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Abstract

Recently, a modified fractional diffusion equation has been proposed [I. Sokolov, J.
Klafter, From diffusion to anomalous diffusion: a century after Einstein’s brownian
motion, Chaos 15 (2005) 026103; A.V. Chechkin, R. Gorenflo, I.M. Sokolov, V.Yu.
Gonchar, Distributed order time fractional diffusion equation, Frac. Calc. Appl.
Anal. 6 (3) (2003) 259–279; I.M. Sokolov, A.V. Chechkin, J. Klafter, Distributed-
order time fractional kinetics, Acta. Phys. Pol. B 35 (2004) 1323.] for describing
processes that become less anomalous as time progresses by the inclusion of a second
fractional time derivative acting on the diffusion term. In this letter we give the
solution of the modified equation on an infinite domain. In contrast to the solution
of the traditional fractional diffusion equation, the solution of the modified equation
requires a summation of Fox functions instead of a single Fox function.
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1 Introduction

In recent years numerous physical and biological systems have been reported
in which the diffusion rates of species cannot be characterized by the sin-
gle parameter of the diffusion constant [1]. Instead, the (anomalous) diffu-
sion is characterized by a scaling parameter γ as well as a diffusion constant
D and the mean square displacement of diffusing species 〈r2(t)〉 scales as a
nonlinear power law in time, i.e., 〈r2(t)〉 ∼ tγ. As examples, single particle
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tracking experiments and photo-bleaching recovery experiments have revealed
sub-diffusion (0 < γ < 1) of proteins and lipids in a variety of cell membranes
[2–8]. Anomalous subdiffusion has also been observed in neural cell adhesion
molecures [9]. Indeed anomalous sub-diffusion (the case with 0 < γ < 1) is
generic in media with obstacles [10,11] or binding sites [12]. Recently Reynolds
[13] have shown that the solution of fractional diffusion equation fits well the
diffusion of proteins within plasma membranes.

There are numerous approaches to modelling anomalous diffusive behaviour
such as, Continuous Time Random Walks (CTRW), Monte Carlo simulations
[11], Langevin equations and fractional diffusion equations [14]. The fractional
diffusion equation is characterised by the presence of either a fractional tem-
poral derivative or fractional spatial derivative or both (time-fractional diffu-
sion equations were introduced by Zaslavsky [15], see Refs. [14,16] for a re-
cent review). Other fractional variants are the fractional Fokker-Planck equa-
tion [17,18] for anomalous diffusion due to an externally force and fractional
reaction-diffusion equations [19–23] for reactions where the products and re-
actants diffuse anomalously. Recently Henry et al. [24,25] have shown that the
inclusion of a fractional temporal derivative greatly affects the solution be-
haviour of Turing-instability induced patterns compared with the solution of
the standard non-fractional reaction-diffusion equations. Note these equations
involve only a single temporal fractional derivative acting on the diffusion
term.

However recently, Sokolov and Klafter [1,26,27] proposed a model for describ-
ing processes that become less anomalous as time progresses by the inclusion
of a secondary fractional time derivative acting on a linear operator, Lx,

∂P (x, t)

∂t
=

(
A

∂1−α

∂t1−α
+ B

∂1−β

∂t1−β

)
LxP (x, t), (1)

where 0 < α < β ≤ 1 and A and B are positive dimensionless constants. A
possible application of this equation is in econophysics where there is an in-
creasing interest in modelling using CTRWs [28–34]. In particular the crossover
between more and less anomalous behaviour has been observed in the volatility
of some share prices [35–37].

Note in Eq. (1) the operator

∂1−α

∂t1−α
, (2)

is the Riemann-Liouville fractional derivative operator defined by

∂1−α

∂t1−α
Y (t) =

1

Γ (α)

∂

∂t

t∫

0

Y (t
′

)

(t − t
′)1−α dt

′

. (3)
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In this article we find the Green solution of this model in the case of where the
linear operator is taken as the diffusion operator (though it can be replaced
by the Fokker-Planck operator)

Lx = K
∂2

∂x2
, (4)

with diffusion coefficient, K.

In dimensionless variables this equation reads

∂P

∂t
=

(
A

∂1−α

∂t1−α
+ B

∂1−β

∂t1−β

)
∂2P

∂x2
, (5)

where K has been absorbed into A and B.

At this point we note that Henry and Wearne [19] find in their derivation of
fractional reaction-diffusion equations an additional term

AL−1

[
∂−α

∂t−α

∂2P

∂x2

∣∣∣∣∣
t=0

+ BL−1

[
∂−β

∂t−β

∂2P

∂x2

∣∣∣∣∣
t=0

, (6)

on the right of Eq. (5). The value of this term is unclear as it necessitates the
behaviour of the term to be known near t = 0. However it can be shown from
the solution, P (x, t), that these terms are zero and can be neglected.

In the next section we find the solution to Eq. (5) in an infinite domain in
terms of Fox functions [14]. In the final section we compare this solution with
the traditional fractional diffusion equation and give some concluding remarks.

2 Infinite solution

In this section we find the Green’s solution for Eq. (5) in an infinite domain.
We now take a spatial Fourier Transform and a temporal Laplace Transform
noting that the Laplace transform of the Riemann-Liouville fractional deriva-
tive is given by

L
{

∂1−α

∂t1−α
Y (t)

}
(s) = s1−αL{Y } (s) −

[
∂−α

∂t−α
Y (t)

∣∣∣∣∣
t=0

, (7)

for 0 < α ≤ 1. The expression for the solution in Fourier-Laplace space is

̂̃
P (q, s) =

f̃(q)

s + Aq2s1−α + Bq2s1−β
, (8)
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where q and s are the Fourier and Laplace variables and the tilde and hat
denote Fourier and Laplace transformed functions, respectively. The function
f̃(q) is defined in terms of the initial conditions to the problem and is given
by

f̃(q) = P̃ (q, 0) + Aq2

[
∂−α

∂t−α
P̃ (q, t)

∣∣∣∣∣
t=0

+ Bq2

[
∂−β

∂t−β
P̃ (q, t)

∣∣∣∣∣
t=0

. (9)

Note if we include the additional terms in Eq. (6) then the last two terms for
f̃(q) cancel. However if we do not include the additional terms then it can
be shown using the solution of P (x, t) that the two fractional integrals are
nevertheless zero.

In terms of finding the Green’s function we need only to concentrate on the
function

̂̃
G(q, s) =

1

s + Aq2s1−α + Bq2s1−β
, (10)

and the final solution can than be found through a convolution.

We can show by inverting the Fourier transform in Eq. (10)

Ĝ(x, s) =
1

2
√

s (As1−α + Bs1−β)
exp

(
− |x|

√
s

As1−α + Bs1−β

)
, (11)

that the Green’s function is an even function of x. Unfortunately, inverting
the Laplace transform from this equation is problematic.

However we can invert the Laplace transform in Eq. (10) by first rewriting
̂̃
G(q, s) in the form

̂̃
G(q, s) =

sα−1

sα + Aq2

1

1 +
Bq2sα−β

sα + Aq2

. (12)

Now expanding the second fraction and simplifying we have

̂̃
G(q, s) =

∞∑

k=0

(−Bq2)
k

k!

k! sα−(1+(β−α)k)

(sα + Aq2)k+1 . (13)

From Podlubny [38] we have the following Laplace transform involving the
derivative of the Mittag-Leffler function,

L
{
tαk+β−1E

(k)
α,β (−atα)

}
(s) =

k! sα−β

(sα + a)k+1 , (14)

where the derivative of the Mittag-Leffler function is given by

E
(k)
α,β(y) =

dkEα,β(y)

dyk
=

∞∑

j=0

(j + k)! yj

j! Γ (α (j + k) + β)
. (15)
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Setting α = α, a = q2, and β = 1 + (β − α)k in Eq. (14) we can then invert
the Laplace transform in Eq. (13) to give

G̃(q, t) =
∞∑

k=0

(
−Btβ

)k

k!
q2kE

(k)
α,1+(β−α)k

(
−Aq2tα

)
. (16)

Previously, [39] has shown that the Fourier inverse of the derivative of the
Mittag-Leffler function in Eq. (15) can be achieved by first rewriting the
derivative in terms a Fox function [14]

E
(k)
α,β(y) = H

1,1
1,2


−y

∣∣∣∣∣∣∣

(−k, 1)

(0, 1) (1 − (αk + β) , α)


 . (17)

So to invert the transform in Eq. (16) we need only to invert, for each k, the
term

h̃k(q, t) = q2kH
1,1
1,2


Aq2tα

∣∣∣∣∣∣∣

(−k, 1)

(0, 1) (−kβ, α)


 . (18)

To invert the Fourier transform we first recall the Fourier transform of an even
function can be written in terms of a Fourier Cosine transform

F {f(x)} (q) =

√
π

2
Fc {f(x) + f(−x)} (q) , (19)

and that the Mellin transform of a Fourier Cosine transform is given by [40]

M{Fc [φ (x)] (q)} (z) =

√
2

π
Γ (z) cos

(
πz

2

)
M{φ (x)} (1 − z) , (20)

where z is the Mellin transform variable.

Now since we know from Eq. (11) the Green’s function is an even function
then we can assume f(x) is also even and we then have the Mellin transform
of the Fourier transform of f(x) is

M{F [f (x)] (q)} (z) = 2

√
π

2
M{Fc [f (x)] (q)} (z)

= 2 Γ (z) cos
(

πz

2

)
M{f (x)} (1 − z) . (21)

So to invert the Fourier transform, h̃k(q, t), in Eq. (18) we first evaluate its
Mellin transform (the left hand side of Eq. (21)) to find the Mellin transform
of hk(x, t) (the right hand side of Eq. (21)). The Mellin transform then need
only be inverted to find the Fourier inverse, hk(x, t).
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To find the Mellin transform of Eq. (18) we note the Mellin transform of a
Fox function is given by [41]

M





Hm,n
p,q


ax

∣∣∣∣∣∣∣

(ap, αp)

(bq, βq)








(z) = a−z

m∏
j=1

Γ(bj + βjz)
n∏

j=1
Γ(1 − aj − αjz)

q∏
j=m+1

Γ(1 − bj − βjz)
p∏

j=n+1
Γ(aj + αjz)

,

(22)
when the following conditions are met

δ =
q∑

j=1

βj −
p∑

j=1

αj > 0, (23)

A =
n∑

j=1

αj −
p∑

j=n+1

αj +
m∑

j=1

βj −
q∑

j=m+1

βj > 0, (24)

|arg(a)| <
1

2
Aπ, (25)

and

− min
1≤j≤m

[
ℜ

(
bj

βj

)]
< ℜ (z) < min

1≤j≤n

[
ℜ

(
1 − aj

αj

)]
. (26)

Another useful identity is [40]

M{xνφ(axp)} (z) =
1

p
a
−

z+ν

p M{φ(x)}
(

z + ν

p

)
, (27)

for p > 0 and a > 0. We now invert Eq. (18) by using Eqs. (22) and (27) along
with Eq. (21) to first derive the Mellin transform of hk(x, t)

M{hk(x, t)} (z) =
1

2

1√
4πAtα

(
1

Atα

)k
(

1√
4Atα

)−z

×
Γ

(
z
2

)
Γ

(
1
2

+ k − z
2

)
Γ

(
1
2

+ z
2

)

Γ
(
1 − α

2
+ (β − α) k + αz

2

)
Γ

(
1
2
− z

2

) . (28)

Comparing with Eq. (22), we find on inverting the Mellin transform and noting
x = |x| we find

hk(x, t) =
1

2

(Atα)−k

√
4πAtα

H
2,1
2,3




|x|√
4Atα

∣∣∣∣∣∣∣

(
1
2
− k, 1

2

) (
1 − α

2
+ (β − α) k, α

2

)

(
0, 1

2

) (
1
2
, 1

2

) (
1
2
, 1

2

)


 .

(29)
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Using the identity

Hm,n
p,q


x

∣∣∣∣∣∣∣

(ap, αp)

(bq, βq)


 = cHm,n

p,q


xc

∣∣∣∣∣∣∣

(ap, cαp)

(bq, cβq)


 , (30)

with c = 1
2

we arrive at the expression for hk(x, t)

hk(x, t) =
(Atα)−k

√
4πAtα

H
2,1
2,3




x2

4Atα

∣∣∣∣∣∣∣

(
1
2
− k, 1

) (
1 − α

2
+ (β − α) k, α

)

(0, 1)
(

1
2
, 1

) (
1
2
, 1

)


 .

(31)

The Green’s solution of Eq. (5) for an infinite domain is, by Eqs (16) and (31),

G(x, t) =
1√

4πAtα

∞∑

k=0

(
−B

A

)k t(β−α)k

k!

H
2,1
2,3




x2

4Atα

∣∣∣∣∣∣∣

(
1
2
− k, 1

) (
1 − α

2
+ (β − α) k, α

)

(0, 1)
(

1
2
, 1

) (
1
2
, 1

)


 . (32)

If α = β this solution reduces to the solution of the fractional diffusion equa-
tion given in [14] which is

G(x, t) =
1√

4πDtα
H

2,0
1,2




x2

4Dtα

∣∣∣∣∣∣∣

(
1 − α

2
, α

)

(0, 1)
(

1
2
, 1

)


 (33)

where D = A + B.

3 Results

In Fig. 1 we give an example plot of the solution of the modified fractional
diffusion equation in the case α = 0.5 and β = 0.75. For comparison in Figs. 2
and 3 we give the solution of the traditional fractional cable equation in the
cases α = β = 0.5 and α = β = 0.75, respectively. In each case A and B were
set to 1.

A comparison of the peak height at t = 0.1 shows the solution of the modified
equation (α = 0.5 and β = 0.75) decays initially faster than the solution of
the traditional fractional equation with the larger fractional exponent (α =
β = 0.75) but slower than the traditional solution with the smaller exponent
(α = β = 0.75). This order is reversed for longer times. This demonstrates
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the crossover between more and less anomalous behaviour. This is also seen
in the expression for the mean squared displacement

〈
r2(t)

〉
=

2A

Γ (1 + α)
tα +

2B

Γ (1 + β)
tβ, (34)

which for short times is dominated by the smaller exponent α (0.5 in Fig. 1)
and later by the larger exponent β (0.75 in Fig. 1). Such crossover behaviour
has been observed in the volatility (return variance) of share prices [35–37].

0.1

0.2

0.3

0.4

0.5

G(x,t)

–4 –3 –2 –1 1 2 3 4

x

Fig. 1. The solution of the modified fractional diffusion equation in the case α = 0.5
and β = 0.75 at the dimensionless times t = 0.1, 1, and 10. The peak height decreases
with increasing time.

In summary, in this letter we have found the solution of Sokolov and Klafter’s
modified fractional diffusion equation [1]. In contrast to the solution of the
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0

0.1

0.2

0.3

0.4

0.5

G(x,t)

–4 –3 –2 –1 1 2 3 4

x

Fig. 2. The solution of the modified fractional diffusion equation in the case
α = β = 0.5 at the dimensionless times t = 0.1, 1, and 10. The peak height de-
creases with increasing time.

traditional fractional diffusion equation, the solution of the modified equation
requires a summation of Fox functions instead of a single function. From the
representative results we see that there is a crossover between more and less
anomalous behaviour.
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0

0.1

0.2

0.3

0.4

0.5

G(x,t)

–4 –3 –2 –1 1 2 3 4

x

Fig. 3. The solution of the modified fractional diffusion equation in the case
α = β = 0.75 at the dimensionless times t = 0.1, 1, and 10. The peak height
decreases with increasing time.
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