ISSUES IN THE DESIGN OF EXPERIMENTS FOR
STUDYING USER INTERACTION WITH SOFTWARE
DEVELOPMENT TOOLS

Mark A. Toleman Jim Welsh
Department of Mathematics & Computing Software Verification Research Centre
University of Southern Queensland University of Queensland
Toowoomba 4350 Australia St Lucia 4072 Australia
markt@usq.edu.an jim@cs.uq.oz.au
Abstract

In the past software engineers have been reluctant to conduct experiments with software and the users
of that software. As this reluctance is overcome through, for example, incorporation of human-computer
interaction as a topic in software engineering education, we believe that some of the main issues concerning
experiments will become task design for an experiment, subject selection, experimental design, measurement,,
statlistical analysis and results interpretation. We are not new in advocating the use of experiments nor in
examining the issues associated with such experimentation but we do examine it in the contexi of one domain
where the resistance to such ideas seems to have been strong—the development of software tools used by
soflware engineers.

KEYWORDS: System design and evaluation, experiment design, language-based editors, usability engineering.

1 Introduction

Nielsen [Nie92] proposed a usability engineering life-cycle which included as one of its key clements, empirical
testing. The most basic reguirement was “simply to do it”. Many software engineers {ail to evaluate their
software with the user population for which the software is developed. They simply develop systems based on
their own intnition about what users need and want. In fact there seems Lo be a proliferation of system designs
and not enough guantitative analysis of these designs. Tichy [Tic93], in analysing the content of papers published
in prominent Computer Science jowrnals (ACM Transaclions on Programming Languages and Systems, IEEE
Transactions on Software Engineering and Communicalions of the ACM), found only 15% of papers with non-
trivial quantitative evaluation and no paper containing hypothesis testing. These criticisms are also valid in eur
particular research and development area—the development of software tocls for use by software engineers. There
is a natural tendency for the developers of software tools to see themselves as typical users, and to disregard the
considerable variation that actually exists.

Just when to evaluate, whatl Lo evaluate and how to evalnaie are non-trivial issues. Evaluation can oceur at
various points in a soflware project and it has been argued that each stage (specification, design, implementation
and maintenance) could benefit from some form of evaluation [Joh92, pages 85--87]. By their very nature sofiware
development tools are complex software objects so it is likely that aspecis of their design cannot be evaluated
until implemented at least at some preliminary level.

What are we evaluating? Clearly this depends on the context but in our context we are interested in comparing
and contrasting specific user interface issues for their suitability and usability. At times we may also want 1o
compare different user types and their reaction to a single user interface design.

The actual evaluation procedure is also of importance. It can range from a case-study of a particular design
and use by a “typical” user, to a survey of users and their responses 1o a product, to a classical laboratory-
style experiment involving user interface issues relevant to design choices. In cach case there are subjects to be
selected, experimental tasks to be developed, variables to be measured and analysed, and results to be reviewed
and discussed.

We are currently investigating and experimenting with some user interface aspects of sephisticated software
development tools—language-based editors. Evaluation or empirical studies on these software objects are rare
and, where done, they are usually informal and primarily anecdetal [N592]. Intuition forms the basis for many
evaluations. This is unsatisfactory and more rigorous methods are required if software engineering is to advance
as a “true engineering discipline” [RBS93].

We have conducted three studies and two more are planned. This paper presenis some of the issues with
which we have had to contend and solutions we have adopted or intend to adopt.



2 Experiment 1—A Case-Study

In [TW91] we conducted a case-study of the reirospective application of user interface guidelines by examining
the use of guidelines in an evaluation of the user interface of a language-based editor. Guidelines had been shown
to be a useful tool for identifying important usability problems in existing software and they can be used by
software engineers who are nol necessarily user interface design specialists [JMWU91],

This was not a classical laboratory-style experiment. However it was an experiment in the sense that there was
a subject——a language-based editor; an evaluation procedure—a comprehensive set of user interface guidelines
applied by the authors; and a measurement instrument—whether or nol the design of the editor complied with
the relevant guidelines. Purists will argue about the use of the term “experiment” to describe such a study but
these types of study are commonplace in sofiware engineering and contribute to discipline knowledge.

2.1 Discussion

The availability of a set of guidelines as large as the Smith and Mosier [SM86] set was a considerable advantage,
Their coverage included physical and functional level issnes in user interface design. The comprehensive nature
of the guidelines’ meant that a wide range of user interface issues could be investigated. In many instances the
guidelines simply reinforced the original user interface design decisions taken for the case-study editor. in other
cases the guidelines served to confirm subsequent design choices made for the case-study editor’s successor. The
user interface of the case-siudy editor is typical of a purely intuitive approach to design whereas the new editor
takes due account of current thinking and guidelines on user interface design. In its detailed representation,
the user interface of the new editor conforms to the OPEN LOOK " ™user interface guidelines® [Sun89]. These
“look and feel” guidelines assisted the designers with aspecis of user interface design such as consistency of
presentation, Other issues, however, still remained and it seemed clear that only further experimentation could
provide answers to the questions that arose.

The size of the guideline set was an advantage but it was also a disadvantage. Molich and Nielsen [MN9G]
have noted thatl lengthy guideline sets are often ignoved during design and the review of design simply because
of ithe effort involved in using them. In trying to make use of long and complex documents much material goes
unread, can be misunderstood or difficult to interpret {dSB906] and, consequently, is {reguently not heeded [1'591].
The effort in applying these guidelines, in an “evaluation” sense, was large. Some 60 person-days were required
to examine the editor from the perspective of these guidelines. This experience is not wasted, of course, and
subsequent use of such guidelines for a similar evaluation lask or as a design tool would be expected lo take less
effort.

3 Experiment 2—An Empirical Study

In a classical laboratory-style experiment we examined the usability of graphical menus versus text-based menus
[TWC92]. The menus are representations of the hierarchical structure of a document and in their acinal im-
plementation are used for viewing the overall structure and as & means of selecting strnclural elements from a
document for display or edit.

3.1 Experiment Design

For the experiment we simulated the physical interface of an existing language-based editor and used example
hierarchies that were not based on program documents, We could have modified the editor itself, however, this
wouid have had significant implications for the rest of the experiment. Firstly, the “lock and feel” of the editor
would have been an issue for users so we would have needed fo restrict the population of subjects to those familiar
with the editor and its use. This population is smali. Secondly, if we had used a modified version of the editor it
would have been difficult to test the issue of interest since the editor is a general editing tool and not specifically
designed for conducting experiments such as this. All in all a simulated editor reduced these confounding effects
and provided a vehicle for Turther experimentation. By using non-programming examples of hierarchies, some
of which were known to the subjects, within a simulated editor we were able to use a much wider population
of subjects. The nature of the experimental situation meant that control over any contaminating variables was
good. The results were clear and concise if not astounding.

The type of experiment meant that each subject was only required to participate for a relatively short time,
about 20 minutes. In long or complex experiments users are prone to lose interest, they complete the experiment
in ways other than that intended for their treatment group [MR92], drop out parl way through or simply refuse
to participate in the first place. Thus a relatively short experiment time-frame and simple experimental task was
an advantage. Computing professionals, as well as novice users, were readily available for the experiment. Both
types of user found the experiment interesting and indicated a willingness to participate in further experiments
of a similar type.

YThe Smith and Mosier guidelines form the starting point for the 180 Standard 9241 [BM94].
20PEN LOCK is a trademark of AT&T.



3.2 Discussion

One of the first criticisms of this study was that the example hierarchies that were utihsed were artificial from
the perspective of programs in a programming environment. We countered this with the view that experienced
programmers should “understand” the concept of structure whether it is applied to a program or to some other
entity. Tn a program maintenance context the programmer could be very unfamiliar with a particular program
and its struncture. Two of the hierarchies presented to subjects were unknown to them. Thus these hierarchies
could be considered simulations of this program maintenance situation. Two of the hierarchies were familiar
so they provided a simulation of a development sitnation where users were at least aware of the underlying
structure. Thus we covered a range of hierarchies. This would have been difficuit if we would have insisted on
programming cxamples.

What is the number of subjects required fo oblain “statistically significant” results? This is one of the most
common questions in experimental design. We choose to use 15 experienced subjects but by using a type of
design known as a change-over design [MI84], in which subjects saw both treatments, this effectively equated
to about 30 subjecis. One of the main concerns that researchers have with such designs is the residual effect of
a previous ireatment. However the random allocation of treatments together with the padding provided by a
selection of menu/question combinations and the method of statistical analysis eliminates this concern. In fact
it provides better estimates of {reatment differences since variation among subjects can be eliminated,

At the end of each experiment trial we asked users to indicate their menu style preference and to briefly
describe their reasons for that preference. We noted a 2:1 preference for graphical versus text-based representa-
tions of the menu. Is nser preference not the best way to choose the type of menu to be displayed in the editor?
Clearly nser preference is important but what we wanted to investigate was an issue of software ergonomics and
we found ne difference between the representations with respect to timing considerations. That is, it didn’t
matier which menu style a subject preferred they performed equally well regardless of their preference. From a
design perspective, the texi-based representation is simpler to implement, althongh from a user perspective it
may be pradent to offer both views eventually. This post hoc style of survey is a useful adjunct to the experiment
proper since it quickly provided additional information. Several subjects noted that they learned about particular
hierarchies as the experiment proceeded but at this stage no analysis of these observations has been conducted,
However the design of the experiment and data collection mechanism allows this concept Lo be investigated.

The style of the graphical menu (and for that matier the text-hased menu) may also be of concern. Our view
was top-down with drop down sub-menns and sub-sub-menus bui could easily have been boliom-up or side-on
views. These alternative menus were nol examined and there is no intention to do so at this stage.

In this application the menu is more than a simple selection mechanism. One of its main objectives is {o
provide an overview of the hicrarchy of a program or structured document. In that context so-called “walk-in”
type menus would not have been suitable since they reguire explicit aclion by the user to reveal the structure.
Suchk menu implementations are less efficient because part of the objective of the display of the menu is to provide
an aid to memory {WLM94].

We might have also allowed either or both representations to scroll. This complication was not required and
indeed deliberately not examined at this stage, It would have introduced extraneous variables to an otherwise
uncomplicated design and in any case the issues involved would be betier dealt with as another conceptual issue,
scrolling. Scrolling would be easy to implement for the text-based style (and is provided in the actual editor in
this manner) but given the specific experimental engine the graphical style wenld have been more difficult.

There have been numerous siudies of menu layout and menu use and this could be considered just another.
liowever, the menus considered here, and their context, simulate an important concept for programmers--
the modular structure of a program. The resulis from this “limited” experiment would indicate that for the
situation concerned, namely the representation of the overall structure of a program and its use as a meru
for module selection, a graphical representation is no more efficient than a more simply implemented text-based
representation. However, based on stated user preference, we may have to consider providing both representations
in our software development tocl at some stage.

4 Experiment 3—A Predictive Model

An alternative to intuition for evaluating user interface designs is the predictive modelling approach [EE89].
Here the idea is to predict the performance of humans interacting with computers in a similar way teo predictions
based on engineering models. The GOMS/KLM (Goals, Operators, Methods and Selection of Methods/Keystroke
Level Model) approach to predictive modelling [CMN83] is an attempt to produce a formal model of the human-
computer interaction task. Thus a model can be built which can be used to help evaluate various user inlerface
designs even before prototyping.

With respect to language-based program editors, two basic paradigms for editing have been recognised. In
the tree-building paradigm the user is only allowed operations which ensure the structural correciness of the
program tree at all imes. The alternative is the (text) recognition paradigm in which the user manipulates the
displayed representation in textual terms and the editor parses the changes to validate them and deduce the
program tree. Often software engineers ignore both of these and use plain text editors. In this study we applied
the techniques of the predictive medelling approach to an evaluation of these editing paradigms [TW04].



4.1 Discussion

There are several problems with the GOMS/KLM approach. Firstly, it assumes that users are skilled in the
tasks to be done. This is less of a problem when considering software enginecrs using a software development
tool than it is for other situations where unskilled or casual users are required to use tools and techniques about
which they have no expert knowledge.

The main difficulty with the GOMS model is in obtaining its components for any parlicular task and in
applying the approach 1o complete systems. In some instances the identification of these components is simple.
Tor example a task such as decument correction after mark-up could involve cut and paste operators to achicve
the stated goal which might be implemented using mouse-based menn selections or keyboard-based commands,
Another task such as document comprehension prior lo correction, however, is much more abstract involving 1he
user’s knowledge and the user’s cognitive skills as well as appropriate percepiual and motor skills for assisting
with browsing and searching. It may be difficult or impossible to completely model this comprehension/correction
task using GOMS/KLM techriques since il is not just the command structure that is in use—the form of the
display also aflects the time of tasks and error frequency.

In this study we restricted the tasks to program development and maintenance in Pascal. For program
development we considered a range of tasks including input of procedure and function “stubs” and various
language construct types. Program maintenance tasks included trivial alterations to code as well as relatively
complex structural changes. The actual tasks chosen were significant. In all program development examples text-
recognition provided the best time estimate. In more than half the cases text-recognition was more than 20%
faster. Using a plain text editor was relatively slow. The difference belween tree-building and text-recognition
was mainly attributable to ihe extra memory operators. A plain modeless text editor proved best {or program
maintenance In almost ali instances. The texi-recognition paradigm was less efficient than tree-building in
situations requiring the user to terminate insertion of text and where the tree-building paradigm allowed simple
“modeless” tex! changes.

The KIM proved to be a useful design tool. It not only assisied in compazing relevant design options but also
indicated inadequacies of current editor implementations. However, one of the KLM’s main problems seems to be
the difficulty of defining where memory operators should be placed. This is nou-trivial, needing careful thought
and probably experimentation for some design situations. A controlled experiment using software engineers is
planned. It will attempl to examine just where these memory operaters should be placed for these paradigms
and typical unit-tasks as given here.

5 Experiment 4--A Planned Empirical Study

As for the previous experiment we are interested in comparing the two basic paradigms for editing: tree-building
and text-recognition. Unlike the previous experiment, however, we shall conduct a laberatory-style experiment.

5.1 Piscussion

For this experiment we plan 10 use an existing texi-recognition editor which has been enhanced to aliow mensn
selection. This enhancement effectively allows the editor to simulate template-based input without the need 1o
compromise its basic editing paradigm.

What do we want to measure and how will we measure it? We are interested in the relative efficiency of the
two treatments. Quantitative performance levels could best be determined using examples based on programming
tasks. Here we can set code development or matntenance tasks for the subjects and measure error frequencies
and task completion times. But the actual choice of task is likely to be significant and seme tasks will fare
beiter under one paradigm than another. Some such tasks have already been developed in the GOMS/KLM
experiment. The preference a nser has for one paradigm over the other is also of interesti—as in the hierarchical
menu experiment.

The type of user we are interested in here is special-—a software engineer. This was also the case for the
hierarchical menu experiment. However, unlike that experiment we now need users who are familiar with the “look
and feel” of the editor itself and its use. As noted earlier this group is small. In praciice we shall probably have
to be content with computer science students ({fourth year honours) who, although highly intelligent, probably
Lave little or no industry experience. What they do have, however, is experience with the experimental platform
and programming experience in several programming languages including Pascal. As in the hierarchical menu
experiment, already described, such a small sample requires careful thought aboutl the experimental design and
a change-over design similar to the one already used is contemplated. This is not an uncommon solution where
experimental subjects are expensive or difficult 1o obtain buil it may be necessary to replicale the study at a
later stage to confirm the results. The small sample size may necessitate the use of nonparametric rather than
parametric statistical analysis with a consequent loss of power and interpretative ability.

User reaction to the different paradigms is also of importance but complex languages, like the specification
language Z, may prove better for measuring this than more typical programming languages. The “richness” of
such a language almost dictates that the user must have some assistance in the preparation of documents. This
is readily provided by menus of selectable constructs and operators,



6 Experiment 5—A Planned Empirical Study

The concept examined in Experiment 2 was part of one described in Welsh and Toleman {WT92] under the
heading block-oriented program display. Another conceptual issues addressed in that article which is to be
the subject of our further experimental study is now discussed.

Detall suppression is a means of avoiding prodigal consumption of display space when showing a program
listing by, for example, compressing or eliding some program details. With block-oriented program display and
elision of nested block detail, this is not a problem for relatively small program modules, bul as the modules get
larger scrofling within a window is still a necessary feature. An alternative is suppression by siructural distance
[BW&6] which compresses text furthest from the user’s focus of attention (the highlighted text) in a fish-eye lens
style.

For display of & module in a window which is too small for its preferred presentation, therefore, there are two
treatments: scrolling or structural suppression. In both cases the user is interested in viewing and/or editing a
relatively large module of program code.

6.1 Discussion

Users are familiar with the concept of scrolling as 1t is common in graphical user interfaces and indeed in
some character-based systems but they are unlikely to be familiar with the concept of structural suppression.
This makes the choice of experimental tasks difficult. For some tasks scrolling is naturally favoured while for
others structural suppression would win out. Scrolling may be a better mechanism when the user wanis fo find
the namber of occurrences of a variable in a construct or when searching for a particunlar object. Structural
suppression will almost certainly be better where there is a major space separation between the items of interest
and structural suppression, by its nature, allows them to be viewed in the one window. Tasks could be chosen
that deliberately favour one treatment or the other. Is this appropriate experimental design or should “neuntral”
tasks be chosen?

What do we want to measure and how will we measure it? Again we are interested in the relative efficiency of
the two treatments. On a quantitative level we can set tasks (a non-trivial activity itself} and compare completion
{imes. We can also measure comprehension by asking appropriate questions about program text examined by
subjects.

In both treatments the “shape” of the displayed lext, as it is either scroiled or the user alters their focus of
attention, changes bul the extent to which this affects the user’s ability to read and comprehend program code
is unknown and needs to be determined. The preference a user has for one treatment over the other is also of
interest—as in the hierarchical menu experiment.

The arguments or user lype are the same as for the previous experiment. However, actual experience with the
editor and its interface is less critical here than for the editing paradigm experiment since the task is essentially
one involving browsing and comprehension. A simulated interface may be sufficient and could require a iess
“elite” group of participants,

Scrolling basically comes {or free as part of the windowing software, Stractural suppression certainly has a
price but it may be worth it—we won’t know until it is implemented and evaluated.

7 Conclusion

We have discussed three experiments that we have conducted and two that we intend to conduct.

The first experiment, a case-study, although time consuming was relatively easy to carry out. It focused
our atteation on user interface issues and indicated areas needing further investigation. Likewise the predictive
modelling exercise was useful in that it confirmed our view on the efficiency of various editing paradigms. It also
pointed to gaps in our knowledge and the need for further experiments.

The hierarchical menu experiment embodied a simple concept for experimentation, a good population from
which to select, controlled conditions, simple tasks, and relatively easy execution and analysis. In conirast the
{wo experiments that are planned have a number of problems. The selection of appropriate tasks is one issue. To
be fair to all treatments, what type of tasks do we choose? The population of potential subjects is more restricted
since the users must be familiar with the software to be evaluated before we can evaluate certain aspects of that
software. What is most important to measure? Is it time to complete tasks or more subjective measures and if
the latter what biases do subjects bring to the experiment based on previous knowledge and experience?

The usability of software is critical and empirical testing of software is essential but it sure isn’t easy. We
don’t have many answers jusl lots of questions bui atiempts such as these will surely build an experience base
for future research work in this area.

References

[BM94] N, Bevan and M. MacLeod. Usability measurement in context, Behaviour and Information Technol-
ogy, 13(1/2):132--145, 1994.

[BWS86) B.M. Broom and J. Welsh. Detail compression techniques for interactive program display. In G.W.
Gerrity, editor, Ninth Australian Computer Science Conference, pages 83-93, 1986,



[CMN83]

[dSB90]

(EL89]

[IMWU91]

[30h92]
[MJs4]
[MN90]
[MR92)
[Nie92]
[NS92]

[RBS93]

[SM36]
[Sungy]

Tic93]

(TS91]

[TWo1]

[TWod]

[TWC92]

[WLM94]

[WT92]

S.K. Card, T.P. Moran, and A. Newell. The Psychology of Human-Computer Interaction. Lawrence
Iribaum Associates, Hillsdale, NJ, 1983.

F. de Souza and N. Bevan. The use of guidelines in menu interface design: evaluation of a draft stan-
dard. In D. Diaper, D. Gilmore, G. Cockton, and B. Shackel, editors, Human-Computer Interaction—
INTERACT 90, pages 435-440, 1996.

R.E. Eberts and C.G. Eberts. Four approaches to human computer interaction. In P.A, Hancock
and M.I. Chignell, editors, Intelligent Interfaces: Theory, Research and Design, pages 69-127. North
Holland, Amsterdam, 1989.

R. Jeffries, J.R. Miller, C. Wharton, and K.M. Uyeda. User interface evaluation in the real world:
A comparison of four techniques. In S.P. Robertson, G.M. Olson, and 1.5. Olson, editors, Human
Factors in Computing Systems~ CHI'91, pages 119-124, 1991,

P. Johnson. Human Compuler Interaction: Psychology, Tusk Analysis and Software Engineering.
McGraw-Hill, London, 1992.

G.A. Milliken and D.E. Johnson. Analysis of Messy Data, volume 1: Designed Experiments. Lifetime
Learning Publications, Belmont, California, 1984,

R. Molich and J. Nielsen. Improving a human-computer dialogue. Communications of the ACM,
33(3):338-348, 1990.

5. Meyers and S.P. Reiss. An empirical study of multiple-view software development. 4 CM SIGSOFT
Software Engincering Notes, 17(5):47-57, 1992, Also in H. Weber (Ed.) ACM 3IGSOFT*92: Fifth
Symposium on Software Development Environments, Washington 13.CG., 9-13 Dec.

J. Nielsen. The usability engineering life cycle. Compuler, 25(3):12-22, 1992.

L. Neal and G. Szwillus. Introduction. Structure-based editors and environments. [niernational
Journal of Man-Machine Studies, 37:395-397, 1992,

H.D. Rombach, V.R. Basili, and R.W. Selby. Experimental software engineering issues: Critical
assessment and future directions. In H.D. Rombach, V.R. Basili, and R.W. Selby, editors, Lecturer
Notes in Compuler Science 7006, pages v—xiil. Springer-Verlag, Bezlin, 1993, Experimental Software
Engineering Issues: Critical Assessment and Future Directions, International Workskop, Sep 1992,

5.1L. Smith and J.N. Moster. Guidelines for designing user interface software. Technical Report
EDS-TR-86-278, 1986, NTIS AD A377 198.

Sun Microsystems, Inc. OPEN LOOK Graphical User Interface Functional Specification. Addison-
Wesley, Reading, MA, 1989,

W.I. Tichy, On experimental computer science. In 11.7). Rombach, V.R. Basili, and R. W, Selby,
editors, Lecturer Notes in Compuler Science 706, pages 30-32. Springer-Verlag, Berlin, 1993. Ex-
perimental Software Engineering Issues: Critical Assessment and Future Direclions, International
Workshop, Sep 1992.

L. Tetzlaff and D.R. Schwartz. The use of guidelines in interface design. In S.P. Robertson, G.M.
Qlson, and 1.S. Olsen, editors, Human Factors in Compuling Systems— CHI'91, pages 329-333, 1991,

M.A. Toleman and J. Welsh. Retrospective application of user interface guidelines: A case study
of a language-based editor. In J.II. Hammend, R.R. Hall, and 1. Kaplan, editors, People Before
Technology~ QZCHI’91, pages 33-38, 1991.

M.A. Toleman and J. Welsh. A keystroke analysis of language-based editing paradigms. Technical
Report 5-94, Software Verification Research Centre, University of Queensland, Brisbane, Queensland,
1994,

M.A. Toleman, J. Welsh, and A.J. Chapman. Ax empirical investigation of menu design in language-
based editors. ACM SIGSOFT Software Engincering Notes, 17(5):41-46, 1992. Also in H. Weber
{Ed.) ACM SIGSOFT792: Fifth Symposium on Software Development Environments, Washington
D.C., 9-11 Dec.

P. Wright, A. Lickorish, and R. Milroy. Remembering while maousing: The cognitive costs of mouse
clicks. SIGCHI Bulletin, 26{1):41-45, 1894,

J. Welsh and M.A. Toleman. Conceptual issues in language-based editor design. International
Jowrnel of Man-Machine Studies, 37:419-430, 1992,



