constant grid spacing �xi = �x , as

	A j+1
i − 4Dσγ

(
1

2

)γ

δ2x A
j+1
i = 	A j

i − 4Dσγ

(
1

2

)γ

δ2x A
j
i + d

(
1

2

)γ

φ
j
i (y1, A)

+ d
[(

y1
j+1
i+1 + y1

j
i+1

)
H j
i+1(y1, A) − 2

(
y1

j+1
i + y1

j
i

)
H j
i (y1, A)

+
(
y1

j+1
i−1 + y1

j
i−1

)
H j
i−1(y1, A)

]
+ �t

2

(
	R j+1

i + 	R j
i

)
. (2.18)

Here, at point p = i, i − 1, and i + 1, the terms H j
p (y1, A) and φ

j
i (y1, A) are denoted

by

H j
p (y1, A) = β j (γ )A0

p +
j∑

k=1

μ j−k(γ )

([
A

y1

]k
p

−
[
A

y1

]k−1

p

)
, (2.19)

and

φ
j
i (y1, A) = y1

j
i+1

[
A

y1

] j+1

i+1
− 2y1

j
i

[
A

y1

] j+1

i
+ y1

j
i−1

[
A

y1

] j+1

i−1

− y1
j+1
i+1

[
A

y1

] j

i+1
+ 2y1

j+1
i

[
A

y1

] j

i
− y1

j+1
i−1

[
A

y1

] j

i−1
, (2.20)

where σγ is defined in equation (2.2), and d is given by

d = 4D�tγ

�x2�(1 + γ )
. (2.21)
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In the above we have used the condition y1(x, 0) = 1. The corresponding equation
for a uniform mesh for species B in equation (1.9) is

	B j+1
i − 4Dαγ

(
1

2

)γ

δ2x B
j+1
i = 	B j

i − 4Dαγ

(
1

2

)γ

δ2x B
j
i + d

(
1

2

)γ

φ
j
i (y2, B)

+ d
[(

y2
j+1
i+1 + y2

j
i+1

)
H j
i+1(y2, B) − 2

(
y2

j+1
i + y2

j
i

)
H j
i (y2, B)

+
(
y2

j+1
i−1 + y2

j
i−1

)
H j
i−1(y2, B)

]
+ �t

2

(
	R j+1

i + 	R j
i

)
, (2.22)

where the terms H j
p (y2, B) and φ

j
i (y2, B) are defined analogously as in equations

(2.19) and (2.20) by replacing y1 with y2 and A with B. For species C , equation
(1.10), we have the equation

(
1 + �tk−1

2

)
	C j+1

i − 4Dσγ

(
1

2

)γ

δ2xC
j+1
i

=
(
1 − �tk−1

2

)
	C j

i + �(k−1,�t)σγ

(
1

2

)γ

δ2xC
j
i

+ 4Dσγ e
−k−1t j+ 1

2 δ2xϕ
j
i + �tk1

2

(
	 [AB] j+1

i + 	 [AB] ji

)
, (2.23)

where �(k−1,�t) = 4D(1 − 2e−k−1�t/2) and δ2xϕ
j
i is defined by

δ2xϕ
j
i = β j (γ )δ2xC

0
i +

j∑
r=1

μ j−r (γ )ek−1tr
(
δ2xC

r
i − e−�tk−1δ2xC

r−1
i

)
. (2.24)

Finallywe find the approximations for the equations for the auxiliary variables y1(x, t)
and y2(x, t) given in equations (2.4) and (2.5). Approximating the first order time
derivatives by a centred finite difference and approximating the values at t = t j+ 1

2
by

their temporal average, we then obtain the equations

[y1]
j+1
i = [y1]

j
i − �tk1

2

(
[By1]

j+1
i + [By1]

j
i

)
, (2.25)

and

[y2]
j+1
i = [y2]

j
i − �tk1

2

(
[Ay2]

j+1
i + [Ay2]

j
i

)
. (2.26)

Equations (2.18), (2.22) and (2.23), along with equations (2.25) and (2.26), form the
equations for the Keller Box method for Model 2.
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2.2 The scheme for Model 1

Using a similar procedure that was used for Model 2 as given in Section 2.1, the
corresponding equations for Model 1, equations (1.4), (1.5) and (1.6), are

	A j+1
i − 4Dσγ

(
1

2

)γ

δ2x A
j+1
i = 	A j

i − 4Dσγ

(
1

2

)γ

δ2x A
j
i

+ 4Dσγ

⎧⎨
⎩β j (γ )δ2x A

0
i +

j∑
k=1

μ j−k(γ )
(
δ2x A

k
i − δ2x A

k−1
i

)⎫⎬
⎭

+ �t

2

(
	R j+1

i + 	R j
i

)
, (2.27)

	B j+1
i − 4Dσγ

(
1

2

)γ

δ2x B
j+1
i = 	B j

i − 4Dσγ

(
1

2

)γ

δ2x B
j
i

+ 4Dσγ

⎧⎨
⎩β j (γ )δ2x B

0
i +

j∑
k=1

μ j−k(γ )
(
δ2x B

k
i − δ2x B

k−1
i

)⎫⎬
⎭

+ �t

2

(
	R j+1

i + 	R j
i

)
, (2.28)

and

	C j+1
i − 4Dσγ

(
1

2

)γ

δ2xC
j+1
i = 	C j

i − 4Dσγ

(
1

2

)γ

δ2xC
j
i

+ 4Dσγ

⎧⎨
⎩β j (γ )δ2xC

0
i +

j∑
k=1

μ j−k(γ )
(
δ2xC

k
i − δ2xC

k−1
i

)⎫⎬
⎭

+ �t

2

(
	R j+1

i + 	R j
i

)
, (2.29)

where again σγ is as defined earlier in (2.2). Equations (2.27), (2.28) and (2.29) form
the set of equations for the Keller Box method for Model 1.

3 Accuracy of the numerical method for bothmodels

In this section we consider the order of accuracy of the numerical schemes in Sec-
tions 2.1 and 2.2. We suppose that the continuous problem for both models, equations
(1.4) – (1.6) and equations (1.8) – (1.10), has a smooth solution such that A(xi , t j ),
B(xi , t j ), C(xi , t j ) and AB(xi , t j ) ∈ F(�), where

F(�) =
{

θ1(x, t)

∣∣∣∣∣
∂2θ1(x, t)

∂x2
,
∂2θ1(x, t)

∂t2
and

∂5θ1(x, t)

∂x4∂t
∈ C2(�)

}
(3.1)
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and � = {(x, t) | ≤ x ≤ L, 0 ≤ t ≤ T }.

3.1 Accuracy of the numerical method for Model 2

We now determine the truncation error of KBML1 scheme for Model 2. Equation
(2.18) can be rewritten as

�x2

4�t

[
δ2x A

j+1
i − δ2x A

j
i

]
+ 1

�t

[
A j+1
i − A j

i

]

= D�tγ−1

�(1 + γ )

(
1

2

)γ

δ2x�
j
p (y1, A) + D�tγ−1

�(1 + γ )
δ2x

[(
y1

j+1
p + y1

j
p

)
H j

p (y1, A)
]

+ 1

8

{
�x2

([
δ2x R

] j+1

i
+
[
δ2x R

] j
i

)
+ 4

(
[R] j+1

i + [R] ji

)}
, (3.2)

where at point p = i, i − 1, and i + 1, the term �
j
p(y1, A) is denoted by

�
j
p (y1, A) =

(
y1

j+1
p + y1

j
p

)([ A

y1

] j+1

p
−
[
A

y1

] j

p

)
. (3.3)

Note in the above, the following identity was used

[(
A j+1
i−1 − 2A j+1

i + A j+1
i+1

)
−
(
A j
i−1 − 2A j

i + A j
i+1

)]

+
[
y1

j
i+1

[
A

y1

] j+1

i+1
− y1

j+1
i+1

[
A

y1

] j

i+1
− 2y1

j
i

[
A

y1

] j+1

i

+2y1
j+1
i

[
A

y1

] j

i
+ y1

j
i−1

[
A

y1

] j+1

i−1
− y1

j+1
i−1

[
A

y1

] j

i−1

]

=
(
y1

j+1
i+1 + y1

j
i+1

)([ A

y1

] j+1

i+1
−
[
A

y1

] j

i+1

)
− 2

(
y1

j+1
i + y1

j
i

)
([

A

y1

] j+1

i
−
[
A

y1

] j

i

)
+
(
y1

j+1
i−1 + y1

j
i−1

)([ A

y1

] j+1

i−1
−
[
A

y1

] j

i−1

)
. (3.4)

After adding and subtracting the term

[
2D�tγ−1

�x2�(1 + γ )

(
1

2

)γ

ψ
j
p(y1, A)

]
, where

ψ
j
p(y1, A) is defined by

ψ
j
p(y1, A) =

(
y1

j+1
p + y1

j
p

)([ A

y1

] j+ 1
2

p
−
[
A

y1

] j

p

)
, (3.5)
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with p = i, i − 1, i + 1, equation (3.2) then becomes

�x2

4�t

[
δ2x A

j+1
i − δ2x A

j
i

]
+ 1

�t

[
A j+1
i − A j

i

]

= D�tγ−1

�x2�(1 + γ )

{
�x2(

1

2
)γ
[
δ2x�

j
p(y1, A) − 2δ2xψ

j
p(y1, A)

]

+
(
y1

j+1
i+1 + y1

j
i+1

)[
β j (γ )[ A

y1
]0i+1 + 2(

1

2
)γ

([
A

y1

] j+ 1
2

i+1
−
[
A

y1

] j

i+1

)

+
j∑

k=1

μ j−k(γ )

([
A

y1

]k
i+1

−
[
A

y1

]k−1

i+1

)⎤
⎦− 2(y1

j+1
i + y1

j
i )[β j (γ )

[
A

y1

]0
i

+ 2(
1

2
)γ

([
A

y1

] j+ 1
2

i
−
[
A

y1

] j

i

)
+

j∑
k=1

μ j−k(γ )

([
A

y1

]k
i
−
[
A

y1

]k−1

i

)
]

+
(
y1

j+1
i−1 + y1

j
i−1

)[
β j (γ )[ A

y1
]0i−1 + 2(

1

2
)γ

([
A

y1

] j+ 1
2

i−1
−
[
A

y1

] j

i−1

)

+
j∑

k=1

μ j−k(γ )([ A
y1

]ki−1 −
[
A

y1

]k−1

i−1
)

⎤
⎦
⎫⎬
⎭

+
{

�x2

8

(
[δ2x R] j+1

i +
[
δ2x R

] j
i

)
+ 1

2

(
[R] j+1

i + [R] ji
)}

. (3.6)

Note the second term on the right-hand side of equation (3.6) can be rewritten

in terms of the ML1 approximation acting upon the function

[
A

y1

]
p
, where p =

i, i − 1, i + 1, given in equation (2.1). Equation (3.6) can now be written as

A j+1
i − A j

i

�t
+ �x2

4�t

[
δ2x A

j+1
i − δ2x A

j
i

]
= D�tγ−1

�(1 + γ )

(
1

2

)γ

δ2xG
j
i (y1, A)

+ Dδ2x�
j
i (y1, A) +

{
�x2

8

([
δ2x R

] j+1

i
+
[
δ2x R

] j
i

)
+ 1

2

(
[R] j+1

i + [R] ji

)}
,

(3.7)

with

�
j
i (y1, A) =

(
y1

j+1
i + y1

j
i

) [ ∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i,ML1
, (3.8)

and
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G j
i (y1, A) =

(
y1

j+1
i + y1

j
i

)([ A

y1

] j+1

i
− 2

[
A

y1

] j+ 1
2

i
+
[
A

y1

] j

i

)
. (3.9)

Taking the Taylor series expansion around the point
(
xi , t j+ 1

2

)
, we then obtain

[
∂A

∂t

] j+ 1
2

i
= [R]

j+ 1
2

i + D

[
∂2

∂x2

(
y1

∂1−γ

∂t1−γ

(
A

y1

))] j+ 1
2

i
+ O(�x2) + O(�t2)

− D

⎧⎨
⎩
[

∂2

∂x2

(
y1

∂1−γ

∂t1−γ

(
A

y1

))] j+ 1
2

i
−
[

∂2

∂x2

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)]
ML1

)] j+ 1
2

i

⎫⎬
⎭ .

(3.10)

Evaluating the spatial derivatives

[
∂2

∂x2

(
y1

∂1−γ

∂t1−γ

(
A

y1

))] j+ 1
2

i
=
[
y1

∂2

∂x2

(
∂1−γ

∂t1−γ

(
A

y1

))] j+ 1
2

i

+ 2

[
∂ y1
∂x

∂

∂x

(
∂1−γ

∂t1−γ

(
A

y1

))] j+ 1
2

i
+
[(

∂1−γ

∂t1−γ

(
A

y1

))(
∂2y1
∂x2

)] j+ 1
2

i
, (3.11)

and then combining the common terms we find

[
∂A

∂t

] j+ 1
2

i
= [R]

j+ 1
2

i + D
∂2

∂x2

[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i
+ O(�x2) + O(�t2)

− D

⎧⎨
⎩[y1]

j+ 1
2

i

⎛
⎝
[

∂1−γ

∂t1−γ

(
∂2

∂x2

(
A

y1

))] j+ 1
2

i
−
[

∂1−γ

∂t1−γ

(
∂2

∂x2

(
A

y1

))] j+ 1
2

i,ML1

⎞
⎠

+ 2

[
∂ y1
∂x

] j+ 1
2

i

⎛
⎝
[

∂1−γ

∂t1−γ

(
∂

∂x

(
A

y1

))] j+ 1
2

i
−
[

∂1−γ

∂t1−γ

(
∂

∂x

(
A

y1

))] j+ 1
2

i,ML1

⎞
⎠

+
[

∂2y1
∂x2

] j+ 1
2

i

⎛
⎝
[

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i
−
[

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i,ML1

⎞
⎠
⎫⎬
⎭ . (3.12)

Each of the terms of the form

[
∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i
−
[

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i,ML1
� O(�t1+γ ) (3.13)

are of order �t1+γ accurate in time given the ML1 scheme is O(�t1+γ ) [35]. We
then obtain

[
∂A

∂t

] j+ 1
2

i
= [R]

j+ 1
2

i + D
∂2

∂x2

[
y1

∂1−γ

∂t1−γ

(
A

y1

)] j+ 1
2

i
+ τ

j+1
i . (3.14)
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Using a similar argument to that in [34], we see that the truncation error, τ j+1
i , is of

O(�t1+γ ) in time and O(�x2) in space. Similarly, we find the truncation error of
equations (2.22) and (2.23) are also of order 1+ γ in time and second order in space.
Likewise considering the accuracy order in equations (2.25) and (2.26), by again

expanding the Taylor series around the point
(
xi , t j+ 1

2

)
, we then find each equation

is second order in time. The order of the overall system of equations in Model 2 is
order 1 + γ in time and second order in space.

3.2 Accuracy of the numerical scheme for Model 1

Similar to Section 3.1, we find the truncation error for equations (2.27), (2.28) and
(2.29) are of order 1 + γ in time and second order in space.

3.3 Consistency of the numerical schemes

The numerical schemes for solvingModel 1 andModel 2 are consistent, as the trunca-
tion error approaches zero as�t → 0 and�x → 0.Hence theKeller Boxmethodwith
ML1 scheme is consistent with the original systems of fractional reaction diffusion
equations.

4 Numerical examples and results

In this section we investigate the solution of both Models 1 and 2, for Examples 1
and 2 on the domain 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 and for Example 3 on the domain
0 ≤ x ≤ 1 and 0 ≤ t ≤ 5. We estimate the order of convergence numerically for the
KBML1method by computing the maximum norm of the error between the numerical
estimate and the approximate “exact” solution at the time t = 1 for Examples 1 and
2, and at t = 5 for Example 3. The approximate “exact” solution was found by using
a large number of grid points and time steps. The approximate order of convergence
in �x , R1, was estimated by computing

R1 = log2 [e∞(�t, 2�x)/e∞(�t,�x)] , (4.1)

and the approximate order of convergence in �t , R2, was estimated by computing

R2 = log2 [e∞(2�t,�x)/e∞(�t,�x)] . (4.2)

Example 1 In this example we consider the solution of the two fractional partial dif-
ferential equation models of the reversible reaction A + B � C in the presence of
anomalous subdiffusion as given in Sections 2.1 and 2.2. For both models we use the
same initial conditions

A(x, 0) = (1 − cos(2πx))/2, B(x, 0) = (1 − cos(2πx))/2, and C(x, 0) = 1,
(4.3)
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(a) (b)
Fig. 1 (Color online) The Model 1 predictions of (a) A(x, t) and (b) C(x, t) using the KBML1 scheme,
Section 2.2

along with the no-flux boundary conditions

∂A(0, t)

∂x
= 0,

∂B(0, t)

∂x
= 0, and

∂C(0, t)

∂x
= 0, (4.4)

and

∂A(L, t)

∂x
= 0,

∂B(L, t)

∂x
= 0, and

∂C(L, t)

∂x
= 0, (4.5)

where L = 1. For Model 2 we also include the initial conditions y1(x, 0) = 1 and
y2(x, 0) = 1. For both models we set the fractional exponent as γ = 1/2, the forward
reaction rate as k1 = 1, the backward reaction rate as k−1 = 1, and the diffusion
coefficient as D = 1. Here the numerical solutions of Model 1 and Model 2, where
found using the numerical schemes, given in Sections 2.2 and 2.1 respectively, with
�t = 0.001 and �x = 0.02. Figure 1 shows the results for A and C for Model 1.
We see the reverse reaction C → A + B dominates with A and B being produced
from C at a faster rate than the forward reaction A + B → C . Note the predicted
values of B (not shown) are the same as those as A in this example. We also see that
C decays to a homogeneous steady state, whilst A and B increase to a homogeneous
steady state. The numerical solution of Model 2 under the same initial and boundary
conditions is shown in Figure 2. Here we see similar behaviour to the results of Model
1. It should be noted, given the initial conditions are the same A(x, 0) = B(x, 0), then
A(x, t) = B(x, t) for both models.

In Figure 3 we give a comparison of the predicted values of A(x, t) for both models
at the points x = 0.5 and x = 0.9. From this figurewe see similar asymptotic behaviour
from both models with Model 2 (solid lines) predicting a slightly faster decay to the
homogeneous state compared to Model 1 (dashed lines). We also see in Figure 4 the
difference ε = A1(0.5, t) − A2(0.5, t) at x = 0.5. From this we see Model 1 predicts
a slightly higher value than Model 2 at the midpoint.

Example 2 In this next example we consider the solution of the two fractional partial
differential equation model where there is no reverse reaction, so we have the reaction
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(a) (b)
Fig. 2 (Color online) The Model 2 predictions of (a) A(x, t) and (b) C(x, t) using the KBML1 scheme,
Section 2.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2

0.4

0.6

0.8

1

A(
x,

t)

M1 at x=0.5
M2 at x=0.5
M1 at x=0.9
M2 at x=0.9

Fig. 3 (Color online) The comparison between Model 1 (dashed lines) and Model 2 (solid lines) by using
KBML1 for species A in equations (2.27) and (2.18) at x = 0.5 (upper two lines) and 0.9 (lower two lines)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.02

0.04

0.06

0.08

0.1

Fig. 4 (Color online) The estimate of the difference, ε = A1(0.5, t) − A2(0.5, t), in the prediction for
A(0.5, t) given by Model 1, and Model 2 by using KBML1
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(a) (b)
Fig. 5 (Color online) The Model 1 predictions of (a) A(x, t) and (b) B(x, t) given by the KBML1 scheme,
Section 2.2

(a) (b)
Fig. 6 (Color online) The Model 2 predictions of (a) A(x, t) and (b) B(x, t) given by the KBML1 scheme,
Section 2.1

A + B → C only, and so k−1 = 0. For both models we use the initial conditions

A(x, 0) = (1 − cos(2πx))/2, (4.6)

B(x, 0) = 2 + cos(2πx), (4.7)

alongwith zero flux boundary conditions of x = 0 and x = L = 1 for each species. For
Model 2 the additional initial conditions for y1(x, 0) = y2(x, 0) = 1 are also required.
The other parameters used in finding the predictions are �t = 0.001, γ = 1/2,
k1 = 1, D = 1 and �x = 0.01. In Figures 5 and 6 we show the numerical solution
of Model 1 and Model 2 by using the KBML1 scheme subject to the boundary and
initial conditions mentioned above. We again see similar asymptotic behaviour with
the solution of A and B decaying to a homogeneous state for both models.

A comparison is given in Figure 7 of the predicted values of A(x, t) and B(x, t)
for both models at the points x = 0.3 and x = 0.9. There we see both models have
a similar asymptotic behaviour, but Model 2 predicts a slightly faster decay to the
homogeneous state. The differences between the predicted values for A and for B
found from both models at x = 0.5 are shown in Figure 8. From this figure we again
see the results from Model 1 predicts a slightly higher value at x = 0.5 than Model 2
for both species A and B.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2
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0.6

0.8

1
A(

x,
t)

M1 at x=0.3
M2 at x=0.3
M1 at x=0.9
M2 at x=0.9

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

1.5

2

2.5

3

B(
x,

t)

M1 at x=0.3
M2 at x=0.3
M1 at x=0.9
M2 at x=0.9

(b)
Fig. 7 (Color online) The comparison between Model 1 (dashed lines) and Model 2 (solid lines) by using
KBML1 for species (a) A(x, t) at x = 0.3 (upper two lines) and 0.9 (lower two lines) and (b) B(x, t) at
x = 0.3 (lower two lines) and 0.9 (upper two lines)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.05

0.1

0.15

0.2

1
2

1

2

Fig. 8 (Color online) The differences between predicted values for A(0.5, t) and B(0.5, t) frombothmodels
where ε1 = A1(0.5, t) − A2(0.5, t) (dashed lines) and ε2 = B1(0.5, t) − B2(0.5, t) (solid lines)

Example 3 In this final example we consider the solution of the two models in the case
of the reverse reaction only, with k1 = 0. In this case C evolves independently of A
and B and so we only need the linear reaction diffusion equation, given by equation
(1.6) for Model 1 and equation (1.10) for Model 2. For both models we use the same
initial condition

C(x, 0) = (1 − cos(2πx))/2, (4.8)

along with zero flux boundary conditions. The exact solution of Model 1 and Model
2, with k1 = 0 is given in [1] and [37]. The exact solution for equation (1.6), with
k1 = 0, is

C(x, t) =
∞∑
n=0

an cos(λnx)
∞∑

m=0

(−k−1t)m

m! E (m)
γ,1+(1−γ )m(−λ2nt

γ ), (4.9)
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(a) (b)
Fig. 9 (Color online) Numerical solution of C(x, t) (a) for Model 1 and (b) Model 2, where k1 = 0 and
k−1 = 2

and for equation (1.10), is

C(x, t) =
∞∑
n=0

an cos(λnx) exp(−k−1t)Eγ (−λ2nt
γ ), (4.10)

where λn = nπ
L . For the initial condition in equation (4.8) we have a0 = 1

2 , a2 = − 1
2

and an = 0 otherwise. For Model 1 we use the numerical scheme using only equation
(2.29) and for Model 2 only equation (2.23). For both models we have found the
solution for 0 ≤ t ≤ 5 using �t = 0.001, γ = 0.5, k−1 = 2, D = 1, L = 1,
and �x = 0.01. In Figure 9 we show the numerical predictions of both models. The
predicted values of C from both models quickly decay to a homogeneous state before
decaying to zero.

A comparison of the values of C for Model 1 and Model 2 with γ = 0.5 at the
points x = 0.2 and x = 0.9 is shown in Figure 10 with k−1 = 2, and in Figure 11
with k−1 = 5. We see in Figures 10 and 11, that the predicted solution of Model 1
becomes negative whilst Model 2’s predictions remain positive. The solution becomes
negative earlier as the value of k−1 is increased from 2 to 5. These results replicate
the negative predicted results from [31] in the infinite domain case for Model 1. The
negative prediction is physically unrealistic which suggestsModel 2 with the modified
operator is the better model to use.

Estimation of the order of convergence

In this section we estimate the order of convergence for Example 1. Before that we first
demonstrate the predictions converge by using numerical experiments. To do this we
calculate the difference between predictions in Figure 12 at x = 0.5, when different
time steps,�t , is used for Model 1 andModel 2 respectively over the solution interval
0 ≤ t ≤ 1. The value of ε1 is the difference between the estimates if �t = 10−2 (100
time steps) and when the time step is �t = 10−5 is used (105 time steps). The value
of ε2 is the difference between when �t = 10−3 and �t = 10−5 time steps are used,
and the value of ε3 is the difference between when �t = 10−4 and �t = 10−5 time
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(b)
Fig. 10 (Color online) Comparison between Model 1(dashed lines) and Model 2(solid lines) predictions
for C for 2 ≤ t ≤ 5 (a) at x = 0.2 and (b) x = 0.9 with γ = 0.5, �t = 0.001, k1 = 0, and k−1 = 2
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t
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C
(0
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,t)
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(b)
Fig. 11 (Color online) Comparison between Model 1(dashed lines) and Model 2(solid lines) predictions
for C for 0 ≤ t ≤ 5 (a) at x = 0.2 and (b) x = 0.9 with γ = 0.5, �t = 0.001, k1 = 0, and k−1 = 5

steps are used. We see the difference between the numerical predictions for species A
decreases as the time step is decreased and appear to converge to zero as indicated by
the arrows in each figure. We also found similar behaviour for Examples 2 and 3 as
given in Figures 13 – 15.

The error and order of convergence estimates are next found from applying the
numerical scheme onModel 1 andModel 2 for species A andC for Example 1, species
A and B for Example 2, and species C for Example 3. The error is approximated by
comparing these numerical results with an approximate “exact solution” found using a
long runwith a large number of time steps, with�t = 1.25×10−4, and a large number
of grid points, with�x = 5×10−4. The results are given in Tables 1 and 2 for species
A in Example 1 for γ = 0.1, 0.5, 0.9 and time t = 1.0. We kept �t fixed at 10−3

to estimate the convergence in space and varying �x . To estimate the convergence in
time we kept �x fixed at 10−3 whilst varying �t . We see both numerical schemes,
for Model 1 and Model 2, appear to be order O(�x2) which compares well with the
accuracy analysis. Using a similar process, we found a similar convergence order in
the space for speciesC for Example 1 and species A and B for Example 2 (not shown).

The obtained numerical convergence order estimates however do not appear to
match up with the expected order of 1+ γ in time but the errors do decrease as �t is
decreased showing convergence for both models. We note that the convergence was
slightly better for Model 2 than that for Model 1.
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Fig. 12 (Color online) The estimate of the difference, ε, in the prediction for A(0.5, t) given by (a)Model
1 and (b)Model 2, Example 1, where ε1 is the difference between when �t = 10−2 and �t = 10−5 time
steps, ε2 is the difference between �t = 10−3 and �t = 10−5 time steps. The value of ε3 is the difference
between �t = 10−4 and �t = 10−5 time steps
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Fig. 13 (Color online) The estimate of the difference, ε, in the prediction for (a) A(0.5, t) and (b) B(0.5, t)
given by Model 1, Example 2. The value ε1 is the difference between when �t = 10−2 and �t = 10−5

time steps, ε2 is the difference between �t = 10−3 and �t = 10−5 time steps and ε3 is the difference
between �t = 10−4 and �t = 10−5 time steps

Using a similar procedure, we estimate the convergence order using Example 3 for
γ = 0.1, 0.5, 0.9 and time t = 5.0 as shown in Tables 3 and 4. Here we kept�t = 0.1
fixed and varied �x to estimate the convergence order in space. Likewise, we kept
�x = 10−3 fixed and varied �t to estimate the convergence order in time. From the
results in Tables 3 and 4, we see similar convergence order in space and time as was
shown in Example 1.

Stability and convergence are very important requirements for a robust numerical
scheme. These models involve a very complicated set of equations and so it is not pos-
sible to obtain exact analytical conditions for the stability and convergence. However,
we have tested our scheme under different time and grid steps and found the solutions
do converge.

5 Conclusions

In this work, we extended the KBML1 scheme given in [34] to the case of systems
of nonlinear fractional partial differential equations. We considered two models of a
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Fig. 14 (Color online) The estimate of the difference, ε, in the prediction for (a) A(0.5, t) and (b) B(0.5, t)
given by Model 2, Example 2, where ε1 is the difference between when �t = 10−2 and �t = 10−5 time
steps, ε2 is the difference between �t = 10−3 and �t = 10−5 time steps. The value ε3 is the difference
between �t = 10−4 and �t = 10−5 time steps
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Fig. 15 (Color online) The estimate of the difference, ε, in the prediction for C(0.5, t) (a) given by Model
1 (b) and Model 2, Example 3. The value ε1 is the difference between when �t = 10−2 and �t = 10−5

time steps, ε2 is the difference between �t = 10−3 and �t = 10−5 time steps and ε3 is the difference
between �t = 10−4 and �t = 10−5 time steps

reversible reaction in the case of anomalous subdiffusion: Model 1, based on the work
of Henry & Wearne [1], and Model 2, based on the work of Angstmann, Donnelly &
Henry [2]. The accuracy of the KBML1 method for both models, by using the Taylor
series, was found to be order 1 + γ in time and second order in space. We note that
Model 2 takes longer to run computationally when compared to Model 1. This is to
be expected since we need to solve a system of five differential equations in Model 2
rather than three in Model 1.

The convergence of the KBML1 scheme for both models has been demonstrated
numerically noting the error in the numerical predictions decreased as the time step
was decreased. However, the expected 1 + γ order of convergence was not observed
but was greater than 1. The spatial convergence order of two was confirmed for both
model schemes. The two models were compared for a number of examples given the
same initial and boundary conditions and with the same anomalous exponent. From
the results found, similar behaviour for both models was predicted for short times.
However, we see for longer times the solution of Model 2 remains positive whilst the
Model 1 predictions may become negative which is physically unrealistic as shown
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for the case of the reaction C → A+ B. This verifies numerically the analytic results
in [31]. We conclude that using Model 2 with the modified operator is more realistic
than using Model 1 if we require the solution to remain positive.
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