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Abstract

The expansion of Graph Neural Networks (GNNs) has highlighted the importance of eval-
uating their performance in real-world scenarios. However, existing evaluation frameworks
often overlook the integration of causality, a critical component that is essential for more
robust evaluation of GNNs. To address this gap, we present a benchmark study that system-
atically compares standard and causal GNN models with a focus on classification tasks. Our
analysis encompasses a careful selection of nine GNN models across seven diverse datasets
that span three distinct domains. The results reveal the following: I) Causality-enhanced
GNNSs consistently outperform their traditional counterparts in graph classification tasks;
1) Models integrating causal features exhibit greater generalizability across varied datasets;
and III) Incorporation of causal elements significantly improves the predictive accuracy of
GNNs. These findings highlight the importance of embedding causality in the evaluation and
development of GNN5s for improved performance and application.

Keywords Graph neural networks - GCN - GAT - Causality - Graph classification -
GraphSAGE

1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful tool for processing graph-
structured data, demonstrating remarkable performance in various tasks such as node
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classification [1], link prediction [2] and graph classification [1-3]. GNNs have found appli-
cations in various domains including recommendation [4], urban intelligence [5], medicine
[6], community detection [7], fraud detection [8] and so on. Despite their success, GNNs face
several limitations including over-smoothing, interpretability and generalizability problems,
sensitivity to graph structure and limited ability in capturing long-range dependencies.

Causality, the understanding of cause and effect relationships among various factors,
extends beyond mere correlations. It focuses on comprehending the interactions between
elements that result in specific outcomes and explores how changes in one aspect can impact
another element within a system. Recently, there has been an increased focus on exploring
causality, with researchers acknowledging the importance of incorporating causal knowledge
into data modelling. Causality has found numerous applications in several domains includ-
ing economics [9], social sciences [10], medicine [11] and healthcare [12], environmental
science [13], recommendation [14, 15] etc. For instance, in medicine, causality can explore
factors that impact treatment outcomes and those that increase the risk of medical conditions.
In social sciences, it can reveal the causal factors that contribute to economic inequalities. In
recommendation systems, causality can uncover factors that influence user preferences and
engagement. In these contexts, causal analysis can uncover factors that influence outcomes,
improve model interpretability and enhance predictive accuracy. Integrating causality into
GNN architecture can significantly mitigate the aforementioned limitations by prioritizing
relevant information, capturing long-range dependencies, and promoting the extraction of
transferable features, thereby improving generalizability. By examining inherent causal rela-
tionships within the data, it becomes possible to enhance GNN performance and application.

In this study, we aim to thoroughly investigate the application of graph neural networks
for classification tasks and demonstrate the significance of causally enabled GNNS in identi-
fying true interactions within data. Few studies have systematically benchmarked GNNs with
a focus on causal classification. Existing benchmark studies such as [16], which examined
graph positional encoding in GNNs, and [17], which explored the use of GNNs for fault
diagnosis, have provided foundational insights into these areas. Kosan et al. [ 18] conducted a
benchmark study that focused on GNN explainers, while [19] performed an extensive inves-
tigation into deep GNN architectures, experimenting with different model settings across
various citation network datasets. All of these studies primarily evaluate GNN performance
based on traditional metrics without integrating causal analysis. To address this gap, our
research aims to analyse the significance of causality in generalizable graph prediction mod-
els. Specifically, we conduct a comprehensive study on the most representative models that are
used in graph neural networks classification tasks, with the potential of incorporating causal
elements into the respective frameworks. This empirical study contributes to the research
community with the following interesting findings:

e The attention-based causal model (CAL framework) consistently outperformed baseline
GNN models in larger graph classification tasks, demonstrating its ability to capture
complex global patterns and dependencies across networks.

e Baseline GNN models excelled in smaller node classification tasks, highlighting their
efficiency in scenarios with limited data and simpler relationships.

e Hyperparameter tuning plays a crucial role in improving model performance, and our
research emphasizes the adaptability of causal models to multi-class datasets in graph
classification.

These findings highlight the importance of embedding causality in the evaluation and
development of GNNs for enhanced performance and application. The remainder of the
paper is structured as follows: Section 2 provides an overview of research studies centered
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on GNNs and causality. Section 3 outlines the study design. Section 4 presents the results
of the empirical study. Finally, Section 5 concludes the paper with a brief summary of our
findings.

2 Where GNN meets causality

This section reviews existing literature focusing on graph neural networks (GNNs) and their
variants, causality and their applications in classification tasks.

2.1 Graph neural networks

Graph Neural Networks (GNNGs) are designed to process graph-structured data, where graphs
consist of nodes and edges. Each node has features that represent its characteristics and the
edges define the relationships between nodes. GNNs capture dependencies between nodes
through message passing, a process in which nodes exchange and aggregate information from
their neighbours. In this process, a node updates its representation by incorporating features
from itself and its directly connected neighbours.

2.1.1 Graph convolutional networks (GCN)

The most basic GNN is the Graph Convolutional Networks [20]. GCNs employ convolu-
tion operations to aggregate features including neighbourhood features. During convolution,
information is propagated through nodes, and pooling layers are used for graph pooling. The
convolutional layer captures the local graph structure by means of this aggregation opera-
tion. After the convolution operation, an activation function such as ReLU is applied. A fully
connected layer is then used to combine the learned features from the convolutional layers,
enabling the network to make task-specific predictions in the final output layer, as depicted
in Figure 1.

2.1.2 GraphSAGE

GraphSAGE (Graph SAmple and aggreGatE) [21] is a type of GNN that uses sampling and
aggregation of features from a node’s neighborhood to build node representations. It samples
asubset of local neighbours for each node and then aggregates the features of these neighbours
using different aggregation functions such Mean, LSTM or pooling. This approach enables
scalable graph processing by reducing computational complexity, while also generalizing to
unseen nodes during inference.

2.1.3 Graph attention networks (GAT)

Graph Attention Networks [22] incorporate an attention mechanism into GNNs to capture
complex dependencies in graph data. The attention mechanism computes attention scores
for node pairs, which determine the importance of neighbouring nodes’ features. These
scores are used as attention coefficients to weight the features of neighboring nodes. The
weighted features are then aggregated (usually through summation) to update the node’s
representation. This approach allows the model to focus on the most relevant neighbors and
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Figure 1 Graph Convolutional Networks (GCN)

effectively handle varying importance among neighbours. A simple representation of the
GAT is shown in Figure 2.

2.1.4 Graph isomorphism networks (GIN)

Graph Isomorphism Networks [23] are GNNs specifically designed for the task of deter-
mining whether two graphs are structurally identical. GINs employ a customised aggregate
function that makes them invariant to node ordering in a graph. They use a sum-based aggre-
gation, where each node combines its features with those of its neighbours, followed by a
non-linear activation. This enables GINs to effectively capture graph structures, making them
highly suitable for tasks like graph classification.

2.1.5 Graph learning tasks
Graph tasks typically include graph classification, node classification and link prediction.

Graph classification is a task where the goal is to predict a label or category for an entire
graph. For example, in a dataset of chemical compounds, where each graph represents a

o
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Figure 2 Graph Attention Networks (GAT)
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molecule, the task is to classify whether the molecule is ’carcinogenic’ or 'non-carcinogenic’
based on its structure. Node classification is a task where the goal is to predict the labels or
categories of nodes in a graph. For example, in a citation network, each node represents a
research paper, and the task is to classify each paper into categories like ’Conference Paper’
or ’Journal Paper’ based on the type of publication. Link prediction is a task where the goal is
to predict missing or future connections (edges) in a graph. For example, in a social network
graph, where users are nodes, the task is to predict user engagement, such as, which users
are likely to comment or like a post, based on existing interactions and connections.

GNNs learn node embeddings to capture structural information in graphs. Position-aware
Graph Neural Networks (P-GNNs) proposed by You et al. [24], is aimed at capturing the
positions of nodes in a graph. Position-aware node embeddings are computed by sampling
sets of anchor nodes and estimating the distance between the target and anchor nodes. The
node positional information is expected to enhance GNN performance in various tasks such
as link prediction and node classification. Understanding the positional context of nodes can
contribute to inferring causal relationships by revealing how changes in one node may causally
influence others. A data augmented GNN model called the GAUG graph data augmentation
framework was proposed by Zhao et al. [25] for the purpose of improving semi-supervised
node classification. In the model, neural edge predictors are used as a means of exposing
GNNe s to likely edges and limiting exposure to unlikely ones. By focusing on probable edges
and minimizing exposure to unlikely ones, GNNs can more effectively uncover and model
direct causal pathways, essential for rigorous causal analysis in complex systems.

A GCN framework called Stacked and Reconstructed Graph Convolutional Networks for
Recommender Systems (STAR-GCN) by Zhang et al. [4] stacked GCN encoder-decoders for
learning node representations. They used intermediate supervision and reconstructed masked
input node embeddings to generate embeddings for new nodes. In the context of causality
studies, such methodologies are beneficial as they facilitate precise node representation by
capturing relationships and attributes within a graph effectively. Graph Isomorphism Net-
work (GIN) was used for drug-drug interaction (DDI) predictions with DDIGIN proposed by
Wang et al. [26], with the model using Node2 Vec for obtaining initial representations. These
representations are then optimized by aggregation of first-order neighbouring information
from graphs. The GIN framework is expected to improve the expressive power of represen-
tations, aiding in the identification and understanding of causal pathways and relationships
within complex networks in causal studies.

A temporal GCN called T-GCN was proposed by Zhao et al. [27] for traffic predic-
tion which used GCN for learning spatial dependencies and GRU for capturing temporal
dependencies of traffic networks, with nodes representing roads and edges representing
road connections. Similarly, a GAT-based spatio temporal framework called ST-GAT [28]
employed attention mechanism for traffic speed prediction. The model incorporated individ-
ual spatial and temporal dependencies using Individual Spatio-Temporal graph (IST-graph)
and Spatio-Temporal point (ST-point) embedding. A self-attention mechanism is employed
to learn patterns hidden in IST-dependencies among these ST-points for accurate embed-
dings. These models address temporal and spatio-temporal dependencies in graphs, which
are essential in causal studies for understanding the evolution of changes over time or space.

2.2 Classification tasks

Classification tasks in the graph domain remains a significant challenge in the field of machine
learning and the emergence of GNNs has advanced the ability to learn graph representations
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and manage large-scale datasets. These tasks include node-level and graph-level classifica-
tion. In graph-level classification, the goal is to predict the class label of the entire graph,
whereas node-level classification predicts labels for individual nodes. For an input graph
G = (V, E), where V and E are the sets of nodes and edges respectively, the output is a
class label y for the graph. In both node-level and graph-level classification, GNNs compute
node embeddings by iteratively updating them through neighborhood aggregation.

In node-level classification, the embeddings of each node are updated layer by layer by
aggregating information from its neighbours. The embedding update at layer / 4 1 and the
classification step are shown in equation Eq. 1 [29]. Here, N '(v) is the set of neighboring
nodes of node v, AGGREGATE is an aggregation function (such as mean, sum, or max
pooling) applied to the neighboring node embeddings, W is the weight matrix for layer [,
b® is the bias term for layer / and o is an activation function. Once the node embeddings
are computed, the final embedding for each node is passed through a classification layer to
predict the label y, for that specific node.

WD = o (WO - AGGREGATE ((h): u e N(w)}) +b) "
yy = softmax(W.h'L) + b,)

In graph-level classification, node embeddings are computed in the same way as for node-
level classification. Once these embeddings are obtained, they are aggregated into a single
graph-level embedding %, typically using pooling functions such as mean or sum pooling,
to predict the class label y of the entire graph as shown in the equation Eq. 2 [29].

hg = POOLING ({h'l) :v eV
G ({ v }> )
y = softmax(W,.hg + b.)

DEMO-Net, a degree-specific GNN framework designed by Wu et al. [30] for node
and graph classification, integrates structure-aware neighbourhoods and a degree-aware
framework for classification tasks. It is inspired from the Weisfeiler-Lehman graph iso-
morphism test to identify 1-hop neighbourhood structures. This capability is beneficial in
causality studies as it enhances understanding of how network structures influence causal
pathways and relationships. In their research, Maurya et al. [31] investigated the node feature
aggregation process in node classification to develop the Feature Selection Graph Neural
Network (FSGNN), which aims to extract relevant features. The study revealed the presence
of less informative features that can adversely affect prediction performance, prompting
enhancements in FSGNN to focus on learning the most relevant features. This approach is
advantageous for causality studies as it improves the precision in identifying causal features
and relationships within complex networks. Wang et al. [32] proposed the minority-weighted
GNN (mGNN) for extracting information from imbalanced data, particularly in the context
of social network analysis. This approach addresses the challenge of imbalanced classifica-
tion, focusing specifically on node classification. Its importance in causality studies lies in
ensuring that the impact of minority groups on causal pathways is adequately recognized and
addressed.

The problem of unattributed node classification was researched by Sun et al. [33], who
proposed a generalized equivariance property and a Preferential Labeling technique for
addressing this issue. The former permits additional auto-isomorphic permutation and the lat-
ter technique achieves the generalized equivariance property asymptotically. This framework
is especially beneficial for addressing practical challenges in anonymized social networks and
significantly improves the accuracy of identifying causal relationships in these networks and
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other complex systems. A GIN-based model called Dynamic Multi-Task Graph Isomorphism
Network (DMT-GIN) proposed by Wang et al. [34] transformed fMRI images into brain net-
work structures for classification of Alzheimer’s disease. DMT-GIN integrated an attention
mechanism to capture node features and graph structural information, thereby advancing
the comprehension of how neural network configurations relate to disease progression and
aiding causal inference in neuroscience research.

2.2.1 Significance, examples and applications of graph classification

Graph classification plays a crucial role in analyzing relational and interconnected data,
such as social networks, molecular structures and recommendation systems. Unlike grid-
based data formats such as images or sequences, graph-structured data captures complex
dependencies and interactions between entities, making it ideal for tasks where relationships
are crucial. GNNs excel at learning from these relational structures, providing a powerful
approach for tasks such as predicting protein functions, detecting fraud in social networks
and recommending personalized content-areas where traditional machine learning models
often face limitations.

event 1: post
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[ GNN layers J
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Figure 3 Graph Classification of User Behavior in Social Networks
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Figure 3 depicts the classification problem of determining whether a user’s behavior in a
social network is fraudulent or non-fraudulent based on their interactions and activities. Each
user is represented as a node, and their behavior is characterized by features such as activity
type (e.g., posts, messages, transactions). The graph structure captures the relationships
between users, where edges represent interactions or events between them. In this context,
the model’s task is to classify whether a user’s behavior is suspicious (fraudulent) or typical
(non-fraudulent). This is achieved by aggregating the user’s own features and those of their
neighbours (users they interact with) through GNNss, which allows the model to learn patterns
of behaviour within the network. After aggregating and processing the features, the final
prediction is made using a classification layer, where the output is a probability distribution
(using Softmax), and the model predicts the most likely class: fraudulent or non-fraudulent.

Graph classification has practical applications across various domains, including chem-
istry, bioinformatics, social networks and recommendation systems. These applications
leverage graph structures to uncover complex patterns and relationships that other meth-
ods may overlook. In chemistry and drug discovery, graph classification is used to predict
molecular properties, such as toxicity or bioactivity, by representing molecules as graphs with
atoms as nodes and bonds as edges [35]. This aids in identifying potential drug candidates
and accelerates the drug discovery process. In bioinformatics, graph classification analyzes
protein-protein interaction (PPI) networks, where proteins are nodes and interactions are
edges [36]. It helps predict protein functions, classify diseases, and reveal insights into com-
plex biological processes by examining the structure of the interaction network. In social
networks, graph classification is applied to analyze user interactions [37], represented as
edges between nodes (users). This facilitates community detection, fraud detection and user
behavior prediction, improving the understanding of social dynamics and enhancing targeted
marketing or content recommendations. In recommendation systems, graph classification
models user-item interactions as bipartite graphs, with users and items as nodes and interac-
tions (such as ratings or clicks) as edges [38]. This enables the prediction of user preferences
and supports personalized recommendations, boosting user engagement and experience.

2.3 Causality

Causality [39] involves understanding how different elements in data interact in terms of
cause and effect. Understanding these relationships is crucial as they provide insights into
how changes in one variable influence changes in another, going beyond mere correlations
to uncover the mechanisms driving observed patterns. Current GNN methods often rely on
correlation-based learning, which can miss important causal relationships that drive data
dynamics, particularly in complex datasets where correlations alone may be insufficient for
meaningful analysis. This reliance on correlation limits traditional GNNs by preventing them
from capturing the true cause-effect relationships, reducing their ability to make accurate pre-
dictions or uncover underlying patterns [40]. By identifying causal relationships, researchers
can isolate the factors that directly influence outcomes, making causality an effective tool for
feature selection [41]. Thus, integrating causal features into GNNSs is crucial, as it not only
helps models distinguish between correlation and causality but also leads to a more robust
and interpretable learning process. Recent research has increasingly focused on leveraging
causal inference to extract relevant features effectively, which improves both the accuracy
and interpretability of machine learning models while deepening one’s understanding of the
underlying data dynamics.

Yu et al. [41] developed a causality-based feature selection package called CausalFS
encompassing the most representative algorithms in this domain. The methods included
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constraint-based algorithms and score-based approaches with Markov Boundary (MB) learn-
ing in different scenarios such as simultaneous MB learning, Divide-and-conquer MB
learning and MB learning with relaxed assumptions. Causal representation learning [42]
involves discovering causal variables from raw observations and is a challenging task in
causal learning. The function approximation capabilities of GNNs serve to model nonlinear
causal relations in large-scale graph data. Moreover, causality plays a crucial role in improv-
ing feature selection and hence is critical for GNN classification tasks. Causal models also
provide insights into the underlying relationships in graph structures and hence contribute to
model interpretability. A causal attention learning model called CAL was proposed by Sui et
al. [3] for graph classification. The model discovers causal patterns in data through attention
mechanism and employs an attention-based GNN for this purpose. A similar approach was
used by Wang et al. [43] to build Causal-Trivial Attention Graph Neural Network (CTA-GNN)
for discovering causality patterns by diminishing confounding effects of shortcut features.
CTA-GNN was employed in fault diagnosis of complex industrial processes, wherein the
industrial system entities were modeled as nodes, with their interactions represented as edges.
Mutual information (MI) may also be useful for deriving causal relationships from graphs.
For instance, high MI can indicate a potential causal relationship, subject to other influential
factors in the data. Unsupervised Hierarchical Graph Representation (UHGR) was proposed
by Ding et al. [1] for classification tasks using MI. The model was based on MI maximiza-
tion between global and local parts for learning structural information. Di et al. [2] also used
MI maximization for classification tasks and link prediction tasks using GNNs. The authors
accomplished MI maximization by neighbourhood enlargement in GNN aggregation. They
further verified the model’s reliability through experiments on datasets from diverse domains.

3 Research design

An empirical study was conducted with nine representative models employed in graph classi-
fication tasks and the details are discussed in this section. These models were chosen through a
thorough examination of current literature, considering their potential for future exploration
in the field of causality-oriented GNNs. The outcomes of the empirical investigation are
anticipated to probe the applicability of the algorithms across diverse settings and domains,
aiming to illustrate both the strengths and constraints of the chosen models. Expanding on
these findings, researchers can explore and develop innovative algorithms for tasks involving
causality using GNNGs.

3.1 Research questions

Our study endeavours to investigate prominent Graph Neural Network algorithms used in
classification, aiming to identify architectures with substantial potential for integrating causal-
ity. The research questions are carefully formulated to specifically examine the performance
of GNNss in classification tasks, with a goal of improving generalizability and accuracy rates,
and understanding the role of hyperparameter tuning. The particular focus lies on assess-
ing the potential improvements in classification performance when causality is incorporated.
Addressing these research questions would provide future researchers with opportunities
to identify mechanisms for extracting causal relationships from data, subsequently utilizing
them to build resilient models. The research questions (RQ) and the corresponding hypotheses
(H) explored in this study are as follows:
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e RQI1. Which GNN architectures consistently exhibit the highest classification perfor-
mance across all datasets?
H. The causality-enabled GAT-CAL architecture with its attention mechanism is expected
to demonstrate superior classification performance compared to other architectures,
specifically the non-GAT models.

e RQ2. How do the baseline GNN architectures compare with causality-enhanced GNN
models in terms of performance and generalizability across domains?
H. Although baseline GNN models such as GCN may exhibit better computational per-
formance, causality-enhanced GNN models are expected to demonstrate meaningful
classification performance and generalizability. This is attributed to their ability to inte-
grate causal features.

e RQ3. Are causality-enabled GNN architectures sensitive to hyperparameters and can
hyperparameter tuning improve their performance?
H. Hyperparameter tuning is expected to hold the potential to improve causal classifica-
tion performance, particularly for architectures sensitive to hyperparameter changes.

3.2 Datasets

This section describes the datasets utilized for experimental studies in this research. The
datasets are selected from three distinct domains: bio-chemical, citation networks and social
networks, with the purpose of generalizing the research framework, rendering it adaptable to
various domains. These datasets are publicly available and are easily accessible. Moreover,
these datasets have been widely used in similar studies, making them well-suited for repro-
ducibility and comparability with similar models. The summary of the datasets are given in
Table 1.

3.2.1 Bio-Chemical datasets

e NCII [44] is a cheminformatics dataset where each graph represents a chemical com-
pound. The nodes represent atoms in a molecule and the edges represent bonds between
atoms.

e Proteins [45] is a proteins dataset with nodes representing amino acids and belong to two
classes, enzymes or non- enzymes. Two nodes are connected with edges if they are less
than 6 angstrom in distance.

Table 1 Summary of datasets used in the study

Dataset Domain # Avg. # nodes Avg. # Edges #
graphs nodes (15¢ graph) edges (15t graph) class
Cora Citation 1 - 2708 - 10556 7
Citeseer Citation 1 - 3327 - 9104 6
NCI1 Bio-Chemical 4110 29.87 21 32.30 42 2
Proteins Bio-Chemical 1113 39.06 42 72.82 162 2
Mutag Bio-Chemical 188 17.93 17 19.79 38 2
IMDB-B Social 1000 19.77 20 96.53 146 2
REDDIT-B Social 2000 429.63 218 497.75 480 2

The citation datasets are used for node classification tasks. The bio-chemical and social datasets are used for
graph classification tasks, where number of nodes and edges are for the 1% graph

@ Springer



World Wide Web (2025) 28:30 Page 110f26 30

e Mutag [46] dataset consists of nitroaromatic compounds, with nodes representing atoms
and the edges representing bonds between atoms. The dataset has two classes according
to their mutagenic effect on a bacterium. The main limitation of this dataset is its modest
size, although this aspect can be advantageous for conducting preliminary experiments
with novel algorithms.

These datasets, which are made available through the TUDataset package, are commonly
used as benchmarks in the graph classification domain, facilitating the comparison of different
graph-based algorithms. Moreover, they consist of molecular structures derived from real-
world compounds, enhancing its applicability to practical scenarios. Proteins and NCI1 have
been used by Ding et al. [1], with all three datasets employed for classification tasks in studies
including [3, 23, 47, 48].

3.2.2 Citation network datasets

Cora [49] and Citeseer [50] are citation network datasets containing scientific publications
categorised into seven and six classes respectively. Nodes and edges in these datasets repre-
sent paper and citation relationships respectively. These benchmark datasets are extensively
used in research and represent real-world citation networks, commonly employed for clas-
sification tasks across multiple studies [1, 51, 52]. Their moderate size facilitates extensive
experimentation with graph-based methods. However, these datasets lack temporal informa-
tion and require enhanced feature representations, which are their primary limitations.

3.2.3 Social network datasets

e IMDB-BINARY (IMDB-B) [53] is a movie collaboration dataset consisting of movie
information from IMDB. The nodes in a graph represent actors/actresses, with an edge
between nodes for actors from same movie. The dataset contains collaboration graphs
based on genres, with ego-networks for each individual. The graph is labelled based on
movie genres viz. Romance or Action. This dataset has been used for classification tasks
by [3]. However, due to its limitation to the movie genre, there is a need to investigate
the dataset’s generalizability to other domains.

o REDDIT-BINARY (REDDIT-B) [53] consists of data related to online discussion threads,
where nodes represent users and an edge between two nodes denote that a correspondence
(comments) has been made between these two users. The graph is labelled based on
whether it belongs to a question/answer-based or a discussion-based community.

Few advantages of these datasets are their real-world relevance and the availability of a
substantial amount of labelled data for training. Furthermore, these two datasets are widely
utilized in graph-based research, facilitating comparative studies [23, 54, 55].

3.3 Experiment design

The experiments are conducted as follows: The graph datasets are split into training and
testing sets using KFold to generate indices for data splitting. A 5-fold cross validation is
employed to evaluate the performance and generalization capability of the models. For each
architecture, such as GCN or GAT, a GNN model is created, incorporating a final classification
layer. These models are then trained and evaluated using standard performance metrics,
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including accuracy, precision, recall and F-scores. Additionally, a sensitivity study is carried
out to examine how variations in hyperparameters impact model performance. These metrics
are selected based on their ability to assess different aspects of the model’s classification
performance. While accuracy delivers a thorough evaluation of a model’s correctness across
all classes, its efficacy diminishes in imbalanced datasets. In such cases, precision, recall,
and F-scores become crucial for a more precise assessment. Precision quantifies the accuracy
of positive predictions, while recall measures the model’s capacity to capture all positive
instances. The F1-score balances precision and recall into a single metric.

F-score is a highly effective metric for evaluating Cora and Citeseer (node classification)
and IMDB-B, Reddit-B, Proteins, and NCII (graph classification) because these datasets,
while having some degree of imbalance, do not have extreme class distributions that would
significantly affect performance. In these cases, F-score effectively balances precision and
recall, providing a fair evaluation of the model’s ability to perform across both majority
and minority classes. For Mutag, despite its moderate class imbalance, F-score remains
highly effective as it balances precision and recall, which is crucial for evaluating imbalanced
datasets. The smaller size of the dataset means that each instance has a larger impact on the
evaluation, but the primary benefit of F-score is that it ensures the model does not overly
favour the majority class (non-mutagenic), keeping a strong focus on the minority class
(mutagenic).

3.4 Models

The most representative and the most extensively employed models in GNN-based studies
were investigated and subsequently, nine relevant models were selected for this study as
follows:

e GCN [52]: The research primarily focuses on graph neural networks for classification
tasks and hence the most commonly used GNN architecture viz. GCN is used as a baseline
model. Comparing the fundamental structure of GCN with more advanced versions of
GNNs would aid in determining whether enhanced GNN variants offer a substantial
improvement in performance. GCN utilizes the convolutional mechanism to propagate
information across a graph by aggregating features from neighbouring nodes. GCN is
highly effective in capturing local graph structures.

e GAT [51]: GAT is a state-of-the-art GNN model that employs an attention mechanism,
allowing nodes to selectively prioritize different neighbors when aggregating informa-
tion. In contrast to GCN, GAT excels in capturing long-range dependencies, making it
well-suited for tasks that necessitate the capture of both local and global patterns within
the graph. With its attention mechanism, GAT assigns adaptive weights to the neighbors
of each node during information aggregation. GAT can dynamically adjust neighbour-
hood importance based on learned attention weights and hence is advantageous in graph
classification tasks.

e GIN [23]: GIN is permutation invariant and hence can address the over-smoothing prob-
lems encountered by GCN. GIN is most typical for processing isomorphic graphs and is
researched for its flexibility in capturing complex graph patterns. GIN consists of isomor-
phism layers that are invariant to node ordering. The node features are aggregated using
summation allowing the model to capture relationships within a graph. GIN, character-
ized by its isomorphic and permutation invariant properties, has considerable potential
in effectively capturing complex structural patterns present within graphs. Therefore, it
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is crucial to explore the model’s capabilities in the context of graph classification rather
than focusing primarily on node classification.

e GraphSAGE [21]: GraphSAGE involves node sampling followed by aggregation of the
sampled node features using an aggregation function such as mean aggregation or pool-
ing aggregation. With its localized sampling and aggregation approach, the model can
efficiently handle large graphs. Moreover, GraphSAGE exhibits insensitivity to node
ordering, making it a key contender as a model for tasks related to graph classification.
GraphSAGE is investigated for its ability to capture more localized and diverse informa-
tion from the graph. GraphSAGE is also the state-of-the-art model in efficiently adapting
to diverse graph types.

o GCN-CAL, GAT-CAL, GIN-CAL [3]: The CAL framework was selected for its use of
causality in GNN classification. The framework introduced causal attention learning to
GCN, GAT and GIN architectures for enabling causal classification. The model primarily
used a GNN-based encoder for obtaining node representations, followed by utilization
of two MLPs for estimating edge and node-level attention scores. Leveraging attention
scores is a fundamental approach for extracting causality through the use of GNN archi-
tectures. Therefore, this model was investigated for its performance in tasks related to
causal classification.

e UHGR-GAT, UHGR-GCN [1]: The UHGR framework uses an encoder for constructing
node representation, followed by graph pooling. The UHGR models use mutual infor-
mation and hence we investigate this method for its ability to derive causality from graph
data. A discriminator module is used for training the encoder for mutual information
maximization. The learned graph representations are employed for node and graph clas-
sification tasks. In this work, two UHGR variants, using GAT and GCN, are studied for
their potential for mutual information-based classification.

The experiments on the selected models were carried out using the seven datasets described
in Section 3.2. Further elaboration on the selected models is provided here. Sui et al. [3]
proposed Causal Attention Learning (CAL) with mitigation of confounding effects using
softmask estimation from attention scores. The graph is decomposed to causal and trivial
attended graphs with two GNN layers. The authors proposed disentanglement of causal and
trivial features, with GNNs filtering shortcut patterns for capturing causal features. The CAL
framework was experimented with GCN, GAT and GIN architectures and for these three
models, the settings used by Sui et al. [3] were mostly reproduced for experimentation. A
5-fold cross-validation is conducted, deviating from the 10-fold cross-validation used in the
initial study. We provide the code at https://github.com/sj20000/EmpiricalStudy for reference
purposes. Although the original study trained the models for 100 epochs, this study trains
them for 20 epochs to ensure consistency across all models in the investigation. The same
settings were also applied to the GCN, GAT, GIN and GraphSAGE models. Evaluation was
performed on two tasks viz. node classification using citation datasets and graph classification
using the bio-chemical and social datasets. The evaluation metrics used were classification
accuracy, Precision/Recall scores and F1-Scores.

4 Empirical study outcomes
The test accuracy results of these studies are summarised in Table 2. The highest accuracy

rate for each dataset among all models is shown in bold, with the second highest highlighted
in italics. The results reported for the citation datasets pertain to the node classification task,
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Table2 Test Accuracy (%) of classification tasks (the highest scores are bolded, and the second highest scores
are italicized)

Model NCI1 Proteins Mutag Cora Citeseer IMDB-B Reddit-B
GCN [52] 80.68 75.47 84.10 79.74 65.30 73.60 91.25
GAT [51] 79.54 75.02 89.42 83.03 68.41 72.00 90.85
GIN [23] 80.44 75.29 85.14 80.82 61.80 72.50 88.75
GraphSAGE [21] 74.21 75.83 83.49 76.55 61.66 73.00 77.20
GCN-CAL [3] 81.07 75.29 78.68 80.21 61.74 72.70 91.15
GAT-CAL [3] 80.49 75.56 86.26 83.16 65.61 73.20 91.30
GIN-CAL [3] 80.36 73.76 71.86 80.53 59.97 72.60 89.65
UHGR-GAT [1] 59.80 70.09 71.717 67.55 53.30 55.00 64.66
UHGR-GCN [1] 61.07 67.92 74.11 62.65 50.25 56.20 64.77

whereas those for the bio-chemical and social network datasets are for the graph classification
task. The precision/recall results for GCN-CAL, GAT-CAL, GCN, GAT and GraphSAGE
are plotted for the Mutag, Cora datasets and IMDB-B datasets as shown in Figure 5. The F1-
scores for GCN, GAT, GraphSAGE, GCN-CAL, GAT-CAL, UHGR-GCN and UHGR-GAT
models on all the datasets are shown in Figure 4.

4.1 Experimental results and discussions

On analysing the classification performance results based on accuracy scores, as presented in
Table 2, the GAT architecture demonstrates superior performance compared to the other base
models across most datasets. The classification framework augmented with causal elements,
CAL [3] demonstrated the model’s effectiveness with the integration of causality. This was
specifically observed with the GAT-CAL model, for which the performance was higher
compared to other architectures, except for the NCI1 dataset. For the UHGR models [1],
experimentation on the seven datasets demonstrated significant decline in performance for
the social network datasets and the NCI1 dataset, when compared to the other models as shown
in Table 2. The precision and recall scores are mostly evenly distributed for the Mutag and
Cora datasets. However, the scores for the IMDB-B dataset exhibit a substantial difference,

1
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Figure4 F-scores for the key models on datasets. GCN, GAT and GraphSAGE are foundational GNN models.
GCN-CAL and GAT-CAL integrate causality into GNNs, while UHGR-GCN and UHGR-GAT leverage mutual
information
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Figure 5 Precision-recall scores

likely due to a model that is overly conservative in predicting positives, resulting in fewer
but more accurate positive predictions (Fig. 5).

Upon analyzing the Fl-scores, as presented in Figure 4, it is evident that performance
varies across algorithms on the Mutag dataset. Apart from this, all the models demonstrate
effective generalization across all datasets, with the exception of the UHGR model on NCI1
and the social network datasets. The UHGR-GAT model exhibits a decline in performance
on the protein dataset as well. Overall, it is observed from the F1-scores that GCN and GAT
performs better than the other models on node classification tasks. For graph classification
tasks, the CAL framework presents a promising approach and is mostly generalizable across
datasets, with a dip in performance with the Mutag dataset. The performance of the Graph-
SAGE architecture has been notable on the Mutag dataset, whereas all other models exhibit
lower performance for this dataset. While the CAL framework has generally demonstrated
comparable performance to other models, except on the Mutag dataset, its failure to achieve
significantly higher results suggests a limitation in causal modeling. Similarly, though the
UHGR framework has demonstrated results on par with the other models for the Mutag
and citation datasets, this model has also fallen short of achieving exceptional results. This
suggests that while MI significantly contributes to the classification performance, further
improvements are necessary to enhance the model. Here, we discuss some of the advantages
and disadvantages of these models.

e GCN [52] has higher computational efficiency and is particularly suitable when local
neighbourhood information is relevant for the problem. This characteristic is notably
reflected in its high F-score values for node classification.
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e GAT [51] is better suited for inductive settings and excels at capturing intricate rela-
tionships through its attention mechanism. However, these advantages come with a few
drawbacks, including the computational complexity and hyperparameter sensitivity of
the GAT architecture. The sensitivity to L2 regularization and learning rates is particularly
evident in its performance on the Mutag and citation datasets respectively.

e GraphSAGE [21] is a framework that is suitable for large-scale graphs. A limitation
of this architecture is that it relies on sampling a fixed-size neighbourhood for each
node, and hence cannot capture distant information beyond this boundary. It is noted that
GraphSAGE demonstrates greater robustness in capturing social networks compared to
molecular graphs, which could be attributed to its limited capacity in capturing complex
molecular structures.

e GIN [23] is more adept at capturing global graph structures as compared to other archi-
tectures. However, GIN does not incorporate node features during aggregation, leading
to loss of significant node information. On the other hand, GCN offers a more compre-
hensive node representation by leveraging node features in the aggregation function. This
is evident in the consistently strong performance of GIN in graph classification tasks, as
indicated by the high F1-scores and accuracy rates.

e The CAL [3] framework adopts a causal classification approach utilizing the attention
mechanism. While this approach leverages weighted information to infer causality and
capture dependencies among causal features, handling long-range causality may pose
challenges for this model. With the exception of Mutag, all three CAL models demonstrate
strong performance across all datasets.

e The UHGR [1] framework utilized mutual information maximization (MIM) for classifi-
cation tasks. MIM has the capability to learn meaningful representations by capturing both
local and global data patterns. The UHGR model demonstrated positive performance out-
comes in node classification tasks, emphasizing the significance of mutual information in
understanding dependencies among individual nodes. However, the graph classification
performance results do not indicate significant improvements for base models augmented
with MIM. It is also essential to recognize that MIM alone does not inherently produce
causal representations and would benefit from integrating mechanisms that specifically
address dependencies, such as causality-focused feature extraction techniques.

In summary, it is important to emphasize that these frameworks do not inherently capture
causal elements, necessitating additional steps for the integration of causality in classification
tasks.

4.2 Scalability and generalizability

The scalability and generalizability of the models can be evaluated by examining their per-
formance on datasets of varying sizes and complexities. Strong results on datasets such as
Proteins and IMDB-B (both with around 1000 graphs) suggest that the models are capable
of handling moderately sized graphs with complex relational structures. Their success on
Reddit-B (with 2000 graphs) further demonstrates their ability to scale to larger datasets,
highlighting their versatility across domains.

However, the NCI1 dataset, with over 4000 graphs, presents a greater scalability challenge.
While the models perform reasonably well on this dataset, they may struggle with larger or
more complex datasets due to increased computational demands or the need for advanced
optimization techniques. Since performance on NCI! improves mainly through learning rate
adjustments, optimizing hyperparameters will be essential for enhancing scalability on larger
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datasets. In terms of generalizability, the framework demonstrates flexibility across domains
such as biological, entertainment and social networks, suggesting potential for applications
including medicine and recommendation systems. However, its reliance on specific hyper-
parameters for certain datasets, along with varying performance on Cora, NCII, Mutag and
Citeseer, indicates the need for further improvements to enhance robustness. Addressing
these scalability and generalizability challenges will strengthen the models’ applicability to
real-world tasks involving large-scale, complex graph data.

4.3 Sensitivity analysis

A sensitivity study has been performed for all the models based on learning rates and L2
regularization or weight decay. The learning rate (LR) and weight decay (WD) are /e-3 and
0 in the original studies. The results for varying learning rates with WD=0 are shown in
Table 3. The results for varying weight decay rates for LR=1e-3 are shown in Table 4. The
top F-score for each dataset among all models is shown in bold, while the second highest is
italicized. The results of the analysis are summarised as follows:

e From the experimental findings presented in Table 3, it is evident that different learning
rates result in diverse performances for all models across the entirety of datasets. A
pronounced variation in F-scores is noticeable for all models, except the UHGR models,
across the Mutag, Cora, and Citeseer datasets. This suggests that the impact of the learning
rate is predominantly influenced by dataset characteristics, as opposed to the model
architecture.

e The impact of varying the weight decay rate as shown in Table 4, is notably pronounced
for the two UHGR models, with significant variations observed across F-Scores, except
possibly for UHGR-GCN on the Cora dataset. The CAL framework displays variances
primarily on the citation datasets, suggesting a potential sensitivity of the model to
node classification tasks concerning WD. The impact of varying WD on other mod-
els is marginal, except for GCN and GAT on the Mutag dataset, where noticeable effects
are observed. This suggests the dataset’s sensitivity to the regularization mechanism.

4.4 Analysis of evaluation result

Drawing from the evaluation results, the research questions are addressed as follows:

e RQ1. Based on the findings presented in Table 2, it is evident that the GCN-CAL model
achieves approximately 1% higher accuracy than the GAT-CAL model on the NCI1
dataset. Similarly, GraphSAGE achieves slightly less than 1% higher accuracy than the
GAT-CAL model on the Proteins dataset, while GCN exhibits less than 1% higher accu-
racy than the GAT-CAL model on the IMDB-B dataset. On the Mutag and Citeseer
datasets, the GAT model outperforms the GAT-CAL model by an additional 3% accu-
racy each. Overall, the GAT-CAL architecture consistently delivers strong performance
across all datasets.

e RQ2.Based on the F-scores presented in Figure 4, it is observed that the causal framework
achieves high F-scores for the proteins and social network datasets, with the GAT-CAL
model performing the best among them. For the remaining datasets, the GCN, GIN and
GAT frameworks show superior performance. Based on the results from varying learning
rates as shown in Table 3, it is confirmed that the causality-based CAL framework consis-
tently achieves high F-scores across different learning rates for the Proteins dataset and
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both social network datasets, outperforming other models in these instances. However,
its performance on other bio-chemical and citation datasets indicates better F-scores only
for specific learning rates, with Citeseer demonstrating improved performance in just one
instance. These findings underscore the efficacy of the causal framework, particularly for
graph classification tasks involving larger datasets.

e RQ3. The experimental results from Table 3 reveal that the performance of all models
across the datasets is notably influenced by varying learning rates. A distinct decline in
performance is particularly evident with the learning rate of /e-5, impacting most models,
although exceptions include the UHGR models on select datasets, certain frameworks on
the Proteins dataset, and GraphSAGE on the NCI1 dataset. In contrast, the varying weight
decay rates presented in Table 4, consistently result in different outcomes specifically for
the UHGR models.

4.5 Case study

A brief case study was undertaken to assess the models’ adaptability to multi-class datasets in
the context of graph classification. To achieve this, the multi-class variants of the IMDB and
REDDIT datasets were employed. The IMDB-MULTI, REDDIT-MULTI-5K and REDDIT-
MULTI-12K datasets consists of 3, 5 and 11 classes respectively. Memory constraints prevent
the experimentation of UHGR models on the latter dataset.

The experimental configurations remain consistent with the previous settings in our study
and the test accuracy and F-Score results are shown in Table 5. The highest accuracy and
F-score for each dataset are indicated in bold, while the second highest is italicized. Upon
examining these findings, the following observations are noted:

e Inthe IMDB-MULTI dataset, the GIN model achieves the top F1-score of 0.7460, closely
followed by its causal variant. For the REDDIT datasets, both GCN and GAT models,
along with their respective CAL architectures, exhibit similarly high levels of perfor-
mance across both the REDDIT-MULTI-5K and REDDIT-B datasets.

e A notable observation is the marked difference in GraphSAGE performance between
the REDDIT-MULTI-5K dataset, where it performs poorly, and the REDDIT-MULTI-
12K dataset, where it outperforms other GNN models to achieve the highest scores. This
disparity may stem from the complexities or compatibility issues of GraphSAGE’s neigh-

Table5 Test Accuracy (%), F-scores with time(secs) for graph classification tasks on multi-class datasets (the
highest scores are bolded, and the second highest scores are italicized)

Model IMDB-MULTI REDDIT-MULTI-5K REDDIT-MULTI-12K
time  accuracy f-score time accuracy f-score time  accuracy f-score
GCN [52] 19.6  51.00 0.6652 127.8  56.49 0.7805 2589 49.25 0.7302
GAT [51] 204 50.73 0.6722 169.7  55.85 0.7475 351.1 49.48 0.7197
GIN [23] 16.2  49.33 0.7460 113.8 54.15 0.6912 2454 48.17 0.7268

GraphSAGE [21] 21.6  50.80 0.6882 116.52 38.85 0.0307 197.8 34.29 0.9247
GCN-CAL [3] 23.1  51.00 0.6379 260.5 56.57 0.7778 494.3 49.00 0.7483
GAT-CAL [3] 2577 49.33 0.6164 2735  55.69 0.7613 675.1 49.57 0.7320
GIN-CAL [3] 21.1  48.73 0.6838 255.5 54.11 0.6343 502.1 47.29 0.7044
UHGR-GAT [1] 3199 38.66 0.4158 9354 3197 0.4356 - - -
UHGR-GCN [1] 2963 42.66 04158 8985 37.18 0.3861 - - -
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borhood aggregation method with the node relationships in the 5-class dataset. Across
both datasets, the CAL framework consistently achieves high F-scores, highlighting the
importance of causal inference in larger multi-class datasets.

e Upon careful analysis, it becomes evident that multi-class datasets generally exhibit
lower performance compared to their binary counterparts, a trend particularly noticeable
in the Reddit datasets. However, the causal framework consistently exhibits robust per-
formance across all these datasets demonstrating its adaptability to multi-class scenarios.
Nonetheless, further refinement in selecting causal features is required to achieve optimal
results.

5 Conclusions

This paper presented an in-depth study on the application of graph neural networks for poten-
tial causal classification. Through a rigorous evaluation, we have analyzed the performance
and applicability of standard GNN models, as well as those specifically designed for causality
analysis. On an overall analysis of the results, it is evident that the attention-based causal
model (the CAL framework) outperformed baseline GNN models in larger graph classifi-
cation tasks, while the baseline models excelled in smaller node classification tasks. Our
research also highlights the importance of hyperparameter tuning for improving model per-
formance and underscores the adaptability of causal models to multi-class datasets in graph
classification, suggesting their potential suitability for integration into real-world systems.

Our study offers insights into the performance of various GNN architectures and their
generalizability on datasets from diverse domains. Additionally, we investigated the effec-
tiveness of causality-based GNN frameworks in node and graph classification tasks, including
a sensitivity analysis to understand the impact of hyperparameter variations on model per-
formance. While the study extends to the application in multi-class graph classification, it
reveals that reliance on attention mechanisms or mutual information estimation alone does
not suffice for accurate causality inference in GNN models. This underscores the necessity for
further research and the development of more sophisticated techniques to construct a robust
causal GNN classification framework. Additionally, while F-score, precision and recall are
the standard metrics within the scope of our work and in the context of classification, extend-
ing our work would require measuring counterfactual prediction stability, considering causal
explainability using methods such as SHAP and addressing challenges related to imbalanced
datasets.
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