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Intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke which occurs due to ruptures of weakened blood
vessel in brain tissue. It is a serious medical emergency issues that needs immediate treatment. Large numbers of noncontrast-
computed tomography (NCCT) brain images are analyzed manually by radiologists to diagnose the hemorrhagic stroke, which
is a difficult and time-consuming process. In this study, we propose an automated transfer deep learning method that
combines ResNet-50 and dense layer for accurate prediction of intracranial hemorrhage on NCCT brain images. A total of
1164 NCCT brain images were collected from 62 patients with hemorrhagic stroke from Kalinga Institute of Medical Science,
Bhubaneswar and used for evaluating the model. The proposed model takes individual CT images as input and classifies them
as hemorrhagic or normal. This deep transfer learning approach reached 99.6% accuracy, 99.7% specificity, and 99.4%
sensitivity which are better results than that of ResNet-50 only. It is evident that the deep transfer learning model has
advantages for automatic diagnosis of hemorrhagic stroke and has the potential to be used as a clinical decision support tool to
assist radiologists in stroke diagnosis.

1. Introduction

Stroke is the major cause of death worldwide. It occurs when
there is interruption in the blood supply to brain paren-
chyma due to either occlusion (ischemic stroke) or rupture
of a blood vessel (hemorrhagic stroke). Intracerebral hemor-
rhage (ICH), also known as hemorrhagic stroke which
occurs when bleeding takes place within the cerebral paren-
chyma due to rupture of blood vessels. Intracerebral bleed
consists of up to 15% of stroke [1] and accounts for 10%
of hospital admissions for stroke. It is a challenge to medical
fraternity to identify the location of hemorrhage in treating
the patient, while ischemic strokes (87%) are more common

than hemorrhagic strokes, but within 30 days of onset, the
mortality rate is higher in hemorrhagic one [2]. Therefore,
rapid diagnosis and posttraumatic treatment are necessary
for intracerebral hemorrhage as it is one of the most life-
threatening health condition. Imaging techniques like CT
and magnetic resonance imaging (MRI) are widely used in
detecting stroke. A hyperdense area in NCCT brain suggests
hemorrhagic stroke, and also, NCCT brain are cost effective
and sensitive for early detection of stroke [3]. Traditionally,
classification is done by radiologist by analysis of NCCT
brain which is a time-consuming process and error prone.
An effective and robust algorithm is needed for automated
diagnosis of hemorrhage stroke. Hence, we propose an
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algorithm based on deep learning which could help the radi-
ologist in decision-making with improved efficiency.

Artificial intelligence (AI) is a recent field of research
used for automated detection of brain diseases in CT/MRI
images. AI works on large datasets to detect useful patterns
that helps in decision-making in disease diagnosis and hence
treatment. Machine learning algorithms have been applied
successfully for detecting and predicting hemorrhage stroke
in NCCT brains [4–7]. Conventional image analysis tech-
niques such as fuzzy C-means [8], level set [9, 10], histogram
analysis [11], region growing [12], thresholding [13], neural
network [14], and random forest [15] have been used to suc-
cessfully segment the brain hemorrhage. In the thresholding
technique, the hemorrhagic lesion is segmented into a region
based on threshold of each pixel. Inamdar et al. [7] pre-
sented a clustering algorithm using fuzzy C-mean and active
contour methods to detect the brain hemorrhages. A fuzzy
membership degree has been used to control the propaga-
tion parameters and to initialize the active contour of the
desired object. In a retrospective dataset of 20 CT scans,
the method achieved 79% sensitivity, 99% specificity, and
an average Jaccard index of 0.78. In a similar work, Bha-
dauria and Dewal [8] used fuzzy C-means clustering to sep-
arate the white matter from the skull, and the remaining
tissue is separated by the wavelet transform and threshold-
ing. Liao et al. [9] proposed a method for segmenting intra-
cranial hematomas using multiresolution binary level set on
brain CT brain images. It works on low-resolution images to
improve the efficiency in segmenting the epidural and sub-
dural hematomas. Prakash et al. [10] derived a modified dis-
tance regularized level set evolution (MDRLSE) algorithm
that improved the speed and detection accuracy in segment-
ing hemorrhagic lesions. The same method has been used
successfully for segmenting brain hemorrhage and its sub-
types with an average accuracy of 95% [11]. Subudhi et al.
[16] used Delaunay triangulation (DT) with optimization
techniques for automatic detecting stroke lesions. The
method was effective in accurately segmenting the lesions
directly in T2-weighted MRI with less computational com-
plexity. While Ray et al. [17] proposed an intelligent model
using the information of pixel distribution and population
at different levels to segment hemorrhage in brain CT
images. Muschelli et al. [15] used the random forest algo-
rithm to automatically detect hemorrhage regions in CT
images; this approach was fast and did not require extensive
radiological experience. Indeed, Chung et al. [18] admitted
that the standard machine learning approaches are semiau-
tomatic and are not intelligent enough for feature extraction,
requiring manual adjustment of parameters to obtain better
results and are not suitable for large datasets.

In recent work, CNN-based algorithms have been found
to be effective in segmentation classification of medical
images [19–21]. Compared to conventional methods, the
CNN involves feature extraction through the network itself
by observing some pattern in the dataset. Promising results
have been obtained by training the CNN models on large
dataset to segment brain lesions [22–25]. The first deep
CNN architecture, called BrainNetCNN, was presented by
Kawahara et al. [26] to predict cognitive and motor develop-

mental outcome in clinical neurodevelopment of infants
born networks. They used an automated model based on
3D CNNs refined by a time-implicit multiphase evolution
approach to segment abdominal organs. The model is ener-
gized by probability map for fine segmentation [27]. In a
cascade approach, two 3D patch-wise CNNs are trained to
sensitize the lesion voxels, and second model is used to
reduce the misclassified voxels. This method was applied
for segmentation of white matter (WM) in MRI images of
multiple sclerosis (MS) patients [28]. Kamnitsas et al. [29]
proposed a computationally efficient method based on dee-
per CNN model for segmentation of brain lesion by auto-
matic adaptation to imbalance class data. It is a dual
pathway, 11 layers deep, and 3D CNN model for simulta-
neous processing of multiple scale input MRI images.
Recently, Wei et al. [30] used a ResNet-based deep learning
model to predict celiac disease by analyzing biopsy slides.

Motivated by the goal of providing better diagnosis of
brain stroke with limited expertise, we propose a deep learn-
ing method focused on reducing error rate. The method is a
combined approach consisting of ResNet-50 and dense layer
of fully connected layer which incorporates itself a feature
extraction method to improve computational efficiency.
The residual deep neural network accepts individual CT
slices as input, and a fully connected layer classifies the
extracted features from the residual network to ICH and
normal.

2. Materials and Methods

2.1. Dataset. We present a retrospective study, where a total
of 1164 CT scan images (512 × 512) were collected from 62
patients from both normal (592) and intracranial hemor-
rhage (572) at the Department Radio-Diagnosis, KIMS
under the supervision of radiologists. Noncontrast CT
(NCCT) images were acquired by using a 64-slice CT scan
machine (GE OPTIMA, 64 slice) having 5mm slice thick-
ness which were reconstructed to 1mm slice thickness.

2.2. Data Preprocessing. The data preprocessing starts with
the extraction of CT slices in DICOM format of size
(512,512) and converted to JPG format. A binary image con-
sisting of the skull part in the CT image is extracted with an
Otsu’s thresholding, and element-wise multiplication opera-
tion is performed between the inverted binary image and the
CT image to extract the tissue part of the brain with an aim
to improve the classification accuracy.

2.3. Transfer Learning Model. The proposed framework
involves the following steps to classify the head CT images:
(1) preprocessing and preparing the input data for the
model, (2) automatic discriminative feature extraction using
deep residual networks, and (3) classification using fully con-
nected layers as ICH or normal. Deep convolutional neural
networks normally extract low-, mid, and high-level features.
These extracted features are integrated with the classifiers in
a multilayer manner. The performance can be improved by
stacking more layers, but this leads to two main problems:
vanishing/exploding gradients [31] and performance
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degradation [32]. However, vanishing/exploding gradients
have been addressed in [33, 34]. The performance degradation
problem has been addressed in [35], where the authors have
introduced a deep residual learning framework called residual
network (ResNet).

In ResNet, the stacked layers are trained to fit a residual
mapping. Let HðxÞ denote the desired mapping and FðxÞ
denote the residual mapping function where FðxÞ≔HðxÞ
− x; x is the input to the stacked layer. As shown in
Figure 1, the desired mapping HðxÞ = FðxÞ + x can be
accomplished by adding shortcut connections into feed for-
ward neural networks.

In ResNet-50 [35], the residual function FðxÞ has three
convolutional layers, consisting of a layer with 1 × 1 filters,
a layer with 3 × 3 filters, and a layer with 1 × 1 filters as illus-
trated in Figure 1. Each of the above layers is followed by
batch normalization (BN) and uses rectified linear unit
(ReLU) as activation function. Finally, element-wise addi-
tion is performed between the output of the stacked layers
(FðxÞ) and shortcut connection (x). Then, the sum is trans-
ited to another ReLU activation function. Shortcut connec-
tions of Residual Block1, Block2, Block3, and Block4 in
Figure 1 perform identity mapping. The dotted boundary
residual blocks in Figure 2 are used to increase the dimen-
sions with a stride of 2 when the shortcut goes across feature
maps of two sizes, and a projection shortcut is used to match
the dimensions. Transfer learning is a machine learning
method where weights (knowledge) of a pretrained model
to solve one problem is reutilized to solve another problem
[36]. That is, the knowledge gained by the pretrained model
is reused for solving target problem.

We use a ResNet-based transfer learning model for the
classification of 2D CT images, with a ResNet-50 architec-
ture pretrained on the ImageNet [37] dataset to extract the
low-, mid, and high-level features. We then performed clas-
sification through the fully connected layers as depicted in
Figure 2. After that, the input is convolved with 64 kernels
of 7 × 7 size and a stride of 2, followed by max pooling with
a stride of 2. The output is then fed to a series of stacked
residual blocks followed by a global average pooling (GAP)
to reduce the output feature map to 1 × 1 × 2048. These
2048 features are classified by a fully connected layer of 64
neurons, followed by an output layer with a sigmoid activa-
tion function. The input head CT image is classified as ICH
if the output sigmoid neuron is greater than 0.5; otherwise, it
is classified as non-ICH (normal).

2.4. Loss Function and Optimizer. The classification of ICH
is considered a binary classification problem, where the out-
put label is ICH or normal. So, we use a binary cross-entropy
(BCE) loss function for a given input image:

L y, ŷð Þ = − y log ŷð Þ + 1 − yð Þ log 1 − ŷð Þð Þ, ð1Þ

where y ∈ f0, 1g represents true label for class c and ŷ ∈ ½0, 1�
represents probability of the predicted observation of class c.

Adaptive moment estimation (Adam) is used as the opti-
mizer for the classification task. Adam unites ideas from root

mean square prop (RMSProp) and momentum by comput-
ing adaptive learning rates for each parameter.

2.5. Evaluation Metrics. The performance and effectiveness
of the classification model is demonstrated with the help of
accuracy, sensitivity, and specificity measures obtained from
the confusion matrix. The performance metrics can be quan-
tified from the confusion matrix as follows:

Accuracy = TP + TN
TP + FP + TN + FN

, ð2Þ

Sensitivity =
TP

TP + FN
, ð3Þ

Specificity =
TN

TN + FP
, ð4Þ

where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is false negative.

3. Experimental Results

A ResNet-based transfer learning model was built and used in
this paper to classify the CT images as ICH or normal. In this
study, two experiments were performed to classify the CT
images, first, with only ResNet-50 architecture, and second,
with the proposed architecture illustrated in Figure 2, which
were pretrained on ImageNet. Before training the two models,
the head CT slices were preprocessed, including skull stripping
to remove the unwanted regions. Figures 3(a)–3(c) show the
positive and negative samples and manually annotated head
CT image with ICH lesion, respectively.

After removing the skull part, 512 × 512 × 3 CT images
were resized to 224 × 224 × 3 with bicubic interpolation to
match with the dimension of the ResNet-50 input layer.
Data augmentation is implemented for the generalization
of data like horizontal flipping and rotation operations to
boost the performance of the proposed model. The two
models were trained and tested on 1164 head CT images
for 200 epochs with Adam optimizer and BCE as loss func-
tion. Out of 1164 CT images, 80% (=931) of the images were
used for training the model, and 20% (=233) of the data were
utilized for testing the model. The input image of size 224
× 224 × 3 was fed to the 1st layer of convolution where 64
kernels of 7 × 7 were used to filter our input image with a
stride of 2, resulting in feature maps of 112 × 112 × 64. The
above feature maps were downsampled using 3 × 3 max
pooling operations with a stride of 2. Then, the output fea-
ture maps obtained were of size 56 × 56 × 64. These feature
maps were passed through a series of residual blocks named
as Residual Block1, Residual Block2, Residual Block3, and
Residual Block4 depicted in Figure 2 to generate the feature
maps of 56 × 56 × 64, 28 × 28 × 512, 14 × 14 × 1024, and 7
× 7 × 2048, respectively, followed by global average pooling
to give 2048 features. These obtained features were classified
using a fully connected layer of 64 neurons and an output
layer, with sigmoid activation function, as ICH or normal.
The proposed model extracts discriminative features at dif-
ferent layers, and they were used to train the neurons in

3Computational and Mathematical Methods in Medicine



the dense layers. As can be seen in Figure 4, a sample of feature
maps were obtained by propagating the ICH image forward
through each block as shown in Figure 2. The performance
plots of the two architectures on the head CT scans, like loss
vs. number of epochs and accuracy vs. number of epochs,
can be seen in Figure 5. The loss and accuracy of the proposed
model improved compared to the ResNet-50 model.

The confusion matrices for the two architectures on test
data are shown in Figure 6. We achieved 99.6% accuracy,
which is about 0.86% more compared to the ResNet-50
model. Table 1 summarizes the quantitative results in terms
of specificity, sensitivity, and area under the curve (AUC),
and Figure 7 depicts the receiver-operating characteristics
(ROC) on test data. Our results show that the model per-
formed better compared to ResNet-50 alone in terms of
measured parameters. Sensitivity refers to the model’s ability
to correctly detect the patients with ICH, while specificity is
the ability of model to correctly find the healthy patients.

The sensitivity and specificity of the ResNet-50 model are
0.971 and 0.993, and that of proposed model are 0.994 and
0.997, respectively. The proposed model achieved 1.000
AUC, while ResNet-50 model achieved 0.98 AUC. The time
for training the proposed model with 200 epochs is consid-
erably less compared to the other pretrained models, as
shown in Table 1. The sensitivity and specificity of the pro-
posed model are improved by adding the fully connected
layers to the ResNet-50 model. VGG-16 and GoogleNet are
popular deep neural network architectures based on CNNs
and trained on ImageNet dataset for ImageNet large-scale
visual recognition challenge (ILSVRC). We have also evalu-
ated our dataset with VGG-16 and GoogleNet, achieving
comparable results listed in Table 1. Several experiments
were conducted with different combinations of hidden layers
along with neurons. The results depicted in Figures 5–7 and
Table 1 are obtained using the proposed model by taking 64
neurons in the hidden layer of the fully connected layers.
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4. Discussion

The automated method for detection of intracerebral hem-
orrhage based on deep learning methods has been summa-
rized in Table 2. Very few algorithms have been reported
for automatic detection of ICHs using deep learning
approach on CT images. We found a ResNet-based
approach used to classify three types of biopsy images with

an accuracy of about 90% [30]. Phong et al. [38] adopted
the first deep learning approach for detection of intracranial
hemorrhage by employing three types of CNN model, i.e.,
LeNet, GoogLeNet, and Inception-ResNet, and achieved
accuracy of 0.99, 0.98, and 0.99, respectively. However, the
LeNet model was more time-consuming. Ker et al. [39] pro-
posed a 3D CNN network to classify different hemorrhage
types on CT brain images. They applied image thresholding

(a) (b) (c)

Figure 3: (a, b) Example of ICH region (positive sample), skull stripping, and manual annotation. (c) Example of negative sample (no ICH
region) with skull stripping.
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that improved the classification accuracy and measured with
better F1 scores from 0.91 to 0.95. Lee et al. [40] reported an
approach to classify five ICH subtypes from head CT scans

collected from 904 cases by using deep learning system and
achieved similar performance to expert radiologists with
sensitivity of 98% and specificity of 95%. Arbabshirani

(a) (b)

(c) (d)

(e) (f)

Figure 4: Feature maps generated after (a) 7 × 7 conv block, (b) max pool, (c) last Residual Block1, (d) last Residual Block2, (e) last Residual
Block3, and (f) last Residual Block4.

0
0.5

0.6

0.7A
cc

ur
ac

y 0.8

0.9

1.0

25 50 75 100
No. of epochs

125 150 175 200

Train acc
Val acc

(a)

0

0.1

0.2

0.3

Lo
ss 0.4

0.5

0.7

0.6

25 50 75 100
No. of epochs

125 150 175 200

Train loss
Val loss

(b)

0
0.88

0.90

0.92A
cc

ur
ac

y

0.94

0.96

0.98

1.00

25 50 75 100
No. of epochs

125 150 175 200

Train acc
Val acc

(c)

0
0.00

0.05

0.10

Lo
ss 0.15

0.20

0.25

0.30

25 50 75 100
No. of epochs

125 150 175 200

Train loss
Val loss

(d)

Figure 5: Performance plots generated on the test set. Plot (a, b) accuracy and loss vs. no. of epochs for ResNet-50 model and (c, d) accuracy
and loss vs. no. of epochs for the proposed model.
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Figure 6: Confusion matrix for ResNet-50 model (a) and proposed model (b).

Table 1: Comparison of performance measures proposed transfer learning models.

Method Accuracy Sensitivity Specificity AUC Training time (sec)

VGG-16 0.931 0.912 0.931 0.965 1849

GoogleNet (InceptionV3) 0.989 0.974 0.986 0.988 1809

ResNet-50 0.982 0.971 0.993 0.984 1835

Proposed model 0.996 0.994 0.997 1.000 1814
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Figure 7: ROC curve and AUC results on the test set for (a) ResNet-50 and (b) the proposed model.

Table 2: Overview of related work on classification of ICH using CT scans.

Author Dataset Method Performance (%)

Wei et al. [30] 212 ResNet Accuracy 95.3

Arbabshirani et al. [41] 46583 CNN Accuracy: 84

Chang et al. [43] 536255 3D/2D mask R-CNN Sensitivity: 95

Dhar et al. [44] 224 Deep learning Accuracy: 98

McLouth et al. [45] 1192 Deep learning Accuracy: 95.6

Danfeng et al. [48] 1176 Fully CNN Accuracy: 95

Patel et al. [49] 1554 CNN-RNN Accuracy: 96

Li et al. [50] 159 U-Net Accuracy: 98.5

Proposed model 1164 ResNet-50 and dense layer
Accuracy: 99.6
Sensitivity: 99.4
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et al. [41] trained a deep CNN model on nearly 37 thousand
hemorrhagic images with AUC of 0.84. They concluded that
the deep learning approach can reduce the diagnosis time by
96% in new ICH outpatients. Islam et al. [42] developed an
ICHNet for automated ICH segmentation on 3D CT scans
where a VGG-16 model was used for training on the data
set and classified by 3D conditional random field with Dice
accuracy of 87.6%. Chang et al. [43] developed a customized
mask R-CNN architecture which uses hybrid 3D/2D version
of Feature Pyramid Networks for evaluating hemorrhagic
stroke. They quantified the ICH volume with high accuracy
measured by Dice score coefficients (0.772-0.931) and Pear-
son correlations (0.95-0.99). Ker et al. [39] classified CT data
into normal and abnormal subtypes using 3D CNN. The F1
score of the model for 2-class classification ranged from 0.92
to 0.95. Dhar et al. [44] validated the deep learning algo-
rithm on 224 CT images collected from 124 patients having
supratentorial intracerebral hemorrhage. They obtained the
accuracy of 98% and suggested for use as a biomarker for
rapid quantification of the disease biology in large cohorts.
Another study is done by McLouth et al. [45] for validating
a deep learning-based tool using 1192 CT images collected
from different hospitals for detecting ICH. This tool
achieved an accuracy of 95.6% and hence can assist radiolo-
gists in emergent detection of ICH lesions in clinical prac-
tices. Ye et al. [46] proposed a joint 3D model consisting
of CNN and recurrent neural network (RNN) for detecting
ICH and its subtypes in noncontrast CT scans of brain in a
large dataset consists of 76,621 collected from 2836 subjects
from various hospitals. They obtained superior results with
an accuracy of 99% in classifying ICH and normal lesions
at faster rate; thus, the method has potential to assist radiol-
ogists in diagnosis.

Few research works applied U-Net-based fully CNN
model with autoencoder for segmenting ICH. Hssayeni
et al. [47] used the standard U-Net model on 82 CT scans
to segment ICH lesions and achieved a Dice coefficient of
0.31. Danfeng et al. [48] used a ICHNet model to segment
and classify ICH, achieving an accuracy of 95%. Patel et al.
[49] combined a CNN and bidirectional long-short-term
memory (LSTM) model that classifies the for ICH with an
accuracy of 95%. Li et al. [50] introduced data symmetry
into U-Net-based deep learning framework for detecting
and segmenting the hemorrhage strokes. It achieved an
accuracy of 98.5% that indicates the effectiveness of the
model in clinical decision-making process.

5. Conclusions

In this paper, we have presented a ResNet-based transfer
learning model for 2D head CT image classification as nor-
mal or ICH. The deep transfer learning framework consists
of ResNet-50 and a dense layer of fully connected layer. A
total of 1164 NCCT brain images were collected from 62
patients with hemorrhagic stroke and used for evaluating
the model. The model has been used for accurate classifica-
tion of hemorrhagic stroke in NCCT brain images, which
comprises normal images and ICH lesion of different sizes
of ICHs. The images were first preprocessed to remove the

skull and resized for the input of the ResNet-50 network to
extract the features. The feature set was then classified into
normal and ICH using a dense layer of CNN network. Our
experimental results indicate that the proposed model out-
performs the previous models for the classification by a
detectable margin with accuracy of 99.6%. As such, it will
be viable to implement the proposed model in a computer-
aided diagnosis system to reduce the workload of the radiol-
ogists with improved efficiency. As part of our future
research, we will emphasize on localizing ICH lesion and
classifying its subtypes using different transfer learning
approaches to reduce the computational complexity with
the potential to further improve the accuracy.
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