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Abstract 

Sleep spindles are isolated transient surges of oscillatory neural activity present during sleep stages 2 and 3 in the nonrapid eye 
movement (NREM). They can indicate the mechanisms of memory consolidation and plasticity in the brain. Spindles can be identi-
fied across cortical areas and classified as either slow or fast. There are spindle transients across different frequencies and power, yet 
most of their functions remain a mystery. Using several electroencephalogram (EEG) databases, this study presents a new method, 
called the “spindles across multiple channels” (SAMC) method, for identifying and categorizing sleep spindles in EEGs during the 
NREM sleep. The SAMC method uses a multitapers and convolution (MT&C) approach to extract the spectral estimation of different 
frequencies present in sleep EEGs and graphically identify spindles across multiple channels. The characteristics of spindles, such as 
duration, power, and event areas, are also extracted by the SAMC method. Comparison with other state-of-the-art spindle identifica-
tion methods demonstrated the superiority of the proposed method with an agreement rate, average positive predictive value, and 
sensitivity of over 90% for spindle classification across the three databases used in this paper. The computing cost was found to be, on 
average, 0.004 seconds per epoch. The proposed method can potentially improve the understanding of the behavior of spindles across 
the scalp and accurately identify and categories sleep spindles.
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Statement of Significance

Sleep spindles are a pattern of brain waves that occur during nonrapid eye movement. They have been presumed to correlate with 
memory consolidation, sleep quality and aging significantly. To identify and classify spindles, we developed a method named “spin-
dles across multiple channels” (SAMC) that combines multiple channels to identify spindles. This method does not require training 
or expert’s labels. Instead, it uses the definitions and parameters of the spindles from the Rechtshaffen and Kales sleep criteria. The 
SAMC method uses time–frequency analysis to generate spindle-like wavelets by using multitapers (MTs) technology. The wavelets 
from the MTs are then convoluted with the EEG data to extract the spindles components. This process is performed on each EEG 
channel, and then the spindles are scored if there is a spindle presence agreement across channels. Overall, this method provides 
a substantial spindle classification improvement over other methods, with easy use for analyzing and tracking spindle behaviors.

Introduction
Polysomnography (PSG) has been under continuous research 
for many years. It aims to understand and identify the links 
between neuronal behaviors with body functions. Sleep spindles 
are one of those neuronal comportments that have attracted the 
researcher’s interest because of their connections with nonrapid 
eye movement (NREM), memory consolidation, and mental and 
physical problems [1, 2].

Understanding sleep mechanisms and their relationships with 
human brain activities have progressed over the past decades. 
Research shows that the structure and patterns of electrophys-
iological features are associated with certain neurological func-
tions or conditions [1, 2]. Limitations, however, remain regarding 
the associations of specific neuronal behaviors with brain func-
tions. One of those limitations is how to interpret and analyze 
brain wave structures, like spindles [3, 4].

This paper analyses sleep spindles and their identification 
from sleep electroencephalogram (EEG) data. The proposed 
method is a time–frequency analysis using a multitapers and 
convolution (MT&C) method [5–7] to calculate the spectral esti-
mation of spindles’ characteristics in EEG data. Sleep spindles are 
bursts of energy ranging between 9 and 16 hertz (Hz) frequencies 
with a pyramidal-like structure that wanes and waxes its oscil-
lations between 0.5 and 2 seconds (s). Spindles are characterized 
as thalamocortical circuits because they are generated in the 
thalamus and move forward to the brain’s cortex. The shape and 
duration of sleep spindles are based on the reciprocal interac-
tions between the cortex and the thalamus [8–13].

Up to now, no explicit brain functions are associated with sleep 
spindles. However, spindles are widely assumed to be associated 
with memory consolidations and plasticity [14]. Another uncer-
tainty surrounding sleep spindles is their frequency range. Existing 
studies have defined spindle transient waveforms differently, with 
some defining them in frequencies between 9 Hz and 16 Hz [15], 
while others conceptualized spindles in the frequency range of 11 
Hz and 15 Hz [8, 16, 17]. Most studies agreed that there are two types 
of spindles: slow spindles ranging between 9 Hz and 11 Hz or 13 Hz, 
and fast spindles ranging between 13 and 15 Hz or 16 Hz [18–24].

This research uses the frequency range of 11–16 Hz under the 
spindle definition and parameters from the Rechtshaffen and 
Kales sleep criteria (R&K rules) [25], as shown in Table 1. This 
paper defines a spindle based on the spindle definition and param-
eters shown in Table 1, which are used to create the tapers for the 
MT&C method. The tapers are the combination of a kernel func-
tion with the parameters of the spindles. Therefore, in this study, 
the terms of taper, kernel, and wavelet could refer to the same use.

This research aims to develop a new method to interpret, 
identify, classify, and visualize sleep spindles across multi-
ple EEG channels from subjects, including those with different 

neurological conditions (unhealthy subjects). Spindles are iden-
tified using a method named “spindles across multiple channels” 
(SAMC), which scores spindles when they are identified across 
several channels. There are two main reasons for using multi-
channel EEGs for spindles identification. First, those bio-signals 
can track the behaviors of spindles across the scalp. Second, it can 
provide a higher level of certainty as we can isolate spindles from 
other brain activities with similar wave patterns and structures.

This paper is organized as follows. Section 2 briefs relevant 
research on sleep spindles and multitapers-based studies. Section 
3 introduces the EEG databases (DBs) used in this research. Section 
4 describes the MT&C method for identifying sleep spindles. 
Section 5 presents the research findings from the different experi-
ments. Finally, Section 6 summarizes the research and future work.

Related Work
Many studies are dedicated to sleep spindles analysis using dif-
ferent methods to identify their characteristics and connections 
with human physiology. Yet there are still many concerns sur-
rounding sleep spindles, such as:

• The link between spindle types with specific body functions.
• The consistency of identification across subjects with

altered neurological conditions,
• The parameters, particularly the frequency range, used to

identify sleep spindles.

Spindles Related Applications
One of the most prominent roles of sleep spindles is its relation-
ship with the NREM sleep [10, 26–28]. For instance, sleep spindles 
and k-complexes (KCs) are the hallmarks used to distinguish 
sleep stage 2 or light sleep from other stages [29, 30]. As reported 
by [26], sleep spindles and KCs are correlated during stage 2 sleep 
with an incidence of around 68%. However, the occurrences of 
KCs and spindles have no associations with any of their physical 
characteristics or the probability of spindles’ appearance.

For memory consolidation, spindles are believed to play an 
important role. A study from [28] suggested that for healthy 
individuals between middle age and older, the spindle den-
sity can be used as a marker to establish the stability of the 

Table 1. Spindles parameters used in the proposed method.

Spindles parameters

Frequency Time duration Min amplitude

11–16 Hz 0.5–2.5 s 13 uV
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neurophysiological characteristics that play a role in cognitive 
functions and plasticity. They also implied that the duration of 
the REM stage is directly associated with the integration of neuro-
transmitters and neuromodulators, which are fundamental parts 
of our autonomic nervous system.

In terms of the topography of spindles, an early study by [3] 
indicated that spindle events were independent and located in 
different cortical areas. However, recent reports suggested that 
spindles were identified across different cortical areas, and most 
events occurred simultaneously [31, 32]. Even though some reports 
try to explain the topography of spindles, some suggestions indi-
cate that spindles are not coherent in their occurrence as they are 
not regularly phase-locked or have the same frequency ranges [8, 
17]. It has been demonstrated that there are two types of spindles 
so far. Spindles with low peak frequency in the frontal cortex with 
anteroposterior gradients in their frequency oscillation range of 
9–12Hz are called slow spindles. Spindles with a higher peak fre-
quency with nonphase-locked and between 13 Hz and 15 Hz are 
known as fast spindles [15, 23, 32, 33].

Sleep spindles are a constant indication of abnormal neuronal 
brain behaviors, not because of specific elements hidden in the 
spindle waves but due to their absence in sleep EEG recordings. 
A study by [34] found that spindles were not as frequent in sub-
jects with Asperger’s syndrome (AS) compared to normal sub-
jects, although all the other elements in sleep data in AS subjects 
were normal. Similarly, a report by [35] indicated that the sleep 
data from subjects with autism spectrum disorders (ASD) were 
like normal subjects, except for sleep spindles, which were notori-
ously less in ASD subjects [36]. Another study by [37] showed that 
subjects with mental retardation have notorious abnormalities 
across all sleep stages compared to healthy subjects, especially 
in spindles and KCs, which have disreputable atypical events and 
low-rate patterns.

Multitapers Related Applications
Multitapers (MTs) are mechanisms of exploration that use time–
frequency analysis to extract detailed information from signals 
and map specific elements of an object or concern. As imple-
mented in [5], MTs were used to identify different frequencies, 
power, and time of an event present in sleep EEG data to generate 
features that were directly associated with the sleep physiology 
based on the R&K rules [25]. They classified sleep stages with an 
average rate of 87% with the option of visualizing them using a 
spectral estimation from each epoch. It was seen that MTs were 
able to represent specific events (e.g., frequency and power).

Babadi and Brown [38] presented a detailed analysis of a spec-
tral and a standard nonparametric spectral estimation from MTs. 
They applied an MTs-based method to analyze anesthetic and 
sleep EEG data. They showed that by specifying the spectral res-
olution of the tapers, the frequencies outside of the taper range 
resolution became blurry, allowing them to identify only ele-
ments within the spectral resolution of the taper. That study gave 
an insight into how MTs-based methods could identify an accu-
rate spectral estimation for different types of EEG signals [39].

A neurophysiology review from sleep EEG data was presented 
by [4] using a spectral analysis generated by MTs spectrograms. 
They demonstrated how an MTs-based method could be used as 
an effective tool to present a more defined way to visualize EEG 
data for producing better and faster results in classifying sleep 
stages. They found that the spectrograms allowed them to iden-
tify the underlying oscillatory mechanisms in each sleep stage, 
creating a visual representation that was easier to map with their 

hypnogram corresponding to the original signal. Their results 
showed a very close relationship between expert labels and the 
spectrograms produced by the MTs method.

Existing Studies for Result Comparisons
The performances of the proposed method in this paper are com-
pared with other studies that used similar methods for spindles 
identification. The article by Wamsley [16] and implemented in 
[15] used a wavelet-based algorithm to detect spindles automat-
ically. The algorithm was based on a spectral estimation from a
fast Fourier transform, applying a Hanning window to three-sec-
ond epochs. In the case of [15], they did not compare their results
with other studies. The proposed method in this paper is applied
to the databases provided by the authors and compared to their
results [15].

Experimental Data
This study uses three open-access databases (DBs) to identify spin-
dles by applying the proposed method. All three DBs include spin-
dle labels from experts, as seen in Table 2. The first open-access 
DB is the NAP EEG BD from Open Science Framework (OSF), pub-
lished in [12]. The second open-access DB is the Dreams DB from 
ZENODO, published in [40, 41]. The third open-access DB is the 
Montreal Archive of Sleep Studies (SS2-MASS), published in [42].

NAP EEG DB
The NAP EEG DB contains the EEG recordings from 22 subjects 
between 18 and 43 years old, who completed memory tasks 
before their naps. Each recording includes 62-channel data and 
two electrooculograms (EOG) electrodes with a sample rate of 
1000 Hz. The data from each subject were collected on two sepa-
rate days. The annotations on the DB are as awake, stage 1, stage 
2, stage 3, spindles and KCs.

All annotations were based on 30-second epochs and manu-
ally scored. Spindles were scored by visual inspection of anterior–
posterior brain regions using the data from channels of F3, F4, C3, 
C4, O1, and O2, which were positioned and recorded following the 
10–20 EEG international system [12].

SS2-MASS C1 DB
The SS2-MASS DB from the MASS-C1 DB was published in 2014. 
It contains 19 subjects’ polysomnographic recordings from three 
different laboratories of the Centre for Advanced Research in 
Sleep Medicine, Montreal, Canada. The subjects are between 
the ages of 18 and 33. The data were recorded using Harmonie 
software, with an amplifier system Grass Models 12 and 15. 
This research uses the SS2 DB as it is the only one that contains 
spindles’ labels. The EEG data from the SS2 DB has 19-channel 

Table 2. Spindles available on each database and the number of 
subjects

Number of spindles in the databases

Database Number of subjects Spindles

NAP 22 2528

SS2-MASS 19 22254

Dreams 8 475
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montage (C3, C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, T6, 
Fp1, Fp2, Fpz). It also contains four EOGs, one EMG, one ECG and 
one Respiratory thermistance. The sample rate of the SS2 DB is 
256 Hz for all channels, except for the respiratory thermistance, 
which was recorded at 54 Hz.

The hypnograms from the SS2 DB contain the labels for spin-
dles and KCs from two experts who manually labeled them 
using the R&K rules [25]. The labels of the spindles and KCs 
include approximated coordinates of the start and end of the 
events [42].

Dreams DB
The Dreams DB contains 30 minutes of sleep recordings from 
EEG, EOG, and EMG channels for eight subjects between the ages 
of 31 and 53. The data from that DB has not been filtered. The 
subjects present different pathologies like dyssomnia, restless 
legs syndrome, insomnia, and apnoea/hypopnoea syndrome. 
The DB contains three EEG channels (Cz-A1 or C3-A1, Fp1-A1, 
and O1-A1), two EOGs (P8-A1 and P18-A1) and one submental 
EMG. The sample rates are 200 Hz, 100 Hz and 50 Hz, respec-
tively. The data were scored for sleep stages using the R&K rules 
[25, 40].

Methodology
This research implements the SAMC method to identify and 
classify spindles. The SAMC method uses the MT&C method [5] 
to extract the key spindles information from different channels 
from the three sleep EEG DBs. The proposed method identifies 
the signal power on frequencies between 11 and 16 Hz. The spin-
dle-like waves are then analyzed and classified in terms of their 
duration. Identified spindle waves across multiple channels are 
transformed into logical data (zeros for nonspindle waves and 
ones for spindle-like waves) to map the spindle-like waves’ agree-
ment and duration across all the EEG channels. Independent 
epochs are rated as a spindle only if they are consistently identi-
fied across a particular number of channels surpassing the mini-
mum power and duration criteria of spindles.

Data Preprocessing
All EEG data are preprocessed using the MNE Python Library [43]. 
As shown in Figures 1 and 2, the EEG data are filtered using a band-
pass between 0.2 Hz and 200 Hz. Then the peaks of every chan-
nel are computed to generate the covariance. Simultaneously, a 
notch filter is applied based on the peaks found in the data. After 
that, chunks of data defined as muscle movements are removed. 
Removing epochs with muscle movements is based on abnormal 
amplitude or frequency peaks (characterized in the awake stage) 
across channels using an independent component analysis (ICA) 
estimation.

The ICA algorithm separates the EEG signals into statistically 
independent components. The components in the ICA algorithm 
are individual signals that were combined during their recording 
[44–46].

The MT&C Method for Identifying Spindle Waves
The MT&C method is implemented to calculate the sleep EEG 
spectral density estimation (SDE) using tapers that simulate the 
characteristics of fast and slow spindles (refer to the spindle 
parameters in Table 1). The SDE accentuates the signal time–fre-
quency characteristics based on the parameters of the tapers. 
The tapers are wavelets generated using a Gabor kernel, which 
is convoluted with the signal, intending to highlight the spectra 
density of the spindles in sleep EEG data [5]. The tapers in the 
MT&C are generated using the Gabor function (1) and the param-
eters of the spindles [44–46].

gk (t) = e

Å
(−t2)
(2S2)

ã

e(i 2π fk t)
(1)

where gk (t) is the Gabor taper, which is based on a Gaussian

 window e

Å
(−t2)
(2S2)

ã

 and an imaginary cosine wave e(i 2π fk t). Here “t” 
in the cosine wave refers to the time duration of the signal, which 
is the maximum duration of a spindle (2 s), and fk is the frequency 
of the taper, which also refers to a Gabor taper [5, 47–49].
Considering that the oscillation of a cosine wave is constant 
automatic, and infinite, it is combined with a Gaussian func-
tion to simulate specific characteristics found in the fluctuated 

Figure 1. Data pre-processing.
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signals. The Gaussian function e

Å
(−t2)
(2S2)

ã

 behaves like a filter, 
which only allows passing the oscillations within a section frame. 
The size of that frame is ruled by an adjustable standard devia-
tion (S) in (2) [5, 48, 49].

S =
n

(2π fk) (2)
where n is a logarithmical space vector between the logarithm 
10th of the maximum number of cycles and the logarithm 10th 
of the minimum number of cycles. fk is the frequency of the 
signal at level k. The number of tapers involved in the MT&C 
method is based on the number of frequencies evaluated for the 
spindles [5].

The SDE is computed for each wavelet “g,” “k” (“t”), using a slid-
ing window across the entire sleep EEG signal as expressed in (3).

SDE (fk) =
∑

t=R(− 1
2R)

(gk (t) Xw)

(3)
where t is in 2-second intervals, and R is the sampling rate. gk (t) 
is the taper k, which is also a kernel function, and Xw is the whole 
EEG signal.

When the kernel function gk (t) is convoluted with the orig-
inal EEG signal, it creates a dot-product for each data point in 
the EEG signal intending to extract the power present in the sig-
nal in terms of the taper parameters [5]. The spectral estimation 
(ES) from the EEG signal provided by the MT&C method contains 
the information of the spindles regarding frequency, power, and 
wavelet duration.

Spindle Identification in One Channel
The first step to identify spindles from the ES data is to identify 
their amplitude and extract their normalized power, as shown 
in (4).

m = abs (SDE (fk)) ;

p = sqrt (m) ;

norm_power =

Å
p − ∧ (p)
∨ (p)− ∧ (p)

ã

(4)

where p is the power, m is the amplitude, and SDE (fk) is the spec-
tral estimation of the signal. sqrt(m) is the square root of the 
amplitude, ∧ ( p)is the minimum power and ∨ ( p)is the maximum
power.

Considering that the MT&C method extracts the powers of 
EEG signals that match the characteristic of its tapers, all the 
amplitudes that surpass the power of the peaks (threshold of 
0.5 in (4)) are selected as potential spindles. Those spindle can-
didates are then evaluated based on their duration, determined 
from the starting point of the power peaks that surpass the 
threshold to the last point of the power peak. Then based on 
the number of data points present in the power peak wave, if 
they are between 0.4 second (a 0.1 second tolerance factor is 
introduced) and 2 seconds, they are classified as spindles in a 
single channel.

All the spindles found are gathered in order of events in a set of 
continuous EEG data. As seen in Figure 3, the spectrogram shows 
the duration of a spindle, amplitude, and frequency. Fragmented 
spindles, like the one in the second 1313th in Figure 4, with gaps of 
0.10 seconds or less, are scored as a single spindle.

Spindles Identification Across Channels
After identifying spindles on each channel using the MT&C 
method, the spindle events are presented in Boolean values (ones 
and zeros), where zeros represent all the null values (power zero 
or non-spindle), and ones denote the other values (power of spin-
dle different to zero).

To score the spindles using the SAMC method, at least two 
channels must agree with each other for at least 25% of the spin-
dle event. The criteria for spindle identification across multiple 
channels are flexible regarding the agreement percentage between 
spindles and the number of channels that need to be included.

It is essential to mention that some channels are more sen-
sitive to a specific type of spindles (anterior, posterior, or global 
spindles). Sometimes, mixing opposite channels could result in 
false negative identification of spindles across channels. The 
SAMC can be applied to identify and map the behaviors of spin-
dles across the scalp. It can also classify spindles like anterior, 
posterior, and global spindles.

Figure 2. Sleep spindles classification algorithm: (1) Sleep EEG data from databases. (2) Sleep EEG data preprocessing using muscle movement 
detections from MNE Python Library. (3) Data filtering based on spindles frequency parameters using a Bandpass filter (11–16 Hz). (4) Spindle 
Identification on single-channel based on parameters from Table 1. (5) Spindle Identification Across Channels (SAMC method) based on a rule of a 
spindle wave from one channel has 25% agreement with another channel. (6) Resulting spindles are generated in terms of Power, Frequency range, 
and Time-duration.
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Performance Measurement Metrics
The performance of this study is evaluated using five measure-
ment metrics: Lin’s Concordance Correlation Coefficient (CCC), 
agreement rate (AR), positive predicted value (PPV), F-measure 
and sensitivity. Specificity and accuracy are not evaluated for 
spindle identification because experts usually mark the spindle 
events that match its definitions/characteristics on the bio-sig-
nals like EEGs (True Positives). Most bio-signals are nonspindle 
events. That means that it is insignificant to identify non-spindles 
separately. Therefore, true negatives (TN) are not determined. 
Consequently, specificity and accuracy are not evaluated in this 
research [50].

In this paper, the CCC method compares the agreement 
between two entities of the same variable to show the concord-
ance between the results by the proposed method and the scores 
from the experts. The CCC and AR are also used in this study to 
analyze the agreement between experts’ scores.

Assuming that from n observations, a bivariate set from the 
same variable is selected (subscripts x and y), with a correlation ρ, 
variances φx

2 and φy
2 and the means of μx and μy [51–55]. Here, X 

and Y represent the number of spindles identified in a dataset by 
two different scorers or methods (expert1 and expert2 or by an 
expert and the proposed method). The CCC between two entities 
is defined as:

ρc =
2ρ φx φy

(µx − µy) + φ2
x + φ2

y (5)

where ρ is the correlation between variables φxand φy (the num-
ber of spindles scored by the entity x and the entity y on the same 
DB).

The AR of the spindles considers only the spindles found 
across channels that agreed with the expert’s scores. The spindles 
also must be within the range of ether-identified spindles with an 
overlap of at least 0.25 s. It means that the spindles must overlap 
0.25 s to score it as a spindle. The AR is defined as:

AR(%) =
n1 + nn
N1 +Nn

∗ 100
(6)

where N1 +Nn is the number of spindles that match both 
experts, and n1+nn is the number of spindles found by the pro-
posed method that match the spindles identified by the experts 
[52, 56].

Sensitivity is to evaluate the correctness of measurement in 
terms of true positives (TP) and false negatives (FN), as shown 
in Eq. (7). The TPs for this study are conceptualized as the spin-
dles identified by the proposed method that match the expert 
spindles for at least 0.25 seconds. The FNs are the spindles 
scored by an expert but not found by the proposed method [51, 
57, 58].

Sensitivity =
TP

TP+ FN (7)
The PPV shows the probability that the existence of a condition 

is present on a subject. Apart from the TP, the PPV also uses false 
positives (FPs) to find its value, as shown in Eq. (8) [50, 57]. An FP 
refers to the spindles found by the method but not by an expert.

PPV =
TP

TP+ FP (8)
The F-measure, which evaluates the binary classification of a sys-
tem by combining the Precision (PPV) and Recall (Sensitivity) of a 
model, is defined by Eq. (9) [59].

Figure 3. MT&C spectrogram vs expert’s score.

Figure 4. Visualization of classified spindles (green waves) compared to original data (signal in blue) and expert labels (magenta and blue dots).
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F =
2TP

2TP+ FN+ FP (9)

Experimental Results
The spindles detection on a single channel relies primarily on the 
parameter measurements detected in the data obtained by the 
MT&C method. When the data are contaminated by any noise 
like muscle movement, AC power, electronic equipment, a wrong 
connection of electrodes and even abnormal events like interictal 
epileptiform spikes, it could trigger an increase of power, causing 
spindle-like amplitudes [60]. Therefore, EEG data must be ade-
quately denoized and filtered to identify spindles more accurately 
[61].

The ICA analysis from the MNE Python Library [43], which can 
remove noisy sections from data, is applied to decrease the num-
ber of false positives (FPs) and their impact [44–46].

Evaluation Criteria
The performance evaluation of the proposed method for iden-
tifying spindles is based on the spindle labels marked by any of 
the experts in the DBs (Expert1 or Expert2), which means that the 
scores from the experts are combined to compare them with the 
spindles identified by the proposed method.

Spindle durations are considered for the Dreams and SS2-
MASS DBs. In the NAP DB, most durations were not included, or 
it was set by default to one second [8, 20, 25]. In that case, for the 
evaluation of spindle identification, each duration of the spindles 
is set to 1.6 seconds (0.4 seconds before the spindle starts and 1 
second after its start).

Experimental Results
The proposed method is evaluated using data from the SS2-
MASS, NAP and Dreams DBs. The experimental results are pre-
sented in Tables 3–7 and discussed in the following three sections. 
The SAMC classification method is evaluated based on the results 
obtained from the classification of spindles and compared with 
the labels generated by the experts on each of the DBs.

The Results for the NAP DB
Tables 3 and 4 present the spindle classification results for the 
NAP DB. The proposed SAMC approach obtained an agreement 
rate of 91% with impressive results on sensitivity, PPV and F-score 
of 0.91, 0.82, and 0.86, respectively. However, some disparities were 
detected between the number of spindles identified by the SAMC 
method and those labelled by the experts, indicating that the 
SAMC method identified a substantial 20% additional spindles in 
the NAP DB. Furthermore, our study revealed that approximately 
525 spindles annotated by the experts were outside of the defined 
spindle duration, for example, less than 0.5 seconds in duration 
or fragmented with a period lower than 0.5 seconds or over 0.25 
seconds between fragments, according to the SAMC method,

The Results for the SS2-MASS DB
In the case of the SS2-MASS DB, our SAMC classification method 
was implemented using two EEG channels, namely Cz-A1 and 
C3-A1.

The results presented in Tables 3 and 5 indicate that the 
method achieved a spindle classification disagreement of less 
than 4%. In comparison to other existing studies, our proposed 
method outperformed the Kinoshita method [62], which utilized 
a synchro-squeezed wavelet transform for feature extraction and 
RUS-Boost for classification. The Kinoshita method achieved an 
average PPV, F-score, and sensitivity of 0.61, 0.7, and 0.77, respec-
tively. Similarly, the Patti method [21], which used a weighted 
system based on channel combination for feature extraction 
and clustering of Gaussian mixtures for classification, achieved 
an average F-score and sensitivity of 0.69 and 0.74, respectively. 
Lastly, the method proposed by Tsanas [63] used a continu-
ous wavelet transform for feature extraction and classification 
based on the defined parameters of spindles, achieving an aver-
age PPV and sensitivity of 0.16 and 0.83, respectively. Notably, 

Table 3. Performance Results of Spindles Classification by The Proposed Method (SAMC) With Expert 

Performance Results Of Spindle Classification By The Proposed Method (SAMC) With Expert Scores:

 Database SAMC Ex1∪Ex2 Agreement CCC AR Sensitivity PPV F-score

NAP DB 4398 3516 3208 0.72 91% 0.91 0.82 0.86

SS2-MASS DB 18352 15830 15325 0.75 96% 0.96 0.92 0.94

Dreams DB 622 548 538 0.82 98% 0.98 0.91 0.94

Table 4: Confusion matrix for the NAP DB

Confusion Matrix for the Nap DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 3208
(TP)

308
(FN)

Nonspindles 665
(FP)

---
(TN)

Table 5. Confusion matrix for the SS2-MASS DB

Confusion Matrix for the SS2-MASS DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 15325
(TP)

505
(FN)

Nonspindles 1191
(FP)

---
(TN)

Table 6. Confusion matrix for the dreams DB

Confusion Matrix for the Dreams DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 538
(TP)

10
(FN)

Non-spindles 51
(FP)

---
(TN)
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our experimental results demonstrate significant performance 
improvements in terms of all performance evaluation metrics 
compared to other studies, as summarized in Table 7.

The Results for the Dreams DB
Upon analyzing the Dreams DB, our proposed SAMC method 
exhibited the highest level of agreement with the combined 
labels from the two experts. As presented in Tables 3 and 6, 
the method achieved an average agreement rate of 98%, with a 
sensitivity, PPV, and F-scores of 0.98, 0.91, and 0.94, respectively. 
To further evaluate the performance of the SAMC method, its 
results were compared with other existing methods applied to 
the Dreams DB. The Tsanas method [63] achieved an average PPV 
of 0.33 and a sensitivity of 0.76. In contrast, the Devuyst method 
[40, 41], which used a systematic assessment approach, obtained 
an average PPV of 0.74 and a sensitivity and an F-score of 0.70 and 
0.72, respectively [41]. The Kinoshita method [62], which utilized 
a synchro-squeezed wavelet transform for spindle classification, 
achieved an average sensitivity of 0.72, with a PPV and F-score of 
0.55 and 0.64, respectively. It is worth noting that the proposed 
method demonstrated a significant improvement over these 
existing methods, as illustrated in Table 7.

Discussion
This study presents a new method for spindle detection in sleep 
EEG signals. The proposed method combines spectral analysis 
and machine learning techniques to identify spindles across the 
scalp using sleep EEG data. The method was tested on three dif-
ferent databases (the NAP, SS2-MASS and Dreams DBs), and its 
performances were compared with other existing methods in the 
literature.

Overall, the results show that the SAMC outperforms the exist-
ing methods in terms of sensitivity, positive predictive value (PPV) 
and F-score. The SAMC method was also found to be more robust 
to inter-expert variability, which is an essential consideration in 
practical applications.

One of the limitations of this study is that the method was pri-
marily tested on EEG signals from healthy subjects (MASS-DB and 
NAP-DB) as the data available for subjects with sleep pathologies 
that contain spindle labels were too limited (Dreams DB: 8 sub-
jects). Meaning that it will remain unclear how well the method 
would perform in patients with sleep disorders. This limitation 
was due to the restricted access to abnormal Sleep EEG data with 
spindle labels.

In terms of future directions, exploring how the SAMC 
method could be applied to other different types of EEG data, 
performing various mental tasks rather than spindle detec-
tion, would be valuable. Overall, the proposed method better 
suits those applications with different physiological signals like 
spikes, sharps, and triphasic waves, among other EEG wave-
forms [64].

The novel method proposed in this study for spindle detection 
in sleep EEG signals has great promise. With the ability to map 
spindle behavior across the scalp, the SAMC method could help 
unfold the links between spindle types and scalp regions. The 
parameters used in the spindle identification are malleable to 
application areas and can be visualized on a heat map, as shown 
in Figure 3. This implies that experts can see the amplitude of the 
spindles and the frequency range of the events.

The results presented in this study suggest that the SAMC 
method can be a helpful tool for sleep researchers and clinicians.

In this study, spindles detection on a single channel was also 
conducted on all the three DBs. Extra spindles (FP) were often 
identified using a single-channel method compared to the pro-
posed SAMC method. For some FNs generated by the single chan-
nel method, it was found that the duration of those spindle-like 
waves scored by the expert did not last more than 0.5 s. Some 
events were fragmented with less than 0.5 seconds in each frag-
ment and separated for more than 0.25 s. It was observed that 
other FN events had a central frequency outside the spindle fre-
quency range (<11 Hz or >16 Hz).

Furthermore, this study revealed that the performance of our 
proposed method can be further enhanced when a database con-
tains labels from multiple experts, as evidenced in the Dreams 
and SS2-MASS DBs. Suggesting that the performance of the pro-
posed method could be improved for the NAP DB if a set of labels 
were available from an additional score.

Data Consideration
It is essential to mention that the spindle labels included in NAP, 
SS2-MASS and Dreams DBs were scored based on the R&K rules 

Table 7. Performance comparison between the SAMC method & 
other methods

Performance Comparison between SAMC Method & Others

DB Method PPV F-score Sensitivity

SS2-MASS DB Kinoshita et al [62]. 0.61 0.7 0.77

Patti et al [21]. --- 0.69 0.74

Tsanas et al [63]. 0.16 --- 0.83

SAMC 0.92 0.94 0.96

Dreams DB Tsanas et al [63]. 0.33 --- 0.76

Devuyst et al [41]. 0.74 0.72 0.70

Kinoshita et al [62]. 0.55 0.64 0.72

SAMC 0.91 0.94 0.98

Table 8. Sleep spindle experts’ scoring comparison across databases.

Sleep Spindle Experts’ Scoring Comparison Across Databases:

Database Expert 1 Expert 2 Automatic Score (AS) Agreement CCC AR

SS2-MASS DB 9338 15556 --- ~9064 0.57 E1: >97%
E2: >58%

Nap DB 3516 --- --- --- --- ---

Dream DB 298 409 528 Expert1 Vs. Expert2: 159
Experts Vs. AS: 138

Expert1 Vs. Expert2: 0.35
Experts Vs. AS: 0.28

E1:<54%
E2:<39%
AS:<27%
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[25], which leaves a considerable margin of subjective interpreta-
tion, causing label discrepancies between experts [65]. It has been 
previously documented in [32, 48, 56, 61], and reviewed in this 
study by comparing expert’s spindles labels from the Dreams and 
SS2-MASS DB as shown in Table 8.

The average agreement rate between the experts on scoring 
spindles for the Dreams DB was under 50%. In some cases, like for 
EEG recordings from Subject 1 and Subject 3, the agreement did 
not reach 25% and 10%, respectively. And when comparing the 
agreement rate of the labels between both experts and the auto-
matic method provided by the Dreams DB, the average agreement 
rate was under 60%.

In the case of the SS2-MASS DB, the average agreement 
between the two experts was under 58%, with an AR for Expert 1 
of 97% and 58% for Expert 2, as documented in Table 8.

Conclusion
In conclusion, this study presents a new approach for spindle 
detection in sleep EEG signals that offers promising results. The 
proposed SAMC method outperforms several existing methods 
in terms of sensitivity, PPV, and F-score, as demonstrated in our 
experimental results using three publicly available databases 
(the NAP, SS2-MASS and Dreams DBs).

The implementation of the SAMC method brings two signifi-
cant benefits, as it can focus the spindles on a specific frequency 
range and map their behavior in the scalp through multichannel 
visualization of spindles. After the model training, this method 
does not require expert labels or further training as it only 
relies on the definition of the spindles and related parameters 
as defined in Table 1. The experimental results for the three dif-
ferent DBs show that the proposed method achieves an overall 
agreement rate, positive predictive value, F-score, and sensitiv-
ity of over 90% for all three DBs, compared to the scores from 
more than one expert. Furthermore, it is observed that the SAMC 
method outperformed other existing methods (Kinoshita [62], 
Patti [21], Tsanas [63] and Devuyst [41]).

The spindles identified by the proposed method can be visual-
ized across all channels (as shown in Figure 3). This is useful for 
investigating the links and relationships between spindle types 
and specific brain regions. It helps us have a more accurate and 
comprehensive understanding of the behaviours of the spindles 
across the scalp. Our findings indicate that the proposed method 
can be further improved by including more annotations from an 
additional expert. It is believed that the SAMC method can signif-
icantly advance our understanding of the sleep dynamics of the 
spindles. It is hoped that this work will inspire more research in 
this exciting area.
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Data Availability
The datasets used in the current study are open sources and are 
available in Open Science Framework (OSF) [12], ZENODO [40, 41], 
and Montreal Archive of Sleep Studies (SS2-MASS) [42].

Implementation Details
The data were pre-processed using the MNE Python Library [43], 
and the methods were created and implemented in MATLAB. 
Since there is no record of the duration of the spindles in some 
databases, we set them to a default duration of 1.5 seconds 
when comparing the SAMC method results with the experts’ 
labels.
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