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Abstract: Complex fuzzy theory has strong practical background in many important applications,
especially in decision-making support systems. Recently, the Mamdani Complex Fuzzy Inference
System (M-CFIS) has been introduced as an effective tool for handling events that are not restricted to
only values of a given time point but also include all values within certain time intervals (i.e., the
phase term). In such decision-making problems, the complex fuzzy theory allows us to observe both
the amplitude and phase values of an event, thus resulting in better performance. However, one of
the limitations of the existing M-CFIS is the rule base that may be redundant to a specific dataset.
In order to handle the problem, we propose a new Mamdani Complex Fuzzy Inference System with
Rule Reduction Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several
fuzzy similarity measures such as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex
Fuzzy Dice Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM)
together with their weighted versions are proposed. Those measures are integrated into the M-CFIS-R
system by the idea of granular computing such that only important and dominant rules are being
kept in the system. The difference and advantage of M-CFIS-R against M-CFIS is the usage of the
training process in which the rule base is repeatedly changed toward the original base set until the
performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance of
the whole system. Experiments on various decision-making datasets demonstrate that the proposed
M-CFIS-R performs better than M-CFIS.

Keywords: complex fuzzy set; similarity measure; complex fuzzy measure; Mamdani Complex
Fuzzy Inference System (M-CFIS); rule reduction; granular computing
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1. Introduction

Zadeh [1] proposed fuzzy set (FS) as an approach for representing and processing vagueness
found abundantly in the real world. Fuzzy inference systems (FIS) are used to generate fuzzy rule sets,
which are applied in solving problems in various applications such as detection [2,3], prediction [4,5],
classification [6–8], and other tasks [9–14]. A Complex Fuzzy Set (CFS) [15] is an extension of the fuzzy
set, where the membership function consists of both the amplitude term and the phase term. Building
upon this, Ramot et al. [16] proposed a novel framework for logical reasoning, termed Complex Fuzzy
Logic (CFL), using the CFS theory. Although the CFS and the extensions of the CFS were not applied
directly in applications, CFSs were considered as a basic concept to make intelligent systems capable
of handling different issues [17–24].

Recently, the Mamdani Complex Fuzzy Inference System (M-CFIS) was proposed in [23]. Some other
FISs in the CFS were also developed such as the Adaptive Neuro-complex Fuzzy Inferential System
(ANCFIS) with higher-order TSK models [25], Randomized Adaptive Neuro-complex Fuzzy Inference
System (RANCFIS) [26], and Fast Adaptive Neuro-complex Fuzzy Inference System (FANCFIS) [27].
However, a potential impairment of the existing M-CFIS is that the rule base may be redundant to a
specific dataset. In order to remedy the problem, fuzzy similarity measures should be utilized.

The measures of the CFS were presented in [28], including complex fuzzy distances and
distance measures between two CFSs. The distance measures of the CFS were introduced in [29,30].
Setnes et al. [31] proposed a similarity measure in fuzzy rule base to evaluate the equality between
two fuzzy sets and to simplify the rule base. Similarity measures in complex neutrosophic sets
were presented in [32], including Cosine, Dice, and Jaccard similarity measures. The candidates of
multi-attribute decision-making were assessed by these measures. Apart from that, the measures based
on FS, CFS, or FIS were also used to calculate weights of criteria in a decision-making system [33]. In the
CFS, the complex fuzzy measure was defined as the cardinality of fuzzy rule set [29]. The complex
fuzzy measures (t-norm and t-conorm) in Mamdani CFIS (M-CFIS) were introduced in [23], where the
obtained rule set in M-CFIS directly affects to the results of decision-making. In most cases, there is
redundancy in the rule base obtained from M-CFIS.

This paper proposes a new Mamdani Complex Fuzzy Inference System with Rule Reduction
Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several fuzzy similarity
measures, including Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice
Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) together with
their weighted versions are proposed. Those measures are integrated into the M-CFIS-R system by the
idea of Granular Computing where only important and dominant rules will be kept in the system.
These complex fuzzy measures are used to evaluate the similarity among complex fuzzy rules in
the rule set of M-CFIS. Based on the values of these measures, the rules with high similarity will be
reduced to guarantee high performance. The advantage of M-CFIS-R over M-CFIS is the usage of the
training process in which the rule base is repeatedly changed toward the original base set until the
performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance
of the whole system. The performance of proposed method is experimentally validated on various
decision-making datasets.

2. Related Works

2.1. Complex Fuzzy Measures

Most research on complex fuzzy measure has mainly focused on certain aspects [34,35] such as
the fuzzy measure and classical theory of complex fuzzy numbers, similarity, and distance with the
CFS [29,30].
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In a fuzzy rule base, the concept of similarity measure was mentioned by Setnes et al. [31].
Based on this, the similarity of two fuzzy sets was defined. Then, similar fuzzy sets were removed and
the common presentations were kept in the rule base. Ma and Li [36] extended the classical measure to
fuzzy complex number valued measure and defined some important properties on complex fuzzy set
valued complex fuzzy measures. These properties generalized the corresponding results in measure
theory and on the related integral theory. In another study [37], Ma et al. proposed a new concept
of complex fuzzy measure, which is distinguished between the real and imaginary. Based on the
complex fuzzy measure, Ma and Li [38] focused on the convergence problem of the complex fuzzy
integral. Alkouri and Salleh [28] introduced the definitions of linguistic variables and linguistic hedges
on the CFS. In this research, they also presented several distance measures in the CFS, which might be
used as a suggestion in decision-making, prediction, and pattern recognition to find optimal solutions.
Other measures and operations on other types of the complex fuzzy set were also presented in [23,29].

The information measure in Complex Intuitionistic Fuzzy Set (CIFS) was given by Garg and
Rani [39] in a multiple-criteria decision-making for uncertain and vague data. The quaternion
representation and distance on CIFS were proposed in [40] with an application in medical diagnosis.
These formulas of quaternion representation and distance measure were used in a diagnosis model
by calculating patient–disease relations. The threshold obtained via learning process was used to
decide the output of model. In the Interval-Valued Complex Fuzzy Set (IvCFS), distance measures
were defined on Euclidean metric and Hamming metric [37]. The authors presented an example to
illustrate the use of these measures in decision-making. In the case of Complex Neutrosophic Set
(CNS), similarity measures with the weighted versions were introduced in [32]. Using these measures,
the decision-making model could rank the priority of candidates. The best one was selected to make
a decision. These measures lead to good decisions because they considered the interaction among
attributes in the dataset and the indeterminacy of data.

2.2. Fuzzy Inference System in Complex Fuzzy Set

Many intelligent systems with different applications were based on FIS [2–4,6,7]. Sagir et al. [4]
proposed two extended models of ANFIS to apply to the heart disease prediction problem. The limitations
of these extended models are that the accuracy of classification is not very high and the number of rules
is great. A combination of multiple kernel learning and ANFIS was introduced by Manogaran and
Varatharajan [7]. This method resulted in higher performance than other compared models. However,
the application of this model focused on diagnosing heart disease with only two input features. ANFIS
was also used in detecting lung cancer [3] by cancerous and non-cancerous segmentation on computed
tomography images.

ANCFIS in time series forecasting has higher quality than other related models, including
ANFIS [25]. Using the experimental results on five real datasets, the values of MSE and NDEI from
applying ANCFIS are less than those of the compared models. ANCFIS was improved as FANCFIS to
deal with multivariate time series problem [27,41]. This model was designed to maintain the accuracy
and decrease time computing of ANCFIS. Many applications of these systems were also presented
in [24,26,42]. The combination of the CFS and machine learning or other state-of-the-art tools was one
of the popular approaches to carry out practical problems. In [43], a CFS with multiswarm learning
was proposed for multiclass prediction problems. Granular computing was utilized for complex fuzzy
sets in [44]. The granulation was used to interpret complex fuzzy contexts provided by users.
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3. Preliminaries

3.1. Complex Fuzzy Set

Definition 1 [1]. A fuzzy set F over X is defined by

F =
{
(x,µF(x)) : x ∈ X

}
(1)

where the membership function of F, µF(x), is µF : X→ [0, 1] . For each x ∈ X, the value µF(x) represents the
degree of membership of x in the fuzzy set F.

Definition 2 [15]. A complex fuzzy set (CFS) S on X, is characterized by a membership function ηS(x) that
lies within the unit circle in the complex plane and has the form pS(x).ei.µS(x)where the amplitude pS(x) and
phase µS(x) are both real-valued, pS(x) ∈ [0, 1],and i =

√
−1.

S =
{
x, ηS(x)

∣∣∣x ∈ X
}

(2)

Definition 3 [45]. Some basic operations of CFS:

Consider two CFSs, A and B, in a universe of discourse X with membership degrees of ηA(x) =
pA(x)e jµA(x), ηB(x) = pB(x)e jµB(x), respectively. The operations of these two CFSs are defined as follows:

ηA∪B(x) = [pA(x) ⊕ pB(x)]e j(µA∪B) = max(pA(x), pB(x)). e j(max(µA(x),µB(x))) (3)

ηA∩B(x) = [pA(x) ∗ pB(x)]e j(µA∩B) = min(pA(x), pB(x)). e j(min(µA(x),µB(x))) (4)

where ηA∪B(x) is the union and ηA∩B(x) is the intersection operation of the CFSs A and B, ∗ is t-norm,
and ⊕ is t-conorm.

Definition 4 [45]. Let A be a complex fuzzy set on X. The complement of S is

ηc(A)(x) = pc(A)(x)e
jµc(A)(x) =

(
1− pc(A)

)
(x).e j(2π−µc(A)(x)) (5)

Definition 5 [45]. Let A and B be two CFSs on X with ηA(x) = pA(x)e jµA(x), ηB(x) = pB(x)e jµB(x).
The complex fuzzy product of A and B is

ηA◦B(x) = pA◦B(x)e jµA◦B(x) = (pA(x).pB(x)).e j
µA(x).µB(x)

2π (6)

Definition 6 [45]. A distance of complex fuzzy sets is ρ : (F∗(U) × F∗(U))→ [0, 1] , for any A, B, and C ∈
F∗(U)

i. ρ(A, B) ≥ 0, ρ(A, B) = 0 IFF A = B,
ii. ρ(A, B) = ρ(B, A ),
iii. ρ(A, B) ≤ ρ(A, C) + ρ(C, B),

where F∗(U) is the set of all complex fuzzy sets in U.

Definition 7 [45]. Assume A and B, with ηA(x) = pA(x)e jµA(x), ηB(x) = pB(x)e jµB(x). A and B are δ-equal
IFF (A, B) ≤ 1− δ, 0 ≤ δ ≤ 1.
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Definition 8 [45]. Assume A and B, with ηA(x) = pA(x)e jµA(x), ηB(x) = pB(x)e jµB(x). The distance of two
CFSs defined on the same product space is defined as follows:

d(A, B) = max

 sup
(x,y)∈UxV

∣∣∣pA(x, y) − pB(x, y)
∣∣∣, 1

2π
sup

(x,y)∈UxV

∣∣∣µA(x, y) − µB(x, y)
∣∣∣ (7)

3.2. Mamdani Complex Fuzzy Inference System (M-CFIS)

In this section, we introduce the Mamdani Complex Fuzzy Inference System (M-CFIS) [23].
The general structure of Mamdani CFIS consists of six stages [23]:

Let x1, x2, . . . , xn ∈ C be the inputs of this model.
Stage 1: Establish a set of complex fuzzy rules
Based on practical application, we will determine the set of complex fuzzy rules in the form:

CFR1 : If x1,1 is A1,1 O1,1x1,2 is A1,2 O1,2 . . . O1,n1−1 x1,n1 is A1,n1 , is Z1

CFR2 : If x2,1 is A2,1 O2,1x2,2 is A2,2 O2,2 . . . O2,n2−1 x2,n2 is A2,n2 , is Z2

. . . . . . . . .
CFRk : If xk,1 is Ak,1 Ok,1 xk,2 is Ak,2 Ok,2 . . .Ok,nk−1 xk,nk

is Ak,nk
, is Zk

With all u, v:

(i) (u, v) ∈ {1, 2, . . . , n}, with 1 ≤ u, 1 < u, 2 < . . . < u, nu ≤ n;

(ii) ηAu,v(xu,v) = pAu,v(xu,v) e j µAu,v (xu,v), with pAu,v : C→ [0, 1] and µAu,v : C→ (0, 2π] ;

(iii) ηZu(y) = pZu(y) e j µZu (y), with pZu : C→ [0, 1] and µZu : C→ (0, 2π] ;
(iv) T0 is a T-norm, and S0 is the S-norm (i.e., the T-conorm) that corresponds to T0;
(v) Ou,v = and IFF Nu,v = T0;
(vi) Ou,v = or IFF Nu,v = S0.

Stage 2: Fuzzification of the inputs
Inputs are fuzzified using complex membership function η(x) = p(x).e j µ(x), where µ(x) ∈ (0, 2π],

p(x) ∈ [0, 1], and p(x) and µ(x) represent the amplitude and phase terms of the elements, respectively.
Stage 3: Establish the firing strength of rule
This stage computes the firing strength ωu for each complex fuzzy rule as: ωu = τu e j ψu .
Stage 4: Calculate the consequence of the complex fuzzy rules
In Mamdani CFIS, the value of the consequence of the complex fuzzy rules is obtained by using

the Mamdani implication rule.

ηA→B(x, y) = (pA(x).pB(y)). e j 2π(
µA(x)

2π .
µB(y)

2π ) (8)

Choose a function U0 : [0, 1]2 → [0, 1], with U0(1, 1) = 1, and a function g0 : (0, 2π]2 → (0, 2π],
with g0(2π, 2π) = 2π. We form the consequent of CFRu for each u:

Γu(y) = U0(τu, rCu(y))e j g0(ψu,µCu (y)) = ωu.ηCu(y)

where “.” denotes the complex dot product.
Stage 5: Aggregation
In this stage, the output distribution is calculated as follows:

D(y)= Γ1(y) + Γ2(y) + . . .+ Γk(y).

Stage 6: Defuzzification.



Mathematics 2020, 8, 707 6 of 24

Choose a function Φ : F (C ,C)→ C. Determine the value of the output yop = Φ(D). For example,

we can choose the trapezoidal approximation such as Φ(D) =

∫
∞

−∞
y|D(y)|dy∫

∞

−∞
|D(y)| dy

.

3.3. Granular Computing

Granular computing [46,47] generally refers information granulation that includes probabilistic
set, fuzzy set, and rough set. In the context of fuzzy sets, each element can be viewed as a granule of a
certain degree of membership to the set. It is used to simplify complex problems by decomposing
strategy in term of information granulation. Studying rule learning with granular computing has an
important role in improving the model accuracy. Thus, the relationship between granular computing
and rule-based systems is argued.

4. Proposed M-CFIS-R System

4.1. Main Ideas

It has been observed from Section 2 that changing the number of rules in a rule base for better
performance of classification is still a challenge when designing a FIS model. Hence, it is necessary
to have an effective measure to evaluate the importance of each rule in the rule base. This section
will propose three similarity measures in the Training stage. In our decision-making model, granular
computing is used in the last stage of Training. The purpose of using granular computing is to reduce
the rules with high similarity or to add more rules in order to get higher coverage. The result of this
stage is a new rule set with suitable number of rules with high classification accuracy compared to
the original rule set. Comparing with the architecture of M-CFIS [23], we add the Training process
in order to create the original complex fuzzy rule base and improve it by the Granular Computing
with Complex Fuzzy Measure (i.e., Granular Complex Fuzzy Measure). The Testing phase follows
the inference process in the M-CFIS discussed in Section 3.2 but with the reduced complex fuzzy
base. The model is divided into two parts: (i) Training used to train the generation of fuzzy rules
is discussed in detail in Section 4.2; (ii) Testing used to test the performance of the rule system is
discussed in Section 4.3.

4.2. Training

In this model, we divide the dataset into the Training–Validation–Testing parts by K-Folds (where
K is often small, e.g., 3). From the Training data, we build the real and imaginary data (presented
in Section 4.2.1). Then, fuzzy clustering (i.e., Fuzzy C-Means [48]) is performed for each attribute of
those data to obtain the set of fuzzy rules, which is considered as the original complex fuzzy rule base
(see Section 4.2.2). This rule base is evaluated on the Validation data to get the performance, namely
A (see Section 4.2.3). Next, we try to improve the original complex fuzzy rule base by calculating
the correlations between complex fuzzy rules based on different new complex fuzzy measures (see
Section 4.2.4). The similarities of complex fuzzy rules are finally determined by granular computing
according to each label of Validation data (see Section 4.2.5). We then evaluate performance of the new
complex fuzzy rule base called A’ on the Validation data by the same inference module (similar to
Section 4.2.3). If A’ is better than A, we end the Training and proceed to Testing; otherwise, we repeat
the process of using Granular Complex Fuzzy Measure to retrain. The Training process can be seen
in Figure 1.
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Figure 1. Training diagram for the proposed model.

4.2.1. Real and Imaginary Data Selection

From the Training data, we build the real and imaginary data as follows: The real data are defined
as the original data values. The imaginary data at record P of attribute Q is determined as var.P (row) +
var.Q (column), where var.P (row) is the variance in row at row P and var.Q (column) is the variance
according to the column in column Q.

4.2.2. Fuzzy C-Means (FCM)

In this study, we use the Fuzzy C-Means clustering method (Algorithm 1) for dividing the data
according to each attribute into several groups. The number of clusters specified for each attribute is
different based on the semantic value of the attribute. The number of clusters of an attribute in the real
and imaginary parts is the same. Finally, we produce complex fuzzy rules from each cluster.
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Algorithm 1. Fuzzy C-Means algorithm.

Input Datasets X of N records; C: number of clusters; m: fuzzier; MaxStep
Output Membership U and centers V
BEGIN
1 Iteration t = 0

2 Initialize u(t)kj ← random (k = 1, N j = 1, C) within [0,1] and the sum constraint

3 Repeat
4 t = t + 1

5 Compute V j =

∑C
k=1 um

kjXk∑C
k=1 um

kj

( j = 1, C)

6 Compute ukj =
1∑C

i=1

(
‖Xk−Vj‖

‖Xk−Vi‖

) 1
m−1

(k = 1, N j = 1, C)

7 Until ‖U(t)
−U(t−1)

‖ ≤ ε or t > MaxStep

4.2.3. Evaluating Performance of the Rule-Based System

After obtaining the complex fuzzy rule base, we use the Validation data to derive the outputs and
evaluate the performance through Accuracy, Precision, and Recall.

Accuracy =
TN + TP

TN + FN + FP + TP

Recall = |TP|
|TP|+|FN|

Precision = |TP|
|TP|+|FP|

4.2.4. Complex Fuzzy Measures

In this section, we propose three complex fuzzy similarity measures with their weighted versions
as below.

Complex Fuzzy Cosine Similarity Measure (CFCSM)

Definition 9. Assume that there are two complex fuzzy sets, namely S1 = rS1(x)e
jµS1 (x) and S2 = rS2(x)e

jµS2 (x),
x ∈ X. A Complex Fuzzy Cosine Similarity Measure (CFCSM) between S1 and S2 is

CCFS =
1
n

n∑
j=1

(a1b1)(a2b2)√
(a1b1)

2 +

√
(a2b2)

2
(9)

where
a1 = Re

(
pS1(x)e

jµS1 (x)
)
, b1 = Im

(
pS1(x)e

jµS1 (x)
)
, a2 = Re

(
pS2(x)e

jµS2 (x)
)
,

b2 = Im
(
pS2(x)e

jµS2 (x)
)

Proposition 1. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ CCFS(S1, S2 ) ≤ 1;
2. CCFS(S1, S2 ) = CCFS(S2, S1 );
3. CCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then CCFS(S1, S ) ≤ CCFS(S1, S2 ) and CCFS(S1, S ) ≤ CCFS(S2, S ).

Proof.

1. It is correct because all positive values of cosine function are within 0 and 1.
2. Trivial.
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3. When S1 = S2 then obviously CCFS(S1, S2 ) = 1. If CCFS(S1, S2 ) = 1, a1 = a2, b1 = b2. This implies
that S1 = S2.

4. Let S =
〈
pS(x).e jµS(x)

〉
and also assume that L1 = Re

[
pS(x).e jµS(x)

]
and L2 = Im

[
pS(x).e jµS(x)

]
.

If S1 ⊂ S2 ⊂ S, we can write that a1b1 ≤ a2b2 ≤ L1L2. The cosine function is a decreasing function
within the interval

[
0, π2

]
. Then, we can write CCFS(S1, S ) ≤ CCFS(S1, S2 ) and CCFS(S1, S ) ≤

CCFS(S2, S ). �

Definition 10. Weighted Complex Fuzzy Cosine Similarity Measure (WCNCSM).

Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jµS1 (x) and S2 = pS2(x)e

jµS2 (x),
x ∈ X. A Weighted Complex Fuzzy Cosine Similarity Measure between S1 and S2 is

CWCFS =
∑n

j=1
w j

[ √
a1b1a2b2

√
a1b1 +

√
a2b2

]
where

∑n

j=1
w j = 1 (10)

Complex Fuzzy Dice Similarity Measure (CFDSM)

Definition 11. Assume that there are two complex fuzzy sets namely S1 = rS1(x)e
jµS1 (x) and S2 =

rS2(x)e
jµS2 (x), x ∈ X. A Complex Fuzzy Dice Similarity Measure (CFDSM) between S1 and S2 is

DCFS =
1
n

n∑
j=1

2
√

a1b1a2b2

a1b1 + a2b2
(11)

where
a1 = Re

(
pS1(x)e

jµS1 (x)
)
,b1 = Im

(
pS1(x)e

jµS1 (x)
)
, a2 = Re

(
pS2(x)e

jµS2 (x)
)
,

b2 = Im
(
pS2(x)e

jµS2 (x)
)
.

Proposition 2. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ DCFS(S1, S2 ) ≤ 1;
2. DCFS(S1, S2 ) = DCFS(S2, S1 );
3. DCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then DCFS(S1, S ) ≤ DCFS(S1, S2 ) and DCFS(S1, S ) ≤ DCFS(S2, S ).

Proof. The proof is similar to Proposition 1. �

Definition 12. Weighted Complex Fuzzy Dice Similarity Measure (WCFDSM).

Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jµS1 (x) and S2 = pS2(x)e

jµS2 (x),
x ∈ X. A Weighted Complex Fuzzy Dice Similarity Measure between S1 and S2 is

DWCNS =
∑n

j=1
w j

 2
(√

a1b1a2b2
)

√
a1b1 +

√
a2b2

 where
∑n

j=1
w j = 1 (12)
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Complex Fuzzy Jaccard Similarity Measure (CFJSM)

Definition 13. Assume that there are two complex fuzzy sets, namely S1 = pS1(x)e
jµS1 (x) and S2 =

pS2(x)e
jµS2 (x), x ∈ X. A Complex Fuzzy Jaccard Similarity Measure (CFJSM) between S1 and S2 is

JCFS =
1
n

n∑
j=1

√
a1b1a2b2

(a1b1 + a2b2) −
(√

a1b1 +
√

a2b2
) (13)

where a1 = Re
(
pS1(x)e

jµS1 (x)
)
, b1 = Im

(
pS1(x)e

jµS1 (x)
)
, a2 = Re

(
pS2(x)e

jµS2 (x)
)
, b2 = Im

(
pS2(x)e

jµS2 (x)
)
.

Proposition 3. Let S1 and S2 be complex fuzzy sets. Then,

1. 0 ≤ JCFS(S1, S2 ) ≤ 1;
2. JCFS(S1, S2 ) = JCFS(S2, S1 );
3. JCFS(S1, S2 ) = 1 if and only if S1 = S2;
4. If S1 ⊂ S2 ⊂ S then JCFS(S1, S ) ≤ JCFS(S1, S2 ) and JCFS(S1, S ) ≤ JCFS(S2, S ).

Proof. The proof is similar to Proposition 1. �

Definition 14. Weighted Complex Fuzzy Jaccard Similarity Measure (WCFJSM)

Assume that there are two complex fuzzy sets namely S1 = pS1(x)e
jµS1 (x) and S2 = pS2(x)e

jµS2 (x),
x ∈ X. A Weighted Complex Fuzzy Dice Similarity Measure between S1 and S2 is

JWCNS =
∑n

j=1
w j

[ √
a1b1a2b2

√
a1b1 −

√
a2b2

]
where

∑n

j=1
w j = 1 (14)

4.2.5. Granular Complex Fuzzy Measures

In this section, we describe how to determine the final similarity between complex fuzzy rules from
the correlations of rules described in Section 4.2.4. To accomplish this, we introduce an idea of granular
computing to conceptualize relationships for a combination of fuzzy correlation measures. Assume
that the outputs of three similarity measures in Section 4.2.4 are three corresponding squared matrices
whose elements are the correlations between pairs of complex fuzzy rules: D1, D2, D3. We determine
the final degree of similarity between complex fuzzy rules based on the aggregation:

Fi j = a1D1
i j + a2D2

i j + a3D3
i j (15)

For each set of labels, e.g., label l, we obtain Fij(l) to be determined a1(l), a2(l), . . . ae(l).

at(l) =
|Dt/l|∑
i=1

|Dt/l|∑
j=i+1

(
Dt

i j/t
)

∣∣∣Dt/l
∣∣∣ (16)

For rules other than labels, then Fij = 0. From these, we obtain the matrix F.
A new complex fuzzy rule base is found from F by removing rules having a high or maximal

degree of similarity within a group. Then, we proceed to the next steps to evaluate the performance of
the new rule system. In cases that the performance of the new complex fuzzy rule base is worse than
that of the current rule, we return to the steps of computing the complex fuzzy measures (Section 4.2.4)
and granular computing (Section 4.2.5) for the new complex fuzzy rule base. The iteration stops either
when the performance of the new complex fuzzy rule base is better than that of the current base or the
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cardinality of rules according to any label is equal to 1. The following example demonstrates the main
activities of granular computing in M-CFIS-R.

Example 1. Suppose we have a set of 6 complex fuzzy rules in which 3 rules R1, R3, R4 have label 1 (k = 1),
and 3 rules R2, R5, R6 have label 2:

R1: If x1 is Medium and x2 is High and x3 is High then k is 1
R2: If x1 is High and x2 is Low and x3 is Low then k is 2
R3: If x1 is Low and x2 is Medium and x3 is High then k is 1
R4: If x1 is Low and x2 is High and x3 is Medium then k is 1
R5: If x1 is High and x2 is Low and x3 is Medium then k is 2
R6: If x1 is Medium and x2 is Low and x3 is Low then k is 2

Using the complex fuzzy measures (Section 4.2.4), we obtain three matrices as follows:

D1 =



0 0.5 0.8
0.5 0 0.5
0.8 0.5 0

0.7 0.4 0.3
0.4 0.8 0.9
0.9 0.4 0.5

0.7 0.4 0.9
0.4 0.8 0.4
0.3 0.9 0.5

0 0.5 0.3
0.5 0 0.7
0.3 0.7 0



D2 =



0 0.2 0.5
0.2 0 0.2
0.5 0.2 0

0.4 0.2 0.1
0.3 0.5 0.6
0.5 0.2 0.1

0.4 0.3 0.5
0.2 0.5 0.2
0.1 0.6 0.1

0 0.2 0.3
0.2 0 0.5
0.3 0.5 0



D3 =



0 0.1 0.4
0.1 0 0.1
0.4 0.1 0

0.4 0.2 0.1
0.2 0.4 0.3
0.4 0.1 0.2

0.4 0.2 0.4
0.2 0.4 0.1
0.1 0.3 0.2

0 0.2 0.1
0.2 0 0.3
0.1 0.3 0


We calculate the coefficients of each matrix according to the labels 1, 2:

a1
1=

0.8 + 0.7 + 0.9
3

= 0.8 a1
2=

0.5 + 0.4 + 0.5
3

= 0.467 a1
3=

0.4 + 0.4 + 0.4
3

= 0.4

a2
1=

0.8 + 0.9 + 0.7
3

= 0.8 a2
2=

0.5 + 0.6 + 0.5
3

= 0.533 a1
3=

0.4 + 0.3 + 0.3
3

= 0.333

We calculate the matrix F as follows:

F =



0 0 1.034
0 0 0

0.397 0 0

0.907 0 0
0 1.04 1.14

1.114 0 0
0.563 0 0.51

0 0.29 0
0 0.657 0

0 0 0
0 0 0.926
0 0.926 0
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It is obvious that the rules with highest similarity within label 1 are R3 and R4, and the rules with
the highest similarity within label 2 are and R2 and R6. Then, the new complex fuzzy rule base is: R1,
R3 with label 1; R2, R5 with label 2.

We calculate performance of the new rule base. If it is worse, we return to compute the complex
fuzzy measures with the current rule base including R1, R3 with label 1 and R2, R5 with label 2. Here,
we demonstrate Iteration 2.

The second iteration: The second set of fuzzy rules R’ is: R’1, R’3 have label 1, R’2, R’4 have label
2. For clarity, we assign a mark (‘) to differentiate between iterations. The corresponding measure
values are:

D1′ =


0 0.5

0.5 0
0.8 0.3
0.4 0.7

0.8 0.4
0.3 0.7

0 0.3
0.3 0


D2′ =


0 0.2

0.2 0
0.5 0.1
0.2 0.4

0.5 0.2
0.1 0.4

0 0.1
0.1 0


D3′ =


0 0.1

0.1 0
0.3 0.1
0.1 0.4

0.3 0.1
0.1 0.4

0 0.2
0.2 0


We calculate the coefficients of each matrix according to the labels 1 and 2:

a
′1
1=

0.8
1

= 0.8 a
′1
2=

0.5
1

= 0.5 a
′1
3=

0.3
1

= 0.3

a
′2
1=

0.7
1

= 0.7 a
′2
2=

0.4
1

= 0.4 a
′1
3=

0.4
1

= 0.4

We calculate the matrix F as follows:

F′ =


0 0
0 0

0.98 0
0 0.81

0.98 0
0 0.81

0 0
0 0


We define the similarity with the same label and determine the highest similarity. The following

rules are similar: R’1 and R’3, R’2, and R’4. Then, the new rule base is: R’1 with label 1; R’2 with label
2. We continue to compute performance of the new rule base. Even if the performance is not better
than that of the current rule base, we still stop the algorithm because the cardinality of rules in both
labels 1 and 2 is 1. In order to obtain the best performance, we may use the original complex fuzzy
rule base generated from Training as the final results. As a result, the proposed M-CFIS-R at least has
performance equal to M-CFIS in the worst case.

4.3. Testing

We perform a similar procedure with M-CFIS [23] for testing the performance of the system with
the reduced complex fuzzy rule base found in the Training phase (Figure 2).
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Figure 2. Testing diagram for the proposed model.

Specifically, from Testing data, we build data for the real and imaginary parts. Then, we use
the reduced complex fuzzy rule base generated from the Training model to obtain the consequences.
By using the Aggregation operator and Defuzzification, we obtain the output. Finally, we evaluate the
performance of the outputs based on the evaluation measures (see Section 4.2.3).

4.4. Some Notes on M-CFIS-R

Advantages: The M-CFIS-R model combines M-CFIS, complex fuzzy measures and granular
computing within the Training phase. The result is a new fuzzy rule system with better performance
than M-CFIS. The novelty of this research lies on the complex fuzzy measures within granular
computing. In M-CFIS [23], the Training phase was not described, so it is an advantage for this research
to demonstrate the improvements in this phase. By doing so, we obtain the new M-CFIS with better
complex fuzzy rule base, which results in better performance than M-CFIS [23].

Disadvantages: The new model only stopped at local optimization and did not yet obtain a global
optimal solution because when evaluating the performance of a new fuzzy rule base in the Training,
if it is better than that of M-CFIS, the algorithm stops. This should be enhanced further. Besides,
implementation time of the proposed model is also longer than that of M-CFIS.

5. Experiments

5.1. Experimental Environment

We implemented the proposed M-CFIS-R against M-CFIS [23] in MATLAB 2014 and executed
them on a PC VAIO laptop with Core i5 processor. The experimental data include two types:
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(a) Benchmark Medical UCI Machine Learning Repository Data [49]:

i. The first dataset is the Wisconsin Breast Cancer Diagnosis (WBCD) from UCI [50] with
699 examples (458 benign and 241 malignant) in nine integer inputs and one binary output
(Table 1).

Table 1. Wisconsin Breast Cancer Diagnosis (WBCD) data summary.

No. Feature Name Value Range

1 Clump Thickness 1–10
2 Uniformity of Cell Size 1–10
3 Uniformity of Cell Shape 1–10
4 Marginal Adhesion 1–10
5 Single Epithelial Cell Size 1–10
6 Bare Nuclei 1–10
7 Bland Chromatin 1–10
8 Normal Nucleoli 1–10
9 Mitoses 1–10
10 Class (2: benign, 4: malignant)

ii. The second dataset, named Diabetes Databases [51], is from the Department of Medicine
of the University of Virginia School of Medicine. The data have 391 examples with two
classes to test whether the patient is positive or negative for diabetes. This dataset consists
of five attributes (Table 2).

Table 2. Diabetes data summary.

No Feature Names Value Range

1 Total Cholesterol 78–443
2 Stabilized Glucose 48–385
3 High Density Lipoprotein 12–120
4 Cholesterol/HDL Ratio 1.5–19.3
5 Glycosylated Hemoglobin 2.68–16.11
6 Class (0: negative, 1: positive)

(b) Real Medical Datasets:

i. The third dataset is from Gangthep Hospital and Thai Nguyen National Hospital,
Vietnam [52], including 4156 patients divided into two groups: 2954 examples of
non-diseased patients and 1202 examples of diseased patients (Table 3).

Table 3. Gangthep Hospital and Thai Nguyen National Hospital data summary.

No. Feature Name Value Range

1 Age: at the exam time 5–86
2 Gender (0: male; 1: female)
3 AST: aspartate transaminase 11.4–659.76
4 ALT: alanine aminotransferase 78.52–647.7
5 AST/ALT index 0–8.5
6 GGT: gamma glutamyl transferase 0–3352.6
7 Albumin 0–58.2
8 TB: Total bilirubin 3–669.03
9 DB: Direct bilirubin 0–287.52

10 DB/TB (%) 0–224.8
11 Class (0: nondisease, 1: disease)
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ii. The fourth dataset is the real dental dataset from Hanoi Medical University Hospital,
Vietnam [53], in which dentists provide a properly labeled dataset that consists of 447
X-ray images with the disease of wisdom teeth deviate and 200 X-ray images without
wisdom teeth deviate. The dental experts are from Hanoi Medical University and are
currently working as professional dentists (Figure 3).

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 24 

 

No. Feature Name Value Range 
2 Gender  (0: male; 1: female) 
3 AST: aspartate transaminase 11.4–659.76 
4 ALT: alanine aminotransferase 78.52–647.7 
5 AST/ALT index 0–8.5 
6 GGT: gamma glutamyl transferase 0–3352.6 
7 Albumin 0–58.2 
8 TB: Total bilirubin 3–669.03 
9 DB: Direct bilirubin 0–287.52 

10 DB/TB (%) 0–224.8 
11 Class (0: nondisease, 1: disease) 

ii. The fourth dataset is the real dental dataset from Hanoi Medical University Hospital, 
Vietnam [53], in which dentists provide a properly labeled dataset that consists of 447 X-ray 
images with the disease of wisdom teeth deviate and 200 X-ray images without wisdom teeth 
deviate. The dental experts are from Hanoi Medical University and are currently working as 
professional dentists (Figure 3). 

  

(a) (b) 

Figure 3. (a) A dental image. (b) The patient’s cavity area image. 

From this, we extract the following features: Gradient (GRA) [54]; Local Binary Patterns (LBP) 
[55]; Patch [56]; and Entropy, Edge-Value, and Intensity (EEI) [57] (Table 5). The input is an image, 
and the output is the label of disease or not. 

Table 5. Value ranges of the dental dataset. 

ID Features Value Range 
1 LBP 27.04–55.89 
2 EEI 145.65–161.76 
3 GRA 85.02–125.07 
4 Patch 30.54 × 10−3 – 208.56 × 10−3 
5 Label 0 or 1 

The evaluation criteria are Accuracy, Precision, and Recall, as defined in Section 4.2.3. 

5.2. Experimental Results on the Benchmark UCI Datasets 

Using 3-fold cross-validation method, the values of criteria obtained by applying M-CFIS and 
M-CFIS-R on the UCI datasets are visually presented in Figures 4 and 5, respectively. The average 
values of validity indices and time consumed are calculated separately on the training and the testing 
data. The number of rules is defined after applying granular computing with complex fuzzy 
measures. Results are taken as the average of 3-fold cross-validation. 

Figure 3. (a) A dental image. (b) The patient’s cavity area image.

From this, we extract the following features: Gradient (GRA) [54]; Local Binary Patterns (LBP) [55];
Patch [56]; and Entropy, Edge-Value, and Intensity (EEI) [57] (Table 4). The input is an image, and the
output is the label of disease or not.

Table 4. Value ranges of the dental dataset.

ID Features Value Range

1 LBP 27.04–55.89
2 EEI 145.65–161.76
3 GRA 85.02–125.07
4 Patch 30.54 × 10−3–208.56 × 10−3

5 Label 0 or 1

The evaluation criteria are Accuracy, Precision, and Recall, as defined in Section 4.2.3.

5.2. Experimental Results on the Benchmark UCI Datasets

Using 3-fold cross-validation method, the values of criteria obtained by applying M-CFIS and
M-CFIS-R on the UCI datasets are visually presented in Figures 4 and 5, respectively. The average
values of validity indices and time consumed are calculated separately on the training and the testing
data. The number of rules is defined after applying granular computing with complex fuzzy measures.
Results are taken as the average of 3-fold cross-validation.
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Figure 4. Performance on the WBCD dataset: (a) Accuracy, Recall, and Precision on training set;
(b) Accuracy, Recall, and Precision on testing set; (c) Time consumed; (d) Number of rules.
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Figure 5. Performance on the Diabetes dataset: (a) Accuracy, Recall, Precision on training set;
(b) Accuracy, Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.

Figure 4 shows the results of applying M-CFIS and M-CFIS-R on the first dataset—WBCD.
The accuracy of M-CFIS-R in the training data (Figure 4a) is higher than that of M-CFIS by 1.2% with
small standard derivation (SD) (about 0.02). This value on the testing data is 1.6% higher with 0.01
of SD. Similarly, the Recall values in Figure 4b of M-CFIS-R in both the training and testing data are
also higher than those of CFIS with the SD being less than 0.02. The Precision values in Figure 4a,b of
M-CFIS-R are a bit higher than those of M-CFIS, with very small SD (SD is even zero in the testing data).

The computation time in Figure 4c of M-CFIS-R is a bit higher than that of M-CFIS, with only
0.25 s on the training data and 0.41 s on the testing data. Thus, the computation time of these methods
can be considered as equal. The average number of rules in Figure 4d of M-CFIS-R is 127 with SD of
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3.4, which is 35 rules less than the result of M-CFIS (163 rules on average with 2.06 SD). Thus, the rule
base of M-CFIS-R has a lower number of rules than M-CFIS.

The performance comparison between M-CFIS and M-CFIS-R on the Diabetes dataset is presented
in Figure 5. The values of validity indices (Figure 5a,b) obtained from M-CFIS-R are higher than those
of M-CFIS by more than 1% and with small SD.

The running time (Figure 5c) of M-CFIS-R is higher than that of M-CFIS by only 0.02 s on
the training data and 0.086 s on the testing data. The standard derivations are very small as well.
The computation time of M-CFIS-F is equivalent to that of M-CFIS. The average number of rules in
Figure 5d of M-CFIS-R is 5 rules less than that of M-CFIS, with SD of 0.94.

5.3. Experimental Results on the Real Datasets

On the real datasets, the classification quality evaluation between our proposed method M-CFIS-R
and M-CFIS is shown in Figures 6 and 7.
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Figure 6. Performance on the Liver dataset: (a) Accuracy, Recall, Precision on training set; (b) Accuracy,
Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.
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Figure 7. Performance on the Dental dataset: (a) Accuracy, Recall, Precision on training set; (b) Accuracy,
Recall, Precision on testing set; (c) Time consumed; (d) Number of rules.

Figure 6 shows the performance of M-CFIS-R and M-CFIS on the Liver dataset. From Figure 6a,
it is clear that the accuracy of M-CFIS-R on the training data is 2.5% higher than that of M-CFIS.
Moreover, as shown in Figure 6a,b, the recall and precision values of M-CFIS-R on the training and
testing data are about 2.2% higher than those of M-CFIS. Although the recall of M-CFIS-R on the
testing data is 0.4% smaller than that of M-CFIS, the SD is very small (only 0.03). This is caused by the
decreasing in number of rules, as shown in Figure 6d. On the Liver dataset, the number of rules in
M-CFIS-R is 69 less than that of M-CFIS. This is the reason for M-CFIS-R being more time-consuming
than M-CFIS (i.e., 34.5 s higher on the training data and 8.5 s higher on the testing data, as shown in
Figure 6c). The standard derivations of all these results are very low.

The performance evaluation of M-CFIS-R compared to M-CFIS on Dental dataset is presented in
Figure 7. All the results in this table are mostly similar to those of three datasets mentioned above.
The number of rules in M-CFIS-R is 183 rules with SD of 2.5, while the number of rules in M-CFIS
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is 215 with 3.4 SD, as shown in Figure 7d. This explains why the accuracy, precision, and recall of
M-CFIS-R are higher than those of M-CFIS, as seen in Figure 7a,b.

Apart from experimental evaluation above, the qualitative comparisons between the proposed
model and others are provided in Table 5.

Table 5. Theoretical comparison between the proposed work and others.

Authors Model Brief Description Results and Limitations

Selvachandran
et al. [23] Mamdani CFIS

- Extended Mamdani FIS on
complex fuzzy sets (Mamdani
CFIS) together with operations on
this system.
- Output of Mamdani CFIS is a set
of complex fuzzy rules used to
solve diagnosis problems.

- Applying proposed model on
six real datasets with higher
accuracy than Mamdani FIS
and ANFIS.
- Limitation: There is
redundancy in the rule base.

Turabieh et al.
[58] Dynamic ANFIS

- An ANFIS based model to
predict missing values of
incomplete samples based on
complete samples.
- Optimized each rule in the rule
base using MSE.

- The model was validated on
two medical datasets with
good results in handling
missing value datasets.
- Limitation: Unable to deal
with data that have phase or
periodic interval.

Ahmad et al.
[59]

Multilayer
Mamdani FIS

- Proposed two-stage model in
which Mamdani FIS is used to
diagnose hepatitis B.
- First layer determines hepatitis
and second layer diagnoses
hepatitis B.

- Experiments were done on a
real dataset. The correct
classification rate is high.
- Limitation: This method is
restricted to medical dataset of
hepatitis. Does not concern
periodic data.

This paper M-CFIS-R

- Proposed a new rule reduction
for M-CFIS [23] by using granular
computing with complex
similarity measures.
- Theoretical proofs and theorems
were provided.

- Achieved high accuracy of
prediction in both the
benchmark and real datasets.
- Achieved the optimal number
of rules.
- Able to handle the limitations
of rule redundancy and
periodic data.
- Limitation: Time-consuming.

6. Conclusions

This paper proposed a new M-CFIS-R system that incorporated fuzzy similarity measures such
as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice Similarity Measure
(CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) in the granular computing
mechanism. The aim is to achieve a better rule base than that in the original M-CFIS system. The rule
base is improved by calculating the correlations between complex fuzzy rules based on different
complex fuzzy measures. The similarities of complex fuzzy rules are finally determined by granular
computing according to each label of Validation data. We then evaluate performance of the new
complex fuzzy rule base on the Validation data by the same inference module. If the performance is
better, we end the Training and proceed to Testing; otherwise, we repeat the process of using Granular
Complex Fuzzy Measure to retrain. In the Testing phase, we perform a similar procedure with M-CFIS
for testing the performance of the system with the reduced complex fuzzy rule base found in the
Training phase. The M-CFIS-R model combines M-CFIS, complex fuzzy measures, and granular
computing within the Training phase. By doing so, we obtain the new M-CFIS with better complex
fuzzy rule base, which results in better performance than M-CFIS.



Mathematics 2020, 8, 707 21 of 24

The experiments have been performed on the benchmark datasets from UCI Machine Learning
Depository and real datasets from Gangthep Hospital, Thai Nguyen National Hospital, and Hanoi
Medical University Hospital, Vietnam. Obviously, the results in Sections 5.2 and 5.3 clearly affirm that
the proposed M-CFIS-R is better than M-CFIS in terms of accuracy, recall and precision. In general,
all these indices of M-CFIS-R are higher than those of M-CFIS on average, with very low standard
derivation. In most cases, the accuracy values of M-CFIS-R in the training data are smaller than those in
the testing data, e.g., 92.89% vs. 95.84% on the WBCD, 86.37% vs. 89.47% on the Diabetes, and 87.69%
vs. 88.44% on the Dental data. However, M-CFIS-R takes more time to identify the labels of the input
samples because of using the granular computing with complex fuzzy measures. On the other hands,
the rule base obtained from M-CFIS-R has better quality with a smaller number of rules than that of
M-CFIS. In summary, the accuracy of M-CFIS-R is approximately 86.3–92.9% for the Training and
85–95.8% for the Testing data. The rule reduction in M-CFIS-R compared with M-CFIS is by around
4.8–22.1%. Lastly, M-CFIS-R is slower than M-CFIS by around 1.15 times in the Testing data on average.

However, the M-CFIS-R stops at local optimization but did not yet obtain a global optimal solution,
since when evaluating the performance of a new fuzzy rule base in the Training, if it is better than that
of M-CFIS, the algorithm stops. This should be enhanced further. Besides, the implementation time of
the proposed model is also longer than that of M-CFIS. Different concepts of complex fuzzy measures,
complex fuzzy integral, and other variants (i.e., Sugeno and Tsukamoto) of M-CFIS-R should be under
investigation soon.

Author Contributions: Concept: L.H.S. and S.-Y.C.; methodology: L.H.S., L.T.H.L. and T.T.N.; software: L.T.H.L.,
T.M.T. and M.A.; validation: T.T.N., T.M.T. and N.L.G.; data curation: L.T.H.L. and T.M.T.; writing—original draft
preparation: M.A. and L.T.H.L.; writing—review and editing: T.T.N., L.H.S., N.L.G. and S.-Y.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been funded in part by the Graduate University of Science and Technology under
grant number GUST.STS.ĐT2018-TT01. This work was supported in part by the Taiwan Building Technology
Center from the Featured Areas Research Center Program within the framework of the Higher Education Sprout
Project by the Ministry of Education in Taiwan.

Acknowledgments: We are grateful for the support from the staff of the Institute of Information Technology,
Vietnam Academy of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Troussas, C.; Chrysafiadi, K.; Virvou, M. An intelligent adaptive fuzzy-based inference system for

computer-assisted language learning. Expert Syst. Appl. 2019, 127, 85–96. [CrossRef]
3. Tiwari, L.; Raja, R.; Sharma, V.; Miri, R. Fuzzy Inference System for Efficient Lung Cancer Detection.

In Computer Vision and Machine Intelligence in Medical Image Analysis; Springer: Singapore, 2020; pp. 33–41.
4. Sagir, A.M.; Sathasivam, S. A Novel Adaptive Neuro Fuzzy Inference System Based Classification Model for

Heart Disease Prediction. Pertanika J. Sci. Technol. 2017, 25, 43–56.
5. Afriyie Mensah, R.; Xiao, J.; Das, O.; Jiang, L.; Xu, Q.; Alhassan, M.O. Application of Adaptive Neuro-Fuzzy

Inference System in Flammability Parameter Prediction. Polymers 2020, 12, 122. [CrossRef]
6. Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Application of decision trees and fuzzy inference system for

quality classification and modeling of black and green tea based on visual features. J. Food Meas. Charact.
2020, 1–15. [CrossRef]

7. Manogaran, G.; Varatharajan, R.; Priyan, M.K. Hybrid recommendation system for heart disease diagnosis
based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimed. Tools Appl. 2018,
77, 4379–4399. [CrossRef]

8. Handoyo, S.; Kusdarwati, H. Implementation of Fuzzy Inference System for Classification of Dengue Fever
on the villages in Malang. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol,
UK, 2019; Volume 546, p. 052026.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/j.eswa.2019.03.003
http://dx.doi.org/10.3390/polym12010122
http://dx.doi.org/10.1007/s11694-020-00390-8
http://dx.doi.org/10.1007/s11042-017-5515-y


Mathematics 2020, 8, 707 22 of 24

9. Shastry, K.A.; Sanjay, H.A. Adaptive Neuro-Fuzzy Inference System in Agriculture. In Fuzzy Expert Systems
and Applications in Agricultural Diagnosis; IGI Global: Hershey, PA, USA, 2020; pp. 130–153.

10. Abdolkarimi, E.S.; Mosavi, M.R. Wavelet-adaptive neural subtractive clustering fuzzy inference system to
enhance low-cost and high-speed INS/GPS navigation system. GPS Solut. 2020, 24, 36. [CrossRef]

11. Pourjavad, E.; Shahin, A. The application of Mamdani fuzzy inference system in evaluating green supply
chain management performance. Int. J. Fuzzy Syst. 2018, 20, 901–912. [CrossRef]

12. Lima-Junior, F.R.; Carpinetti, L.C.R. An adaptive network-based fuzzy inference system to supply chain
performance evaluation based on SCOR® metrics. Comput. Ind. Eng. 2020, 139, 106191. [CrossRef]

13. Priyadarshi, N.; Azam, F.; Sharma, A.K.; Vardia, M. An Adaptive Neuro-Fuzzy Inference System-Based
Intelligent Grid-Connected Photovoltaic Power Generation. In Advances in Computational Intelligence; Springer:
Singapore, 2020; pp. 3–14.

14. Adoko, A.C.; Yagiz, S. Fuzzy Inference System-Based for TBM Field Penetration Index Estimation in Rock
Mass. Geotech. Geol. Eng. 2019, 37, 1533–1553. [CrossRef]

15. Ramot, D.; Milo, R.; Friedman, M.; Kandel, A. Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 2002, 10, 171–186.
[CrossRef]

16. Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A. Complex fuzzy logic. IEEE Trans. Fuzzy Syst. 2003, 11,
450–461. [CrossRef]

17. Ngan, T.T.; Lan, L.T.H.; Ali, M.; Tamir, D.; Son, L.H.; Tuan, T.M.; Rishe, N.; Kandel, A. Logic connectives of
complex fuzzy sets. Rom. J. Inf. Sci. Technol. 2018, 21, 344–358.

18. Ali, M.; Smarandache, F. Complex neutrosophic set. Neural Comput. Appl. 2017, 28, 1817–1834. [CrossRef]
19. Ali, M.; Dat, L.Q.; Smarandache, F. Interval complex neutrosophic set: Formulation and applications in

decision-making. Int. J. Fuzzy Syst. 2018, 20, 986–999. [CrossRef]
20. Greenfield, S.; Chiclana, F.; Dick, S. Interval-valued complex fuzzy logic. In Proceedings of the 2016

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016;
pp. 2014–2019.

21. Garg, H.; Rani, D. Some generalized complex intuitionistic fuzzy aggregation operators and their application
to multicriteria decision-making process. Arabian J. Sci. Eng. 2019, 44, 2679–2698. [CrossRef]

22. Man, J.Y.; Chen, Z.; Dick, S. Towards inductive learning of complex fuzzy inference systems. In Proceedings
of the NAFIPS 2007-2007 Annual Meeting of the North American Fuzzy Information Processing Society,
San Diego, CA, USA, 24–27 June 2007; pp. 415–420.

23. Selvachandran, G.; Quek, S.G.; Lan, L.T.H.; Giang, N.L.; Ding, W.; Abdel-Basset, M.; Albuquerque, V.H.C.
A New Design of Mamdani Complex Fuzzy Inference System for Multi-attribute Decision Making Problems.
IEEE Trans. Fuzzy Syst. 2019. [CrossRef]

24. Tu, C.H.; Li, C. Multiple Function Approximation-A New Approach Using Complex Fuzzy Inference System.
In Asian Conference on Intelligent Information and Database Systems; Springer: Cham, Switzerland, 2018;
pp. 243–254.

25. Chen, Z.; Aghakhani, S.; Man, J.; Dick, S. ANCFIS: A neurofuzzy architecture employing complex fuzzy sets.
IEEE Trans. Fuzzy Syst. 2010, 19, 305–322. [CrossRef]

26. Liu, Y.; Liu, F. An adaptive neuro-complex-fuzzy-inferential modeling mechanism for generating higher-order
TSK models. Neurocomputing 2019, 365, 94–101. [CrossRef]

27. Yazdanbakhsh, O.; Dick, S. FANCFIS: Fast adaptive neuro-complex fuzzy inference system. Int. J.
Approx. Reason. 2019, 105, 417–430. [CrossRef]

28. Alkouri, A.U.M.; Salleh, A.R. Linguistic variable, hedges and several distances on complex fuzzy sets. J. Intell.
Fuzzy Syst. 2014, 26, 2527–2535. [CrossRef]

29. Hu, B.; Bi, L.; Dai, S.; Li, S. Distances of complex fuzzy sets and continuity of complex fuzzy operations.
J. Intell. Fuzzy Syst. 2018, 35, 2247–2255. [CrossRef]

30. Dai, S.; Bi, L.; Hu, B. Distance measures between the interval-valued complex fuzzy sets. Mathematics 2019,
7, 549. [CrossRef]

31. Setnes, M.; Babuska, R.; Kaymak, U.; van Nauta Lemke, H.R. Similarity measures in fuzzy rule base
simplification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1998, 28, 376–386. [CrossRef] [PubMed]

32. Mondal, K.; Pramanik, S.; Giri, B.C. Some similarity measures for MADM under a complex neutrosophic set
environment. In Optimization Theory Based on Neutrosophic and Plithogenic Sets; Academic Press: Cambridge,
MA, USA, 2020; pp. 87–116.

http://dx.doi.org/10.1007/s10291-020-0951-y
http://dx.doi.org/10.1007/s40815-017-0378-y
http://dx.doi.org/10.1016/j.cie.2019.106191
http://dx.doi.org/10.1007/s10706-018-0706-5
http://dx.doi.org/10.1109/91.995119
http://dx.doi.org/10.1109/TFUZZ.2003.814832
http://dx.doi.org/10.1007/s00521-015-2154-y
http://dx.doi.org/10.1007/s40815-017-0380-4
http://dx.doi.org/10.1007/s13369-018-3413-x
http://dx.doi.org/10.1109/TFUZZ.2019.2961350
http://dx.doi.org/10.1109/TFUZZ.2010.2096469
http://dx.doi.org/10.1016/j.neucom.2019.07.042
http://dx.doi.org/10.1016/j.ijar.2018.10.018
http://dx.doi.org/10.3233/IFS-130923
http://dx.doi.org/10.3233/JIFS-172264
http://dx.doi.org/10.3390/math7060549
http://dx.doi.org/10.1109/3477.678632
http://www.ncbi.nlm.nih.gov/pubmed/18255954


Mathematics 2020, 8, 707 23 of 24

33. Rani, P.; Mishra, A.R.; Rezaei, G.; Liao, H.; Mardani, A. Extended Pythagorean fuzzy TOPSIS method based
on similarity measure for sustainable recycling partner selection. Int. J. Fuzzy Syst. 2020, 22, 735–747.
[CrossRef]

34. Jang, L.C.; Kim, H.M. On Choquet integrals with respect to a fuzzy complex valued fuzzy measure of fuzzy
complex valued functions. Int. J. Fuzzy Log. Intell. Syst. 2018, 10, 224–229. [CrossRef]

35. Jang, L.C.; Kim, H.M. Some Properties of Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy
Measure. Int. J. Fuzzy Log. Intell. Syst. 2011, 11, 113–117. [CrossRef]

36. Ma, S.; Li, S. Complex fuzzy set-valued Complex fuzzy Measures and their properties. Sci. World J. 2014.
[CrossRef]

37. Ma, S.Q.; Chen, M.Q.; Zhao, Z.Q. The Complex Fuzzy Measure. In Fuzzy Information Engineering and
Operations Research Management; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–145.

38. Ma, S.Q.; Li, S.G. Complex Fuzzy Set-Valued Complex Fuzzy Integral and Its Convergence Theorem. In Fuzzy
Systems Operations Research and Management; Springer: Cham, Switzerland, 2016; pp. 143–155.

39. Garg, H.; Rani, D. Some results on information measures for complex intuitionistic fuzzy sets. Int. J.
Intell. Syst. 2019, 34, 2319–2363. [CrossRef]

40. Ngan, R.T.; Ali, M.; Tamir, D.E.; Rishe, N.D.; Kandel, A. Representing complex intuitionistic fuzzy set by
quaternion numbers and applications to decision making. Appl. Soft Comput. 2020, 87, 105961. [CrossRef]

41. Yazdanbakhsh, O.; Dick, S. Forecasting of multivariate time series via complex fuzzy logic. IEEE Trans. Syst.
Man Cybern. Syst. 2017, 47, 2160–2171. [CrossRef]

42. Tu, C.H.; Li, C. Multitarget prediction—A new approach using sphere complex fuzzy sets. Eng. Appl.
Artif. Intell. 2019, 79, 45–57. [CrossRef]

43. Li, C.; Tu, C.H. Complex neural fuzzy system and its application on multi-class prediction—A novel approach
using complex fuzzy sets, IIM and multi-swarm learning. Appl. Soft Comput. 2019, 84, 105735. [CrossRef]

44. Singh, P.K. Granular-based decomposition of complex fuzzy context and its analysis. Prog. Artif. Intell. 2019,
8, 181–193. [CrossRef]

45. Zhang, G.; Dillon, T.S.; Cai, K.Y.; Ma, J.; Lu, J. Operation properties and δ-equalities of complex fuzzy sets.
Int. J. Approx. Reason. 2009, 50, 1227–1249. [CrossRef]

46. Bargiela, A.; Pedrycz, W. Granular computing. In Handbook on Computational Intelligence: Volume 1: Fuzzy
Logic, Systems, Artificial Neural Networks, and Learning Systems; World Scientific publishing: Singapore, 2016;
pp. 43–66.

47. Liu, H.; Cocea, M. Granular computing-based approach of rule learning for binary classification.
Granul. Comput. 2019, 4, 275–283. [CrossRef]

48. Bezdek, J.C. Pattern Recognition with Ffuzzy Objective Function Algorithms; Plenum Press: New York,
NY, USA, 1981.

49. The UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml/datasets.html (accessed
on 9 April 2020).

50. Breast Cancer. Available online: http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%
29 (accessed on 9 April 2020).

51. Diabetes Databases. Available online: http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets (accessed on
9 April 2020).

52. Gangthep Hospital. Available online: http://benhviengangthep.gov.vn/ (accessed on 9 April 2020).
53. Hanoi Medical University Hospital. Available online: http://benhviendaihocyhanoi.com/ (accessed on

9 April 2020).
54. Ghazali, K.H.; Mustafa, M.M.; Hussain, A.; Bandar, M.E.C.; Kuantan, G. Feature Extraction technique using

SIFT keypoints descriptors. In Proceedings of the The International Conference on Electrical and Engineering
and Informatics Institut Technology, Institut Teknologi Bandung, Bandung, Indonesia, 17–19 June 2007;
pp. 17–19.

55. Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef]

56. Oad, K.K.; DeZhi, X.; Butt, P.K. A Fuzzy Rule Based Approach to Predict Risk Level of Heart Disease. Glob. J.
Comput. Sci. Technol. 2014, 14, 16–22.

http://dx.doi.org/10.1007/s40815-019-00689-9
http://dx.doi.org/10.5391/IJFIS.2010.10.3.224
http://dx.doi.org/10.5391/IJFIS.2011.11.2.113
http://dx.doi.org/10.1155/2014/493703
http://dx.doi.org/10.1002/int.22127
http://dx.doi.org/10.1016/j.asoc.2019.105961
http://dx.doi.org/10.1109/TSMC.2016.2630668
http://dx.doi.org/10.1016/j.engappai.2018.11.004
http://dx.doi.org/10.1016/j.asoc.2019.105735
http://dx.doi.org/10.1007/s13748-018-00170-y
http://dx.doi.org/10.1016/j.ijar.2009.05.010
http://dx.doi.org/10.1007/s41066-018-0097-2
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://benhviengangthep.gov.vn/
http://benhviendaihocyhanoi.com/
http://dx.doi.org/10.1109/TPAMI.2006.244


Mathematics 2020, 8, 707 24 of 24

57. Lai, Y.H.; Lin, P.L. Effective segmentation for dental X-ray images using texture-based fuzzy inference system.
In International Conference on Advanced Concepts for Intelligent Vision Systems; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 936–947.

58. Turabieh, H.; Mafarja, M.; Mirjalili, S. Dynamic Adaptive Network-Based Fuzzy Inference System (D-ANFIS)
for the Imputation of Missing Data for Internet of Medical Things Applications. IEEE Internet Things J. 2019,
6, 9316–9325. [CrossRef]

59. Ahmad, G.; Khan, M.A.; Abbas, S.; Athar, A.; Khan, B.S.; Aslam, M.S. Automated diagnosis of hepatitis b
using multilayer mamdani fuzzy inference system. J. Healthc. Eng. 2019. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JIOT.2019.2926321
http://dx.doi.org/10.1155/2019/6361318
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Complex Fuzzy Measures 
	Fuzzy Inference System in Complex Fuzzy Set 

	Preliminaries 
	Complex Fuzzy Set 
	Mamdani Complex Fuzzy Inference System (M-CFIS) 
	Granular Computing 

	Proposed M-CFIS-R System 
	Main Ideas 
	Training 
	Real and Imaginary Data Selection 
	Fuzzy C-Means (FCM) 
	Evaluating Performance of the Rule-Based System 
	Complex Fuzzy Measures 
	Granular Complex Fuzzy Measures 

	Testing 
	Some Notes on M-CFIS-R 

	Experiments 
	Experimental Environment 
	Experimental Results on the Benchmark UCI Datasets 
	Experimental Results on the Real Datasets 

	Conclusions 
	References

