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Abstract 

Australia is an agricultural nation characterised by one of the most naturally diverse 

climates in the world, which translates into significant sources of risk for agricultural 

production and subsequent farm revenues. Extreme climatic events have been 

significantly affecting large parts of Australia in recent decades, contributing to an 

increase in the vulnerability of crops, and leading to subsequent higher risk to a large 

number of agricultural producers. However, attempts at better managing climate-

related risks in the agricultural sector have confronted many challenges.  

First, crop insurance products, including classical claim-based and index-based 

insurance, are among the financial implements that allow exposed individuals to pool 

resources to spread their risk. The classical claim-based insurance indemnifies 

according to a claim of crop loss from the insured customer, and so can easily manage 

idiosyncratic risk, which is the case where the loss occurs independently. 

Nevertheless, the existence of systemic weather risk (covariate risk), which is the 

spread of extreme events over locations and times (e.g., droughts and floods), has been 

identified as the main reason for the failure of private insurance markets, such as the 

classical multi-peril crop insurance, for agricultural crops. The index-based insurance 

is appropriate to handle systemic but not idiosyncratic risk. The indemnity payments 

of the index-based insurance are triggered by a predefined threshold of an index (e.g., 

rainfall), which is related to such losses. Since the covariate nature of a climatic event, 

it sanctions the insurers to predict losses and ascertain indemnifications for a huge 

number of insured customers across a wide geographical area. However, basis risk, 

which is related to the strength of the relationship between the predefined indices used 

to estimate the average loss by the insured community and the actual loss of insured 

assets by an individual, is a major barrier that hinders uptake of the index-based 

insurance. Clearly, the high basis risk, which is a weak relationship between the index 

and loss, destroys the willingness of potential customers to purchase this insurance 

product. 

Second, the impact of multiple synoptic-scale climate mode indices (e.g., 

Southern Oscillation Index (SOI) and Indian Ocean Index (IOD)) on precipitation and 

crop yield is not identical in different spatial locations and at different times or seasons 

across the Australian continent since the influence of large-scale climate 
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heterogeneous over the different regions. The occurrence, role, and amplitude of 

synoptic-scale climate modes contributing to the variability of seasonal crop 

production have shifted in recent decades. These variables generally complicate the 

climate and crop yield relationship that cannot be captured by traditional modelling 

and analysis approaches commonly found in published agronomic literature such as 

linear regression. In addition, the traditional linear analysis is not able to model the 

nonlinear and asymmetric interdependence between extreme insurance losses, which 

may occur in the case of systemic risk. Relying on the linear method may lead to the 

problem that different behaviour may be observed from joint distributions, particularly 

in the upper and lower regions, with the same correlation coefficient. As a result, the 

likelihood of extreme insurance losses can be underestimated or overestimated that 

lead to inaccuracies in the pricing of insurance policies. Another alternative is the use 

of the multivariate normal distribution, where the joint distribution is uniquely defined 

using the marginal distributions of variables and their correlation matrix. However, 

phenomena are not always normally distributed in practice. 

It is therefore important to develop new, scientifically verified, strategic 

measures to solve the challenges as mentioned above in order to support mitigating 

the influences of the climate-related risk in the agricultural sector. Copulas provide an 

advanced statistical approach to model the joint distribution of multivariate random 

variables. This technique allows estimating the marginal distributions of individual 

variables independently with their dependence structures. It is clear that the copula 

method is superior to the conventional linear regression since it does not require 

variables have to be normally distributed and their correlation can be either linear or 

non-linear. 

This doctoral thesis therefore adopts the advanced copula technique within a 

statistical modelling framework that aims to model: (1) The compound influence of 

synoptic-scale climate indices (i.e., SOI and IOD) and climate variables (i.e., 

precipitation) to develop a probabilistic precipitation forecasting system where the 

integrated role of different factors that govern precipitation dynamics are considered; 

(2) The compound influence of synoptic-scale climate indices on wheat yield; (3) The 

scholastic interdependencies of systemic weather risks where potential adaptation 

strategies are evaluated accordingly; and (4) The risk-reduction efficiencies of 

geographical diversifications in wheat farming portfolio optimisation. The study areas 
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are Australia’s agro-ecological (i.e., wheat belt) zones where major seasonal wheat 

and other cereal crops are grown. The results from the first and second objectives can 

be used for not only forecasting purposes but also understanding the basis risk in the 

case of pricing climate index-based insurance products. The third and fourth objectives 

assess the interactions of drought events across different locations and in different 

seasons and feasible adaptation tools. The findings of these studies can provide useful 

information for decision-makers in the agricultural sector.     

The first study found the significant relationship between SOI, IOD, and 

precipitation. The results suggest that spring precipitation in Australia, except for the 

western part, can be probabilistically forecasted three months ahead. It is more 

interesting that the combination of SOI and IOD as the predictors will improve the 

performance of the forecast model. Similarly, the second study indicated that the large-

scale climate indices could provide knowledge of wheat crops up to six months in 

advance. However, it is noted that the influence of different climate indices varies over 

locations and times. Furthermore, the findings derived from the third study 

demonstrated the spatio-temporally stochastic dependence of the drought events. The 

results also prove that time diversification is potentially more effective in reducing the 

systemic weather risk compared to spatially diversifying strategy. Finally, the fourth 

objective revealed that wheat-farming portfolio could be effectively optimised through 

the geographical diversification.      

The outcomes of this study will lead to the new application of advanced 

statistical tools that provide a better understanding of the compound influence of 

synoptic-scale climatic conditions on seasonal precipitation, and therefore on wheat 

crops in key regions over the Australian continent. Furthermore, a comprehensive 

analysis of systemic weather risks performed through advanced copula-statistical 

models can help improve and develop novel agricultural adaptation strategies in not 

only the selected study region but also globally, where climate extreme events pose a 

serious threat to the sustainability and survival of the agricultural industry. Finally, the 

evaluation of the effectiveness of diversification strategies implemented in this study 

reveals new evidence on whether the risk pooling methods could potentially mitigate 

climate risks for the agricultural sector and subsequently, help farmers in prior 

preparation for uncertain climatic events. 
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Chapter 1  

Introduction 
____________________________________________________________________ 

 

1.1 Background 

Changing climate, as an uncertain variable, is one of the greatest sources of risk to the 

farming community, significantly influencing inter-annual agricultural production and 

consequently received revenues. In particular, recent extreme climatic conditions have 

been associated with enormous losses in agricultural production, in both developed 

and developing countries (Barriopedro et al. 2011; Coumou and Rahmstorf 2012; 

Herold et al. 2018). According to the FAO (2015), extreme climate-related events have 

been identified as the reason for approximately one-quarter of the reduced agricultural 

production in developing nations. Furthermore, Lesk et al. (2016) state that extreme 

drought and heat events have caused a significant decline in national cereal production 

of about 9 – 10% worldwide during 1964 – 2007. However, these authors also 

emphasise that developed agricultural nations have 8 – 11% more losses in comparison 

with developing countries. It is clear that extreme weather disasters may affect the 

agricultural sector even more severely in countries that have high crop yields and 

advanced agri-technologies. Subsequently, profitability of growing crops received by 

farmers can vary substantially across farming zones and over years, postulating a 

financial protection against weather variations (Odening and Shen 2014).  

Notwithstanding a matter of urgency to mitigate climate-related risks, a 

number of challenges have trodden in the development of efficient adaptation 

instruments used to transfer climate-related risks in the agricultural sector. Crop 

insurance, for example, is one of the financial instruments, which allows exposed 

individuals to pool resources to spread their risk. Nevertheless, the existence of 

systemic weather risk (covariate risk), which is the spread of extreme events over 

locations and times (e.g., drought and floods), has been identified as the main reason 

for the failure of private insurance markets, such as the classical multi-peril crop 

insurance, for agricultural crops (Duncan and Myers 2000; Miranda and Glauber 1997; 

Xu et al. 2010).   



 

2 

 

Classical claim-based insurance indemnifies according to a claim of crop loss 

from the insured customer, and so can easily manage idiosyncratic risk, which is the 

case where the loss occurs independently. However, in the situation of systemic risk, 

insurance companies often encounter with a large number of simultaneous claims, and 

thus pressing their ability to solve all claims properly. In that case, it becomes a 

challenge to authenticate all claims in time before verifiable evidence of damage and 

loss has vanished. Further, insurers can face ruin when confronted with massive 

indemnity payments exceeding their solvability (Okhrin et al. 2013).  

Index-based insurance is appropriate to handle systemic but not idiosyncratic 

risk. The indemnity payments of the index-based insurance are triggered by a 

predefined threshold of an index (e.g., rainfall), which is related to such losses. Since 

the covariate nature of a climatic event, it sanctions the insurers to predict losses and 

ascertain indemnifications for a huge number of insured customers across a wide 

geographical area. However, basis risk is a major barrier that hinders uptake of the 

index-based insurance (Barnett 2004). It is defined as the situation that an insured 

customer sustains no loss but receiving indemnification or vice versa. Basis risk is 

related to the strength of the relationship between the predefined index used to estimate 

the average loss by the insured community and the actual loss of insured assets by an 

individual. Clearly, the high basis risk, which is a weak relationship between the index 

and loss, destroys the willingness of potential customers to purchase this insurance 

product. 

Climate variables such as precipitation and temperature have been employed 

to analyse crop yield variations and forecast crop yield worldwide, often at the shire 

level (Asseng et al. 2011; Bannayan et al. ; Palosuo et al. 2011). Averaged or gridded 

data derived from a number of meteorological stations may be used to examine the 

climate-yield relationship at broader scale levels (Lobell and Burke 2010; Lobell et al. 

2007; Revadekar and Preethi 2012). However, such interpolated data relies on the 

density of the meteorological station network which may have questions related to the 

data quality, the continuous collection of weather data and the convenience issues 

related to regular monitoring of data acquisition systems (Harris et al. 2014; Schepen 

et al. 2012). For these reasons, it is essential to understand the requirements of the use 

of larger scale variables (e.g., climate modes) to forecast crop yield large-scale 
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regions. This can be performed through a teleconnection between synoptic-scale 

climate indices, their variables such as precipitation, and crop yield. 

Previous published studies have identified a complicated nonlinear 

relationship between climate variables and crop yield (Schlenker and Roberts 2006; 

Schlenker and Roberts 2009). However, conventional statistical methods such as 

linear regression analysis and correlations have failed to obtain a complete 

understanding of the complex impact of climate variables on crop yields (Bokusheva 

2011). This is attributable to the spread and the low coefficient of determination 

between seasonal data (Biscoe and Gallagher 1977; French and Schultz 1984). In 

addition, typical models used classical families of bivariate distribution (e.g., normal, 

lognormal, gamma, and extreme value) to describe the pairwise dependency between 

two variables based on the assumption that they belonged to the same parametric 

family of univariate distributions (Genest and Favre 2007). As a result, the likelihood 

of extreme insurance losses can be underestimated or overestimated, which lead to 

inaccuracies in the pricing of insurance policies.  

Multivariate copula functions, introduced by Sklar (1959), have recently 

become powerful tools for understanding relationships among random variables 

(Frees and Valdez 1998). By analysing the marginal distribution of each variable and 

extracting its parameters, copula functions can sanction one to link the univariate 

marginal (of single variables) to their full multivariate (e.g., bi or trivariate) 

distributions. Therefore, the copula approach, compared to the conventional linear 

correlation-based model, is a more robust methodological framework for modelling 

the dependence structure, in particular the tail dependencies, of a set of multivariate 

distributions. These are important for quantifying risks due to extreme climatic events. 

Because of their usefulness in modelling joint behaviours of two or more inter-related 

variables, in recent decades, copula functions have been extensively applied in many 

fields involving hydrology (Genest et al. 2007; Salvadori and De Michele 2004), 

drought studies (Kao and Govindaraju 2010; Shiau and Modarres 2009; Shiau 2006) 

and finance and risk insurance (da Costa Dias 2004; Frees and Valdez 2008; Zhu et 

al. 2008). However, applications of the copula theory in the agricultural sector are very 

limited in the published literature. In particular, the copula-based model of crop 

productivity using synoptic-scale climate indices has not yet been performed in 

Australia’s wheat growing regions.  



 

4 

 

A better understanding of the compound impacts of synoptic-scale climate 

indices, in particular the co-occurrence of extreme events, on precipitation and wheat 

crops, can provide an accurate forecast of both precipitation and wheat yield. In 

particular, using a novel statistical copula-based model to capture fully the dependence 

structure between variables, we may be able to implement probabilistic forecasts of 

wheat yields at different quantile levels with sufficient time ahead. It can therefore 

provide useful information to agricultural managers in developing potential adaptation 

strategies that can be implemented to reduce climate-related risks. Broadly speaking, 

the developed copula model can provide better support for food security and climate 

index-based insurance while it is possible to extend this support to other fields.   

1.2 Statement of the Problem 

Motived by the reasons mentioned above, this doctoral thesis focuses on analysing the 

interdependencies between synoptic-scale climate indices, precipitations and yield of 

wheat crops in Australia using the copula approach. The thesis then assessed the 

spread of climate events over space and time (seasons) and evaluated the effectiveness 

of potential adaptation instruments. However, it was essential to first identify a number 

of relevant research problems. While these established questions are extensively 

represented in the following sections, the research gaps have been also identified at 

the same time based on published literature.  

1.2.1 The importance of understanding the influence of synoptic-scale 

climate indices on precipitation 

As mentioned above, wheat crop in Australia is mostly cultivated in drylands, so 

precipitation plays a vital role in the year-to-year success of crops. This is evidenced 

by the fact that the association between precipitation and wheat yield has been 

extensively investigated and published in literature (Hochman et al. 2009; Nicholls 

1997; Sadras et al. 2002; Stephens and Lyons 1998). Simultaneously, a number of 

different large-scale climate indices have been recognised as the main responses to the 

precipitation pattern in Australia, depending on the regions and the seasons (Ashok et 

al. 2003; Min et al. 2013; Schepen et al. 2012; Taschetto and England 2009). It is 
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therefore not surprising that better understanding of how synoptic-scale climate 

indices modulate precipitation variability is important in the agricultural sector.  

 

Source: Nguyen-Huy et al. (2018) 

Figure 1. Main climate drivers of precipitation and agricultural yield variability 

in Australia.  

Anomalously periodic fluctuations in winds and sea surface temperatures over 

the tropical Pacific region, popularly known as El Niño Southern Oscillation (ENSO) 

phenomenon have been identified as the main factors which affect the Australian 

precipitation pattern (Nicholls et al. 1996; Suppiah 2004). In particular, the 

associations between opposite phases of ENSO and precipitation variability have been 

investigated since the early ‘80s (McBride and Nicholls 1983; Nicholls 1983; Pittock 

1975). In general, La Niña phases may bring more precipitation often in eastern 

Australia meanwhile El Niño phases are often associated with broad-scale drought 

events (Yuan and Yamagata 2015). It is clear that the ENSO plays an important role 

in the precipitation variability over much of Australia; however, its impact differs due 

to the difference in times and locations. Risbey et al. (2009) studied the simultaneous 

correlation between ENSO and precipitation patterns for the four standard seasons in 

Australia. The findings pointed out that while the highest influence of ENSO is on the 
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eastern and north-eastern areas, particularly in winter and spring, precipitation in most 

regions of Australia have a significant correlation with ENSO in at least one season. 

Recent studies found in literature have also paid much attention on the role of 

the Indian Ocean Dipole (IOD), known as Indian Niño, in the variability of 

precipitation worldwide (Chan et al. 2008; Zubair et al. 2003). Following these 

analyses, a number of studies have investigated the influences of IOD on precipitation 

in Australia (England et al. 2006; Ummenhofer et al. 2009). Like ENSO, the influence 

of IOD on precipitation also varies according to different phases, locations and times. 

For example, negative IOD phases are associated with above average precipitation 

over southern Australia (Pook et al. 2006). According to Ashok et al. (2003), IOD has 

significant negative partial correlations with precipitation over the western and 

southern regions of Australia. Furthermore, Cai et al. (2009) also found that the 

changes of IOD potentially account for much of the observed austral winter and spring 

precipitation reduction since 1950. 

Other synoptic-scale climate indices have been demonstrated to have an impact 

on the variability of precipitation in Australia. These are Southern Annular Mode 

(SAM) (Hendon et al. 2007; Meneghini et al. 2007), Madden–Julian oscillation (MJO) 

(Barlow et al. 2005; Donald et al. 2006; Pohl et al. 2007; Wheeler et al. 2009) and 

Quasi-biennial Oscillation (QBO) (Phelps and Wang 2014; Seo et al. 2013; Williams 

and Stone 2009). For example, the greatest precipitation impact of the MJO occurs in 

northern Australia in summer, although in every season precipitation impacts of 

various magnitude were found in most locations, associated with corresponding 

circulation anomalies (Wheeler et al. 2009).  

From published literature, there has been a lack of research effort on the joint 

influences of multiple climate drivers on precipitation variability in Australia. 

Traditional analyses of precipitation variability related to large-scale climate mode 

indices as mentioned above tend to focus on single variables such as ENSO or IOD. 

However, in many practical situations, methods based on univariate extremes are 

insufficient to identify and detect all interactions that lead to a significant influence 

(Fischer and Knutti 2013; Leonard et al. 2014). Therefore, any management of 

drought-related risk on wheat production requires knowledge of compound impact 

triggered by the joint occurrence of extreme climatic events. 
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1.2.2 Why study models for wheat crop? 

Wheat is the main cereal crop in Australia, accounting for 56% of Australian grain 

production and 10 – 15 % of global wheat exports (Yuan and Yamagata 2015). The 

majority of wheat crops are grown in rain-fed conditions distributed across the Agro-

ecological zones (also known as the Australia’s wheat belt) (Fig. 1). This means that 

climate and weather variables such as precipitation and temperature are the key factors 

directly affecting crop production. In fact, the timing of wheat planting, fertiliser 

applications and harvesting dates vary from region to region and year to year, 

depending on the precipitation pattern, and daytime temperatures (Fig. 1). 

 

Source: Author. Data collected from Australian Bureau of Statistics 

Figure 2. Information on wheat crop farming in Australia. 

However, as an agricultural nation, Australia suffers one of the world’s most 

variable climate conditions (Portmann et al. 2010; Turner 2004). According to Best et 

al. (2007), Australia has a large mean inter-annual variability in climatic conditions 

by about 15-18% compared to other major agricultural countries. Furthermore, 
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extreme weather events such as droughts, floods, hails, and extreme temperatures have 

often caused significant impacts on the wheat crop across the whole continent. For 

example, very dry conditions that occurred in the Western Australian wheat belt in 

2010 resulted in a 43% reduction of wheat and other winter crop production compared 

to the previous season (ABARES 2011b). A projected decline in precipitation and 

higher temperatures by 2050 could lead to about 30% losses in grain production 

including wheat (Gool 2009). Therefore, there a need of improvements in the 

understanding of climate-yield relationship in order to minimise the climate-related 

impact and support agricultural managers in strategy development and decision 

making. 

1.2.3 How does a variable and changing climate affect wheat yield? 

It is evident that large-scale climate mode indices have a strong impact on weather 

variables such as precipitation and temperature, so they may indirectly influence the 

crop yield variability. Globally, a number of studies have investigated the associations 

between large-scale climate drivers and variability of crop production at regional or 

national levels (Royce et al. 2011; Shuai et al. 2013; y Garcia et al. 2010), and at 

continental or global scales (Anderson et al. 2017; Ceglar et al. 2017; Gutierrez 2017; 

Iizumi et al. 2014). In Australia, ENSO has been commonly employed to analyse the 

inter-annual variability of wheat yield (Potgieter et al. 2002; Potgieter et al. 2005; 

Yuan and Yamagata 2015). In general, these results show that La Niña (El Niño) 

events are associated with the increase (decrease) of wheat yield. This pattern is the 

same with the climate-precipitation relationship.  

In many cases, the use of large-scale climate indices in crop yield forecasts 

may be more favourable than using weather variables as predictors. Weather variables 

such as precipitation and temperature are commonly employed to predict crop 

production worldwide, often at the shire scale (Asseng et al. 2011; Palosuo et al. 2011). 

Gridded data interpolated from a number of meteorological stations may be used in 

broader levels (Lobell et al., 2007; Revadekar and Preethi, 2012). However, relying 

on data derived from weather station networks may lead to issues related to data 

quality, continuous collection, and regular monitoring of data acquisition systems 

(Harris et al. 2014; Schepen et al. 2012). By contrast, large-scale climate information 

is often measured at a small number of stations or by satellites that may provide 
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reliable data and reduce data uncertainties. For example, Southern Oscillation Index 

(SOI), an indicator of ENSO phenomenon, is acquired based on the difference of 

monthly sea-level pressures between Tahiti and Darwin, Australia (Fig. 2) (McBride 

and Nicholls 1983; Stone et al. 1996). In addition, the current development of climate 

models allows achieving advanced knowledge of large-scale climate mode indices 

such as ENSO from six months to one year ahead (Jin et al. 2008; Ludescher et al. 

2013). Therefore, one may use ENSO to forecast crop production with sufficient time 

in advance. For example, information of the April–May ENSO can be potentially 

employed as an early forecasting tool for several seasonal crops, including wheat, in 

the following growing season (Potgieter et al. 2002). These facts suggest that large-

scale climate modes are useful for studying the associations with crop yields in terms 

of large-scale study areas, long time lag, and reliable and available datasets. 

However, in conjunction with the same issues mentioned above for 

precipitation forecast, the compound influences on crop yield when extreme events 

co-occur have been rarely explored in published literature. In fact, interactions 

between different synoptic-scale climate indices during the co-occurrence of extreme 

climate events may modulate the individual influence on weather variables (Li et al. 

2016; Lim et al. 2016; Weller and Cai 2013). Min et al. (2013) reported that there were 

anomalously drier and hotter conditions occurring across north-eastern and southern 

coastal Australia during the co-occurrence of El Niño and positive IOD phases in the 

cold seasons, whereas wetter and cooler conditions appeared during the presence of 

both La Niña and negative IOD phases. However, minimal research effort has 

attempted to justify the concurrent impacts of multiple synoptic-scale climate indices 

on Australian crop yield (Jarvis et al. 2018; Yuan and Yamagata 2015), regardless of 

the co-occurrence of extreme climate events that may subsequently affect crop yield. 

For these reasons, it is emphasised that there is a need for comprehensive research on 

the impact of compound influences of different synoptic-scale climate indices on crop 

yield. 

1.2.4 Systemic weather and climate risks and potential agricultural 

adaptation strategies 

Climate variability can be seen as one of the greatest sources of risk affecting 

agricultural producers and their revenues even in countries with high crop yield and 
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advanced agri-technologies (Barriopedro et al. 2011; Coumou and Rahmstorf 2012). 

Lesk et al. (2016) has explained that drought and heat extreme events considerably 

decreased national cereal production by 9 – 10% worldwide during 1964 – 2007. 

These authors also found that developed countries have 8 – 11% more damage 

compared to that in developing countries. Clearly, the agricultural sector requires 

significant financial protection against climate variability (Odening and Shen 2014).  

This problem can be solved through an efficient and affordable instrument, 

such as weather index-based insurance, for transferring systemic weather risks. 

However, the existence of systemic weather risk has been determined as the leading 

reason for the failure of private insurance markets for agricultural crops (Duncan and 

Myers 2000; Miranda and Glauber 1997). Systemic weather risk is defined as when a 

weather event such as drought occurs over a considerable area and affect a large 

number of farmers (Odening and Shen 2014; Xu et al. 2010). This means that many 

farmers are affected at the same time, resulting in a huge number of simultaneous 

insurance claims and subsequently leading to the bankruptcy problems for insurance 

companies. 

High systemic weather risk, as mentioned above, is a major hindrance to 

feasible crop insurance and leads to the failure of an unsubsidised private insurance 

market (Skees and Barnett 1999; Vedenov and Barnett 2004). However, there are 

several possible implements allowing managing systemic risks such as reinsurance 

and weather derivatives (Musshoff et al. 2011; Skees et al. 2007). Alternatively, 

insurers may spatially diversify the systemic weather risk by extending its trading area 

(Okhrin et al. 2013; Xu et al. 2010). According to Odening and Shen (2014), the level 

of covariate risk depends on the size of the risk pool and thus it seems natural to reduce 

the systemic weather risk by increasing the regional dissemination of insurance 

products. For example, a drought event may be highly correlated within a small region 

but possibly independent at a broader scale. Furthermore, the impact of geographical 

basis risk on the hedging effectiveness of weather derivatives has been regularly 

highlighted in the published literature (Ritter et al. 2014; Woodard and Garcia 2008). 

Clearly, quantifying the dependence between weather events occurring concurrently 

across different locations is essential to the measurement of joint weather-related 

losses and the hedging effectiveness of weather derivatives that insurance companies 

may wish to sell to farmers. 
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1.2.5 Limitations of common statistical multivariate models 

The use of a simple univariate approach can lead to severe underestimation of potential 

risks associated with the interdependencies between events (Favre et al. 2004). 

Therefore, better capturing the joint distribution between random variables (here, the 

compound impact of multiple synoptic-scale climate indices on precipitation or wheat 

yield) is a fundamental and prime part in any modelling study.  

In practice, several types of models are available, for example to forecast wheat 

yield using synoptic-scale climate indices, including empirical models and eco-bio-

physiological simulation (or process-based) models. The empirical models that do not 

rely on eco-bio-physiological equations may use statistical (Jarvis et al. 2018; Yuan 

and Yamagata 2015) or machine learning methods (Deo et al. 2017; Deo and Şahin 

2016). In particular, statistical models deliver yield forecasts using the historical 

relationship between synoptic-scale climate indices and crop yields. Clearly, the main 

advantage of statistical models is that they do not require many crop parameters. 

Furthermore, they are generally easier to develop and more suitable for forecasting 

crop yield over a large scale (Matsumura et al. 2015). Finally, statistical models may 

be used to estimate the uncertainty in the simulation process which is often difficult to 

achieve in process-based models (Lobell et al. 2006). 

However, it is worth noting that the statistical multivariate models applied in 

previous published studies (Jarvis et al. 2018; Yuan and Yamagata 2015) often 

assumed a linear relationship between synoptic-scale climate indices and crop yield, 

implying the joint distribution among these variables to be a normal distribution. It is 

undoubted that linear regression models are simple to build and can provide a quick 

conclusion on general trends (i.e., the fitted straight line) between response variable 

given the values of the explanatory variables. However, the model specification may 

be strongly affected by outliers (e.g., the occurrence of extreme events) resulting in a 

poor measure of actual dependencies between variables (Ghosh et al. 2011; Hassani 

2016; Tang and Valdez 2009). Therefore, the assumption that the joint distribution 

between variables is normally distributed may not always hold in many practical cases 

and lead to an incorrect interpretation of findings. 
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1.2.6 Why should we use copulas in statistical models? 

Copulas (Sklar 1959) deliver a better approach to handling dependence structures 

between random variables. In the copula technique, joint distributions of variables are 

modelled independently to the choice of the marginal distributions. Clearly, copula-

based models can overcome the above shortcomings of traditional regression models. 

For example, variables in the model can be fitted parametrically using any hypothetical 

distribution (e.g., Gamma or Weibull) or non-parametrically using a kernel density 

function. Another advantage of copula-based models relative to other statistical 

methods is that the data series can be of different lengths, which is useful to apply for 

practical data (Patton 2001; Zhang and Singh 2014). 

In general, copulas can be categorised into families including, but not limited 

to, empirical, Archimedean, extreme value, elliptical, vine, and entropy copulas based 

on their construction. Here, we briefly describe the drawbacks of the elliptical and 

Archimedean copulas and the advantages of vine copulas due to their wide 

applications (Abdul Rauf and Zeephongsekul 2013; Brechmann et al. 2013; Fang and 

Madsen 2013; Grimaldi and Serinaldi 2006; Pham et al. 2016). Within elliptical 

families, the Gaussian copula is not able to model the tail dependencies while the 

Student’s t copula can capture symmetric dependence in the upper and lower tails. 

Archimedean families can measure both symmetric and asymmetric dependence 

structures between variables but have some limitations. The symmetric Archimedean 

copulas (e.g., Clayton, Gumbel) use a single parameter to model dependence 

structures between variables, which may not be appropriate (Fig. 3a). The asymmetric 

Archimedean copulas constructed by hierarchical structures assume the same copula 

functions for each level in construction where the parameters estimated for higher 

levels must be smaller than those for lower levels (Fig. 3b-c). Again, this assumption 

may not be reasonable in practice (Hao and Singh 2016; Zhang and Singh 2014).  
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(Source: Author) 

Figure 3. Four-dimensional Archimedean copulas constructed by symmetric (a), 

fully nested (b) and partial nested (c) structures.  

The vine copulas are graphical dependency models decomposing joint 

distributions of multivariate variables into a cascade of bivariate copulas, also known 

as pair-copulas (Bedford and Cooke 2001; Bedford and Cooke 2002; Brechmann and 

Schepsmeier 2013; Joe 1996). It is worth noting that every pair-copula can be 

modelled flexibly using any bivariate copula function. Clearly, a variety of 

dependence structures including asymmetries and tail dependencies can be taken into 

consideration through vine copula-based models (AghaKouchak et al. 2010). For 

example, the vine copula can comprise the pair-copulas of Clayton and Gumbel, which 

exhibit strong left- and right-tail dependence between variables, respectively 

(Bokusheva 2011), into a joint multivariate model. This construction is extremely 

useful for capturing fully the compound influence of extreme events on precipitation 

and wheat yield which is potentially modelled in an inappropriate manner. The regular 

vine (R-vine) is a general form of vine copulas (Kurowicka and Cooke 2006) (Fig. 5c) 
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while the statistical inference techniques are divided into special classes of drawable 

vine (D-vine) (Fig. 4a) and canonical vine (C-vine) (Fig. 4b) copulas (Aas et al. 2009; 

Brechmann 2010) which are mainly used in this study.  

 

Source: Author 

Figure 4. Four-dimensional drawable vine (D-vine) (a), canonical vine (C-vine) 

(b), and regular vine (R-vine) copulas.  

Since the copula technique is advanced, which can model complex dependence 

structures between variables; recent years have enabled an extensive application of 

copula-based models in a variety of research fields. Many authors have applied copula 

methods for joint modelling of the hydrological properties (e.g., peak streamflow, 

streamflow volumes and drought durations, severity, and intensity) (Grimaldi et al. 

2016; Grimaldi and Serinaldi 2006), drought monitoring (Wong et al. 2010; Wong et 

al. 2013; Yang 2010). In finance and insurance, the copula method can be seen as a 

standard and popular instrument for multi asset pricing (Tankov 2011; Van Den 

Goorbergh et al. 2005), credit portfolio modelling (Frey and McNeil 2003; Frey et al. 

2001), and risk management (Embrechts et al. 2002; Fang and Madsen 2013; Jaworski 

et al. 2013; Ouyang et al. 2009). 

However, applications of the copula approach in agricultural economics, and 

particularly in risk managements are limited. Several studies have been implemented 

worldwide (Goodwin and Hungerford 2014; Larsen et al. 2015; Okhrin et al. 2013; 
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Xu et al. 2010) but not in Australia. Furthermore, these studies use multivariate 

elliptical or Archimedean copulas, which have some restrictions, as mentioned above. 

To the best of our knowledge, no previous studies have applied the vine copula 

technique to model the compound influence of climate mode indices on precipitation 

and wheat yield as well as to analyse weather systemic risk in the wheat belt region in 

Australia.   

1.3 Thesis Research Aims and Objectives 

With the research gaps already identified, the primary purpose of this doctoral thesis 

is to develop vine copula-based models for analysing the inter-association between 

synoptic-scale climate indices, precipitation and wheat yield in Australia’s wheat belt. 

Subsequently, the copula approach is applied to analyse the stochastic dependence of 

weather systemic risk and to evaluate potential adaptation strategies. In particular, this 

thesis will adopt the copula technique within a statistical modelling framework to 

achieve the following specific objectives:  

i. Modelling the compound influences of multiple synoptic-scale climate indices 

(e.g., SOI and IOD) on weather variables (e.g., precipitation). The developed 

copula model is able to provide probabilistic 'forecasting' information of 

seasonal precipitation.  

ii. Modelling the joint influences of multiple synoptic-scale climate indices on 

the wheat yield at different times and locations. Subsequently, the wheat yield 

can be forecasted at different quantile levels using the most powerful copula-

based model. 

iii. Analysing the stochastic dependence of weather systemic risk in different 

locations and crop growing seasons and how it affects a hypothetical weather 

index-based insurance. Based on this analysis, the efficiency of different 

potential diversification strategies is evaluated and commented on, using 

regional, national and temporal scales.  

iv. Modelling the joint return of wheat crops growing at different locations to 

evaluate the efficiency of the geographical diversification strategy. This 

objective attempts to optimise the expected return, given different levels of 
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risk, using the information randomly simulated from the developed copula-

based model. 

1.4 Scope and Limitations 

To achieve these goals, the workflow has been partitioned into a number of separate 

tasks and the scope of the study are summarised as follows: 

i. The potential compound impact due to co-occurrence of extreme climatic 

events on precipitation and wheat yield focusing on the Australian’s wheat belt 

region are extensively reviewed. The stochastic interdependencies of weather 

events leading to systemic risks in agriculture and economics and potential 

adaptation strategies are also reviewed. 

ii. The limitations of traditional statistical models such as linear regression in 

modelling multivariate distributions are identified leading to an understanding 

of the copula technique, particularly vine copulas and their advantages, and 

how it can overcome the challenges experienced in the conventional statistical 

methods. 

iii. The study on the influence of climatic conditions is implemented using major 

synoptic-scale climate indices have been examined to affect precipitation and 

crop yield in Australia. The implementation is also conducted in different 

locations and at different times to analyse the spatio-temporal characteristics 

of the climate-related impact.  

iv. While vine copulas are the core approach, the study also applies the 

conventional multivariate normal methods and other copula families for a 

comparison of modelling capacity. The marginal distributions can be fitted 

parametrically or non-parametrically. Copulas are estimated using a number of 

parametric copula functions and implemented in R software (Team 2013).  

All the codes serving this study are implemented in R software, an open source and a 

free environment for statistical computing and graphics. Furthermore, the following 

factors may play an essential role in studies of climatic impact on agricultural sector; 

however, they are beyond the scope of this study due to the time limitations including:  

 Dynamic impact and mechanism under the interaction of climate mode indices; 
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 Other copula methods such as empirical and entropy copulas; 

 Other costs may occurred in implementing diversification strategies; 

 Other potential adaptation strategies.  

1.5 Organisation of the Thesis 

This thesis comprises four major studies, presented as a PhD by publications, which 

cover the four objectives and a book chapter, and a conclusion that summarises the 

challenges, findings, significance and scientific contributions of this study, and 

recommendations for future works.  

Four high quality journal articles produced from this study are represented below: 

 Article from Objective I: Thong Nguyen-Huy, Ravinesh C. Deo, Duc-Anh 

An-Vo, Shahbaz Mushtaq, and Shahjahan Khan. "Copula-statistical 

precipitation forecasting model in Australia’s agro-ecological zones". 

Agricultural Water Management, 191 (2017): 153-172. [Impact Factor: 

2.848, SNIP: 1.814, Scopus Rated Q1, 93rd percentile in Water Sc & 

Technology]. 

DOI: https://doi.org/10.1016/j.agwat.2017.06.010 

 Article from Objective II: Thong Nguyen-Huy, Ravinesh C. Deo, Duc-Anh 

An-Vo, Shahbaz Mushtaq, and Shahjahan Khan. "Modelling the joint 

influence of multiple climate mode indices on Australian wheat yield using a 

vine copula-based approach." European Journal of Agronomy, 98 (2018): 65-

81. [Impact Factor: 3.757, SNIP: 1.828, Scopus Rated Q1, 94th percentile in 

Agronomy & Crop Sc.]. 

DOI: https://doi.org/10.1016/j.eja.2018.05.006 

 Article from Objective III: Thong Nguyen-Huy, Ravinesh C. Deo, Shahbaz 

Mushtaq, Jarrod Kath and Shahjahan Khan. "Copula statistical models for 

analyzing stochastic dependencies of systemic drought risk". Stochastic 

Environmental Research and Risk Assessment (in review). [Impact Factor = 

https://doi.org/10.1016/j.agwat.2017.06.010
https://doi.org/10.1016/j.eja.2018.05.006
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2.629, Scopus Rated Q1, 85th percentile in Safety, Risk, Reliability & 

Quality]. 

Ref. No.: SERR-D-18-00328 

 Article from Objective IV: Thong Nguyen-Huy, Ravinesh C. Deo, Shahbaz 

Mushtaq, Jarrod Kath and Shahjahan Khan. "Copula-based agricultural 

conditional value-at-risk modelling for geographical diversifications in wheat 

farming portfolio management". Weather and Climate Extremes. [Impact 

Factor = 4.21, SNIP: 2.428, Scopus Rated Q1, 98th percentile in Geography, 

Planning & Development]. 

DOI: https://doi.org/10.1016/j.wace.2018.07.002 

Furthermore, the book chapter and the copyright information of the published articles 

are given in Appendix. 

The first objective is to understand the compound influences of different 

phases between the inter-annual synoptic-scale climate driver ENSO and Inter-decadal 

Pacific Oscillation (IPO) Tripole Index (TPI) on spring precipitation forecast in 

Australia’s wheat belt. The findings and analyses are represented in Article I. The 

results show that using the vine copula technique, the trivariate models can provide a 

better accuracy of precipitation forecast than the bivariate models in the east and 

southeast wheat belt region. The trivariate forecasting models are also found to 

improve the forecast during the La Niña and negative TPI phases.  

The second objective is to investigate the spatio-temporal influence of multiple 

large-scale climate drivers on the variability of wheat yield that are addressed in 

Article II. Twelve large-scale climate indices, which have been examined as major 

drivers of Australian precipitation variability, are employed to investigate their joint 

influence on the seasonal wheat yield across five major wheat-producing states. The 

results indicate that wheat yield can be skilfully forecast 3–6 months ahead, supporting 

early decision-making in regard to precision agriculture. Generally, the developed D-

vine quantile regression model provide greater accuracy for the wheat yield forecast 

given different quantile levels compared to the traditional linear quantile regression 

(LQR) method. 
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The third objective uses C-vine copula-based models to investigate the 

stochastic dependencies of systemic weather risk and evaluate the effectiveness of 

spatial and temporal diversification strategies, which can be acquired from Article III. 

This study calculates the buffer fund, which is used as a reserve to handle payouts and 

avoid bankruptcy during widespread systemic losses, at regional, national and 

temporal levels. The results indicate that diversification strategies are feasible to 

mitigate systemic weather risks in Australia. Furthermore, diversifying risk over time 

potentially achieves more effectiveness than over space. 

The fourth objective is to assess the performance of a geographical 

diversification wheat farming portfolio in Australia, which is described in Article IV. 

Conditional Value-at-Risk (CVaR) and the joint copula model are employed to 

optimise the effectiveness of geographical diversification. The study indicates that the 

copula-based mean-CVaR model is seen to better simulate extreme losses compared 

to the conventional multivariate-normal models, which underestimates the minimum 

risk levels at a given target of expected return.  

For better understanding the connection among the studies and articles, the 

flow story of the thesis is graphically represented in Fig. 5. 

 

(Source: Author) 

Figure 5. Flow diagram of the thesis. 
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1.6 Summary 

Extreme climate events and their co-occurrence have a significant impact on weather 

variables and crop productions. Agricultural producers and financial managers are 

looking for a powerful tool to understand and quantify climate-related risks. Although 

a number of statistical models such as multivariate linear regression have been 

developed worldwide, they often fail to measure a complex dependence structure. The 

copula technique provides a better way to describe joint behaviour of compound 

events. The main objective of this research is to promote the valuable application of 

vine copulas in managing climate risks in the agricultural sector.      
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Chapter 2 

Probabilistic precipitation forecasting using synoptic-scale 
climate indices 
____________________________________________________________________ 

Article I: Copula-statistical precipitation forecasting model in 

Australia’s agro-ecological zones 

Summary: 

This study adopts vine copulas to investigate the association of three-month (June – 

August) average values of ENSO and TPI on spring precipitation (September – 

November) forecast across the Agro-ecological Zones (AEZs) (Australia’s wheat 

belt). Gridded monthly precipitation data (0.050 x 0.050) are collected from Australian 

Water Availability Project (1900–2013). Furthermore, bivariate and trivariate copula 

models are developed to measure the influences of single (ENSO) and dual predictors 

(ENSO & TPI) on seasonal precipitation forecasts. A set of hypothetical parametric 

distribution functions is used for fitting the marginal process. A total of ten one- and 

two-parameter bivariate copulas and their rotated versions ranging from elliptical to 

Archimedean functions are employed to fit bivariate models between pairwise 

variables. Both fitting procedures are enriched with graphical and statistical goodness-

of-fit tests. Fig. 6 displays the graphical abstract of this study on compound impact of 

synoptic-scale climate indices on precipitation in Australia. 

The analysis indicates that most of the AEZs exhibit statistically significant 

dependence between spring precipitation and synoptic-scale climate indices, except 

for the western AEZs. Stronger dependence in the upper tail observed in bivariate 

models implies that the influence of ENSO on precipitation forecast during La Niña 

phases is more evident than during El Niño phases. In regard to trivariate models, 

while the inclusion of TPI into bivariate models generally results in a notable reduction 

in the mean values of simulated precipitation, it depicts a general improvement in the 

median values. In particular, the Spearman correlation coefficients between observed 

and forecasted anomalies in bivariate cases are approximately 0.59, 0.26, 0.48 and 

0.49 in Zones 1, 7, 8, and 12, respectively. However, if TPI is included into bivariate 

models these correlation coefficients drop to 0.50 in Zone 1 but increase to 0.52, 0.49 



 

22 

 

and 0.52, respectively, in Zones 7, 8 and 12. Furthermore, the correlation coefficients 

in the upper right and lower left quadrants (when both SOI and TPI are in the same 

phases) are significantly improved in trivariate models. The correlation coefficients in 

the upper right (lower left) quadrant increase from 0.72 (0.24), 0.27 (0.37), 0.27 and 

0.10 (bivariate models) to 0.74 (0.52), 0.29 (0.54), 0.32 and 0.64 for Zones 1, 7, 8, and 

12, respectively.  

Source: Author 

Figure 6. Graphical display of the study on compound impact of synoptic-scale 

climate indices on precipitation in Australia. 

The results demonstrate that trivariate models can provide a better accuracy of 

precipitation forecast than bivariate models in the eastern and south-eastern AEZs. In 

addition, the trivariate forecast models are found to improve the precipitation forecast 

during the La Niña and negative TPI phases. This study determines the success of 

copula-based models for investigating the joint behaviour between multiple synoptic-

scale climate indices and seasonal precipitation. The forecast information and 

respective models can provide useful tools for water resources and crop health 

management including better ways to adapt and implement viable agricultural 

solutions in the face of climatic challenges in major agricultural hubs, such as 

Australia’s wheat belt.  
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a  b  s  t  r  a  c  t

Vine  copulas  are  employed  to explore  the influence  of  multi-synoptic-scale  climate  drivers  – El  Niño
Southern  Oscillation  (ENSO)  and Inter-decadal  Pacific  Oscillation  (IPO)  Tripole  Index  (TPI)  – on spring
precipitation  forecasting  at  Agro-ecological  Zones  (AEZs)  of  the  Australia’s  wheat  belt.  To forecast  spring
precipitation,  significant  seasonal  lagged  correlation  of  ENSO  and  TPI with  precipitation  anomalies  in
AEZs  using  data  from  Australian  Water  Availability  Project  (1900–2013)  was  established.  Most  of the  AEZs
exhibit  statistically  significant  dependence  of precipitation  and  climate  indices,  except  for the western
AEZs.  Bivariate  and  trivariate  copula  models  were  applied  to capture  single  (ENSO)  and  dual  predictor
(ENSO  & TPI)  influence,  respectively,  on seasonal  forecasting.  To  perform  a comprehensive  evaluation  of
the developed  copula-statistical  models,  a total  of  ten one-  and  two-parameter  bivariate  copulas  ranging
from  elliptical  to Archimedean  families  were  examined.  Stronger  upper  tail  dependence  is visible  in the
bivariate  model,  suggesting  that  the  influence  of  ENSO  on  precipitation  forecasting  during  a La  Niña  event
is more  evident  than during  an  El Niño  event.  In  general,  while  the  inclusion  of  TPI as  a  synoptic-scale
driver  into  the  models  leads  to a notable  reduction  in the  mean  simulated  precipitation,  it depicts  a  gen-
eral  improvement  in  the  median  values.  The  forecasting  results  showed  that  the  trivariate  forecasting
model  can  yield  a better  accuracy  than  the bivariate  model  for  the  east  and  southeast  AEZs.  The  trivariate
forecasting  model  was  found  to improve  the forecasting  during  the  La  Niña  and  negative  TPI. This  study

ascertains  the  success  of  copula-statistical  models  for  investigating  the  joint  behaviour  of  seasonal  pre-
cipitation  modelled  with  multiple  climate  indices.  The  forecasting  information  and  respective  models
have  significant  implications  for water  resources  and  crop  health  management  including  better  ways  to
adapt  and implement  viable  agricultural  solutions  in the  face  of  climatic  challenges  in  major  agricultural
hubs,  such  as Australia’s  wheat  belt.

© 2017  Elsevier  B.V.  All  rights  reserved.
. Introduction

Australia, an agricultural nation, has a relatively high inter-
nnual variability in climatic properties (including annual and
easonal precipitation); which is about 15–18% higher than any

ther major agricultural nation (Best et al., 2007; Cleugh et al., 2011;
ekanik and Imteaz, 2013; Walker and Mason, 2015). The Aus-

ralian precipitation is influenced by the synoptic-scale processes

∗ Corresponding author at: School of Agricultural, Computational and Environ-
ental Sciences, QLD 4300, Australia.

E-mail addresses: ThongHuy.Nguyen@usq.edu.au (T. Nguyen-Huy),
avinesh.deo@usq.edu.au, physrcd@yahoo.com (R.C. Deo).

ttp://dx.doi.org/10.1016/j.agwat.2017.06.010
378-3774/© 2017 Elsevier B.V. All rights reserved.
mainly of tropical oceanic and atmospheric origin, with the pri-
mary attention largely paid to the different phase of the El Nino
Southern Oscillation (ENSO) (Risbey et al., 2009; Schepen et al.,
2012). An association between ENSO and the precipitation have
been investigated since the early ‘80s (McBride and Nicholls, 1983),
which ENSO phenomenon producing a strong impact on seasonal
precipitation from July–March. The magnitude and timing of the
effect varies considerably with the sites and coincides with major
cropping periods (McBride and Nicholls, 1983; Stone et al., 1996).
Interdecadal Pacific Oscillation (IPO) is also associated with climate

variations across the Pacific, albeit on decadal timescales, act-
ing to modulate the interannual variation of ENSO-related effects
(Salinger et al., 2001), and is directly attributable to the shift in
the intertropical convergence zone (Folland et al., 2002). However,
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outhern Oscillation Index (SOI) features in Australia are reinforced
n negative IPO phases in some areas, with lesser impacts in oth-
rs (Chiew and Leahy, 2003). Also, individual ENSO events have
tronger and more predictable impacts across Australia during the
egative (cool) IPO phases (Kirono et al., 2010). Power et al. (1999)

ound no significant relationship between interannual climate vari-
bility and ENSO in the positive IPO phases, although a relationship
etween IPO and precipitation, river flow and wheat yield, were

dentified in negative phases. While a better understanding of
NSO’s impact in different IPO phases is creating an opportunity for

mproving the performance of forecasting model, the mechanism
f interdecadal modulation of IPO on ENSO-related climatology,

ncluding precipitation, is complicated. Precipitation forecasting,
owever, is an important task for agricultural water management
nd agricultural economics (An-Vo et al., 2015; Deo et al., 2017),
ffecting subsistence and commercial aspects of Australia’s agri-
ultural industry (Anwar et al., 2007; Best et al., 2007; Chiew et al.,
003; Montazerolghaem et al., 2016).

In published literature, Risbey et al. (2009) has identified the
ey rivers of Australian precipitation variability based on con-
urrent relationships between synoptic-scale climate indices and
recipitation. However, to forecast future precipitation, lagged
elationships between climate indices in the current and the (next)
easonal precipitation are important. Further, a strong concurrent
elationship does not always lead to a strong lagged relationship
Schepen et al., 2012). Although such lagged relationships have
een widely applied to forecast the precipitation in Australia, the
uthors utilised either a single climate index (Chiew et al., 1998;
tone et al., 1996; Taschetto and England, 2009) or assessed the
mpact of each climate index separately (Hasan and Dunn, 2012;
irono et al., 2010; Schepen et al., 2012). In general, the influence
f different climate indices varies across seasons and regions. For
xample, in north-eastern Australia, spring precipitation was found
o exhibit the highest correlation with Niño-4.0 and thermocline
roperties, while optimal predictors for summer precipitation were
iño-4.0 and Dipole Mode Index (Kirono et al., 2010). Such tempo-

al and spatial variations of the impact of different climatic indices
ave been also confirmed in an extensive research by Schepen
t al. (2012). However, in spite of an acceptable level of model per-
ormance for seasonal forecasting, utilisation of a single predictor
an hinder forecasting ability since relationships between climate
ndices and precipitation can be relatively complex (Rasel et al.,
016; Wang and Hendon, 2007).

In Australia, the impacts of different climate indices on pre-
ipitation amounts vary according to the continent’s geographic
iversity (Chowdhury and Beecham, 2010; Deo et al., 2017). In
pite of this, only a handful of research has considered the joint
nfluence of multiple indices on seasonal precipitation forecast-
ng. Mekanik and Imteaz (2013) combined ENSO and Indian Ocean
ipole to develop a model for spring precipitation in south-eastern
ustralia. Rasel et al. (2016) incorporated SOI and Southern Annular
ode to demonstrate 63% better prediction accuracy of spring pre-

ipitation in South Australia compared to a single index. However,
hese studies employed a regression model where the dependence
tructure between an index and precipitation was  measured by
earson’s correlation, whilst assuming linearity and normal distri-
utions. Precipitation data, however, exhibits a skewed distribution
nd its relationship with climate indices is nonlinear (Schepen et al.,
012) which invalidates the use of Pearson’s correlation and normal
ssumption. As the dependence structure between the predictors of
recipitation and the predictand (i.e., precipitation) is governed by
he marginal distributions of these variables that can help decision-
akers to capture the ‘cause and effect’ relationships„ a robust
orecasting model must allow the establishment of the linear or
onlinear dependence between the predictors (e.g., climate indices)
nd predictand (e.g., precipitation) with the marginal distributions
 Management 191 (2017) 153–172

being derived from diverse distribution families. Here, we  aim to
achieve such a novel forecasting method by employing copula-
statistical models, which are yet to be applied for precipitation
forecasting research in the present study region.

Copula-statistical models (Sklar, 1996; Sklar, 1959) that utilise
ranked Spearman or Kendall tau coefficients provide viable alter-
natives for modelling non-linear dependences, and have attracted
much attention in bivariate and trivariate based modelling (De
Michele and Salvadori, 2003; Evin and Favre, 2008; Hao and Singh,
2016; Rauf and Zeephongsekul, 2014; Zhang and Singh, 2007).
Copula functions allow to model the dependence structure inde-
pendently from the marginal selection. Further, they overcome
issues associated with joint dependences between rare events (e.g.,
precipitation extremes) by considering tail dependences (i.e.,  asym-
metric dependence structure) which is impossible with simplistic
statistical models. Since their advent, recent years have witnessed
an extensive application of copulas for: insurance and financial
risk (Fang and Madsen, 2013; Jaworski et al., 2013; Trede and
Savu, 2013), hydrology and water resources (Favre et al., 2004;
Hao and Singh, 2013; Wong, 2013), drought (Wong et al., 2010;
Wong et al., 2013; Yang, 2010), flood (Chowdhary et al., 2011;
Favre et al., 2004) and streamflow (Hao and Singh, 2012; Lee and
Salas, 2011). Khedun et al. (2014) applied multivariate Gaussian and
Archimedean copulas for modelling the effect of ENSO and PDO on
precipitation anomalies in Texas. However, multivariate Gaussian
copulas, as applied in that study, can have a drawback by restrict-
ing the symmetric dependence associated with elliptical copulas.
Also, multivariate Archimedean copulas employ a single parameter
on pairs of variables which assumes the same dependence struc-
ture for variable pairs. Such an assumption might be unrealistic
(Hao and Singh, 2016). In addition, to the best of our knowledge,
copula-statistical models have not been explored for probabilistic
forecasting of seasonal precipitation in Australia, despite that the
challenges and a need for a robust model for spring precipitation
forecasting at Agro-ecological Zones (AEZs) of the Australia’s wheat
belt.

In this paper, we model the joint influence of ENSO (through
the phases of the Southern Oscillation Index, SOI) and IPO Tripole
Index (TPI) on seasonal precipitation at the AEZs using vine copu-
las. The TPI (which is a robust and stable representation of the IPO
with less variance in the decadal than the shorter timescales com-
pared to Niño 3.4 due to an inclusion of off-equatorial sea surface
temperature (SST)) (Henley et al., 2015) exhibits similar charac-
teristics to the Pacific Decadal Oscillation (PDO) in terms of SST
but theirs influences are spatially disparate. TPI utilises SSTs in the
South of 200N, associated with a ‘tripole’ pattern and three centres
of action and variations, stipulated in the second principal compo-
nent of a low-pass filtered global SST. Further, vine copulas allows to
unite different bivariate copulas for modelling the flexible depen-
dence among pairwise variables independently with the marginal
selection (Bedford and Cooke, 2001, 2002; Kurowicka and Cooke,
2006). Vine copulas have not been tested for precipitation forecast-
ing although they were verified for precipitation refinement studies
(Liu et al., 2015), stochastic modelling (Verhoest et al., 2015) and
daily precipitation disaggregation (Gyasi-Agyei, 2011).

Considering the need for precipitation forecast model to be
developed at Australia’s Agro-ecological Zones (AEZs), the aims of
this study are threefold: (1) to develop a copula-based bivariate
and trivariate models describing the joint impact of SOI  and TPI
on spring seasonal precipitation variability; (2) to evaluate statisti-
cally the influence mechanism of the considered climate indices on
precipitation through a comparison of the prescribed bivariate and

trivariate models; and (3) to evaluate the utility of copula-based
conditional model for forecasting seasonal precipitation. The paper
is structured as follows. Section 2 covers the theory of copulas; Sec-
tion 3 presents data, methodology and model development; Section
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 outlines the results and general discussion. Further discussions
re presented in Section 5, and conclusions are presented in Section
.

. Theory of copula-statistical model

Sklar (1959) introduced the copulas, as a multivariate distribu-
ion with all univariate marginals being standard uniform U[0, 1]
Nelsen, 2006; Sklar, 1959). Let F be the n-dimensional joint cumu-
ative distribution function (CDF) of an n-dimensional random
ector X = [x1, ..., xn]T with marginal CDF F1,..., Fn. There exists

 copula C : [0, 1]n → [0, 1] to satisfy Eq. (1) (Sklar, 1996; Sklar,
959):

F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

= C [F1 (x1) , ..., Fn (xn)] = C (u1, ..., un) ,
(1)

here P(Xi ≤ xi) = Fi (xi) = ui for i = 1, ..., n with Ui∼U [0, 1]. If F1,
2, ..., Fn are continuous distributions, C is unique; otherwise, C is
niquely determined on RanF1 × RanF2 × ... × RanFn. Conversely, if

 is an n-copula and F1, F2, ..., Fn are distribution functions, then the
unction F is an n-dimensional distribution function with marginal
istributions F1, F2, ..., Fn (Sklar, 1996).

The multivariate density function, f(x1, x2, ..., xn) can be
xpressed as (Sklar, 1996):

 (x1, ..., xn) =
[

n∏
i=1

fi (xi)

]
c (u1, ..., un) ,  (2)

here c = ∂nC
∂F1,...,∂Fn

is the copula density and fi (xi) is the marginal

ensity.
Copulas are generally classified into families including, but not

imited to, empirical, Archimedean, extreme value, elliptical, vine,
nd entropy copulas. More details of elliptical and Archimedean
opulas are found in Sections A.1 and A.2 of the Supplementary
aterial.

.1. Vine copulas

Vine copulas, which were introduced by Joe (1996) and applied
ore comprehensively by Bedford and Cooke (2001), as graphi-

al dependency models for describing multivariate variables using
arkov trees and construction of a cascade of bivariate copulas;

hey are the so-called pair-copulas (Brechmann and Schepsmeier,
013). A multivariate probability density is decomposed into
ivariate cases where a selection of each pair-copulas is inde-
endent. The vine copulas perform a variety of modelling where
symmetries and tail dependence, as evident in precipitation fore-
asting problems (Aghakouchak et al., 2010), are taken into account.
he statistical inference techniques are divided into special classes
f Canonical- (C-) and D- vines (Aas et al., 2009). In a C-vine, pairs
nd associated pair-copula for n variables can be constructed as
Bedford and Cooke, 2001):

(1, 2) , (1, 3) , (1, 4) , ..., (1, n) (Tree1)

(2, 3|1) , (2, 4|1) , ..., (2, n|1) (Tree2)

...,
(n − 1, n|1, ..., n − 2) (Treen − 2) .

The pair-copula construction requires a computation of
arginal conditional distribution functions, F (x|�) for an m-
 Management 191 (2017) 153–172 155

dimensional vector � = (�1, ..., �m). Aas et al. (2009) showed that,
for everyj,  the conditional distribution function is:

h (x|�) = F (x|�) =
∂Cx,�j |�−j

[
F
(
x|�−j

)
, F

(
�j|�−j

)]
∂F

(
�j|�−j

) , (3)

Note that �j denotes an arbitrary component of �, and �−j denotes
the vector � excluding element �j, and Cx,�j |�−j is a bivariate copula
distribution function.

If � is univariate, Eq. (3) can be written as

h (x|�) = F (x|�) = P (X ≤ x| = �) = ∂Cx� [F (x) , F (�)]
∂F (�)

. (4)

The hierarchical construction of the conditioning sequence for the
C-vine is that the variable 1 is conditioned on first, then variable
2, and so on (Brechmann and Schepsmeier, 2013; Liu et al., 2015).
According to Aas et al. (2009), the n-dimensional density corre-
sponding to C-vine is written as:

f (x1, ..., xn) =
n∏
k=1

fk (xk) ×
n−1∏
i=1

n−i∏
j=1

ci,i+j|1:(i−1)

[
F (xi|x1, ..., xi−1) , F

(
xi+j|x1, ..., xi−1

)]
(5)

For the three random variables X1–X3, the construction of C-
vine is shown in Fig. 2.1 of Supplementary material. The conditional
density derived from Eq. (5) is

f (x1, x2, x3) = f1 (x1) · f2 (x2) ·  f3 (x3)

·c12 [F1 (x1) , F2 (x2)] ·  c13 [F1 (x1) , F3 (x3)]

·c23|1 [F (x2|x1) , F (x3|x1)] ,

(6)

where F (x2|x1) = h (u2|u1) and F (x3|x1) = h (u3|u1) can be found
from Eq. (4).

It is also noted that for the three-dimensional case, the C-vine
copula is the D-vine copula where the center variable is identified
(Zhang and Singh, 2014). The next Section presents the method
that applies the conditional distribution function to develop the
forecasting model.

2.2. Copula-based conditional forecasting model

The inverse form of the conditional distribution function was
used to construct a forecasting model (Chen et al., 2009; Liu et al.,
2015). In bivariate case of two  random variables (x1, x2), with a
given conditional distribution function h(u1|u2), the modeller’s aim
is to obtain u2 based on the information of u1. For known proba-
bilities P ∈ (0, 1), u2 can be derived by solving u2 = C−1

2|1(P,  u1) =
h−1(P|u1), where C−1

2|1 is the inverse of the copula C2|1. Variable x2

can be obtained by solving the Pth conditional quantile function as:

Qx2 (P|x1) = F−1
[
C−1

2|1 (P, x1)
]

= F−1
[
h−1 (P|x1)

]
, (7)

where F−1 is the quantile function of u2. For the three variables
case, the Pth conational quantile function Qx3 (P|x1, x2) of x3 can be
obtained by recursive computations following Eq. (7){ [ ] }

Qx3 (P|x1, x2) = F−1 (u3) = F−1 h−1 h−1 (P|h (u2, u1)) |u1 . (8)

Hence, variable x3 is forecasted based on the given information of
x1, x2 (i.e., bivariate data).
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ig. 1. Map  of Agro-ecological Zones (AEZs). Bar chart shows monthly average prec
f  all Zones (red line). (For interpretation of the references to colour in this figure le

. Materials and method

.1. Study area

In this paper, we validate the utility of copula-statistical mod-
ls for forecasting seasonal precipitation in AEZs located on
oastal edge of the Australian continent from the western to
he south/south-eastern end, and to the eastern Australia. Grains
esearch and Development Corporation (GRDC) classified cropping
ones in wheat growing (Agro-ecological) sites based on similar
limatic conditions (GRDC, 2012; Murray and Brennan, 2009).

Fig. 1 plots the study area. AEZs exhibits a wide range of climatic
onditions with four out of the five major climatic classes typically
revalent in Australia, including the tropical (Zone 1), subtropical
Zones 2, 3, 8 and 10), savanna (Zones 4, 5, 9, 11 and 12) and temper-
te (Zones 6 and 7) region (excluding some small Zones). Climate
lassifications in this paper are based on the Köppen-Geiger propo-
ition, following Kriticos et al. (2012) applied to the 5′ resolution

orldClim global climatology (www.worldclim.org; Version 1.4,
elease 3; (Hijmans et al., 2005). The system is downloadable from
liMond climate data products (www.climond.org; Kriticos et al.
2012)). Average annual precipitation varies from 300 to 1000 mm
here the eastern and southern ends receive the highest and the

owest total precipitation, respectively.
Fig. A.1 (Supplementary material) displays a violin plot of

onthly precipitation; as a combination of boxplot with a kernel
ensity plot, rotated and added on each side to show the data dis-
ribution for the climatological period (1900–2013). It is noticeable
hat the probability of the months with zero precipitation is highest

or Zones 2, 4 and 8 and the lowest for Zones 7, 9, and 11. Also, Zones
ocated in the north-western and eastern ends are more skewed
nd kurtosis for precipitation distribution compared to those in
he south. Average precipitation (Fig. 1) shows a unimodal pattern
ion of each AEZ from 1900 to 2013 plotted with the monthly average precipitation
 the reader is referred to the web version of this article.)

in western and southern Zones with more precipitation in win-
ter (June–August) compared to the others. Zones 10–12 (eastern
end) have a bimodal pattern, while Zones 8 and 9 receive almost
identical precipitation. Given the wide climatic conditions, evalua-
tion of a probabilistic model is important in this economical region
(Australia’s wheat belt).

3.2. Data

3.2.1. Precipitation
To fit the most accurate copula-statistical models, gridded

monthly precipitation data from January 1900 to December 2013
with a spatial resolution of 0.050 × 0.050 were acquired from Aus-
tralian Water Availability Project (AWAP) (Raupach et al., 2008;
Raupach et al., 2009). The AWAP dataset was obtained by inter-
polating daily precipitation measurements from over 7000 (the
number reported in the early 1970s) stations across Australia. Three
dimensional smoothing splines were employed to create gridded
climatological averages. Analyses of the daily and monthly anoma-
lies were performed using the Barnes successive correction method
(Jones et al., 2009).

In terms of the data quality, the spatial accuracy of the fields
is low in central-western Australia where meteorological stations
are sparse (Schepen et al., 2012). As the horizontal resolution of the
present data are relatively good (5 km), monthly average precipi-
tation for each Zone was  computed by averaging grid cells within a
zonal boundary. Long-term spring (September–November (SON))
precipitation was subtracted by SON precipitation (i.e., removed

the seasonality) of each year to determine SON anomalies for
the AEZs. Fig. A.2 (Supplementary Material) plots time series of
monthly precipitation for each Zone, smoothed with a 13 month
centred moving average window and the associated mean values.

http://www.worldclim.org;
http://www.worldclim.org;
http://www.worldclim.org;
http://www.climond.org;
http://www.climond.org;
http://www.climond.org;
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Fig. 2. (a) Time series of monthly SOI and NTPI. The SOI series has been overlaid with a 3-month centred moving average filter and ± 5.5 threshold. The NTPI series has been
s n over
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moothed with 13-year Chebyshev low-pass filter. (b) JJA SOI versus JJA NTP with a

.2.2. Climate indices
In the present work, precipitation forecasting was  based on

he notion that the principal synoptic-scale circulation drivers of
nter-annual precipitation variability in Australia was the ENSO
henomenon (Chowdhury and Beecham, 2010; Mekanik and

mteaz, 2013; Schepen et al., 2012). There are a number of indices
sed to characterise ENSO such as SOI and Niño-3 index. This paper
mploys SOI to depict the correlation of ENSO with precipitation
ariability, since it is a broadly available and simple metric, being
losely associated with the process of precipitation occurrences
hrough its relationship with synoptic-scale surface pressures
Risbey et al., 2009). SOI data accorded to the Troup (1965)

ethod with standardised anomaly of sea level pressure difference

etween Tahiti (17.50S–149.60W)  and Darwin (12.40S–130.90E)
ultiplied by a factor of 10, were acquired from the Bureau of
eteorology. It is noteworthy that the impact of SOI on Australian

recipitation was mainly due to its oscillating phases, where in
all correlation coefficient of 0.64.

general, the positive SOI (>5.5; La Niña phase) brings more precip-
itation, while the negative SOI (<−5.5, El Niño phase) is associated
with a drought probability in major parts of Australia (McKeon
et al., 2004). The lagged SOI-precipitation correlation, is reason-
able for seasonal precipitation forecasting as stipulated in other
studies (Kirono et al., 2010; Stone et al., 1996). In particular, such
lagged relationship has been found useful for peak predictability of
precipitation during August–November period in the eastern and
northern Australia (Chiew et al., 1998; McBride and Nicholls, 1983;
Schepen et al., 2012). Hence, this study utilises June-July-August
averaged SOI (JJA SOI) to forecast precipitation in the spring (SON)
season. JJA SOI adopted here is an attempt to incorporate the effects
of different phases (i.e., La Niña and El Niño events) on precipitation

into copula-statistical forecasting models.

As a supplementary metric, we explored a relatively new cli-
mate index: Interdecadal Pacific Oscillation (IPO)-based Tripole
Index (TPI) introduced by Henley et al. (2015), acquired from Earth
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Table  1
Rank-based correlation coefficients and p-value of Kendall’s tau and Spearman’s rho between average JJA SOI, NTPI and average SON precipitation anomaly for Australia’s
Agro-ecological Zones (AEZs).

Agro-ecological Zone # SOI NTPI

Kendall p-value Spearman p-value Kendall p-value Spearman p-value

1 0.34 0.57e-7 0.51 0.74e-8 0.23 0.27e-3 0.35 0.15e-3
2  0.02 0.75 0.03 0.75 −0.07 0.28 −0.10 0.31
3  0.03 0.67 0.04 0.69 −0.07 0.29 −0.09 0.32
4  0.02 0.80 0.03 0.72 −0.04 0.51 −0.07 0.45
5  0.04 0.57 0.06 0.53 −0.03 0.67 −0.03 0.73
6  0.17 0.01 0.25 0.01 0.09 0.17 0.14 0.15
7  0.23 0.36e − 3 0.32 0.56e − 3 0.21 0.12e − 2 0.29 0.17e − 2
8  0.26 0.31e − 4 0.37 0.42e − 4 0.25 0.85e − 4 0.37 0.61e − 4
9  0.27 0.16e − 4 0.39 0.19e − 4 0.27 0.19e − 4 0.40 0.11e − 4
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10  0.21 0.11e − 2 0.30 

11  0.22 0.70e − 3 0.31 

12  0.27 0.18e − 4 0.40 

ystem Research Laboratory, Physical Science Division. TPI is an
ST-based index for IPO according to anomalies in three geographic
egions of the Pacific Ocean considering SST anomalies (SSTA) aver-
ged over the central equatorial Pacific and the SSTA in Northwest
nd Southwest Pacific. TPI is reported as a native temperature
nomaly providing a simple metric for IPO evolution and is consis-
ent with indices used to track ENSO, e.g., Niño-3.4 index (Henley
t al., 2015). Verdon et al. (2004) found that IPO had a strong impact
n precipitation not only in New South Wales and Queensland but
lso further to the south such as Victoria. It should be noted that,
hile SOI has a positive relationship with precipitation, IPO exhibits

n opposite trend where positive IPO is associated with lower pre-
ipitation, and negative IPO is associated with higher precipitation
Power et al., 1999). Previous work also indicated that IPO modu-
ates the magnitude as well as the occurrence frequencies of ENSO
vents (Kiem and Franks, 2004; Power et al., 1999). In fact, the
NSO-hydroclimate relationship is relatively stronger for a nega-
ive IPO phase compared to when it is positive (e.g., Chiew and
eahy, 2003). They all suggest that IPO (TPI in this study), in the
ombination of ENSO, should be considered in developing forecast-
ng models, particularly for long lead-times.

Fig. 2a–b plots SOI and TPI, showing an anti-phasic pattern (top
anel) in the amplitude of the index where a negative SOI is mir-
ored by a positive TPI at the same temporal scale, and vice versa.
orrelations between JJA TPI and SON precipitation (not shown)
ere negative. It is noteworthy, however, that negative correlation

an have an impact on the range of copulas evaluated in the study.
n fact, we can use the rotated Archimedean copulas to model the
egative dependences; however, this would double the number
f copulas to be analysed. An offset was thus applied where the
PI data were multiplied by – 1 to generate negative TPI (denoted

NTPI’ hereafter) to show a positive correlation with precipitation,
o accord to the correlation sign of the SOI data on precipitation.

Fig. 2b shows the fluctuations of NTPI time series, where a sig-
ificant correlation between JJA SOI and JJA NTPI exists. SOI time
eries are overlaid with a seasonal (3-month) running mean and

 ± 5.5 threshold to identify extreme SOI values associated with El
iño and La Niña events as a result of the synoptic-scale changes. In
eneral, La Niña (El Niño) years occur concurrently with the positive
negative) phase of the NTPI (Fig. 2a).

.3. Forecasting model development

As a prior step for constructing a model, the influence of climate

ariability on spring precipitation was examined using two  com-
on rank correlation coefficients, Kendall’s tau and Spearman’s rho

Pham et al., 2016). Both measure the monotonicity relationship
mong variables and are bounded by [−1,1] demonstrating perfect
.11e − 2 0.25 0.92e − 4 0.36 0.71e − 4

.65e − 3 0.26 0.38e − 4 0.39 0.19e − 4

.87e − 5 0.27 0.17e − 4 0.40 0.10e − 4

negative and perfect positive associations, respectively. The sig-
nificance of the acquired values for both measures of dependence
were invested by Genest and Favre (2007). Next, the SOI, NTPI, and
precipitation anomalies were fitted to their probability distribution
functions based on graphical analysis and statistical goodness-of-
fit (GOF) test. Such combinatorial approach was  also used to select
the best fitting copula model, independently to the marginal selec-
tion, for the dataset. Finally, selected copula model was employed
to generate the forecasted precipitation anomalies given the SOI
and NTPI data.

3.3.1. Marginal distribution selection
We applied a combination of statistical GOF test and graphical

analysis to a set of theoretical probability distributions to select the
best fitting margins for the predictors (SOI, NTPI) and predictand
(precipitation). The graphical assessment includes the density, CDF,
quantile–quantile (Q-Q), and probability–probability (P-P) plots.
While the density and CDF plots are the basic classical GOF  plots,
the Q–Q and P–P plots emphasise the lack-of-fit for the distribu-
tion tails and centres, respectively. The chi-squared statistic was
employed comparing the GOF of assumed distributions to the the-
oretical distributions (Khedun et al., 2014; Liu et al., 2015) with a
null hypothesis that the observed data emerged from a specified
distribution. A larger p-values supported the tenability of the null
hypothesis, viz the test statistic (Khedun et al., 2014):

�2 =
k∑
i=1

(Oi − Ei)
2

Ei
, (9)

where Oi and Eiare the observed and expected frequency, respec-
tively, for the bin i, and kis the number of bins based on Sturges’
formula (k = log2N + 1). Ei = N(F(Yu) − F(Yl)) where Fis the CDF for the
distribution, Yu and Yi are the upper and lower limits for class i,
respectively, andNis the sample size. The test statistic is distributed
as a �2 random variable with k − p − 1◦ of freedom, p being the
number of estimated parameters (Fischer et al., 2009).

3.3.2. Copula selection
We  applied a similar procedure in Section 3.3.1 to select the

best fitting copula models for the paired variables (e.g., SOI-
precipitation), i.e.,  using both graphical tools and formal statistical
GOF tests. Firstly, dependence between predictors and predictand
was analysed using rank-based, Kendall (K) and chi plots. Such plots
were explained in detailed by Fisher and Switzer (2001) and Genest
and Favre (2007). The interpretation of K plot is similar to that of

the Q–Q plot, where the pair variables are said to be independent if
their points fall on the diagonal line (y = x) and points above (below)
the diagonal line indicate positive (negative) dependence. Chi plots
are constructed based on the control charts and chi-square statistic
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ig. 3. Scatter plot of monthly average SON precipitation versus average JJA SOI (lef
nomalies during La Niña (El Niño) phases of preceding events are shown in blue 

orner of the right column. (For interpretation of the references to colour in this fig

or independence in a two-way table. It is a scatter graph of the pairs
�i, �i) with �i being the distance measured from the data point to
he center of the dataset. If there is no relationship between the pair
ariables, approximately 95% of the data points should plot within

he two horizontal control lines. Further, chi plots for upper and
ower quadrants also allow to explore the tail dependence.

We  also employed the scatterplot of observed data (from empir-
cal copula Cn) overlapped on the randomly simulated data from
n) and JJA NTPI (right column) indices for Zones 1, 7, 8, and 12. Positive (negative)
 The numbers of blue and red events in the four quadrants are given in the lower
gend, the reader is referred to the web version of this article.)

copula C�n to assess the preciseness of the fitted copulas. In accor-
dance with Genest and Favre (2007), a large sample simulated
from C�n was generated to avoid any arbitrariness due to sampling
variability in displaying the range of the distributions (Chowdhary

et al., 2011). Further, lambda (�) plot was applied to compare the
empirical and theoretical �-function of given bivariate copula data
where �-function was computed for each bivariate copula defined
by Kendall’s distribution (Schepsmeier, 2010). Next, the Cramér-
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on Mises (Sn) and Kolmogorov-Smirnov (Tn) statistics, proposed
y (Genest et al., 2006; Genest and Rivest, 1993), were applied as
he statistical GOF tests. Also, the Kendall’s tau, maximized log-
ikelihood (llmax) and Akaike and Bayesian Information Criteria (AIC
nd BIC, respectively) were determined to choose optimal copulas
Brechmann, 2010).

Copula parameters were estimated using maximum pseudo-
ikelihood method (Chowdhary et al., 2011), requiring observa-
ion pairs, xi = (xi1, ..., xin)T , i = 1,..., n, transformed to pseudo-

bservations, ûi =
(
ûi1, ..., ûin

)
, i = 1, ..., n, i.e.,  in the unit hyper-

ube. Note that ûi,j =
(

1/ (n + 1)
)
rank

(
xi,j

)
, where rank

(
xi,j

)
is

he rank, in ascending order between i = 1, ..., n (Genest and Favre,
007; Khedun et al., 2014). It is important to note that this rank-

ng ensured that the dependence structure between pairwise data
as independent of the marginal distribution (Genest and Favre,

007). For a copula C(u1, ..., un ; �), with density c(u1, ..., un ; �), the
arameter �was:

ˆ
 = argmax

� ∈ �

n∑
i=1

log c
(
ûi1, ..., ûin; �

)
. (10)

In this study, elliptical (i.e., Gaussian and t-copula with different
egrees of freedom) and Archimedean (i.e., Clayton, Gumbel, Frank,

oe, BB1, BB6, BB7, and BB8) copulas were considered. Mixed two-

arameter copula BB1, BB6, BB7, and BB8 were Clayton-Gumbel,

oe-Gumbel, Joe-Clayton, and Joe-Frank, respectively. We  selected
wo-parameter copulas as they captured more than one type of
ependence, e.g., one parameter for the upper tail and lower tail
Change in average SON precipitation anomalies for different phases of JJA SOI and
 such events in the dataset.

dependence each, or one parameter for concordance while the
other captures the lower tail dependence (Joe, 1996). Subsequently,
these were used to investigate trivariate cases (SOI ∪ TPI vs.  SON
precipitation) based C-vine copulas. The more details of copula fam-
ilies, parameters, nonparametric dependence measures, and lower
and upper tail dependence were fully described in the study of
Brechmann and Schepsmeier (2013).

3.3.3. Forecasting via optimal copulas
114-years of data were partitioned in two sets; viz constructing

and validation of the model. The constructing set contained 70%
data where the average JJA values of SOI and NTPI, and the aver-
age SON precipitation anomaly matrices were stratified based on
SOI phases followed by the NTPI phases, and representative sam-
ples were randomly selected from each stratum. This procedure,
followed Khedun et al. (2014), avoiding a bias in the model, ensur-
ing that the dependence structure was  not impaired while enough
datum points were obtained. Extraction of validation data once,
and not repeating the statistical procedure separately for each cli-
mate division, allowed a comparison of the model performance
across different climatic conditions. Copulas were fitted with the
same procedure applied to the same set of copulas. The maximum
pseudo-likelihood method was applied to ensure the estimated
parameters reflected the multivariate dependence structure and

was statistically independent of the selected marginal distribution.
After selection of copulas, the response variable, conditioned upon
the explanatory variable(s), was  obtained for bivariate and trivari-
ate model viz Eqs. (7) and (8), respectively.
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Table  2
Selected marginal distributions with parameters, chi-square statistics, and p-values for average JJA SOI, NTPI and average SON precipitation anomaly.
2.  Mathematical equations are:

Logistic:f (x) = e

(
x−	
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(
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))2 Normal: f (x) = 1



√
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e
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2
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GEV: f (x) = 1

 e
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1+k x−	

) −1
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k�(k)
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Weibull: f (x) = k



(
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)k−1
e

−
(
x−	



)k
.

Climate Index Distribution Parameters Chi-square p-value

SOI Logistic � = 5.24 4.16 0.84
	  = 0.04

NTPI  Normal � = 0.63 3.48 0.90
	  = 0.04

SON  rainfall at Agro-ecological Zone # Distribution Parameters Chi-square p-value

1 GEV k = 0.04 9.14 0.24
�  = 37.03
	 = −22.86

6  Gamma k = 12.71 6.83 0.45
�  = 7.91
	 = −100.55

7  Weibull k = 2.28 9.70 0.21
�  = 108.64
	 = −97.36

8  Gamma k = 1.88 12.29 0.09
�  = 34.29
	 = −64.49

9  GEV k = −0.13 12.62 0.08
�  = 52.83
	 = −25.08

10  Gamma k = 2.46 3.97 0.78
�  = 39.23
	 = −96.50
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. Results and general discussion

The results are presented in two phases. We  firstly present
nfluences of synoptic-scale climate indices that moderate spring
easonal precipitation in the AEZs, followed by precipitation sim-
lation using bivariate (pairwise SOI or TPI vs.  precipitation) and
rivariate (SOI & TPI vs.  precipitation) models. Although published
iterature (e.g., (McKeon et al., 2004)) showed that standard La Niña
nd El Niño phases are classified based on average SOI from June to
ovember, we utilised average SOI from June to August since our
im was to forecast spring precipitation coinciding with the wheat
rowing season in the AEZs. The utilisation of three-month average
OI is an attempt to account for the influence of ENSO phases, as
uch as possible, and reduce the noise of SOI data instead of using

he one-month lagged SOI that commonly has the highest correla-
ion with precipitation (Schepen et al., 2012). Based on this, for El
iño events, there were three non-El Niño years in standard clas-

ification (average SOI based on June–November period) that were
lassified as El Niño years in our classification (average SOI based on
une-August period), and seven El Niño years that became non-El
iño years. In a similar manner, such numbers of years for La Niña
vents were nine and five, respectively.

.1. Effect of climate indices on seasonal precipitation
Table 1 shows Kendall and Spearman rank correlation coeffi-
ients for average JJA SOI and NTPI vs.  average SON precipitation
nomalies. Reflecting the spatial variabilities of climatic conditions
nd heterogeneous influences of synoptic-scale drivers, the corre-
k = 1.94 4.10 0.77
�  = 135.30
	 = −119.96

lation, bounded by [0.2, 0.5], was distinguishable across the AEZs.
The highest correlation of SOI-precipitation anomalies appeared at
Zone 1 in the northwest, while Zone 6 in the southwest showed
the lowest level of such correlation and no statistically signifi-
cant correlation with NTPI. It was  noticed also that there were
not any significant correlations between both indices and precip-
itation anomalies in the western Zones (Zones 2–5), to concur
with previous observations (Kirono et al., 2010; Schepen et al.,
2012). Interestingly, the correlation between NTPI and precipita-
tion anomalies was lower than that in the case of SOI but more
consistent with a correlation coefficient of about 0.4 across most
of the wheat belt (excepting Zones 2–5, 7). This is expected since
the variation of NTPI was  on decadal time scales, and thus it is not
sensitive to the seasonal changes of precipitation like SOI.

To assess precipitation anomalies in different phases of both
indices, the average SON precipitation anomalies were plotted
against the average JJA SOI and NTPI (Fig. 3). Zones 1, 7, 8, and 12
were selected for illustration since they were located in different
regions from the north, east to the south representing four dis-
tinct climates. Fitted regressions (violet line) show the trend among
the presented data. Visually, a significant correlation between pre-
cipitation anomalies and SOI in quadrant I (upper right quadrant)
for all considered Zones was evident, which meant that if the pre-
ceding SOI was positive, there was a more likely chance of above
normal precipitation. Further, only Zones 7 and 8 showed an asso-
ciation among the data in quadrant III (lower left quadrant), i.e.,  if

the preceding SOI occupied a negative value, the precipitation was
below the climatological average. Further, the correlation pattern
was dispersive in the neutral phase of SOI.
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ig. 5. Dependence between average JJA SOI, JJA NTPI and average SON precipitati
hi  plots, respectively.

NTPI exhibited a lower correlation, indicated by large scatter
Fig. 3, right column). More interesting was the fact that there was
 higher frequency of above or below average precipitation when
oth indices were in the same, compared to in opposite the phases
see the hit scores for each event in the four quadrants plotted in
he lower right corners of the left column). An ostensible deduc-
maly for Zone 1 illustrated through (a) and (e) Kendall’s plot, and (b–d) and (f–h)

tion, requiring a verification based on joint analysis of indices and
precipitation thus stands; that the influence of ENSO and NTPI on

precipitation patterns were not independent, in concurrence with
McKeon et al. (2004) that synoptic-scale variation in precipitation
across major parts in Australia’s rangelands are related to both
the ENSO and the IPO (i.e., NTPI represented in our work). There-
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ig. 6. Copula dependence between average JJA SOI and average SON precipitation a
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ore, copula-statistical models that jointly simulate precipitation
ata can be helpful in decision-making in regard to identifying the
ivotal role of climate drivers on the hydrology of the region.

Fig. 4a shows a boxplot of average SON precipitation anomalies
or all phases of JJA SOI and NTPI at each considered Zone. The num-
er of times SOI was in El Niño and La Niña phases was different
Fig. 4b). When the state of SOI and NTPI were considered jointly,
n equal number of events that both indices fell in the same phase
as noted. The frequency of indices in the same phase, for example,

OI ≥ 5.5 and NTPI > 0, was threefold higher than their occurrence
n different phases (i.e., SOI ≥ 5.5; NTPI < 0) (Fig. 4b).

To better understand how different SOI and NTPI phases affect
recipitation, we observe the bar plots showing precipitation
nomalies for the respective individual or joint influences of cli-
ate indices (Fig. 4b). Considering Zone 12, for example; when a

a Niña event was considered separately (ignoring NTPI), a positive
nomaly (i.e., surplus of precipitation) was indicated with a pre-
ipitation higher than average by 38.4 mm.  Similarly, when an El
iño event alone was considered, an average deficit of 27.3 mm was
oted. However, when the SOI and NTPI were positive, a surplus

n average precipitation of about 46.0 mm was evident and when
oth were negative, an average deficit of 32.7 mm was  evident.
ther Zones showed a similar pattern except for Zone 1. When both
limate indices were in negative phase, there was  a reduction in
he precipitation deficit by a small margin in Zone 1. Interestingly,
one 6 exhibited no change in precipitation anomaly when NTPI
as included, as the NTPI-precipitation correlation was not sta-

istically significant (Table 1). When both climate indices occurred
imultaneously, the change in precipitation was  noticeably greater,
mphasising the need for a joint probabilistic forecasting model
Section 4.2).

When both indices were in an opposite phase, the anomaly in
recipitation exhibited a different pattern. In case of El Niño years
nd a positive value of the NTPI; the precipitation data showed

 deficit for Zones 1, 6, 7 and 8, although an opposite result was
ttained for Zones 9, 10, 11 and 12. However, it is imperative to
ote that the La Niña years along with a negative phase of the
TPI facilitated more precipitation to all Zones, exccept for Zone

1. Importantly, Fig. 4b shows that when NTPI was  negative (pos-

tive), this led to a negative (positive) precipitation anomaly but
ith negative NTPI and positive SOI, the precipitation anomaly was
y for Zone 1 indicated through a comparison of empirical and theoretical �-function
to independence (Kendall’s 
 = 0) and comonotonicity (Kendall’s 
 = 1 (� = 0)).

positive. This implies that the SOI (during a La Niña event) had a
stronger effect on precipitation anomaly than the NTPI.

4.2. Copula-statistical bivariate and trivariate model

4.2.1. Marginal selection
In Table 2, we show the fitted marginal distributions with copula

parameters, chi-square statistics and p-values for JJA SOI, NTPI and
SON precipitation anomalies. Based on the chi-square statistic, JJA
SOI and NTPI data can be appropriately modelled by Logistic and
Normal distributions, respectively, confirmed by GOF  plots (Fig. A.3
of Supplementary material).

Fig. A4 (Supplementary material) shows a density plot of the
selected margins for SON precipitation anomaly at each Zone. It
was evident that the marginal distributions varied with climatic
conditions dominating each Zone. It was  also interesting that all
selected marginal distributions for SON precipitation anomalies
were right-skewed with lower medians than the mean, indicat-
ing that precipitation in the spring season was  generally below the
climatological value. It was also evident that the Zones in the east-
ern region had a smaller peak, i.e.,  lower kurtosis, implying more
variability in the spring seasonal precipitation.

4.2.2. Bivariate models
We used K (a & e) and chi (b–d & f–h) plots (Fig. 5) to validate

bivariate copulas based on average JJA SOI or NTPI vs. average SON
precipitation anomalies. Zone 1 was  selected for illustration since
its SON precipitation anomalies had the highest correlation with
JJA SOI (Table 1). Evidently, datum points located above the diag-
onal exhibit a significant positive dependence between pairwise
average JJA SOI- and NTPI-average SON precipitation anomalies.
This is confirmed in chi plots where the datum points in both
cases were above the control boundary around zero (Fig. 5b &
f). However, SOI-precipitation points had a larger deviation than
NTPI-precipitation anomalies data, indicating that the degree of
dependency of the former pairwise data was stronger. Some data
points also fell into the two control bounds, and around zero, mean-
ing that there was  an insignificant dependence between pairwise

variables since the values of �i were close to zero corresponding
to F

(
ui,1, ui,2

)
= F

(
ui,1

)
F
(
ui,2

)
(Eq. (11)). A stronger upper tail

dependence was visible, pointing out that the influence of ENSO in
a La Niña event was more evident than during an El Niño event. A
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Fig. 7. Comparison of observed data with 1000 random samples generated from the Joe (a, c), BB8 (b), and BB1 (d) copulas (solid light grey dots) for Zone 1. Observed positive
(negative) anomalies during La Niña (El Niño) events are shown in blue (red) and other events are shown in solid black dots (similar to Fig. 3). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Copula parameters, Kendall’s tau (
), maximum log-likelihood (llmax), AIC, BIC and Cramer-von Mises (Sn) and Kolmogorov-Smirnov (Tn) goodness-of-fit statistics along with
their  respective p-values, for each copula between average JJA SOI and average SON precipitation anomaly in Zone 1.

Copula Type �̂ or �̂ ı̂ 
 llmax AIC BIC Sn p (Sn) Tn p (Tn)

Elliptical Copula
Gaussian 0.52 0.35 16.62 −31.24 −28.51 0.16 0.08 0.83 0.21
t  0.52 0.35 16.36 −28.70 −23.23 0.17 0.05 0.82 0.22

Archimedean Copula
Clayton 0.48 0.19 5.33 −8.66 −5.93 0.39 0.00 1.51 0.00
Gumbel 1.54 0.35 19.63 −37.26 −34.53 0.08 0.32 0.73 0.32
Frank  3.43 0.34 16.11 −30.21 −27.48 0.15 0.04 0.81 0.16
Joe  1.88 0.33 21.26 −40.53 −37.79 2.09 0.52 2.33 0.57
BB  1 0.00 1.54 0.35 19.62 −35.24 −29.77 0.08 0.23 0.73 0.24

−38
−38
−40

s
i
e
f

3

BB  6 1.89 1.00 0.33 21.26 

BB  7 1.88 0.00 0.33 21.26 

BB  8 2.25 0.96 0.36 22.31 

imilar pattern was attained for NTPI-precipitation cases. Hence, it
s construed that the copulas (i.e., Gumbel, Joe and mixed copulas)
mphasising the upper tail dependence might be more appropriate

or modelling the joint dependences.

The �-function as characteristic of the copula family (Section
.3.2) was adopted as the graphical tool to select bivariate models
.52 −33.05 0.04 0.84 0.66 0.41

.51 −33.04 0.04 0.83 0.66 0.41

.61 −35.14 0.03 0.91 0.55 0.79

(Fig. 6). Zone 1 was  chosen again for this illustration. Accordingly,
Joe and BB8 (a mixed copula of Joe and Frank family) copulas seem
to be appropriate for modelling the dependence between SOI and

precipitation since their theoretical �-functions are the closest to
the empirical curve.
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Table  4
Parameter ( �̂, �̂,  ı), Kendall’s tau (�), and p-values, for copula selected for modelling
the dependence between average JJA SOI and average SON precipitation anomaly
for  selected Agro-ecological Zones.

Agro-ecological Zone # Copula �̂ or �̂ ı̂ 
 p (Sn) p (Tn)

6 Gaussian 0.28 0.18 0.99 0.97
7  t-copula 0.38 0.25 0.96 0.81
8  Gumbel 1.38 0.28 0.63 0.35
9  BB7 1.37 0.43 0.29 0.93 0.73
10 Gumbel 1.25 0.20 0.72 0.64
11 Gumbel 1.28 0.22 0.29 0.36
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4.2.3. Trivariate models

T

P
b

12 Gumbel 1.38 0.27 0.34 0.37

The choice of copulas was cross-examined by the formal GOF
ests (Section 3.3.2). Table 3 shows the statistic and p-values, com-
uted using bootstrapping procedure based on random samples
n = 1000). It was clear that the Clayton and Frank copulas should
e rejected at p = 0.05, which also concurs with maximum log-

ikelihood, AIC and BIC. As confirmed by Fig. 6, Joe and BB8 copulas
re suitable for modelling the dependence structure between aver-
ge JJA SOI and average SON precipitation anomaly in Zone 1. It
s also noted that, according to AIC and BIC (Brechmann, 2010),
he penalty for two-parameter families was stronger than one-
arameter families using BIC compared to the AIC.

Fig. 7 illustrates the scatter plots of observed data with 1000
andom samples generated via Joe, BB1, and BB8 copulas for Zone
. Positive (negative) anomalies, similar to Fig. 3, during El Niño
La Niña) were identified. The spread of different copulas was  dif-
erent although they all enveloped the observations but exhibited
ifferent tail behaviours. Joe copula was somewhat restricted in its
ange of correlations and upper tail dependence, while BB8 copula
as close to the Joe copula but had a larger spread in the upper

ail. Fig. 7c-d compares Joe and BB1 copulas for JJA NTPI – SON
recipitation anomaly pair. By the combination of graphical tool
nd statistical GOF tests, the BB8 and Joe copulas were selected
o model the dependence structure of the pairwise JJA SOI – SON
recipitation anomaly and JJA NTPI – SON precipitation anomaly,
espectively, for Zone 1.

Table 4 shows optimal copulas and associated GOF statistics
or the rest of the AEZs. While most copula families had similar
orms in their central part, they exhibited significant differences
n the tails (or extreme ends). As depicted in Fig. 1, each AEZ has
iverse climatic conditions, so the degree of dependence between

ON precipitation anomalies and JJA SOI is different. It leads to the
ifference of copula families selected to model such a dependence
elationship at each Zone.

able 5

arameters ( �̂, �̂, ı̂), Kendall’s tau, maximum log-likelihood (llmax), AIC, BIC, and indepen
etween average JJA SOI, JJA NTPI and average SON precipitation anomaly for selected Ag

Zone 1 Zone 7 Zone

Tree 1 Joe ta Frank Gaus

�̂, �̂, ı̂ 1.60  0.68 1.93 0.39 

Kendall’s tau 0.25 0.48 0.21 0.26 

llmax 12.61 35.97 5.21 8.51 

AIC  −23.21 −67.94 −8.42 −15.
BIC  −20.48 −62.47 −5.68 −12.
p-value 2.66e − 4 6.53e − 14 1.16e − 3 8.29e
Tree  2 BB8 Clayton Gum

�̂  or �̂ (ı̂) 2.11 (0.89) 3.62 1.20 

Kendall’s tau 0.48 0.15 0.17 

llmax 12.70 3.22 5.01 

AIC  −21.40 −4.45 −8.0
BIC  −15.93 −1.71 −5.2
p  value 3.45e − 5 0.01 9.78e

a Student’s t copula selected for modelling dependence between average JJA SOI and av
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Gaussian and t-copula were suitable for modelling the depen-
dence between JJA SOI and SON precipitation anomalies for Zones 6
and 7, respectively. The results implies that the impact of extreme
ENSO events on the spring precipitation anomalies in these two
AEZs is weak, so no tail dependence exists. It is noted that the differ-
ence between Gaussian and t-copula was  in the tail areas, wherein a
t-copula exhibited symmetric tail dependence but a Gaussian cop-
ula did not. However, if the degree of freedom was large, a t-copula
is mirrored like a Gaussian copula (Khedun et al., 2014). In terms
of the results, the Gumbel copula was most suitable for Zones 8,
10, 11, and 12, located in the east and southeast of the wheat belt,
exhibiting a strong upper tail dependence, presumably linked to
the dominant influence of La Niña events on SON precipitation
anomalies. For Zone 9, BB7 (i.e., mixed Joe-Clayton) was suitable,
emphasising the upper as well as the lower dependence.

The same set of copulas considered above were applied for
modelling the dependence structure between average JJA NTPI
and average SON precipitation anomalies. Consequently, Frank and
Gaussian copulas, exhibiting symmetric dependences, were suit-
able for modelling such a dependence across all Zones, accept for
Zones 1 and 10 which indicated Joe and Gumbel, respectively, as
the optimal copulas. Differences between Gaussian and Frank cop-
ulas are mainly in the central part, where the latter has a stronger
dependence. Gaussian copula, however, is stronger at the tail.

Fig. 8 shows boxplots of observed and simulated spring precipi-
tation anomaly for different JJA SOI ranges for Zones 1, 7, 8, and 12.
Notched boxplots were selected as a graphical tool to illustrate the
significance between observed and simulated data. Considering the
entire range (−30 < SOI < 30), the interquartile and whisker ranges
and medians of the observed and simulated data were approxi-
mate at the same level, except for the upper quartile of Zone 8. It
is noted that the medians of precipitation anomalies in all consid-
ered Zones were lower than the long-term means (i.e., below zero
value), showing a higher probability of precipitation deficit. In gen-
eral, there was  a sound agreement of the distributions between the
simulated values and observations. Further, if a specific range of
JJA SOI was  considered, e.g., SOI ≤ −5.5, there was  a better agree-
ment of values between simulation and observations than in case
of SOI ≥ 5.5 for Zone 7, 8 and 12. Zone 1 had a better result in case
of SOI ≥ 5.5 compared to that in case of SOI ≤ −5.5, which concurs
with a stronger dependence for the upper tail depicted in Fig. 5b.
Seven AEZs with significant correlations in terms of both indices
were selected for building the trivariate models. NTPI was selected
as the first root node, followed by SOI and precipitation anomaly to

dence test with p-values, for C-vine copula selected for modelling the dependence
ro-ecological Zones.

 8 Zone 9 Zone 10 Zone 11 Zone 12

sian Frank Gumbel Frank Frank

2.69 1.31 2.52 2.68
0.48 0.24 0.26 0.28
9.97 8.51 9.03 9.85

02 −17.94 −15.03 −16.05 −17.71
29 −15.20 −12.29 −13.31 −14.97

 − 5 1.87e − 5 8.99e − 5 3.67e − 5 1.64e − 5
bel Gaussian N/A N/A Gumbel

0.28 N/A N/A 1.20
0.18 N/A N/A 0.16
4.41 N/A N/A 4.98

2 −6.83 N/A N/A −7.97
8 −4.09 N/A N/A −5.23

 − 3 1.72e − 2 0.24 0.20 1.67e − 2

erage JJA NTPI in Tree 1 is the same for every considered Zone.
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ig. 8. Boxplots of observed and simulated spring precipitation anomalies for diffe
re  for the entire SOI range.

tructure the C-vine trees. Importantly, C-vine struture was  based

n the stacking of ordered conditional bivariate copulas (Aas et al.,
009), so this procedure allowed the conditional copula evaluation
t SOI for given NTPIs to account for the inter-decadal modula-
OI ranges for Agro-ecological Zones 1, 7, 8, and 12. Boxplots with grey background

tions induced by the NTPI phases on the SOI effects on precipitation

anomalies.

Table 5 shows the parameter estimates, log-likelihood, AIC and
BIC, and p-value of the independent test. Here, the independence
test was a simple bivariate tool based on Kendall’s 
 (Genest and
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ig. 9. Boxplots of observed and simulated spring precipitation anomalies for differ
ight  grey back ground are for entire JJA SOI and JJA NTPI ranges and light yellow (
eferences to colour in this figure legend, the reader is referred to the web  version o

avre, 2007), taking the advantage of the asymptoticity of the test

tatistic T =
√

[9n (n − 1)]/ [2 (2n + 5)]|
̂|, where n = number of

bservations, 
̂ = empirical Kendall’s 
 and p-value of null hypoth-
sis of bivariate independence was p = 2 × [1 − ˚ (T)]. Evidently,
ones 10 and 11 were not considered for trivariate modelling based
n the independence test, at a confidence level of 95%.

Fig. 9 is similar to Fig. 8; however, including the impact of NTPI.

gain, there is no significant difference for the distributions if con-
idering the entire range of SOI independently with NTPI. When
ata were stratified into different cases for negative and positive
TPI values (represented in light yellow and light green, respec-
 SOI and JJA NTPI ranges for Agro-ecological Zones 1, 7, 8 and 12. Boxplots with the
) is for different SOI ranges and negative (positive) NTPI. (For interpretation of the

 article.)

tively), the influences of NTPI in model performance varied for both
NTPI phases. The absolute difference between mean and median
values of observed and simulated SON precipitation anomalies
in both models are summarised (Table 6). In general, a trivariate
model did not appear to improve the mean simulated value, except
for Zones 8 and 12 when a La Niña event occurred concurrently
with the positive phases of NTPI. However, median values simu-
lated from the trivariate model were lower than those from the

bivariate model for all Zones except for Zone 12 (in all cases) and
Zone 1 (in case of negative phases of both climate indices).
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Table  6
Comparison of means and medians for observed and simulated SON precipitation anomaly (mm)  from the bivariate and trivariate models for the selected Agro-ecological
Zones.

SOI and NTPI range Bivariate Model Trivariate Model

SOI ≤ −5.5 SOI ≥ 5.5 SOI ≤ −5.5 and NTPI < 0 SOI ≥ 5.5 and NTPI > 0

Ob. Sim. AD Ob. Sim. AD Ob. Sim. AD Ob. Sim. AD

Zone 1
Mean −24.74 −25.11 0.37 47.92 42.44 5.48 −22.53 −28.03 5.50 51.18 43.73 7.45
Median −27.44 −28.91 1.47 47.77 37.05 10.72 −27.44 −31.33 3.89 48.10 37.90 10.20

Zone  7
Mean −19.41 −19.64 0.23 21.96 20.09 1.87 −20.27 −23.41 3.14 27.09 21.26 5.83
Median −38.97 −27.58 11.39 17.85 20.89 3.04 −38.97 −28.86 10.11 19.51 19.05 0.46

Zone  8
Mean −18.24 −19.70 1.46 22.85 29.34 6.49 −20.84 −25.05 4.21 26.13 30.47 4.34
Median −32.71 −27.55 5.16 6.74 18.72 11.98 −37.03 −31.98 5.05 9.97 20.91 10.94

Zone  12
Mean −27.29 −29.04 1.75 38.39 41.70 3.31 −32.70 −39.07 6.37 45.98 43.02 2.96

 5.77 −37.35 −48.24 10.89 28.86 38.39 9.53
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Fig. 10. Conditional distributions of precipitation anomalies of Zone 1 given differ-
Median −36.82 −38.22 1.40 31.35 37.12

b.: Observation; Sim.: Simulation; AD: Absolute Difference.

.2.4. Spring precipitation forecast
In Figs. 10 and 11, we show a joint probabilistic forecast-

ng model, expressed via conditional copulas for bivariate and
rivariate cases, respectively, at Zone 1. An interpretation of this
s relatively straightforward. Considering the bivariate case, for
xample; given the SOI = −10 (i.e., extreme El Niño event) and
OI = 5 (neutral), the probability for precipitation anomaly of
5 mm below the average could be as much as 0.57 and 0.21, respec-
ively. This indicates that there was a greater chance for a marked
eficit in precipitation in the El Niño year. Similarly, the probability
f the precipitation anomaly lower 50 mm can be only 0.33 given
n SOI value of 20 (i.e., La Niña event) while it could be as much as
.81 given an SOI value of zero (neural phase).

Using bivariate and trivariate copulas, forecasted seasonal pre-
ipitation anomalies conditional upon different ranges of NTPI and
OI data were acquired using Eq. (8). The forecasted data against the
bserved data for the bivariate (i.e., SOI vs.  precipitation anomaly)
nd the trivariate (i.e., SOI, NTPI vs precipitation anomaly) cases, in
ones 1, 7, 8 and 12 are shown as Fig. 12a–b. For bivariate cases,
he Spearman correlation coefficients between observed and fore-
asted anomaly were approximately 0.59, 0.26, 0.48 and 0.49 in
ones 1, 7, 8, and 12, respectively. When NTPI was included, how-
ver, such correlation coefficients dropped to 0.50 in Zone 1 but
ncreased to 0.52, 0.49 and 0.52, respectively, in Zones 7, 8 and 12.
urther, it is more interesting that such correlation in the upper
ight and lower left quadrants (when both SOI and NTPI are in the
ame phases) was significantly improved in the trivariate model.
he correlation coefficients in the upper right (lower left) quad-
ant increased from 0.72 (0.24), 0.27 (0.37), 0.27 and 0.10 (bivariate

odel) to 0.74 (0.52), 0.29 (0.54), 0.32 and 0.64 for Zones 1, 7, 8, and
2, respectively. This indicated that trivariate model was  effectively
etter for forecasting the spring precipitation anomalies based on
he stages of average JJA SOI and TPI. Also, it is clear that the influ-
nce of ENSO on these Zones remained more prevalent than the
PO (TPI) in AEZs considered in this paper. Thus, this verifies the
rimary role of ENSO to be used in seasonal precipitation forecast-

ng (e.g., (Meinke and Hochman, 2000)), although the inclusion of
ther synoptic-scale indices could further enhance the accuracy.

. Further discussion
Probabilistic-based precipitation forecast models such as that
dopted in this study are considered as essential tenets for
nd-users like agriculturalists, irrigators, resource managers and
rought planners to develop management strategies for informed
ent SOI values.

decision-making (Goddard et al., 2001). In this paper, the utility
of vine copulas (Brechmann and Schepsmeier, 2013), that so far
remained unexplored for precipitation forecasting in Australia’s
wheat belt Agro-ecological Zones (AEZs), has been demonstrated.
Following evidence of a lagged relationship between climate
indices and precipitation in Schepen et al. (2012), we  have
demonstrated the capability of vine copulas to jointly model the
relationship between two  dependent major synoptic-scale, lagged
climate drivers (SOI and TPI) on spring precipitation anomaly.
Lagged SOI has been found to be useful for forecasting Australian
seasonal precipitation in some regions, and some seasons, if not all
(Chiew et al., 2003; McBride and Nicholls, 1983; Stone et al., 1996).
A strong evidence of forecasting northern and eastern Australian
precipitation from August–October to November–January and a
weak evidence from March–May to May–July with lagged climate
indices were noted (Schepen et al., 2012). To attain comprehen-
sively evaluated results, both the bivariate (SOI vs.  precipitation;
TPI vs.  precipitation) and trivariate (conjoint SOI and TPI vs.  pre-
cipitation) models were formulated. In accordance with evaluation
metrics, the results captured emphatically the joint dependence

structure between predictors and predictand, highlighting the
importance of jointly forecasting precipitation where correlation
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Fig. 11. Conditional distributions of SON anom

etween a set of climate indices and the precipitation data can be
stablished.

We emphasise that this paper was a first research to adopt
ine copulas to forecast precipitation anomalies in Australia’s Agro-
cological Zones; and in fact, yielded very satisfactory simulations
y utilising the most relevant, yet a limited set of indices (i.e., only
OI and TPI). It is possible, however, that the other climate indices
ot investigated in this paper could be tested as alternative vari-
bles for seasonal forecasting; providing a better response of the
odels. This study, which applied vine copulas no doubt estab-

ished their prime importance to create a pathway for a follow-up
ork with other synoptic-scale indices (e.g., Madden-Julian Oscil-

ation Index, Quasi-biennial Oscillation Index; ENSO Modoki Index,
tc.) (Hudson et al., 2011; Lau and Sheu, 1988; Marshall et al.,
016). Follow-up studies could apply the developed models to
ata from other seasons (e.g., December–February; March–May and
une–August that exhibit different climatic conditions).
The study has focused on Australia’s wheat belt where seasonal

orecasting is considered a very important aspect of sustainable
gricultural management (Moeller et al., 2008; Stephens et al.,
of Zone 1 given different SOI and NTPI values.

1994). In order to achieve this, La Niña and El Niño events were clas-
sified based on a three monthly (June–August) average. It should
be noted that a formal classification of the ESNO events in Australia
follows the six monthly (June–November) SOI average. Future work
could apply the averaged six-month SOI and extract precipitation
data associated with each ENSO event based on the available clas-
sification scheme by the Australian Bureau of Meteorology, and
thus develop a wide range of dependence-based models for other
periods that were not covered in this study.

The results are highly significant as the adopted vine copu-
las offer benefits by modelling high-dimensional dependency of
bivariate or trivariate predictor-predictand data compared to ‘stan-
dard’ copulas. Vine copulas have better computational tractability
(Bedford and Cooke, 2002; Joe, 1996), are flexible in deducing
bivariate family copulas for each edge (Gyasi-Agyei, 2011) and
can identify the dependence structure for simulating tail depen-

dence (Joe et al., 2010) which must be considered in precipitation
vs. climate index models. By decomposing high-dimensional mul-
tivariate density into bivariate copulas, the association between,
say X1–X3, can be statistically modelled by the bivariate copula
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nomaly models.

ensity c12 [F (x1) , F (x2)] of X1 and X2, and another copula den-
ity c23 [F (x2) , F (x3)] of X2 and X3. Opportunities exist in applying
ine bivariate copulas with tree structures, allowing modellers to
xamine in a flexible manner the tail dependence in precipitation
orecasting not only in Australia but elsewhere. It is construed
hat an implementation of vine copulas offers a potential for
ependence-based modelling in other regions, including an explor-

ng of interactions between predictors and predictand from a joint
nfluence perspective. Our study has set a baseline for incorporat-
ng multiple climate indices to model extreme events (e.g., drought
r floods) (Shafaei et al., 2016) and dependence structure between
emperature variables (e.g., heatwaves) (Erhardt, 2013) where tail
ependence is a usual phenomenon.

In summary, decomposition of vine copula was based on ordered
ivariate conditional copulas, in which the roots of each tree need
o be identified. According to Aas et al. (2009), there exist, for exam-
le, d !/2 different C-vines on d nodes, indicating that it is important
o select an appropriate structure for dependence-based modelling
hen vine copula functions are adopted. Furthermore, a computa-

ion of joint CDF of a vine copula is definitely a challenging task,
xcept for some special cases where all paired copulas are nomi-
ally Gaussian.

. Conclusions

Seasonal precipitation in Agro-ecological Zones (AEZs) is influ-
nced by synoptic-scale oceanic atmospheric-oceanic circulation
atterns, where a dominant role of the Southern Oscillation Index

s well-established (Chowdhury and Beecham, 2010; Mekanik and
mteaz, 2013; Schepen et al., 2012). In this paper we employed
OI, coupled with IPO Tripole Index (TPI) which is a temperature
nomaly identifying for IPO evolution used to track ENSO, e.g., Niño-
.4 index (Henley et al., 2015), as predictors to jointly model spring
easonal precipitation in AEZs. To illustrate the usefulness of indices

or conditional-based precipitation forecasting, vine copula mod-
ls were evaluated for all AEZs, except those in the western area,
here statistically significant lagged correlations existed between

une-August SOI and NTPI, and spring (SON) precipitation. Spa-
 for (a) SOI and precipitation anomaly models and (b) SOI, NTPI, and precipitation

tial correlation of climate indices across different AEZs was not
identical, where a higher correlation with SOI was recorded com-
pared to a lower, negative correlation with TPI. However, results
showed that the impact of NTPI can be relatively significant for
precipitation forecasting when a dependence structure between
precipitation and two synoptic-scale drivers in a trivariate copula
model is established.

In general, NTPI is known to modulate the strength of ENSO,
and thus, is expected to lead to a stronger response when the two
synoptic-scale events are coincident, particularly when they are
both positive, rather than being out of phase. In this study, a copula-
based model was  assessed in terms of how well ENSO conditions by
themselves could forecast seasonal precipitation and if an inclusion
of the phasal state of NTPI did improve the results. Copulas were
applied to model bivariate dependence between SOI and precipita-
tion anomaly and trivariate dependence on precipitation anomaly
and joint effects of SOI and NTPI. Stronger upper tail dependence
was clearly visible, suggesting that the influence of ENSO during a
La Niña was more evident on precipitation modulation than during
an El Niño event.

To comprehensively evaluate the models, ten copulas ranging
from elliptical to Archimedean were explored via goodness-of-fit
and visual measures. Four of the copulas were two-parameter cop-
ulas, as they captured more than one type of dependence structure
in predictor-predictand data. Copulas were fitted using the maxi-
mum  pseudo-likelihood method, ensuring an independence of the
choice of the marginal distribution of the optimal copulas. Not sur-
prisingly, different copulas were found to be suitable for different
regions within the AEZs, and the choice of the forecasting model
was found to be strongly driven by the upper tail dependence
associated with the La Niña conditions and positive precipitation
anomalies.

Bivariate and trivariate models showed that when the entire SOI
and NTPI data were considered, both models generated interquar-
tile ranges and statistics similar to observations. However, when

data were stratified in different SOI cases, in the bivariate model; a
better agreement in the negative range was  met compared to the
positive range. It was  evident that inclusion of NTPI in the trivariate
model improved the results in terms of Spearman’s rank coefficient
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or three out of four AEZs (i.e., Zones 7, 8 & 12) whereas the per-
ormance was worse for Zone 1 implying that NTPI is not suitable
or precipitation forecasting in this Zone (i.e., northwest Australia).
owever, simulations with a bivariate model (employing SOI vs.
recipitation) attained good performance in Zone 1. Further, the
rivariate model has been found to be effective for forecasting
he spring precipitation anomalies associated with the stages of
verage JJA SOI and JJA TPI. It is imperative to note that the TPI rep-
esenting long-term climate variability, shifts its phases on at least
n inter-decadal time scale, usually 20–30 years. We  ascertain that
JA SOI can be used in conjunction with TPI as a forewarning index
rior to the start of the spring season, for many of the AEZs, if not
ll.

Inclusion of TPI (as a recent index for IPO) for the first time in a
recipitation forecasting problem was successful in attaining more
ccurate forecasts for three out of the four Zones. Verdon et al.
2004) found that the negative phase of IPO enhances the impact
f La Niña on precipitation and streamflow in eastern New South
ales and Victoria, and in particular, the impact of ENSO alone

s weak in Victoria but it is significantly enhanced in the negative
hase. Other work (e.g., Kiem and Franks (2004)) found that IPO
odulate the frequency of ENSO (in particular the occurrence of

a Niña), noting the fact that the negative IPO phase increases the
agnitude and variability of precipitation and runoff compared to

 positive phase. Consideration of TPI as an evolution of IPO can,
herefore, be included in precipitation forecasting problems in agri-
ultural regions where this index can act to modulate the ENSO
henomenon (e.g., Australia’s wheat belt).
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Supplementary Material 

 

 

Fig. A.1. Violin plot of monthly precipitation (1900-2013) at each AEZ. Thick blue line and 

red dot show the 25th and 75th percentile ranges and median, respectively, and the thin black 

line shows the 5th and 95th percentile ranges. 



 

Fig. A.2. Time series of monthly precipitation for each Zone. The time series have been 

smoothed with a 13 month centered moving average filter. The blue dashed line represents the 

means for the dataset (mm). 



 

 

Fig. A.3. Four Good-of-Fit plots of JJA SOI (a-d) and JJA NTPI (e-h). SOI and NTPI follow 

logistic and normal distribution, respectively. (a) and (e) revealed the density patterns of fitted 

distributions with the histogram of the data. (c) and (g) compare the CDF between the empirical 

distribution and the fitted distribution using the Hazen’s rule for the empirical distribution with 

the probability of n  points defined as  1: 0.5 /n n . (b) and (f) illustrate the quantiles of the 



theoretical distribution (x-axis) versus the empirical quantiles (y-axis) defined as the same to 

the CDF plot. (d) and (h) compare the probability of the fitted distribution (x-axis) against the 

empirical probability (y-axis) with the same rule (Delignette-Muller and Dutang, 2015).  

 

 

Fig. A.4. Selected marginal distributions of SON precipitation anomalies of each Agro-

ecological Zone. Colours in Fig. A.4 match colours in Fig. 4. 
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Chapter 3 

Quantile wheat yield forecasting using synoptic-scale 
climate indices 
____________________________________________________________________ 

Article II: Modeling the joint influence of multiple synoptic-scale, 

climate mode indices on Australian wheat yield using a 

vine copula-based approach 

Summary: 

This study uses twelve large-scale climate drivers to investigate their spatio-temporal 

influence on wheat yield, highlighting the variability in five major wheat-producing 

states across Australia using data for the period 1983–2013. These synoptic-scale 

climate indices are mainly derived from the data on relevant variables in the Pacific 

and Indian Ocean region. D-vine quantile regression models are developed to forecast 

wheat yield at preselected quantile levels. Models based on traditional linear quantile 

regression (LQR) are also established at the same time for the purpose of comparison. 

The out-of-sample accuracy of both statistical forecast models is estimated through 

the five-fold cross-validation approach. Fig. 7 illustrates the graphical abstract of this 

study on compound impact of synoptic-scale climate indices on wheat crop in 

Australia.  

The influences of the Indian Ocean on wheat crops are generally dominant in 

all states except Western Australia, while the Pacific region has much stronger impact 

in Queensland. In particular, the results suggest that the wheat yield can be skilfully 

forecasted 3 – 6 months ahead using large-scale climate information, supporting early 

decision-making. The co-occurrence of extreme events is likely to enhance the impacts 

of climate mode and this can be quantified probabilistically through conditional 

copula-based models. For example, given the highly positive anomaly of DMI = 0.8 

(i.e., extremely positive phase), the probability of wheat yield anomaly in Queensland 

being 40% lower than average is about 62% in the bivariate model. Given the same 

DMI condition, the co-occurrence of extremely positive SOI = −20 increases that 

probability to 68%. Furthermore, the developed D-vine quantile regression models 

generally provide greater accuracy of wheat yield forecast at pre-selected quantile 
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levels compared to the LQR method. This study improves the quantification of the 

influences of large-scale climate drivers on the wheat yield that can allow a 

development of suitable planning processes and crop production strategies designed 

to optimise the yield and agricultural profit.  

 

Source: Nguyen-Huy et al. (2018) 

Figure 7. Graphical display of the study on compound impact of synoptic-scale 

climate indices on wheat crop in Australia. 
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A B S T R A C T

Twelve large-scale climate drivers are employed to investigate their spatio-temporal influence on the variability
of seasonal wheat yield in five major wheat-producing states across Australia using data for the period
1983–2013. Generally, the fluctuations in the Indian Ocean appear to have a dominant effect on the Australian
wheat crop in all states except Western Australia, while the impact of oceanic conditions in the Pacific region is
much stronger in Queensland. The results show a statistically significant negative correlation between the Indian
Ocean Dipole (IOD) and the anomalous wheat yield in the early growing stage of the crop in the eastern and
southeastern wheat belt regions. This correlation suggests that the wheat yield can be skillfully forecast 3–6
months ahead, supporting early decision-making in regard to precision agriculture. In this study, we use vine
copula models to capture climate-yield dependence structures, including the occurrence of extreme events (i.e.,
the tail dependences). The co-occurrence of extreme events is likely to enhance the impacts of climate mode and
this can be quantified probabilistically through conditional copula-based models. Generally, the developed D-
vine quantile regression model provide greater accuracy for the forecasting of wheat yield at given different
confidence levels compared to the traditional linear quantile regression (LQR) method. A five-fold cross-vali-
dation approach is also used to estimate the out-of-sample accuracy of both copula-statistical forecasting models.
These findings provide a comprehensive analysis of the spatio-temporal impacts of different climate mode in-
dices on Australian wheat crops. Improved quantification of the impacts of large-scale climate drivers on the
wheat yield can allow a development of suitable planning processes and crop production strategies designed to
optimize the yield and agricultural profit.

1. Introduction

Wheat is a major cereal crop in Australia, accounting for more than
half of the approximately 23 M ha of Australian grain crops annually
(Potgieter et al., 2013). Wheat is grown mostly in the drylands (i.e.,
rainfed crops); in Australia’s wheat belt region, which experiences one
of the world’s most variable climate conditions (Portmann et al., 2010;
Rimmington and Nicholls, 1993; Turner, 2004). According to
Matsumura et al. (2015), although soil type and fertilizer improvements
are important influencing factors, agricultural production is strongly
influenced by climate conditions, especially precipitation and tem-
perature, even in highly developed countries such as Australia. There-
fore, improvements in the understanding and estimation of spatio-
temporal climate-related variabilities that drive wheat yield are

extremely important for agricultural management and food security.
Climate variables (e.g., precipitation and temperature) are com-

monly used to forecast crop yields worldwide, often at the site level
(Asseng et al., 2011; Bannayan et al., 2003; Palosuo et al., 2011).
Averaged or gridded data derived from a number of weather stations
may be applied to the broader scale levels (Lobell et al., 2007;
Revadekar and Preethi, 2012). However, relying on data from the
weather station networks may create issues in relation to data quality,
continuous collection of such data and the convenience issues related to
regular monitoring of data acquisition systems (Harris et al., 2014;
Schepen et al., 2012). Furthermore, with the current development and
maturation of climate models, large-scale climate modes such as the El
Nino-Southern Oscillation (ENSO) can be used to accurately forecast
climate information at least six months to one year in advance (Cane,
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2005; Jin et al., 2008; Ludescher et al., 2013). In addition, many studies
have examined the relationship between large-scale climate variability,
rainfall and agricultural production at regional/national (Garcia y
Garcia et al., 2010; Royce et al., 2011; Shuai et al., 2013; Nguyen-Huy
et al., 2017), and at continental/global (Anderson et al., 2017; Ceglar
et al., 2017; Gutierrez, 2017; Iizumi et al., 2014) scales. All these facts
suggest that large-scale climate modes may be more appropriate for
analyzing the association with crop yields over large scale study areas
with appropriately identified time lag, and reliable and available da-
tasets.

In Australia, a range of different synoptic-scale climate indices have
been identified as suitable responses to climate variability, depending
on the regions and the seasons (Ashok et al., 2003; Min et al., 2013;
Schepen et al., 2012; Taschetto and England, 2009; Nguyen-Huy et al.,
2017). For example, the ENSO phenomenon continues to have a sig-
nificant impact on precipitation over much of the Australia continent,
especially in the north and east of the continent, with regional differ-
ences in different seasons (Risbey et al., 2009). In particular, La Niña
events may bring substantial precipitation (often in eastern Australia),
while El Niño events are often associated with broad-scale drought
conditions (Yuan and Yamagata, 2015). Therefore, ENSO indices have
been widely applied to explain the interannual variabilities in Aus-
tralian wheat yields (Potgieter et al., 2005, 2002; Yuan and Yamagata,
2015). In general, these results show that La Niña (El Niño) events are
related to increased (decreased) wheat yield. In addition, information
about April–May ENSO indices can potentially act as an early fore-
casting tool for several seasonal crops, including wheat, in the following
growing season (Potgieter et al., 2002).

In conjunction with the above issues, teleconnections or interactions
among different climate modes are likely to modify the impact of in-
dividual drivers on climate conditions, in particular, during extreme
climate events (Li et al., 2016; Lim et al., 2016; Nguyen-Huy et al.,
2017; Weller and Cai, 2013). For example, Min et al. (2013) observed
that there were anomalously drier and hotter conditions occurring
across north-eastern and southern coastal Australia during El Niño and
positive phases of IOD in the cold seasons, whereas wetter and cooler
conditions appeared during La Niña and negative phases of IOD. Fur-
thermore, in recent decades, the occurrence, role, and amplitude of the
impact of climate modes have been found to have shifted. For example,
increased occurrences of positive IOD events have been identified as the
main driver of major 20th century droughts in southeast Australia, not
ENSO conditions as commonly assumed (Cai et al., 2012; Ummenhofer
et al., 2009). Furthermore, the ENSO Modoki phenomenon, which is a
coupled ocean-atmosphere mode of variability in the tropical Pacific,
appears to exhibit different teleconnection patterns to Australia’s cli-
mate compared to the canonical (traditional) ENSO (Ashok et al., 2007;
Ashok and Yamagata, 2009). Hence, it is clear that these factors and
their changes over the growing season could modulate the relationship
between large-scale climate modes, rainfall (Nguyen-Huy et al., 2017)
and therefore, the crop yield. However, only a few studies have in-
vestigated the simultaneous impacts of multiple climate drivers on
Australian crop yield (Jarvis et al., 2018; Yuan and Yamagata, 2015),
although a previous study has develop probabilistic models for rainfall
forecasting in Australia’s agro-ecological zones (Nguyen-Huy et al.,
2017). Considering the paucity of this essential information required for
agricultural management, there is a need for a comprehensive study on
the association between the joint influences of major climate indices
and crop yield.

Several types of models are used to forecast wheat yield, including
empirical models and biophysical simulation models. The empirical
models, that do not utilize physical equations, can be classified into
statistically-based or machine learning methods developed using arti-
ficial intelligence tools (Deo et al., 2017; Deo and Şahin, 2016). In
contrast to biophysical models (Hansen et al., 2004; Mushtaq et al.,
2017), statistical models are able to use historical relationships between
climate indices and crop yield in order to forecast future crop yield.

Since statistical models rely on historical data, they are not able to be
used to simulate scenarios that have not previously occurred and so
cannot be easily adjusted to accommodate changes in climate, crop
genetics or cultivation practices. However, the main advantage of sta-
tistical models are that they do not consider the underlying eco-bio-
physiological processes, and hence do not require the significant crop
parameterization used in biophysical models. In addition, they are
generally easier to construct and more suited for forecasting crop yield,
especially over regional scales where a relationship between yield and
climate modes can be identified (Matsumura et al., 2015). Last but not
least, the copula-statistical models are able to estimate uncertainties
which are often difficult to acquire by process-based models (Lobell
et al., 2006).

Statistical models applied in previous works (i.e., Jarvis et al., 2018;
Yuan and Yamagata, 2015; Nguyen-Huy et al., 2017) employed linear
relationships between a small number of climate indices and the crop
yield, implying the assumption of normal joint distribution among these
variables. While a linear regression model is more simple and provides
a quick overview of the general trends (i.e., the fitted straight line) of
the fitted response variable given the values of the explanatory vari-
ables, this model might be strongly influenced by outliers (e.g., extreme
events) resulting in a spurious correlation between the considered
variables (Hassani, 2016). Hence, assumption of normal distribution of
the response variable might not always be realistic in practice.

To overcome these limitations, this study aims to employ multi-
variate copula functions (Sklar, 1959) to model the joint influence of
climate modes on Australian (winter) wheat yield. This study advanced
our early research performed where copula-statistical models were
developed for rainfall forecasting in Australia’s agro-ecological zones
(Nguyen-Huy et al., 2017). The premise of the copula model, as also
stipulated in earlier study (Nguyen-Huy et al., 2017), is that it has the
ability to analyze the correlation structures between predictor-target
variables, and provides a powerful and flexible tool to model the de-
pendence structures between such complex and jointly correlated
variables (Schepsmeier, 2015). Therefore, copulas have been broadly
applied for statistical modeling and forecasting in several fields such as
energy (Bessa et al., 2012; Zhang et al., 2014), financial risks (Huang
et al., 2009; Lu et al., 2014), rainfall and climate predictions (Nguyen-
Huy et al., 2017) and hydrology (Kao and Govindaraju, 2010; Liu et al.,
2015). However, to the best of the authors’ knowledge, the copula
method has not yet been employed for analyzing relationships between
multiple large-scale climate modes and wheat yield.

The aims of this study are, therefore: (1) to explore with the ad-
vanced statistical methodologies, for the first time, the spatio-temporal
influence of well-known large-scale climate indices on seasonal wheat
yield forecasting in different Australian states; (2) to compare the
ability of the vine copula, which is a specific class of conventional co-
pulas, with the other copula families for seasonal wheat yield fore-
casting; (3) to probabilistically quantify the variation in wheat yield
conditions on climate modes; and (iv) to evaluate the forecasting skill of
copula-based model against the conventional LQR method. The primary
contribution of this research work is to establish and validate the
suitability of a copula-statistical methodology for the forecasting of
wheat yield based on large-scale climate mode influences and the im-
plications in agronomic decision-making.

2. Materials and methods

2.1. Winter wheat yield

In Australia, the planting and the harvesting seasons of winter
wheat crops vary from April to June and from October to January,
respectively, and are mainly dependent on the winter-dominant rainfall
patterns in each agricultural region. The mean wheat yield data of five
major wheat producing states including Queensland (QLD), New South
Wales (NSW), Victoria (VIC), South Australia (SA) and Western
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Australia (WA) from 1981/1982 to 2014/2015 were downloaded from
the Australian Bureau of Statistics. Fig. 1 plots the map of the Australian
wheat belt with included charts showing the annual wheat yield for
each state.

Several methods can be used to estimate the yield trend such as the
single spectrum analysis or the local polynomial regression (Zhang
et al., 2014). However, the trend fitting technique is not the focus of
this study, and thus, for simplicity, the five-year running mean method
is used to remove the trends (black lines shown in Fig. 1) in the data as
in Yuan and Yamagata (2015):

= ′ − ×Y Y Y
Y

100, (1)

where Y is the year-to-year variation of the annual wheat yield, Yʹ the
annual wheat yield, and Y the five-year running average. We used the
ratio (i.e., division) instead of only the subtraction of the overall trend
since we were interested in the anomalous percentage of the wheat
yield (Fig. B2 in Supplementary Materials). By doing so, the changes in
wheat yield caused by the short-term factors primarily, the climatic
conditions, can be highlighted, although the others factors such as the
demand, prices, and technology may also have a certain influence
(Iizumi et al., 2014).

2.2. Climate indices

Twelve climate indices are used to comprehensively investigate
their impacts on annual wheat yield data (Table 1). These climate in-
dices have been identified as having a concurrent or a lagged re-
lationship with monthly and seasonal rainfall patterns in Australia
(Risbey et al., 2009; Schepen et al., 2012; Nguyen-Huy et al., 2017).

Some of them, such as ENSO and IOD, have been used to forecast wheat
yield (Power et al., 1999; Shuai et al., 2013; Yuan and Yamagata,
2015). This published evidence has reinforced the idea of utilizing all
such climate mode indices to investigate their spatio-temporal impact
on wheat yield at different times and locations.

ENSO phenomena are measured and monitored by several different
indicators consisting of the Niño-3.0, Niño-3.4 and Niño-4.0 (i.e., sea
surface temperature indices), Southern Oscillation Index (SOI) (air
pressure index), and the EMI (coupled ocean-atmosphere index). The
Dipole Mode Index (DMI) represents the intensity of IOD across the
tropical Indian Ocean. Furthermore, the Indonesian Index (II), the
Blocking Index (B140), Southern Annular Mode (SAM) and the Tasman
Sea Index are also included in this study to consider their overall sy-
noptic influence, particularly of extratropical and tropical origins.

Detailed information about these indices is provided in Table 1.
In terms of the origin of these data, the monthly sea surface tem-

perature (SST) for the period of January 1983–December 2013 derived
from Optimum Interpolation SST, version 2 (OISST v2) were down-
loaded from the Climate Prediction Center (CPC, NOAA). These post-
satellite era data were based on the incorporation of satellite data, in
situ observations and proxy SSTs derived from sea ice concentrations
(Reynolds et al., 2007; Worley et al., 2005). We have used this data
source to provide an analysis consistent with the work of Yuan and
Yamagata (2015). Furthermore, these data have been widely applied in
studying the interaction between climate mode indices (Izumo et al.,
2010; Luo et al., 2010) or investigating climate-precipitation relation-
ships (Kumar et al., 2013; Omondi et al., 2012).

The SST anomalies (SSTA) in this study were defined by subtracting
each three-month average index from their corresponding 31-year
average to indicate the inter-annual variations whereas the EMI was

Fig. 1. Map of the Australian wheat belt region (green shaded area). Charts show the annual wheat yield (t ha−1) of five major wheat-producing provinces:
Queensland (QLD), New South Wales (NSW), Victoria (VIC), South Australia (SA) and Western Australia (WA) compared to those of the national level in 1981–2015
period overlaid by the 5-year running average (black lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).

T. Nguyen-Huy et al. European Journal of Agronomy 98 (2018) 65–81

67



calculated following the equations in Table 1. The SOI data were
downloaded from the Australian Bureau of Meteorology (BOM) and the
DMI were calculated by subtracting the West Pole Index (WPI) from the
East Pole Index (EPI) to determine the overall polarization effect. The
blocking index data centered at 140 °E (B140) were developed by the
BOM whereas the monthly total 500 hPa zonal wind data at different
latitude X°S (UX) were downloaded from the National Center for

Environmental Prediction (NCEP) in order to calculate the B140 index,
following the equations in Table 1. Fig. 2 shows the locations of the
oceanic regions that were used to calculate the different climate mode
indices in the present study. Hereafter, we use climate index or climate
mode to refer to both the climate index anomalies and other climate
indices (such as SOI, B140).

Table 1
The twelve climate indices used as predictors for wheat yield (Y). Data Sources: Monthly sea surface temperature (SST) in different oceanic regions derived from
Optimum Interpolation SST, version 2 (OISST v2) were downloaded from Climate Prediction Center (CPC, NOAA); SST anomalies (SSTA) are defined by subtracting
each three-month-mean index from their corresponding 31-year mean indicating the inter-annual variations. SOI data were downloaded from Bureau of Meteorology,
Australia (BOM) and the objective variable, Y data were obtained from Australian Bureau of Statistics.

Predictor Variables Notation Description Region Sources

Nino3.0 N3 Average SSTA over 150°–90 °W and 5 °N–5 °S Pacific OISST v2, NOAA
Nino3.4 N34 Average SSTA over 170 °E–120 °W and 5 °N–5 °S Pacific OISST v2, NOAA
Nino4.0 N4 Average SSTA over 160 °E–150 °W and 5 °N–5 °S Pacific OISST v2, NOAA
EMI E C – 0.5 x (E + W)

Where the components are average SSTA over
C: 165 °E–140 °W and 10 °N–10 °S
E: 110°–70°W and 5 °N‒15°S
W: 125°‒145 °E and 20 °N‒10 °S

Pacific OISST v2, NOAA

SOI S Pressure difference between Tahiti and Darwin as defined by
Troup (1965)

Pacific BOM

WPI WP Average SSTA over 50°–70 °E and 10 °N–10 °S Indian OISST v2, NOAA
EPI EP Average SSTA over 90°–110 °E and 0 °N–10 °S Indian OISST v2, NOAA
DMI D WPI ‒ EPI Indian OISST v2, NOAA
II II Average SSTA over 120°–130 °E and 0 °N–10 °S Indian OISST v2, NOAA
B140 B 0.5 × [U(25) + U(30) − U(40) − 2 × U(45) −U(50) + U

(55) + U(60)]
Extratropical NCEP

AAO A Antarctic Oscillation (Southern Annular Mode (SAM)) anomaly Extratropical NCEP
TSI T Average SSTA over 150°–160 °E and 30 °S–40 °S Tropical OISST v2, NOAA
Objective Variable Y Total yield (t ha−1) Five agronomic States & Australian total yield

value
Australian Bureau of Statistics

Fig. 2. Map of the study region and the oceanic representation used to calculate the twelve climate mode indices. Notations and equations for climate indices can be
found in Table 1. (For a color version of this figure, the reader is referred to the web version of this article).
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2.3. Forecasting wheat yield with D-vine quantile regression model

This study aims to forecast the conditional quantile qα of a response
variable, Y (wheat yield) at some arbitrary quantile level α ∈ (0,1) for
given covariates (X1,…,Xd) (i.e., climate mode indices). To achieve this,
following Kraus and Czado (2017) the inverse of the conditional dis-
tribution can be expressed as:

= −q x x F α x x( , ..., ) ( | , ..., ).α d Y X X d1 | , ...,
1

1d1 (2)

Applying the Sklar’s (1959) theorem with the probability integral
transform, =V F Y( )Y and =U F X( )j j j , the right-hand side of the Eq. (2)
can be rewritten as:

=− − −F α x x F C α u u( | , ..., ) [ ( | , ..., )].Y X X d Y V U U d| , ...,
1

1
1

| , ...,
1

1d d1 1 (3)

To preserve the desired advantages of the vine copula model and to
make the estimation of the conditional copula quantile function

−C α u u( | , ..., )V U U d| , ...,
1

1d1 calculable and easy to implement in a real fore-
casting problem, a drawable vine (D-vine) copula is then fitted to the
predictor-target data, in order to construct the D-vine quantile regres-
sion model automatically as proposed by Kraus and Czado (2017). In
Section A (Supplementary Materials), we briefly describe the vine

theory and approach and then illustrate it with an example for con-
structing a three-dimensional D-vine model. Readers can refer to the
work of Kraus and Czado (2017) for more details. The advantage of this
approach is mainly to be able to choose the most influential covariates
that are likely to permit each covariate to be added into the model. This
implementation ultimately improves the explanatory power of the re-
sulting model. This algorithm is also able to solve the common issue in
terms of regression, including collinearity, transformation and the in-
clusion and exclusion of covariates.

To model the influence of multiple climate mode indices on
Australian wheat yield data using a D-vine copula-based approach, this
study has employed a total of ten one and two-parameter copula fa-
milies. This includes their rotated versions to fully assess the various
forms of joint dependence structures, resulting in a total of thirty-two
copula functions used to fit the bivariate models (Brechmann, 2010).
Except for the forecasting section, the entire 31-year data set was used
for the calculation of other remaining sections. All statistical compu-
tations were performed using the VineCopula package (Schepsmeier
et al., 2017) available in R software (R Development Core Team, 2013)
and ArcGIS was used to create the map (ESRI, 2016).

Fig. 3. Kendall’s Tau-A correlation between the climate mode indices and the percentage wheat yield anomaly of the five major wheat-producing states: QLD, NSW,
VIC, SA, and WA. (Horizontal dotted lines indicate significant at 5%). (For a color version of this figure, the reader is referred to the web version of this article).
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3. Results

3.1. Spatio-temporal impacts of climate modes on Australian wheat yield

The wheat yield variation for Australia and five major states is de-
picted in Fig. 1. In general, there is a similar pattern of tendency be-
tween the nation and states except for Queensland. However, the in-
dividual significant reductions of wheat yield for each state are
different in terms of time and amplitude. These findings are in agree-
ment with those from Yuan and Yamagata (2015) (see also in Fig. B2 in
Supplementary Materials). As mentioned in Section 1, these reductions
may be associated with extreme climate conditions and these differ-
ences may reflect the spatio-temporal impacts of climate modes on
wheat crops. For example, according to the Australian Bureau of Me-
teorology (BOM), the 1982/1983 drought was possibly the worst cli-
mate event in Australia during the 20th century. Our results reveal that,
during this period, except for WA, wheat yield was reduced by up to
80% in VIC, followed by 60% in NSW and SA; however, in QLD the
yield fell by only 28%. However, a subsequent severe drought in the
1991/1995 period in QLD resulted in a wheat yield reduction of about
45% (1991/1992) and 50% (1994/1995). These extreme dry years also
caused a 69% decrease in 1994/1995 wheat yield in NSW (even worse
than that in 1981/1982). Yield reductions of about 47% and 34% oc-
curred in VIC and SA, respectively, in the same years. Similar drought
impacts on wheat yield in five Australian states have been found from
two other dry years occurring in 2002/2003 and 2006/2007. It is worth
mentioning that these drought events are influenced by strong El Niño
events and are associated with higher than normal temperatures (Chiew
et al., 1998; Deo et al., 2009). In particular, the dry-year period of
1991/1995 was consistent with the four consecutive El Niño years
classified by the Science Division, Department of Science, Information
Technology and Innovation (DSITI) (www.LongPaddock.qld.gov.au).

The spatio-temporal impacts of climate indices on percentage wheat
yield anomalies are explored further through the popular statistical
tools involving Pearson and rank-based Kendall’s correlation coeffi-
cients. The former approach aims to measure the strength of a linear
association between any two quantitative variables while latter can
provide the association between the two sets of ranks given to the data
from the same set of variables (Abdi, 2007). Since the dependence
measures rely on the rank only, the rank-based approach has the ad-
vantage of capturing the outlying observations compared to the linear

approach. The results shown in Fig. 3 (for rank-based method) and B3
in Supplementary Materials (for linear method) indicate that the im-
pacts of climate modes on wheat yield have different spatio-temporal
signatures. It is found that none of the climate indices has a statistically
significant correlation to WA’s wheat yield from both methods. In
general, the results derived from the linear measure for DMI, Niño-3,
and EMI are again in agreement with the study of Yuan and Yamagata
(2015) although their study period was 1982/2010, and ours was
1983/2013. In the following sections, we describe the climate-yield
relationship in term of non-linear dependence derived from the rank-
based method since it will be used in the copula model development
later.

3.1.1. Impacts from the Indian Ocean
Among the different climate indices in the Indian Ocean region, DMI

has a dominant impact on Australian wheat productivity, as indicated
by the significant negative correlation with the percentage wheat yield
anomalies in all agronomical states. It is worth noting that the likely
longer lead time of the significant correlations are clearly observable in
QLD (Fig. 3a) and NSW (Fig. 3b). The effect of DMI on QLD wheat yield
is found to be the strongest during the March–May (MAM; hereafter we
use this notation style to refer a consecutive three months) period, i.e.,
before and during the sowing season. However, the influence of DMI is
found to be strongest one month (JAS period) prior and during the
harvesting for other agronomical states. None of the other climate in-
dices derived from the Indian Ocean (i.e., EPI, WPI, and II) has a sig-
nificant lagged relationship with QLD’s wheat yield. However, such
indices reveal a stronger influence in regions extending from southeast
to south Australia. In particular, EPI and II are found to have a sig-
nificant positive relationship with SA’s wheat yield in JJA meaning two
months before the harvesting season in October. The variabilities of
WPI mode can be used to explain the wheat yield at least one month
ahead of harvesting across NSW, VIC, and SA. Therefore, using the
information derived from the Indian Ocean could provide useful fore-
casting proficiency early at the growing stage or before the harvesting
season.

3.1.2. Impacts from the Pacific Ocean
Based on the present analysis, the results emphasize the important

role of the ENSO on the wheat yield in the east (QLD). Niño-4.0 and
EMI figures can be used to forecast wheat crops in QLD from MAM

Table 2
Construction of the joint D-vine copula models with the corrected Akaike Information Criterion (AIC) conditional log-likelihood (cllAIC) for QLD,
NSW, VIC and SA. Notations for climate mode indices are stated in Table 1 using entire data from 1983 to 2013 (e.g. Y – B – E represents D-vine
copula with B140 and EMI used to jointly model the yield, Y). The excluded periods (shown in green) did not have a statistically significant
relationship with the wheat yield data (For interpretation of the references to colour in this table, the reader is referred to the web version of this
article).
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illustrated by significant negative correlation coefficients with wheat
yield. This finding is similar to that of DMI, however, the impact of the
Indian Ocean region in terms of amplitude is considerably higher than
that of the Pacific region. SOI values show a stable strong impact on
QLD’s wheat yield from growing to harvesting stage and on NSW’s
wheat yield during the harvesting stage. Therefore, SOI and EMI can be
utilized to forecast the wheat yield in QLD as the alternative predictors
of DMI for the period May–October. Furthermore, it is found that none
of ENSO indicators affect the wheat yield in the remaining states. These
findings are found to be in agreement with those reported in a number
of previous works (Hansen et al., 2004; Potgieter et al., 2002;
Rimmington and Nicholls, 1993). Thus, it is expected that there is little
change in the influence of ENSO (in particular the popular indicator,
SOI) on the wheat crop grown in QLD in recent decades.

3.1.3. Impacts from tropical and extra-tropical regions
Our analysis reveals that the influence of tropical and extratropical

conditions on the wheat yield variability appear to be indistinct for the
different agronomic states. Closely observing these influences, the index
B140 has the strongest positive correlation with wheat yield before the

growing (FMA) and harvesting season (JAS) in QLD, and during the
early months of harvesting (SON) in NSW, VIC, and SA. The correlation
coefficients between the TSI and SAM data and the wheat yield are low
across the different agronomical states. It is important to note that TSI
and SAM were shown to have a significant impact on the VIC and SA
rainfall patterns (Schepen et al., 2012), and our results also found that
there is a significant climate-yield relationship using a linear approach
(see Fig. B3 in Supplementary Materials). However, both TSI and SAM
do not exhibit a notable impact on the wheat yield using the non-linear
method, as indicated by insignificant rank-based correlation coeffi-
cients. This discrepancy could be the result of the differences in climate
data versions, the period considered, and the methods (i.e., linear
versus rank-based correlations) used to measure the dependence
structure. However, this difference could also indicate that the influ-
ence of large-scale climate drivers on Australian wheat yield may vary
from time to time and from region to region.

3.1.4. Impacts from co-occurrences of extreme events
Since the relationship between climate modes and wheat yield is

evident from the analysis presented so far, it is also important to model

Fig. 4. Comparisons between the observed and simulated averaged March–May DMI and QLD percentage wheat yield anomalies for different three-dimensional
copulas: vine (D-vine), meta-Gaussian (meta-N), meta-Student T (meta-T), and hierarchical Archimedean copula (HAC). (For a color version of this figure, the reader
is referred to the web version of this article).
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the extent to which the co-occurrence of extreme climatic events are
likely to influence wheat yield. This analysis is an important aspect of
agricultural risk and farming decisions since climate events have been
demonstrated to bring more or less rainfall in major agricultural regions
(Mekanik and Imteaz, 2014; Nguyen-Huy et al., 2017), and thus, might
exhibit similar impacts on wheat yield. In a former work, Yuan and
Yamagata (2015) identified the phases of a climate index, querying
whether the monthly values of that index cross the 0.7 standard de-
viation of its time series. Here, the three-phase classification system was
identified by comparing the three-monthly average values of a climate
index to the quartile values computed from the 31-year time series of
that index data. A climate index was then assigned to the positive and
negative phase if its three-monthly average value fell into the highest
25% and the lowest 25% of that climate time series, respectively.
Hence, the neutral phase is identified by the remaining range value of

the climate index. Note that this scheme is different from the other
systems, such as the ENSO events being classified based on the six-
monthly mean of the SOI values (e.g., the classification from DSITI
mentioned in Section 1). Hence, one phase of a climate index should be
understood as the phase of those three-month average values, not the
phase of that year.

Fig. B4 (in the Supplementary Materials) shows a plot of the QLD
percentage wheat yield anomalies in relation to three phases of climate
indices. Here, QLD has been selected for illustration purposes, since the
wheat yield in this region showed the significant relationship with
many climate indices with respect to the long lagged time period. One
of the interesting results which can be integrated from this figure is the
changes in the patterns of climate indices in a year. For example, the
TSI data show a consistent positive phase during the January–March
period, a neutral phase during the April–July period and a negative

Fig. 5. Comparisons of the observed and si-
mulated Kendall’s tau between averaged
March-April-May DMI and QLD percentage
wheat yield anomalies from different three-di-
mensional copulas as in Fig. 4. Cases are con-
sidered for the whole data (Full), the upper tail
(Upper) and the lower tail (Lower). (For a color
version of this figure, the reader is referred to
the web version of this article).

Fig. 6. Conditional probabilities of the percentage wheat yield anomaly (Y) of QLD given the different average of DMI (D) values (a) and co-occurrence of such values
of DMI and extreme negative SOI (b) for the March-April-May period. (For a color version of this figure, the reader is referred to the web version of this article).

T. Nguyen-Huy et al. European Journal of Agronomy 98 (2018) 65–81

72



phase during the August–October period. WPI reaches the peak during
February-June before turning into the negative phase in
June–September and becoming neutral after that. EPI shows a similar
pattern to WPI, but acquires the positive and negative phase later and is
in negative phase longer.

Furthermore, it is clear that the co-occurrence of the extreme events
is likely to enhance the profit or the loss in terms of the wheat yield
anomaly; however, this also depends on the time lag and the climate
modes that are being considered, for example, the case of very early
forecasting in AMJ, where DMI and SOI show a significant correlation
with the wheat yield. The extreme losses of wheat yield in 1992 (45%)
and 1995 (50%) were associated with the co-occurrence of the positive
DMI phase and the negative SOI phase. However, when the extreme

events occur alone, the impacts on wheat yield can be diminished. For
example, the positive DMI occurred with neutral SOI phases reducing
29% (1983) and 20% (2010) of wheat yield; meanwhile, the negative
SOI with neutral DMI phases caused a reduction of wheat yield by 10%
(1998) and 17% (2003). These results also indicate the dominant role of
the Indian Ocean in relation to the wheat yield as mentioned above.
However, the impact from the co-occurrence of extreme events may be
different to other considered times and regions due to the spatio-tem-
poral characteristic of the climate impact. These facts suggest that the
inter-modulation of yield data in respect to the co-occurrence of dif-
ferent climate indices should be considered further. This requires a
vigorous model to be able to capture the joint impacts of climate drivers
on Australian wheat yield. Therefore, the next section will introduce a

Fig. 7. Comparison of the median value of QLD observed and the 1-month to 8-month lead percentage wheat yield anomaly simulated from the D-vine copula (blue
line) and linear quantile regression (LQR) (green line). Blue and green box plots show the uncertainties corresponding to both models. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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robust copula modeling framework for wheat yield forecasting.

3.2. Modelling dependence structures of climate and yield

3.2.1. D-vine copula models
The results of the fitted D-vine copula model with the corrected

Akaike Information Criterion (AIC) conditional log-likelihood cllAIC

(Nguyen-Huy et al., 2017) for QLD, NSW, VIC, and SA are illustrated in
Table 2. The model construction follows the steps described in Sup-
plementary Material A. It can be seen that the structures and covariates
included in each copula model have a significant difference for the
different periods and regions of study. These differences are expected to
be induced by the fluctuations and influences from different climate
mode indices to the wheat yield data, and the interaction among the

different indices in various agronomic zones. The first order, i.e., the
covariate added to the model after the wheat yield Y, of the D-vine
model, indicates the key driver with the strongest correlation to the
wheat yield (i.e., this pair results in the minimum cllAIC). These results
reflect the relationship between climate mode indices and wheat yield
investigated in Section 3.1.

The rest of the orders of the D-vine model is identified based on
whether the addition of those climate indices improves the cllAIC or not,
as described in Supplementary Material A. Table C2 (in Supplementary
Materials) gives an example of the construction of a four-dimensional
D-vine model (Y ‒ B ‒ II ‒ N3) in each tree for South Australia (SA)
during SON (see Table 2). The bivariate model of percentage wheat
yield anomaly-B140 (Y ‒ B) resulted in the lowest cllAIC (-15.46)
identified in the first edge of D-vine. The additions of II and Niño-3

Fig. 7. (continued)
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indices improved the total cllAIC (-22.94) by the new pair-copulas in the
edge (1,3;2) and (1,4;2,3), respectively. After that, the addition of the
remaining climate indices into the model does not improve the total
cllAIC, so the algorithm is stopped and the D-vine model is established.

3.2.2. D-vines better model tail dependence structures
It is worth noting that the tail dependences should be modeled in an

efficient way in order to have an accurate assessment of the impact of
extreme conditions on wheat crops. Thus, a comparison between the
fitted D-vine copula models with the meta-Gaussian (meta-N), meta-
Student T (meta-T), and hierarchical Archimedean copula (HAC) has
been made for the simulation skill. Fig. 4 shows the simulation results
from 1000 scenarios of DMI and wheat yield from four copula models,
overlaid with the observed QLD wheat yield (Y) and average DMI (D)
during MAM. We apply the simulation approach for the D-vine as
shown in (Zhang and Singh, 2014). It is visualized that the dependences
structure of Y ‒ D in the upper tail (i.e., the losses of wheat yield cor-
responding to the positive DMI phase) are modeled better in the D-vine
model compared to others.

Another analysis has been performed by comparing the dependence
structure of Y ‒ D indicated by Kendall’s tau correlation measured for
the whole time series, and for positive (upper) and negative (lower)
phase as shown in Fig. 5. Although the overall dependence (full data
range) is clearly obtained in three trivariate copula models, excepting
HAC model, the dependence in the upper/lower (DMI values greater
than its Q3 and smaller than its Q1, respectively) tail is better captured
by D-vine model. This result is in agreement with the study by Zhang
and Singh (2014) who performed the same comparison with the max-
imum daily discharge. Therefore, only D-vine copula is employed for
further analysis in the following sections.

3.2.3. Conditional probability of wheat yield given values of climate indices
Since the joint CDF between variables is modeled through the co-

pula function C, the conditional distributions of one variable given
other variables can be explored. From the selected D-vine models, this
study also quantifies the probabilities of wheat yield (Y) conditioned on
different values (phases) of climate indices such as DMI (D) and SOI (S).
The results from MAM D-vine model (Y ‒ D ‒ S), as in the previous
example for QLD, are represented by bivariate and trivariate models.
For example, one might be interested in evaluating the exceedance
probabilities of Y given that D peak exceeds certain thresholds d as:

≥ ≥ = ≥ ≥
≥

= − − +
−
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F d
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In the trivariate case, the conditional probabilities of Y given D and
S are written as:
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where the joint CDF can be expressed in term of D-vine copula (Zhang
and Singh, 2014):

=F y d C F y F d( , ) [ ( ), ( )],YD Y D (6)

and:
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In Fig. 6, we show the conditional probability of wheat yield given
different phases of DMI and co-occurrence of both DMI and SOI, re-
spectively. The interpretation of these is relatively straightforward.

Table 3
Comparison of the average value of the absolute mean and median differences between the simulated and observed wheat yield (Y, t ha−1)
anomalies with an ensemble of 1000 different scenarios from the two models: vine copula (D-vine) and linear quantile regression (LQR) using
entire data from 1983 to 2013 (For interpretation of the references to colour in this table, the reader is referred to the web version of this article).
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Considering the bivariate case, for example, given the highly positive
anomaly of DMI = 0.8 (i.e., extremely positive phase), the probability
of QLD wheat yield exceeding the losses of 40% is about 62%
(Fig. 6(a)). Given such conditions of DMI anomaly, the co-occurrence of
extremely positive SOI increases that probability to 68% (Fig. 6(b)).
However, the inclusion of SOI into the model does not give many
changes. These results again indicate the dominant role of the Indian
Ocean region in the QLD wheat yield.

3.3. Comparison of forecasting wheat yield to linear quantile regression

In this section, the quantile regression models are employed to
forecast the quantile of the wheat yield variations Yα given its historical
values, and the historical and current values of associated climate in-
dices. Because of the limitation of data length (31 years), we tested the
forecasting model in two strategies. Firstly, we used the entire data to
compute the absolute mean and median differences between the ob-
served and simulated wheat yield anomalies from 1000 scenarios. Then,
the five-fold cross-validation approach was used to evaluate the out-of-
sample performance of forecasting models at given quantile levels
(Refaeilzadeh et al., 2009). In the out-of-sample test, we split the da-
taset at a certain time point into a training data set (25 years), based on
which we fitted the quantile regression model using the Eq. (2), and a
testing data set (6 years) was used to assess the performance of the
method. Therefore, the forecasting was repeated five times with dif-
ferent sets of training and testing data (see Table 4 and Fig. B5 in
Supplementary Materials).

We also compared the D-vine model to the linear quantile regression

(LQR) model where the predicted conditional quantiles are assumed to
be linearly represented by predictors, i.e.,:
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Performances of the copula-based quantile regression model in
forecasting wheat yield anomalies, Yα, is statistically evaluated using
three prediction score metrics including Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Willmott’s Index of Agreement
(d):
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where K denotes the number of forecasting periods repeated (K = 5 in
this study), Yα,i and Yo,i are the forecast yields at the α quantile level and
observed wheat yield anomaly respectively, and N = 6 is the length of
the test set.

For the first strategy, the fitted D-vine and LQR models were applied
for the quantile levels ∈α (0, 1) illustrated for QLD as an example. The

Table 4
D-vine copula models constructed with 5-fold cross-validation. To overcome data length limitations, models designated as K1 to K5 represent the
different periods for training and validation (i.e., Fig. B5 in Supplementary Materials). The approach evaluates out-of-sample performance by
splitting data for different periods into a training set (25 years) fitting the quantile regression model (Eq. (2)) and a testing set (6 years). Notations
for climate mode indices are as per Table 1. The excluded periods (shown in green) did not have a statistically significant relationship with the
wheat yield data (For interpretation of the references to colour in this table, the reader is referred to the web version of this article).
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time considered is from January to September, just before the har-
vesting season. Given the historical observations, the simulation of
wheat yield anomalies is repeated 1000 times for each model to account
for the stochastic effects. The average of mean and median for the 1000
scenarios is then compared to those from observations to achieve the
absolute difference. Visual inspection shows that D-vine models

perform better than LQR in capturing the observed extreme values
(Fig. 7). It is also noted that the simulations consist of only a single
realization and the length of data set is limited (31 years), so several
simulations will show the variability. The computable results sum-
marized in Table 3 show that the forecasting skill of mean and median
values varies from 12% to 22%. The D-vine copula models, in general,

Fig. 8. Scatter plot of forecast versus observed wheat yield anomaly (%) from D-vine (blue circle) and LQR (green plus) and their corresponding fitted line at different
quantile levels (α = 0.10, 0.25, 0.50, 0.75, 0.90) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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estimate a lower difference of absolute mean and median whereas the
LQR method performs better in the case of NSW. The models with two
or three predictors yield a greater accuracy than those with only one
predictor, as expected.

In the second strategy, we investigate the relationship between
wheat yield anomalies and climate indices at different levels of quan-
tiles, i.e., at α = (0.10, 0.25, 0.50, 0.75, 0.90) for all states except WA.
The median forecast (i.e., α = 0.50) provides a general idea about the
wheat yield while the extreme values in the lower tail (α≤ 0.25) or
upper tail (α≥ 0.75) represent the worst-case scenarios. Table 4 illus-
trates the constructions of D-vine models fitted to a training set at five-
fold (K = 5) for four states. It is important to note that there is a var-
iation in the dimension and predictors in the constructed models for
different training sets. However, it is clear that the Indian Ocean (DMI,
EP, and II) shows the significant effect on the wheat yield in all con-
sidered states. ENSO has more impact on the QLD wheat yield. Also,
SAM has some associations with the wheat yield in VIC and SA early in
the year. These results are expected by the spatio-temporal impact of
the climate indices on the wheat yields.

Fig. 8 (in Supplementary Materials) represents a comparison of the
fitted lines at different quantiles and five-fold K for both quantile re-
gression models during MAM for QLD. It is clear that the D-vine model
provides a better fit compared to LQR in most cases. It is confirmed by
the results as shown in Table 5 and Fig. 8. The comparisons are eval-
uated using the Relative Mean Absolute Error (RMAE) and Relative
Root Mean Square Error (RRMSE) where RMAE = MAELQR/MAED−vine

and RRMSE = RMSELQR/RMSED−vine in which MAE and RMSE acquired

from the Eqs. (10) and (11) corresponding to each model. The value
number is greater than one, indicating that the performance of the D-
vine model is better.

The forecasting skill of the D-vine copula model is also evaluated by
applying Willmott’s Index d. The results show a moderate agreement
between simulated and observed wheat yield anomaly. However, the
results are expected given the limitation of data length. In general, D-
vine models show a greater accuracy at all considered quantile levels
compared to LQR method. A closer observation also reveals that the D-
vine approach performs better at extreme events (i.e., quantile levels of
0.10 and 0.90) while the traditional LQR provides higher accuracy in
some cases of the neutral phase (i.e., quantile levels in between 0.25
and 0.75).

4. Discussions

This study has indicated comprehensively the dominant role of the
Indian Ocean compared to the Pacific and tropical regions in the in-
terannual variation of the Australian wheat yield. The conclusions at-
tained in this study in respect to the role of synoptic-scale climate mode
indices on wheat yield is consistent with our earier study (Nguyen-Huy
et al., 2017) where a similar causal role was identified on probabalistic
predictions of rainfall in Australian agro-ecological zone. Firstly, in this
study, we have explored the spatio-temporal influence of individual
climate drivers as well as their co-occurrences with respect to wheat
yield in the five major wheat producing states in Australia. Then, we
have probabilistically quantified the changes in wheat yield

Table 5
Evaluation of the Willmott’s Index of Agreement (d), Relative Mean Absolute Error (RMAE) and the Relative Root-Mean-Square Error (RRMSE)
between D-vine copula and linear quantile regression model at different quantile for the case of simulated wheat yields with an average of the 5-
fold averaged data. The excluded periods (shown in green) did not have a statistically significant relationship with the wheat yield data (For
interpretation of the references to colour in this table, the reader is referred to the web version of this article).
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conditioned on respective climate modes. Next, we have presented the
results for the construction of the D-vine copula models, revealing that
the differences in the model structure appear to be consistent with the
spatio-temporal influences of climate mode indices on the wheat yield.
We have also indicated the advantage of vine copulas in modeling the
tail dependences compared to other copula methods. Finally, we have
demonstrated a potential skill in forecasting the wheat yield vari-
abilities using the vine copula model based on observed climate modes.
The vine copula-based quantile regression model has been indicated to
be better than the conventional LQR.

The results in regard to the impacts from the co-occurrence of ex-
treme events in this study should be interpreted carefully. It is because
the phases of a climate index are classified based on the three-month
average anomalies/values compared to the average values of 31-year
data of that climate index. Therefore, a climate index can have three
different phases in a year. Further, the impacts of climate modes are
analyzed based on the rank-based correlation measure which possibly
yields a different result compared to the linear method used in other
studies. For example, while Niño-3 and Niño-3.4 may have a significant
linear relationship with wheat yield in QLD, NSW, and VIC (Fig. B3 in
Supplementary Materials), those do not hold in the case of a rank-based
approach.

We also highlight that the common linear (quantile) regression
approach still play an important role in either agriculture or other
sectors, although the vine copula approach generally shows a greater
accuracy in this study. It can be observed from the published literature
that the linear regression model has been widely applied in many stu-
dies to investigate the effect of climate conditions on agricultural crops
(Barnwal and Kotani, 2013; Lobell et al., 2006; Lobell and Burke, 2010)
or analyze yield gap (Laborte et al., 2012). In addition, the LQR model
displays a higher accuracy in forecasting, for example mean and median
of wheat yields in NSW (see Table 3), compared to vine copula method.
Therefore, researcher should not eliminate the use of the linear
(quantile) regression without any reasonable evidence.

It is also noted that the D-vine model in the present study is not
extended to more than four dimensions. It is expected since we take the
independence copula into consideration with a confidence level of 95%.
Furthermore, the correlation coefficients between new pairs of variable
reduce in each tree by the conditional rule whereas the correlation
coefficients among variables are moderate (< 0.5). Also, the length of
time series is limited and that may affect the accuracy of the parameter
estimation. Moreover, the structure of D-vine models varies depending
on the correlation among variables reflecting the spatio-temporal im-
pacts of climate modes on Australian wheat crops.

The joint influences of multiple climate modes on wheat yield can
be observed in this study, providing a mechanism to predict rainfall
(Nguyen-Huy et al., 2017) and Australian wheat yield (as indicated in
the present study. However, the mechanism of the interaction among
climate mode indices and yield cannot be explained by the present
statistical method. Furthermore, the wheat yield forecasts is found to be
skillfully made 3–6 months ahead based on indices derived Pacific and
Indian Ocean. However, recent studies have indicated that the variation
in the tropical Atlantic region could trigger the occurrence of ENSO
(Ham et al., 2013; Polo et al., 2014). Hence, it may be suggested that
the SST anomalies in the Atlantic region could also have indirect im-
pacts on the Australian wheat yield via Pacific region (Yuan and
Yamagata, 2015). Moreover, while this study utilized the concurrent
relationship between climate indices, the lagged relationship of the
variation between the Indian and Pacific regions has been identified
recently (Izumo et al., 2010). This reveals that the wheat yield can be
potentially forecast at the longer lagged time by an efficient forecasting
of ENSO phases 14 months ahead using the conditions in the Indian
Ocean.

5. Conclusion

A total of twelve common climate drivers of Australian rainfall and
agricultural production have been employed to investigate their re-
lationship with the winter wheat yield. The influences of considered
climate indices on the wheat yield anomaly exhibit a spatio-temporal
change. The Indian Ocean region plays a key role in all the wheat belt
regions, except for the Western part. The Pacific indices have more
impact on the wheat growing regions in Queensland while the extra-
tropical and tropical climate patterns affect mostly southeast and
southern Australia. The co-occurrence of extreme events might enhance
the fluctuations of the wheat yield. The forecasting information and
respective models have significant applications for enhancing food se-
curity by enabling an earlier planning and design of agricultural stra-
tegies and policies to optimize the wheat yield.

The D-vine copula model is able to capture fully the joint depen-
dence between different climate indices and wheat yield. Compared to
asymmetric Archimedean and meta-elliptical copulas, D-vine performs
better in extreme events (tail dependence) because it is allowed to
consist of flexibly bivariate copula families. Further, the construction of
D-vine based on the proposed approach helps to automatically choose
the influential predictors and ignore the superfluous variables. It results
in the improvement of the strength of forecasting the response.
Compared to the common regression methods such as linear quantile
regression, the D-vine model shows more accuracy of forecasting at
different levels of quantiles.

Although this framework is performed for the wheat crop at the
state scale, it can be potentially applied to other rainfed crops at a
smaller scale. Regarding the site level, research should be undertaken
into consideration of the teleconnection between large-scale climate
modes and regional synoptic patterns (such as cut-off lows and easterly
dips) that actually deliver the precipitation (Verdon-Kidd and Kiem,
2009). Future research might develop the nonparametric copula func-
tion for establishing a global forecasting model of Australian wheat
yield using multiple climate drivers. Other potential research projects
might consider the influences of new climate indices (e.g., derived from
the tropical Atlantic) and the interactions between such new indices
and well-known indices (e.g., SOI) on crop yields. Finally, researchers
may explore further whether the lagged relationship between climate
indices can be used to improve the crop yield forecasts in terms of the
time lag and accuracy.
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Supplementary Materials 

A. Copula models 

A.1 Vine copulas 

A copula is a multivariate function that captures the dependence structure between random variables 

irrespective of their marginal distributions. Furthermore, the copula models are based on rank dependence 

(i.e. Kendall’s tau correlations), so they do not suffer from the distributional assumptions made in linear 

models and as such, they are able to model the non-linear relationships between different variables. In this 

section, the copula theory is introduced briefly but readers can refer to the works of Joe (1997) and Nelsen 

(2006) for more theoretical details.  

Suppose each continuous variable iX  (i.e., the climate mode index and the wheat yield used in this 

study) has its own cumulative distribution function (CDF) and the probability density function (PDF) 

(marginal CDF and PDF) denoted as  i iF x  and  i if x , respectively. The joint CDF of a d-dimensional 

random variable  1,..., dX X  can be written as (cf. Sklar (1959)): 

      1 1 1,..., ,..., ,d d dF x x C F x F x        (A.1) 

and the corresponding joint PDF (cf. Sklar (1996)): 
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1
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 The associated function    : 0,1 0,1
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C   used to joint d marginal distributions is unique, so-called 

copula, and 
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 is the corresponding copula density where  i i iu F x  with  0,1iu   is a 

probability integral transform (PIT). It is clear that, from the equation (A.1), the dependence structure can 

be modelled separately with the marginal distributions indicating the advantage of copula approach 

compared to other methods mentioned above.  

  While there are several common copula-based models denoted as symmetric, asymmetric 

Archimedean and multivariate elliptical copulas, they all present some challenges and constraints. Firstly, 

in regards to the symmetric model, only a few of the bivariate Archimedean copulas can be extended to the 

higher dimensions (i.e., d ≥ 3) and this can limit their practical functionalities. Furthermore, for the 

asymmetric methods, the copula functions in each level must belong to the same family where the estimated 

parameters in higher levels are smaller than those in the lower levels (Zhang and Singh, 2014). For example, 

the joint CDF in equation (A.1) of three variables constructed by the asymmetric Archimedean, known as 

the hierarchical Archimedean copula (HAC), is expressed as: 
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         1 2 3 2 1 1 1 2 2 3 31 2, , , ; , ; ,F x x x C C F x F x F x  
 

      (A.3) 

 where 1C  and 2C  are the same Archimedean copula family with the corresponding parameters 1 2   

(Later, we show in Figure 1(b) to illustrate the construction of the HAC model). However, this assumption, 

which is data-specific, may not be reasonable in reality (Zhang and Singh, 2014). Finally, the tail 

dependences present in some data may not be captured well in the case of multivariate elliptical copulas 

(Genest and Favre, 2007; Zhang and Singh, 2014). For example, the meta-elliptical copulas including the 

meta-Gaussian (meta-N) and the meta-Student t (meta-T) (Fang et al., 2002; Song and Singh, 2010) could 

encounter this issue where the former copula function has no tail dependence, while the latter copula 

function is likely to have the symmetric tail dependence. 

Fortunately, these limitations, however, can be overcome by the use of vine copulas that were first 

introduced by Joe (1996) and further redeveloped extensively by Bedford and Cooke (2002, 2001). The 

vine copula can be expressed in three basic forms: regular (R)-vine, canonical (C)-vine and D-vine copulas. 

In short, the vine approach decomposes the joint PDF represented in the equation (A.1) into the 

(conditional) bivariate copula densities (i.e., the so-called pair-copulas) and its marginal densities are then 

expressed as (Kraus and Czado, 2017):  
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  (A.4) 

In this regards, the selection of each pair-copula is then independent of each other. This expression is called 

the D-vine copula if all marginal distributions are uniform. By such a construction of the joint distribution 

function, the vine copulas are quite flexible in modelling the asymmetric and tail dependences of high-

dimensional random variables, thus addressing the limitations of conventional copula functions (Aas et al., 

2009; Haff et al., 2010; Stoeber et al., 2013).  

A.2 Model construction 

Suppose we have three-dimensional data set  1 2, ,Y X X  where Y  denotes the response (i.e., wheat yield 

in this study) and  1 2,X X  are the two covariates (e.g., climate mode indices). All three variables are 

transferred to the pseudo-copula data  1 2, ,V U U  using their empirical distribution functions (i.e., ‘PIT’ as 

mentioned before). It is important to mention that this nonparametric transformation allows the modeler to 

estimate the yet to be jointly distributed copula parameters irrespectively of the marginal distributions using 

the maximum pseudo-likelihood (Chowdhary et al., 2011; Genest and Favre, 2007). Since we later need 

the inverse of the estimated marginal distributions for the quantile regression model (as shown in the 
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equation (2) and (3)), we also fit the yield data to the parametric distribution. Thus, we apply both graphical 

tools and statistical test (i.e., the Kolmogorov-Smirnov statistic (KS)) to a set of theoretical distribution 

functions to select the parsimonious approximate fitting of the data. If the p-value of the KS test is greater 

than 0.05, we cannot reject the null hypothesis that the data follow that specific distribution. Then, the 

distribution with a lower Akaike Information Criterion (AIC) is selected for that data. The selected 

distributions with the estimated parameters, AIC, and p-value for the wheat yields data of five states are 

represented in the table C1.     

 To illustrate the process, Figure B1 (a) represents the three-dimensional D-vine copula model where 

the dashed box implies whether or not the covariate 2U  should be included into the copula model. As a 

benchmark measure to the three-dimensional D-vine, the present study also employed the asymmetric and 

meta-elliptical copulas in order to compare the different types of copulas used for the simulation of wheat 

yield.  

 The asymmetric Archimedean, referred hereafter the hierarchical Archimedean copula (HAC), is 

constructed in accordance with Figure B1 (b) where the dashed box corresponds to the addition of the 

covariates for the D-vine model in Figure B1 (a).  

 The primary steps employed to select the most parsimonious D-vine copula model is stated as follows:   

1. Thirty-two bivariate copula functions (further explained later) are first fitted to the two pairs  1,V U  

and  2,V U . The most appropriate bivariate copula model selected for each pair is based on the AIC. 

2. To select most influential covariate, i.e. the first covariate after V  in the D-vine model, we compute 

the corrected AIC conditional log-likelihood  AICcll  for the two pair-copulas  1,V U  and  2,V U  in 

accordance with the proposed technique of (Kraus and Czado, 2017):  

   , , , , 2 , , , , 2AICcll l F V U cll l F V U       (A.5) 

  in which 

 
   

1

, , , , ln u ; , ,
i i

V U

n

i

cll l F V U c v l F 


 
  

 
  . (A.6) 

It is imperative to mention that the term  1,..., dl   is the ordering of the d-dimensional D-vine 

copula, in this case, F  being the estimated parametric pair-copula families with the corresponding 

copula parameters   given the pseudo-copula data  ,V U . The conditional copula density V Uc  is 

expressed in term of the product over all pair-copulas of the D-vine model that include V  (Kraus and 

Czado, 2017): 



4 

 

       

     

     

1 111

1 1 1 11 1

1 11 1 11 1

U

,...,; ,...,

2

; ,...,,..., ; ,...,

u ; ; ; , ; ,

,..., ,

,..., ; ,

j jj j

jj jjj jj j

i i i i

VU VUVUV

d i i i

V U UVU U U

j

i i i

VU U UU U U VU U U

c v l F c v u F

c C v u u

C u u u F

 



 

 



   
   

  

  
  

 

 
 
 



1
.







  (A.7) 

Thus, in this example, the conditional copula density V Uc  can be expressed for the bivariate case as 

 
       

1 111
U

u ; ; ; , ; , .
i i i i

VU VUVUV
c v l F c v u F 

   
   

  
  (A.8) 

If the absolute value of AICcll  of the pair  1,V U  is larger than that of  2,V U , then the first order of 

the tree 1 (T1) is denoted as 1U .  

3. Next, we add the remaining variable 2U  to the current D-vine model, i.e., 1V U , and then check 

whether this addition leads to an improvement of the AICcll  value of the resulting model. The 

conditional copula density V Uc  is written as: 

       
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  (A.9) 

It is visible that equation (A.9) contains only the two pair-copulas 
1

VUC and 
2 1

U UC . Then, following 

(Aas et al., 2009), the conditional distribution function can be applied as:  

 
 ,VU

V U V U

C V U
C h

U


 


  (A.10) 

     

4. Finally, if the AICcll  of the current model is improved, then the D-vine copula becomes the three-

dimensional copula model with the structure of 1 2V U U   . On the other hand, if the  AICcll  of the 

current model is not improved, the algorithm execution is stopped and the 1V U  model is finally 

selected. 
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B. List of Figures 

 

Figure B1. Model construction framework of three-dimensional D-vine (a) and asymmetric copulas (b) 

by adding the successively U2 into the final model. The new pair-copulas indicated in the 

dashed box have to be estimated corresponding to the addition of the U2. 
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Figure B2.  Time series of winter wheat yields with their trend (blue dashed lines) (left panel) and the 

corresponding anomalous percentages (detrended data) (right panel) in five major wheat-

producing states, Australia. 
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Figure B3.  Pearson correlation between twelve climate indices and percentage wheat yield anomaly of five major wheat-producing states: QLD, NSW, VIC, SA, 

and WA. Horizontal dotted lines indicate significant at 95%. 
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Figure B4.  QLD percentage wheat yield anomalies in relation to three phases of climate indices classified as: 

negative phase (Q1), neutral phase (Q2), and positive phase (Q3). The positive and negative phase 

are assigned if the three-monthly average value of a climate index fell into the highest 25% and 

the lowest 25% of that climate time series, respectively. The neutral phase is identified by the 

remaining range value of the climate index. Notations for climate indices can be found in Table 1. 
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Figure B5.  Comparison of fitted models between the D-vine copula (solid line) and linear quantile regression 

(LQR) (dotted line) at different quantiles. Grey dashed lines show division of training and testing 

dataset in 5-fold cross-validation. K1 to K5 represent the number of forecasting repeated.  
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C. List of Tables 

Table C1.  Selected marginal distributions of percentage wheat yield anomaly with parameters, Akaike's 

Information Criterion (AIC), and p-values of Kolmogorov-Smirnov test (p-KS) in five states. 

States Distribution Parameters AIC p-KS 

QLD Normal mean = 0.25 sd = 23.55  287.83 0.77 

NSW Normal mean = -0.64 sd = 31.27  306.67 0.38 

VIC Generalised extreme value shape = -0.51 scale = 32.73 location = -8.19 301.97 1.00 

SA Pert min = -85.76 mode = 7.96 max = 48.57 289.40 0.89 

WA Normal mean = -0.34 sd = 16.87  267.13 0.96 
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Table C2.  Summary of the construction of D-vine copula model for Southern Australia (SA) during 

September-October-November with the name of copula family, estimated parameters (𝜃1, 𝜃2), 

Kendall’s tau (τ), upper and lower tail dependence coefficient (Utd and Ltd), conditional log-

likelihood (cll) and AIC-corrected (cllAIC) for each tree. 

Tree Edge Copula 𝜃1 𝜃2 τ Utd Ltd cll cllAIC 

          

1 1,2 J180 2.44 0.00 0.44 n\a 0.67 8.73 -15.46 

 2,3 I 0.00 0.00 0.00 n\a n\a 0.00 0.00 

 3,4 C270 -2.01 0.00 -0.50 0.00 0.00 0.00 0.00 

2 1,3;2 J 1.71 0.00 0.28 0.50 n\a 3.55 -5.10 

 2,4;3 I 0.00 0.00 0.00 n\a n\a 0.00 0.00 

3 1,4;2,3 C 0.53 0.00 0.21 n\a 0.27 2.19 -2.38 

 Total 14.47 -22.94 

ZX : rotated Z copula X degrees 

J: Joe  

C: Clayton 

I: Independence 
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Chapter 4 

Systemic weather risk prediction and potential adaptation 
strategies 
____________________________________________________________________ 

Article III: Copula statistical models for analysing stochastic 

dependencies of systemic drought risks and potential 

adaptation strategies 

Summary: 

In many cases, extreme weather events, such as droughts and floods, tend to cover a 

large area, affecting a large number of farmers. This phenomenon is therefore known 

as a systemic risk. This study develops C-vine copula-based models to measure the 

joint weather-related losses in insurance caused by insufficient precipitation occurring 

concurrently in different locations, or consecutively in different growing stages, in 

Australia. This modelling approach is enriched by a clustering analysis method known 

as the multidimensional Kruskal-Shephard scaling. The technique utilises the 

dissimilarity measure calculated by the empirical pairwise Kendall’s τ of cumulative 

rainfall index (CRI). The daily precipitation data (1889 – 2012) are recorded in sixteen 

meteorological stations across the Australia’s wheat belt spanning over different 

climatic conditions. Fig. 8 is the graphical display of this study on systemic weather 

risk and potential adaptation strategies for wheat crops in Australia.  

On a regional scale, the study finds that drought events occurring in the west 

are more scattered during the October – December period, and for April – June and 

October – December in the eastern, south-eastern and southern regions. On a national 

scale, drought events in the east may spread out to the south-east and south but not to 

the west. The results also reveal that drought events in different seasons may not be 

perfectly correlated. Therefore, we conclude that applying spatial and temporal 

diversification strategies can feasibly reduce the systemic weather risks in Australia. 

In particular, the average risk-reducing effectiveness of the entire insurance area in 

regional, national and temporal scales ranges between 0.62 – 0.94, 0.48 – 0.76, and 

0.25 – 0.33 corresponding to 5% and 25% strike levels. The findings indicate that 

diversifying risk over time potentially achieves a greater effectiveness than over space. 
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The findings of this study may act as an efficient tool for risk reduction mainly for 

farmers, but at the same time, it may also generate useful information for the pricing 

of weather index-based insurance products. 

 

Source: Author 

Figure 8. Graphical display of the study on systemic weather risk and potential 

adaptation strategies for wheat crops in Australia. 
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Abstract 

Development of advanced model approaches for analyzing stochastic dependencies of systemic 

weather risk can help farmers, agricultural policy-makers and financial agents to address 

potential risk adaptation strategies and mitigation of threats to the agricultural industry. This 

study develops copula-based statistical models to provide a better understanding of systemic 

weather risks with agricultural and weather event data from Australia. In particular, we adopt 

a C-vine approach to model the joint insurance losses caused by drought events occurring 

simultaneously across the different spatial locations, and consecutively in different growing 

stages. This modelling approach is enriched by a clustering analysis process through the 

multidimensional Kruskal-Shephard scaling method. Daily rainfall data (1889–2012) recorded 

in sixteen meteorological stations across Australia’s wheat belt spanning different climatic 
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conditions are employed. On a regional scale, droughts occurring in the west are more scattered 

during the October – December period and for April – June and October – December in the 

eastern, south-eastern and southern regions. On a national scale, drought events in the east are 

likely to spread out to the south-east and the south but not to the west. The results also reveal 

that the drought events in different seasons may not be perfectly correlated. Therefore, we 

conclude that the spatial and temporal diversification strategies are likely to feasibly reduce the 

systemic weather risk in Australia. In particular, the average risk-reducing effect of the entire 

insurance area in regional, national and temporal scales range in between 0.62–0.94, 0.48–0.76, 

and 0.25–0.33, corresponding to 5% and 25% strike levels. The findings asertain that 

diversifying the risk over time can potentially achieve a greater effect than over space. The 

outcomes may also act as an efficient tool for agricultural risk reduction, but simultaneously, 

it may also generate immensely useful information for suitable pricing of weather index-based 

insurance products.    

Keywords: joint insurance losses; clustering; C-vine copulas; index-based insurance; 

weather systemic risk; diversification. 

1. Introduction 

Climate variability is a key risk affecting agricultural producers globally and, as a consequence, 

it can also affect their net revenues. Extreme weather conditions can lead to a partial or a 

complete loss of crops (Barriopedro et al. 2011; Coumou and Rahmstorf 2012). For example, 

climate-related disasters such as droughts, floods and tropical storms account for 

approximately 25% of all damage and losses in the agricultural sector in developing countries 

(FAO 2015). Furthermore, Lesk et al. (2016) have explained that a combination of drought and 

extreme heat events decreased national cereal production by 9 – 10% worldwide. In addition, 

this study also emphasizes that recent droughts cause about 7% greater production damage and 
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developed countries suffer 8 – 11% more damage than in developing countries. The research 

indicates that extreme weather disasters can be seen as sources of risk in the agricultural sectors 

across the globe even in developed countries with advanced technology and high agricultural 

yield.  

It is clear that agriculture is one of the most weather sensitive sectors, requiring a financial 

protection in case of weather variabilities (Odening and Shen 2014). However, the existence 

of systemic weather risk has been determined as the leading reason for the failure of private 

insurance markets for agricultural crops (Duncan and Myers 2000; Miranda and Glauber 1997). 

Thus, financial-related problems cannot be easily solved unless efficient and affordable 

instruments for transferring systemic weather risks are available. 

Published literature has noted that traditional multi-peril crop insurance has failed to provide 

affordable and comprehensive crop insurance in private insurance markets (Glauber et al. 2002; 

Goodwin 2001; Vedenov and Barnett 2004). The main cause of this failure is that weather risks 

often violate classical requirements for insurability, namely individual risks are independent or 

covariance risk is small (Okhrin et al., 2013). However, although this independence assumption 

may hold for some types of weather perils such as hail damage, it does not hold for other types 

(at least for the regional level). For example, a widespread drought is a slowly developing 

weather peril that is spatially correlated and causes systemic risks (Odening and Shen 2014; 

Xu et al. 2010). It means that many farmers may be affected at the same time, leading to a large 

number of concurrent insurance claims. For an insurance company, it is crucial to allocate 

separately sufficient capital (buffer fund) and thus add to the cost of insurance (premium 

loading) to avoid bankruptcy during high widespread systemic losses. Therefore, a question 

arises of how to model the joint insurance losses occur during a widespread weather event.  

As mentioned above, high systemic weather risk and intermediation problems are often major 

impediments to viable crop insurance and may lead to a breakdown of an unsubsidized private 
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insurance market (Skees and Barnett 1999; Vedenov and Barnett 2004). However, there are 

several possible tools that allow for the administration of  systemic risks such as reinsurance 

and weather derivatives (Musshoff et al. 2011; Skees et al. 2007). Insurers may spatially 

diversify the systemic weather risk through increasing its trading area (Xu et al. 2010). 

According to Odening and Shen (2014), the level of covariate risk depends on the size of the 

risk pool and thus it seems natural to reduce the systemic weather risk by increasing the regional 

dissemination of insurance products. For example, drought occurring within a small region 

may be highly correlated while these dependencies possibly disappear at a broader scale. 

Therefore, the question arises of how to quantify the spatio-temporal changes of the 

dependence structure among weather events.  

The probabilistic quantification of large payouts due to the joint occurrence of unfavorable 

weather events at different locations is a particularly interesting topic in the context of weather 

insurance (Xu et al. 2010). The common approaches are based on simple correlation 

coefficients between weather indices measured at different weather stations. Subsequently, the 

correlation of weather variables can be easily described as a function of the distance among 

weather locations using a decorrelation process. This technique has been applied to measure 

the spatial dependence of weather events and evaluate the efficiency of risk pooling for 

cropping systems in the USA (Goodwin 2001; Holly Wang and Zhang 2003; Woodard and 

Garcia 2008).  

While the use of linear correlation in risk context is computationally appealing, there are 

significant drawbacks (McNeil et al. 2005). Linear approaches are not able to capture nonlinear 

dependency between weather variables, and therefore, often do not contain information on the 

dependence structure of weather risks. As a result, different behavior can be observed from 

joint distributions, particularly in the upper and lower regions, with the same correlation 

coefficient. Therefore, the likelihood of extreme insurance losses can be either underestimated 
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or overestimated leading to inaccuracies in the pricing of insurance policies. Another 

alternative is the use of the multivariate normal distribution, where the joint distribution is 

uniquely defined using the marginal distributions of variables and their correlation matrix. 

However, weather indices and/or crop yield data are not always normally distributed (Nguyen-

Huy et al. 2017; Nguyen-Huy et al. 2018a; Odening et al. 2007). A model that is able to handle 

the pitfalls of linear correlation and the estimation of multivariate distributions is required for 

better quantification of the relationship between weather events at different locations.            

Multivariate copula-based models have recent become powerful instruments for analyzing the 

dependences structure between random variables. A copula is a function linking all individual 

univariate marginal distributions of variables into a full multivariate distribution (Sklar 1959). 

In this approach, the marginal distributions of the risk variables are determined independently 

with the copula estimation. Clearly, the copula approach allows for greater flexibility in 

modeling the dependence structures of weather risks compared to the simple linear correlation-

based model (Nguyen-Huy et al. 2017; Nguyen-Huy et al. 2018a; Serinaldi 2009). Therefore, 

it is a more robust methodological framework for modeling spatial relationships of weather 

events, particularly the tail dependencies, that are important for quantifying risks during natural 

disasters (Embrechts et al. 2002; McNeil et al. 2005; Xu et al. 2017).  

Although the copula theorem was introduced many years ago (Sklar 1959), it has been 

rediscovered recently with extensive applications in a number of fields. In finance and 

insurance, it is a standard and popular tool for multi asset pricing (Tankov 2011; Van Den 

Goorbergh et al. 2005), credit portfolio modeling (Frey and McNeil 2003; Frey et al. 2001) and 

risk management (Carreau and Bouvier 2016; Sak et al. 2017; Zhang et al. 2013). Copula-based 

models have also been successfully applied in the area of agriculture, climate prediction and 

other types of meteorological research (AghaKouchak et al. 2014; Reddy and Singh 2014; 

Schoelzel and Friederichs 2008; Song and Singh 2010; Zhang et al.).  
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However, applications of the copula technique in agricultural economics are very limited in the 

published literature. Nguyen-Huy et al. (2018a) investigated the dependence of multiple 

climate mode indices and Australian wheat yield at different quantile levels that potentially 

benefits to farmers and risk-management processes. In regards to revenue insurance, Zhu et al. 

(2008) inspected the dependence structure of prices and yields whereas Vedenov (2008) 

studied the association between individual farm yields and area yields. In the context of 

systemic weather risk, Xu et al. (2010) first applied the knowledge of copulas to estimate spatial 

dependence between weather events in Germany. In that study, only thirty-four observations 

were available for the estimation of a four-dimensional copula-based model that may result in 

poor statistical reliability.  

Okhrin et al. (2013) extended that study by using a greater length of time series data derived 

from daily weather models to model systemic weather risk in China.  These works, however, 

use either multivariate symmetric (Xu et al. 2010) or asymmetric Archimedean (Okhrin et al. 

2013) copulas that have some restrictions in practice. The multivariate symmetric Archimedean 

copulas use a single parameter for all variable pairs, implying that they have the same 

dependence structure. The asymmetric Archimedean copulas are able to overcome the 

restriction of symmetric methods allowing modeling the tail dependencies. However, while 

asymmetric Archimedean copulas assume that all variable pairs can be modeled by the same 

copula function, these assumptions may be unrealistic in practice (Musafer and Thompson 

2017; Nguyen-Huy et al. 2017; Nguyen-Huy et al. 2018a).  

Motivated by the reasons mentioned above, this study utilizes vine copulas to analyze the 

spatial and temporal dependence structures of weather events across different zones in 

Australia and the associated joint losses of a hypothetical crop insurance written on these 

weather perils. Subsequently, the risk-reducing efficiency of spatial and temporal 

diversification strategies is assessed by comparing the buffer load (BL) of a joint insurance of 
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n stations and the average BL of all those single stations. The diversification strategy and its 

effect are implemented and evaluated at three levels: regional, national  and temporal. In 

particular, for the regional scale, the trading area is extended by adding each weather station 

within that region to each corresponding aggregation level. For the national scale, one weather 

station is randomly selected from each region to join in the risk pooling strategy. Finally, 

temporal diversification is performed in each station where weather events occurring at  

different growing stages are aggregated together.      

The importance and contribution of the present study are emphasized in the following ways. 

Firstly, Australia is an agricultural nation suffering one of the world’s most variable climate 

conditions (Nguyen-Huy et al. 2018a). However, to the best of our knowledge, the statistical 

copula-based models have not been applied for the quantification of weather systemic risk in 

the agricultural sector in Australia. Secondly, the vine copulas overpower other copula methods 

by allowing the modeling dependence structure of variable pairs with different copula functions 

and taking asymmetric tail dependencies into account. Thirdly, the stochastic dependence of 

weather events is analyzed either spatially or temporally. Furthermore, the present study uses 

historical rainfall data recorded at sixteen weather stations covering the period 1889 – 2012. 

These weather stations span different climatic conditions across Australia’s wheat belt. These 

long time series data are selected in order to improve the estimation of copula models.. 

Therefore, this comprehensive study on the stochastic dependence of systemic weather risk 

will provide useful information and a robust tool to better appreciate and quantify climatic risks 

and joint losses in the agricultural sector in Australia.  

Based on the primary aims and objectives, the remaining parts of the present paper are 

structured as follows. Section 2 concisely presents some basic properties of the copula theorem 

and its special form, the vine copulas. Section 3 describes materials and the application of 

copulas for simulating the weather-related insurance losses. The results and discussion are 
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presented in sections 4 and 5, respectively. The study ends with some conclusions on the 

effectiveness of the copula-based measurement of stochastically dependent risks and risk-

reducing strategies.         

2. Copula-based statistical model 

2.1. Copula functions 

Suppose an n-dimensional random vector  1,..., nX X X  with a joint density function 

 1,..., nf x x . Based on Rosenblatt’s transform (Rosenblatt 1952), the density function can be 

factorized as (Aas et al. 2009): 

 
     

   

1 1

2 1 1 2

,..., .

. , ... ,..., .

n n n n n

n n n n

f x x f x f x x

f x x x f x x x



 


  (1) 

Clearly, every joint distribution function comprises a description of the individual margin of 

each variable and a description of their dependency structure. Copulas provide an efficient way 

to separate the  description of their dependency structure.      

Sklar’s theorem (Sklar 1959) states that if F  is a multivariate distribution function with 

margins    1 1 ,..., n nF x F x , then there exists a copula C  such that: 

        1 1 1 1,..., ,..., ,..., ,n n n nF x x C F x F x C u u      (2) 

where  i i iF x u  for 1,...,i n  with  0,1iU U  is the univariate probability integral 

transformation (PIT). If all margins are continuous, then C  is uniquely defined on 

1 ... nRanF RanF  .  Conversely, the copula from Eq. (1) has the expression: 

      1 1

1 1 1,..., ,..., ,n n nC u u F F u F x       (3) 
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where  1

i iF u
 denotes the inverse distribution function of the margin. Clearly, the copula 

 1,..., nC u u  is a multivariate distribution function with all margins being uniformly distributed 

on unit square. Also, if the corresponding copula density is defined as: 

  
 1

1

1

,...,
,..., ,

...

n

n

n

n

C u u
c u u

u u




 
  (4) 

and F  strictly increases, then the multivariate density function is expressed by: 

 

         

   

1 1... 1 1 1 1

1

1

,..., ,..., . ...

,..., ,

n n n n n n

n

i i n

i

f x x c F x F x f x f x

f x c u u


   

 
  
 


  (5) 

where  i if x  is the marginal density. Based on the properties and construction methods, copula 

functions can be generally categorized into different groups such as symmetric elliptical, 

symmetric and asymmetric Archimedean, vine, empirical and entropy copulas. Taking the 

advantages of vine copulas mentioned in section 1 into consideration, and its recent 

applications in rainfall and agricultural production forecasting (Nguyen-Huy et al. 2017; 

Nguyen-Huy et al. 2018a; Pham et al. 2016), this study makes an application of the canonical 

vine (i.e., C-vine) approach (Aas et al. 2009; Kurowicka 2005), a special class of vine copulas 

(Bedford and Cooke 2001; Bedford and Cooke 2002), to model the stochastically spatial 

dependence of weather events for the specific case of Australia.  

2.2. C-vine copulas 

The C-vine is a graphical model that decomposes the copula density in Eq. (5) in a specific 

nested set of trees and nodes. Each tree jT , 1,...,j n  has 1n j   nodes linked together by 

n j  edges where each edge is associated with a pair-copula density. The n-dimensional 

copula density expressed in a C-vine form may be generally written as: 
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      
1

1 1 1 1 1, 1,..., 1 1,..., 1 1,..., 1

1 1

,..., ,..., , ,..., .
n jn

n j j j i jj j i j j j j i j

j i

c u u c C u u u C u u u


      

 

 
    (6) 

Here, we illustrate the C-vine model for five random variables as an example (Fig. 1). As seen 

in Fig. 1, the pairwise dependences between the five variables 1 2 3 4, , ,U U U U  and 
5U  are 

captured by the four bivariate copulas (pair-copulas) 12 13 14, ,C C C  and 15C . These pair-copulas 

can be conditioned on the root variable 1U  using partial differentiation to obtain the 

corresponding conditional copula functions 
21 31 41

, ,C C C  and 
51

C . Then, three new bivariate 

copulas are fitted to these four conditioned pseudo data resulting in the three pair-copulas 

231 241
,C C  and 

251
C . This process is implemented sequentially to obtain 

45123
C .   

<Figure 1> 

The general expression of the five-dimensional density distribution in the C-vine structure is: 

 

           

       

       

     

1 2 3 4 5 1 1 2 2 3 3 4 4 5 5

12 12 1 2 13 13 1 3 14 14 1 4 15 15 1 5

2 1 3 1 2 1 4 1231 21 31 241 21 41

2 1 5 1 3 1 2 4251 21 51 3412 312 412

, , , , . . . .

. , . , . , . ,

. , . ,

. , . , ,

f x x x x x f x f x f x f x f x

c C u u c C u u c C u u c C u u

c C u u C u u c C u u C u u

c C u u C u u c C u u u C u



              

   
   

 
   

   

   

1 2

3 1 2 5 1 23512 312 512

4 1 2 3 5 1 2 345123 4123 5123

,

. , , ,

. , , , , , ,

u u

c C u u u C u u u

c C u u u u C u u u u

 
 

 
 

 
 

  (7) 

where the conditional copula function can be derived sequentially such as: 

  
 12 1 2

2 121

1

,
,

C u u
C u u

u





  (8) 

  
   

 
2 1 3 1231 21 31

3 1 2312

2 121

,
, ,

C C u u C u u
C u u u

C u u

 
 


  (9) 
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  
   

 
3 1 2 4 1 23412 312 412

4 1 2 34123

3 1 2312

, , ,
, , .

,

C C u u u C u u u
C u u u u

C u u u

 
 


  (10) 

The construction of the C-vine model is beneficial to the purpose of the present study where 

an arbitrary weather station will be selected for investigating the spread of extreme events. In 

particular, the selected station is located at the root of the C-vine model similar to variable one 

in Fig. 1. Other weather stations are then conditioned on the variable 1 given some specific 

quantiles.  

3. Materials and Method 

This section represent how the data are collected, computed indices and used in corresponding 

steps of the tests and copula-based approach in different locations and times. A summary 

description of the main steps is illustrated in Fig. 2.  

<Figure 2> 

3.1. Insurance losses 

In the context of weather-related insurance, particular attention is paid to quantifying the 

probability of significant large claims for indemnities made when unfavorable weather events 

occur at the same time at different places. Therefore, for an insurance company, it is important 

to estimate sufficient the buffer fund (BF) as reserve to handle indemnity payments and avoid 

bankruptcy during widespread systemic losses. BF is defined as the Value-at-Risk (VaR) of 

the net losses of the insurer, i.e., the total indemnity payments minus the insurance premium 

(Okhrin et al. 2013; Xu et al. 2010):   

   
1

1 ,
n

i i i

i

BF P w L X BF 


 
     

 
   (11) 
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where  iL X  is the weather-related indemnity payment for trading area or stage i . Here, 
i  

is the corresponding (fair) insurance premium defined as  iE L X   . iw  is the weight of the 

thi  insurance contract and 1   is the ruin probability. Dividing the BF by the number of 

contracts m  yields the buffer load /BL BF m .  

The risk-reducing efficiency achieved by spatial or temporal diversification is assessed by 

dividing the BL for a joint insurance of n regions or stages to the average BL for a single region 

or stage (Okhrin et al. 2013): 

 
*

1

1

,n

n

i

i

BL
DE

BL n




 
 
 


  (12) 

where DE and *

nBL  denote the diversification efficiency over the whole aggregation scenario, 

respectively, and iBL  is the buffer load of location or stage i . 

3.2. Weather indices 

In this study, the cumulative rainfall index (CRI), which represents drought risk (Martin et al. 

2001; Xu et al. 2010), is employed as a hypothetical index-based insurance policy in Australia. 

Sixteen weather stations across the Australia’s grain belt are selected for the analysis of 

dependencies of weather events (Fig. 3).  

<Figure 3> 

Cumulative rainfall index measures the rainfall total in a particular period as (Xu et al. 2010):  

 , , ,

J

A

T

i t j t i

j T

CRI P


  , (13) 

where , ,j t iP  is the daily precipitation in millimeter (mm) at day j  in year t  and station i , 

1,...,i n . AT  and JT  denote the beginning and the end of the three main stages of the wheat 



13 

 

cropping season (the main cereal in Australia), respectively, which are April 1 – June 30 

(sowing stage), July 1 – September 30 (vegetation stage), and October 1 – 31 December 

(harvest stage). The mean and standard deviation of the CRI at sixteen weather stations in the 

three cropping stages are represented in Table 1. For better analysis of spatial and temporal 

dependencies between weather events, we also plot the median and quantiles of CRI in these 

stations as in Fig. 4 

<Table 1> 

<Figure 4> 

Indemnities are paid if CRI falls below a predefined trigger level CRI

iK : 

  
, ,max 0, ,

i t

CRI

CRI i i tL K CRI V    (14) 

where V  is the tick size converting physical units into monetary terms. As the present study 

does not attempt an optimal contract design in terms of hedging efficiency, we simply set 1V   

AUD. Another assumption is that no policy limits apply (Xu et al. 2010). Since we want to 

investigate the buffer load in different drought conditions, the 5%- (extreme drought) and the 

25%-quantiles (moderate drought) of the CRI distribution are assumed for the two strike levels 

(the strike level is the point at which a payout is triggered for an index insurance contract). 

3.3. Measuring spatio-temporal weather dependencies using C-vine copulas 

The calculation of the BF in Eq. (11) requires knowledge of the joint distribution of losses for 

all stations or stages considered in the insurance contracts. With the copula tool at hand, the 

joint distribution can thus be estimated in a straightforward way. As mentioned in section 2, 

this implementation includes two separate performances: first, the estimate of the marginal loss 

distributions for the station i  and second, the estimate of the copulas covering dependency 

structure between losses in different stations. The developed C-vine model is then used to 
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simulate the joint losses for different scenarios of spatial and temporal diversification. We 

briefly describe these processes in the following sections.  

3.3.1. Marginal distribution estimation 

The marginal distributions can be estimated using either a parametric or non-parametric 

method. However, since the copulas will be estimated parametrically in the later step, this study 

prefers the non-parametric method for modeling the margins. Therefore, this finally results in 

a semi-parametric C-vine model that can minimize the bias and inconsistency problems often 

faced in a fully parametric model if the estimation in one of the parametric processes is mis-

specified (Noh et al. 2013). 

This study applies the continuous kernel smoothing estimator introduced by Parzen (1962) to 

model the marginal distributions. The estimated marginal distribution is given by (Duong 

2016b): 

  
1

1
,

n
i

i

x x
F x K

n h

 
  

 
   (15) 

where h  denotes a bandwidth parameter and    
x

K x k t dt


   with  .k  is a symmetric 

probability density function. The estimation is implemented using the function kcde available 

in the R-package ks (Duong 2016a). In this setting, a Gaussian kernel is selected and the plug-

in bandwidth developed in Duong (2016b). These estimated marginal distributions are then 

used to derive pseudo copula data from observed data. These pseudo copula data are an 

approximately i.i.d sample through the PIT process as mentioned in section 2.1 (Kraus and 

Czado 2017) and will be employed to estimate the C-vine in the next step.  

3.3.2. Copula parameter estimation  

With the pseudo copula data obtained in the earlier step, copula parameters are estimated using 

the maximum-pseudo likelihood method, which is (Kim et al. 2007): 
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  1

1

argmax log ,..., ; .
n

i in

i

c u u


 
 

 
    (16) 

With a number of advantages in construction, the C-vine approach does not restrict copula 

functions for each pair-copula. Therefore, a total of forty copula functions are used for bivariate 

copula selection (Schepsmeier et al. 2018). The bivariate copula function that yields the lowest 

Akaike Information Criterion (AIC) is selected for the corresponding pair-copula. The 

selection is verified with graphical tools such as quantile-quantile and contour plots (not shown 

here), which has been performed in our previous studies (Nguyen-Huy et al. 2017; Nguyen-

Huy et al. 2018b). There are other ways to select the bivariate copulas, which may lead to 

different results, for example, based on their theoretical properties for better modelling the tail 

dependence. However, the selection needs to be double-checked with other goodness-of-fit 

tests to ensure the data are approximately modelled and the model correctly reflects the 

characteristics of the data. The assumption of using Clayton copula, for example, to focus on 

the lower tail dependence without verification may result in the misspecification issue since 

the data used may have a weak dependence in the lower part. Furthermore, one may select the 

bivariate copulas according to the Bayesian Information Criteria (BIC), however, it should be 

noted that the penalty for two-parameter copulas (e.g., Student’s t, BB1, BB7, etc.) is greater 

than that based on the AIC value (Schepsmeier et al. 2017).    

It is also noted that for an n-dimensional multivariate random variables, it is possible to 

construct n(n-1)/2 unique C-vine copulas. Therefore, the tree structure is selected using the 

maximum spanning tree method where the absolute values of the empirical pairwise Kendall's 

tau as weights (Dissmann et al. 2013). Furthermore, a hypothesis test for the independence of 

the two variables is performed before bivariate copula selection. The independence copula is 

selected if the null hypothesis of independence cannot be rejected at significance level of 5%.  
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3.3.3. C-vine copula-based simulation of insurance losses 

This study follows the simulation algorithm described in the studies of Kurowicka and Cooke 

(2007) and Aas et al. (2009), to draw random samples from a C-vine copula-based model. For 

the example illustrated in section 2.2, the implement of sampling values  1 2 3 4 5, , , ,u u u u u  out 

of a five-dimensional C-vine copula-based model is straightforward and easily calculable. First, 

five random values  1 2 3 4 5, , , ,w w w w w  are independently generated such that they are 

uniformly distributed on [0,1]. These values are subsequently used as probability levels of the 

conditional functions in sequentially recursive processes. In particular, sampling values are 

obtained by set: 

 1 1,u w   (17) 

  1

2 2 121
,u C w u   (18) 

  1 1

3 3 1 231 312
, ,u C C w u u  

 
  (19) 

   1 1 1

4 4 1 2 341 412 4123
, , ,u C C C w u u u   

 
  (20) 

    1 1 1 1

5 5 1 2 3 451 512 5123 51234
, , , .u C C C C w u u u u    

 
  (21) 

These sampling values are then transformed back to the real scale using the inverse distribution 

function estimated in section 3.3.1. Finally, the buffer fund and risk-reducing efficiency are 

acquired following section 3.1.   

The BL is derived from the BF that is defined as the 99% quantile of loss distribution that the 

insurer subtracts to the fair premium. The loss distribution is the result of 10,000 random 

simulations generated from the estimated margins and the estimated C-vine copula models. 

The BL is represented for the increasing size of the trading area. In particular, one station or 
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stage is added sequentially corresponding to each aggregation level. For example, the regional 

aggregation trading areas include S01, S01 + S02,…, S01 + …+ S05 corresponding to the 

aggregation levels L1, L2, …, L5 or the seasonal aggregation rainfall in AMJ, AMJ + JAS, 

AMJ + JAS + OND respective to L1, L2, and L3. Two different trigger levels 5% and 25% 

quantile of index distribution are used for insurance contracts.    

Furthermore, the weights of the insurance contracts are ideally selected based on the cultivated 

agricultural area in the region and should reflect the potential demand of producers for index-

based insurance products (Okhrin et al. 2013). However, the weights iw  are set to one in this 

study for simplicity. In temporal analysis, the weights iw  are random draws uniformly 

distributed on (0,1) such that 1 2 3 1w w w   . A total of 1,000 scenarios of weights is 

generated randomly. 

4. Results and discussion 

In this section, we show the spatial and temporal dependencies of weather events and the 

efficiency of the corresponding risk diversification strategies at regional, national and temporal 

levels in Australia. The analysis is supported by inspecting the differences in probabilistic 

properties of rainfall index in different locations (i.e., weather stations) and times (i.e., growing 

states). The results of the BL and risk-reducing efficiency are reported subsequently.  

4.1. Regional study  

4.1.1. Spatial interdependencies of weather events 

Table 1 and Fig. 4 provide the probabilistic information of the cumulative rainfalls recorded at 

sixteen weather stations across the Australia’s grain belt. The average cumulative rainfalls at 

all weather stations are approximated together during AMJ period except S01 and S02 but the 

stations in the west have the highest variability in general. The average cumulative rainfalls 

during JAS significantly vary between weather stations. In the OND period, weather stations 
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in the east receive the highest rainfall with a considerable difference between locations.  The 

rainfall and variability in the southern and south-eastern regions during this time is lower 

compared to the west. Evidently, the western region has the driest conditions with the lowest 

rainfall variability. Furthermore, the cumulative rainfalls across stations at different times 

generally have right skewed distributions reflecting the asymmetry of the index. 

The spatial interdependencies among of the cumulative rainfalls at different weather stations 

are explored further through a multidimensional Kruskal-Shephard scaling plot (Fig. 5). This 

method embeds the CRIs at different stations in the plane using the dissimilarity measured by 

 1   where   is the empirical pairwise Kendall’s τ values for all pairs (Brechmann et al. 

2013). This means that the closer two stations are to each other, the stronger is the dependence 

on their rainfalls. The multidimensional scaling reveals that there is significant geographical 

clustering existence of rainfalls between stations. The stations in the west (S01 – 05) can be 

found on the left of Fig. 5, stations in the south and south-east (S06 – 11) in the upper right 

corner, and stations in the east (S12 – 16) in the lower right corner. It is also worth pointing out 

that for the regional scale, the cumulative rainfalls in the west are more divergent in AMJ and 

OND periods than in JAS. The cumulative rainfalls in the south and south-east have a 

dispersive pattern in OND while the cumulative rainfalls in the east scatter in all three different 

times. These initial analyses may reveal the first impression that, for example, geographical 

aggregation of weather risks are more effective for weather stations in the eastern region.  

<Figure 5> 

Finally, we inspect the interdependencies in the lower tails of weather stations in each region. 

In order to do that, the joint distributions of all stations in each region are modeled through C-

vine copulas. Then different climatic events are assumed to occur at one station to assess how 

these extreme events correlate with other stations in that region. This means three quantile 
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levels 25%, 15% and 5% of CRI distribution are set to the selected station implying the 

moderate, severe, and extreme drought conditions, respectively. The drought spreads are 

assessed through the predicted median values of other stations conditioned on the selected 

station in the joint distributions modeled by C-vine copulas. It can be seen clearly in Fig. 6 that 

if drought events occur at S05 in AMJ or at S01 in JAS, they will have a systemic effect on 

other stations in the west or south and south-east regions, respectively. By contrast, the drought 

events occurring at a station (e.g., S05 in the west or S16 in the east) in OND are more local 

and do not spread out to other stations. This evidence agrees with the analyses above that 

provide an initial assessment of geographical diversifying the weather systemic risk.       

<Figure 6> 

4.1.2. Geographical diversification effect 

In the spatial aggregation strategy for each region, each weather station is selected respectively 

for L0 (starting point) and the remainders are randomly added to each aggregation level. This 

is implemented by creating a matrix of  1 !n  scenarios where n  is the number of stations. 

For the case of five stations in the west as an example, S01 is selected for the BL calculation 

of a single insurance contract. S02 – 05 are aggregated arbitrarily into L2 – 5 through 24 

scenarios.    

The main results of regional aggregation in the west, south and south-east, and east of Australia 

are represented in Figs. 7, 8, and 9, respectively. These figures display the average BL and risk-

reducing effect in different trigger and aggregation levels for regions under consideration. The 

stochastic fluctuations are indicated by the shading area with the maximum and minimum 

bounds. Clearly, significant differences can be observed between locations. According to Xu 

et al. (2010), the findings are expected whenever analyzing the influences of aggregating 

trading areas for weather-related insurance.  
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<Figure 7> 

<Figure 8> 

<Figure 9> 

Generally, the results indicate that the BL may decline or increase depending on the weather 

station selected for the initial single insurance contract (i.e., L0 of aggregation level). However, 

it is noted that the slope of the decrease and increase is rather small if the trading area becomes 

larger (i.e., the number of stations increases) or the weather events become more extreme (i.e., 

at 5% quantile level). These findings contrast to the initial expectation of diversification 

efficiency but agree with  the results of the study by Xu et al. (2010). This phenomena can be 

explained by the fact that weather indices pooled in the trading areas are heterogeneous, which 

is, the index distributions may be dependent or not identically distributed. In addition, it is clear 

that the BL greatly relies on the trigger level. The BL values are considerably smaller for an 

insurance contract with a strike level of 5% compared to one with a strike level of 25%.  

 To achieve a more accurate assessment of the diversification efficiency, the BL of the joint 

insurance of all stations is compared to the average BL associated with separate insurance for 

each station. In general, the findings (see Figs. 6, 7 and 8) indicate that weather-related risks 

can be reduced through increasing the size of the trading area. Furthermore, the risk pooling 

strategy is more effective in the case of extreme weather events (i.e., 5% quantile level) 

compared to moderate weather events (i.e., 25% quantile level). The average diversification 

effects for entire insurance area in three aggregation levels: regional, national and temporal are 

summaried in Table 2. 

<Table 2> 

According to Xu et al. (2010), it is expected that the BL in the case of normal i.i.d losses drops 

with 1/ n , which means that a reduction of the BL would be approximately 45% if  n = 5. 
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However, the reduction is smaller in the present analysis of insurance contract indicating the 

existence of systemic weather risk, except for temporal diversification (Table 2).  

For the western region, while the risk-reducing effects through the extent of aggregation levels 

are significant for the period OND, a contrast pattern can be observed during AMJ and JAS 

(Fig. 7). However, the diversification strategy is still potentially beneficial for reducing the 

impact of systemic weather risk since the DE (diversification efficiency) values are below one 

for the AMJ and JAS cases up to L4 (Table 2). For the southern and south-eastern areas, there 

is evidence supporting the usefulness of risk diversification during AMJ and OND but growing 

the trading area does not increase the risk-reducing effect in the period JAS for both strike 

levels (Fig. 8). It is interesting that the efficiency of the risk pooling strategy applied in the 

eastern region is directly proportional to the increase of weather station numbers in all of 

periods considered. It is important to highlight that these results are consistent with the initial 

analyses of spatial interdependencies between weather stations mentioned above.  

We also represent the C-vine models developed for three different cases, as in Table 3. The 

first model is the case when the risk-reducing effect is indirectly proportional to the increasing 

of aggregation levels (see Fig. 7, AMJ, and L0 = S02). The second is when there is not much 

change in the risk-reducing effect associated with the increase of aggregation levels (see Fig. 

8, JAS, L0 = S08). The final model is the case where the risk-reducing effect is directly 

proportional to the extent of trading area. It can be clearly seen that there more dependencies 

in the lower tails between pair weather stations indicated by lower coefficients derived from 

the survival Gumbel copula for the first and second cases than the third one. This may imply 

that the risk pooling is more effective for the cases having less interdependencies in the tails.      

<Table 3> 
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4.2. National study 

4.2.1. Spatial interdependencies of weather events 

The same procedure mentioned in the regional study is applied to analyze and evaluate the 

spatial interdependencies and the risk-reducing efficiency of the risk pooling strategy on the 

national scale. This is implemented by modeling the joint distribution of cumulative rainfalls 

in all sixteen stations through the C-vine copula method. Following the same procedure before, 

the three drought levels are arbitrarily set to S16 in the eastern region and the results for 

different times are displayed in Fig. 10. Generally speaking, if drought events occur in the 

eastern region, it is likely they will affect much of the eastern, south-eastern  and southern 

regions. However, these drought events may have less impact on the western region implying 

that the systemic risk may be reduced efficiently by pooling with stations in the west. This 

finding is consistent with the analysis of multidimensional Kruskal-Shephard scaling shown in 

Fig. 5 where stations in the west are clustered separately to others in the east and south and 

south-east.     

<Figure 10> 

4.2.2. Geographical diversification effect 

For the illustrative purpose of risk aggregation at national scale, we randomly select one station 

in each region resulting in a total of four stations. In general, the BL declines when all stations 

are taken into account except for the case when S01 is selected for L0 in OND period. The 

considerable low values observed in the bar charts of risk-reducing effect in AMJ and OND 

may be explained by the analyses of drought spread characteristic mentioned above. This 

means that the risk pooling strategy is more efficient when initial stations include the stations 

(e.g., in the west) that has a high independent relationship with them.    

<Figure 11> 
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4.3. Temporal study 

4.3.1. Temporal interdependencies of weather events 

An alternative strategy that may reduce loadings of weather systemic risk is a time 

diversification approach. The foundation is similar to spatial diversification, but risks are 

pooled over time instead of across locations (Odening and Shen 2014). In the context of 

insurance, these products are provided as multi-year or long-term contracts. They are based on 

the fact that if the losses in different years occur independently, it has the potential to diminish 

the volatility of average yearly insurance indemnities. The multi-year insurance contract has 

been implemented in the studies undertaken by Kleindorfer et al. (2012), Botzen et al. (2013) 

or Osipenko et al. (2015).    

This study proposes to diversify risks over different periods corresponding to the crop growing 

season. It is motivated by the fact that we recognized that the cumulative rainfalls in different 

seasons are not perfectly correlated when analyzing the spatial interdependencies between 

stations. For example, the probabilistic information derived from Table 1 and Fig. 4 indicates 

that there much differences in the rainfall pattern between AMJ, JAS and OND periods. For 

example, the western Australia receives more rainfall during sowing (AMJ) and vegetation 

(JAS) stages and extreme low during harvest months (OND) in the end of year. A similar 

rainfall pattern can be observed in the weather stations in the south where rainfall peaks in JAS 

before decreasing in OND. By contrast, the eastern part has the highest rainfall during the three-

month period at the end of the year and the lowest rainfall during JAS. These evidences mean 

that it is possible to reduce widespread systemic losses by a multi-stage insurance contract at 

each station.  

We therefore use the same procedure used for spatial diversification to analyze and evaluate 

the effect of risk reduction through the multi-stage risk pooling strategy. The examination of 

seasonal systemic losses are shown in Fig. 12 where a time period (i.e., AMJ or OND) is set 
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with different climatic events and others are conditional on the selected time. In general, the 

insufficient rainfall during the sowing stage (i.e., AMJ) does not mean that drought conditions 

will occur subsequently in other stages.     

<Figure 12> 

4.3.2. Time diversification effect      

The findings of risk reduction for the insurance contracts based on seasonal aggregation are 

somewhat different to those with a spatial context (Fig. 13). For all stations, the BL is 

significantly reduced for the aggregation level one (L1) while it does not cause much change 

in the L2. It is interesting that the average value of risk-reducing effect ranges from 25% to 

33% if the insurance contracts are designed within the 5% and 25% quantile of the index 

distributions, respectively. The results agree with the initial analyses of temporal 

interdependencies between the cropping stages above. In addition, the BL and risk-reducing 

effect are found to be greater compared to the spatial risk pooling strategy.   

<Figure 13> 

5. Further discussion 

It is not surprising that there are different results on the effect of index-based insurance products 

and diversification strategies (Okhrin et al. 2013; Xu et al. 2010). At the worst scenario, if the 

weather events are perfectly correlated, there is no diversification benefit. Mahul (1999) 

indicated that index-based insurance products cannot solve the problem of risk pooling and 

therefore cannot diversify the systemic risk which occurs when a natural risk strikes 

simultaneously among a large number of farmers. Xu et al. (2010) showed that, as one example, 

systemic weather risk cannot be regionally diversified for Germany. By contrast, Okhrin et al. 

(2013) found that the spatial diversification effect is significant in China where BLs drop by 

more than 50% if insurance losses are aggregated over several provinces. However, the spatial 
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manners of systemic weather risk vary worldwide because of differences of geographical 

topography and climatic conditions (Odening & Shen 2014). The results found in this study 

demonstrate that both spatial and temporal aggregation strategies potentially reduce the 

weather systemic risk in Australia where temporal diversification effects range from 25% to 

30% depending on the strike level. 

However, the present study demonstrates that some challenges still remain that require the 

reading of the results with care. First, the study used the historical rainfall data observed in 

meteorological stations; the results thus reflect the dependency structure of weather events that 

occurred in the past. Second, while the arbitrary choice of 99% quantile of loss distribution is 

quite common for the calculation of VaR in the financial field, this selection greatly influences 

the levels of the BF in this application (Xu et al. 2010). Third, the study relies on several 

assumptions that are similar to the study of Okhrin et al. (2013) and Xu et al. (2010). That 

means only a single period was considered while the product diversification of insurer and 

equity reverses cumulated annually with premium surpluses were not taken into account. 

Finally, even if weather conditions are the same, regional differences in soil quality or 

cultivated technology, for instance, may result in dissimilarities in crop yield.        

Furthermore, risk diversification by pooling individual risks may not be effective for skewed 

distributions as in the case of normal distributions (Wang 2000). Because VaR is a quantile-

based measure, it is subadditive for elliptical distributions. In the context of finance, 

subadditivity is one of the four axioms characterizing coherent measures of risk including the 

exhibition of sub-additivity (or diversification), translation invariance, positive homogeneity, 

and monotonicity. VaR satisfies subadditive conditions if the risk of holding two assets 1x  and 

2x  simultaneously is less than or equal to the sum of their single risks given as 

     1 2 1 2x x x x      with  x  denoting some risk measure. However, VaR lacks 
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subadditivity in cases of non-elliptical distributions. In addition, VaR is also non-subadditive 

if the loss distributions of assets are smooth and symmetric, but their dependency structure is 

asymmetric, and when underlying risk factors are independent but heavy-tailed.  

Although the systemic weather risk can be mitigated by regional diversification, it is 

nevertheless still high. We highlight that much more research is needed to evaluate the promise 

of weather index insurance. For example, the use of supplementary tools for reducing systemic 

weather risk, such as securitization, are recommended by Odening and Shen (2014). A 

comparison of the efficiency of regional diversification and securitization via weather bonds 

can be found in Shen and Odening (2013). Furthermore, future research may use a coherent 

risk-measure method, which is Conditional Value-at-Risk (CVaR), as an alternative instrument 

for calculating the losses (Rockafellar and Uryasev 2002). Finally, the approach that combines 

a vegetation index derived from satellite–based data with an in situ assessment of crop damages 

may be a subject for potential ongoing research.  

6. Conclusion 

The study assesses the joint losses of a hypothetical index-based insurance at different 

aggregation scenarios using the C-vine copula-based model. Extensive analyses of spatial and 

temporal interdependencies between weather events at different locations and times have been 

made. The C-vine is able to capture different dependency structures between weather events 

where its construction is particularly useful for testing widespread systemic losses. The results 

reveal that either spatial or temporal diversification strategies may potentially reduce the 

systemic weather risk in Australia. It can be seen that the dependencies between insurance 

indemnities at different locations and times becomes smaller when reducing the strike level. 

Furthermore, the cumulative rainfalls in different seasons are found to be not perfectly 
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correlated, therefore the time diversification is more efficient for systemic risks compared to 

the case of spatial pooling.   

Insurance products have been crucial in the agricultural sector as one of the formal risk-

mitigation strategies. In particular, weather index-based insurance has been considered a 

valuable alternative to traditional crop insurance. While the index-based insurance product may 

not be a direct insurance for farmers because of its high basis risk, the analysis of weather risks 

is an interesting topic to insurers for several reasons. First, covariate yield risk is mainly driven 

by weather conditions. Second, weather derivatives could be useful for transferring systemic 

risk from insurers to reinsurers or to the capital market (Xu et al. 2010). This application helps 

solve the questions to what extent weather-related risk exposure at different locations and times 

can be spatially or temporally diversified by increasing the trading area or season of the 

contracts. The study therefore provides an efficient tool for risk management and supports 

pricing of weather index-based insurance products. 

Acknowledgement 

The project was financed by the University of Southern Queensland Post Graduate Research 

Scholarship (USQPRS 2015-2018); School of Agricultural, Computational and Environmental 

Sciences and the Drought and Climate Adaptation (DCAP) Project (Producing Enhanced Crop 

Insurance Systems and Associated Financial Decision Support Tools). The authors would like 

to acknowledge constructive comments from the reviewers. 

References 

Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple 

dependence Insurance: Mathematics and economics 44:182-198 

doi:https://doi.org/10.1016/j.insmatheco.2007.02.001 

AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes 

in risk of concurrent climate extremes: Insights from the 2014 California drought 

Geophysical Research Letters 41:8847-8852 

doi:https://doi.org/10.1002/2014GL062308 

https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1002/2014GL062308


28 

 

Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot 

summer of 2010: redrawing the temperature record map of Europe Science 332:220-

224 

Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent 

random variables modeled by vines Annals of Mathematics and Artificial intelligence 

32:245-268 doi:https://doi.org/10.1023/A:1016725902970 

Bedford T, Cooke RM (2002) Vines: A new graphical model for dependent random variables 

Annals of Statistics:1031-1068 doi:https://doi.org/10.1214/aos/1031689016 

Botzen WW, de Boer J, Terpstra T (2013) Framing of risk and preferences for annual and 

multi-year flood insurance Journal of economic psychology 39:357-375 

doi:https://doi.org/10.1016/j.joep.2013.05.007 

Brechmann EC, Hendrich K, Czado C (2013) Conditional copula simulation for systemic risk 

stress testing Insurance: Mathematics and Economics 53:722-732 

doi:https://doi.org/10.1016/j.insmatheco.2013.09.009 

Carreau J, Bouvier C (2016) Multivariate density model comparison for multi-site flood-risk 

rainfall in the French Mediterranean area Stochastic Environmental Research and Risk 

Assessment 30:1591-1612 

Coumou D, Rahmstorf S (2012) A decade of weather extremes Nature climate change 2:491 

doi:https://doi.org/10.1038/nclimate1452 

Dissmann J, Brechmann EC, Czado C, Kurowicka D (2013) Selecting and estimating regular 

vine copulae and application to financial returns Computational Statistics & Data 

Analysis 59:52-69 doi:https://doi.org/10.1016/j.csda.2012.08.010 

Duncan J, Myers RJ (2000) Crop insurance under catastrophic risk American Journal of 

Agricultural Economics 82:842-855 doi:https://doi.org/10.1111/0002-9092.00085 

Duong T (2016a) ks: Kernel Smoothing, r package version 1.10. 4.  

Duong T (2016b) Non-parametric smoothed estimation of multivariate cumulative distribution 

and survival functions, and receiver operating characteristic curves Journal of the 

Korean Statistical Society 45:33-50 doi:https://doi.org/10.1016/j.jkss.2015.06.002 

Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: 

properties and pitfalls Risk management: value at risk and beyond 176223 

Frey R, McNeil AJ (2003) Dependent defaults in models of portfolio credit risk Journal of Risk 

6:59-92 doi:https://doi.org/10.21314/JOR.2003.089 

Frey R, McNeil AJ, Nyfeler M (2001) Copulas and credit models Risk 10 

Glauber JW, Collins KJ, Barry PJ (2002) Crop insurance, disaster assistance, and the role of 

the federal government in providing catastrophic risk protection Agricultural Finance 

Review 62:81-101 doi:https://doi.org/10.1108/00214900280001131 

Goodwin BK (2001) Problems with market insurance in agriculture American Journal of 

Agricultural Economics 83:643-649 doi:https://doi.org/10.1111/0002-9092.00184 

Holly Wang H, Zhang H (2003) On the possibility of a private crop insurance market: A spatial 

statistics approach Journal of Risk and Insurance 70:111-124 

doi:https://doi.org/10.1111/1539-6975.00051 

https://doi.org/10.1023/A:1016725902970
https://doi.org/10.1214/aos/1031689016
https://doi.org/10.1016/j.joep.2013.05.007
https://doi.org/10.1016/j.insmatheco.2013.09.009
https://doi.org/10.1038/nclimate1452
https://doi.org/10.1016/j.csda.2012.08.010
https://doi.org/10.1111/0002-9092.00085
https://doi.org/10.1016/j.jkss.2015.06.002
https://doi.org/10.21314/JOR.2003.089
https://doi.org/10.1108/00214900280001131
https://doi.org/10.1111/0002-9092.00184
https://doi.org/10.1111/1539-6975.00051


29 

 

Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric 

methods for estimating copulas Computational Statistics & Data Analysis 51:2836-

2850 doi:https://doi.org/10.1016/j.csda.2006.10.009 

Kleindorfer PR, Kunreuther H, Ou-Yang C (2012) Single-year and multi-year insurance 

policies in a competitive market Journal of Risk and Uncertainty 45:51-78 

doi:https://doi.org/10.1007/s11166-012-9148-2 

Kraus D, Czado C (2017) D-vine copula based quantile regression Computational Statistics & 

Data Analysis 110:1-18 doi:https://doi.org/10.1016/j.csda.2016.12.009 

Kurowicka D (2005) Distribution-free continuous bayesian belief Modern statistical and 

mathematical methods in reliability 10:309 

Kurowicka D, Cooke RM (2007) Sampling algorithms for generating joint uniform 

distributions using the vine-copula method Computational statistics & data analysis 

51:2889-2906 doi:https://doi.org/10.1016/j.csda.2006.11.043 

Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global 

crop production Nature 529:84 doi:https://doi.org/10.1038/nature16467 

Mahul O (1999) Optimum area yield crop insurance American Journal of Agricultural 

Economics 81:75-82 doi:https://doi.org/10.2307/1244451 

Martin SW, Barnett BJ, Coble KH (2001) Developing and pricing precipitation insurance 

Journal of Agricultural and Resource Economics:261-274 

McNeil A, Frey R, Paul E (2005) Quantitative risk management: Concepts, techniques and 

tools. Princeton University Press, Princeton, New Jersey 

Miranda MJ, Glauber JW (1997) Systemic risk, reinsurance, and the failure of crop insurance 

markets American Journal of Agricultural Economics 79:206-215 

doi:https://doi.org/10.2307/1243954 

Musafer GN, Thompson MH (2017) Non-linear optimal multivariate spatial design using 

spatial vine copulas Stochastic environmental research and risk assessment 31:551-570 

Musshoff O, Odening M, Xu W (2011) Management of climate risks in agriculture–will 

weather derivatives permeate? Applied economics 43:1067-1077 

doi:https://doi.org/10.1080/00036840802600210 

Nguyen-Huy T, Deo RC, An-Vo D-A, Mushtaq S, Khan S (2017) Copula-statistical 

precipitation forecasting model in Australia’s agro-ecological zones Agricultural Water 

Management 191:153-172 doi:https://doi.org/10.1016/j.agwat.2017.06.010 

Nguyen-Huy T, Deo RC, Mushtaq S, An-Vo D-A, Khan S (2018a) Modeling the joint influence 

of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine 

copula-based approach European Journal of Agronomy 98:65-81 

doi:https://doi.org/10.1016/j.eja.2018.05.006 

Nguyen-Huy T, Deo RC, Mushtaq S, Kath J, Khan S (2018b) Copula-based agricultural 

conditional value-at-risk modelling for geographical diversifications in wheat farming 

portfolio management Weather and climate extremes 21:76-89 

Noh H, Ghouch AE, Bouezmarni T (2013) Copula-based regression estimation and inference 

Journal of the American Statistical Association 108:676-688 

doi:https://doi.org/10.1080/01621459.2013.783842 

https://doi.org/10.1016/j.csda.2006.10.009
https://doi.org/10.1007/s11166-012-9148-2
https://doi.org/10.1016/j.csda.2016.12.009
https://doi.org/10.1016/j.csda.2006.11.043
https://doi.org/10.1038/nature16467
https://doi.org/10.2307/1244451
https://doi.org/10.2307/1243954
https://doi.org/10.1080/00036840802600210
https://doi.org/10.1016/j.agwat.2017.06.010
https://doi.org/10.1016/j.eja.2018.05.006
https://doi.org/10.1080/01621459.2013.783842


30 

 

Odening M, Mußhoff O, Xu W (2007) Analysis of rainfall derivatives using daily precipitation 

models: Opportunities and pitfalls Agricultural Finance Review 67:135-156 

doi:https://doi.org/10.1108/00214660780001202 

Odening M, Shen Z (2014) Challenges of insuring weather risk in agriculture Agricultural 

Finance Review 74:188-199 doi:https://doi.org/10.1108/AFR-11-2013-0039 

Okhrin O, Odening M, Xu W (2013) Systemic weather risk and crop insurance: the case of 

China Journal of Risk and Insurance 80:351-372 doi:https://doi.org/10.1111/j.1539-

6975.2012.01476.x 

Osipenko M, Shen Z, Odening M (2015) Is there a demand for multi-year crop insurance? 

Agricultural Finance Review 75:92-102 doi:https://doi.org/10.1108/AFR-12-2014-

0043 

Parzen E (1962) On estimation of a probability density function and mode The annals of 

mathematical statistics 33:1065-1076 doi:https://doi.org/10.1214/aoms/1177704472 

Pham MT, Vernieuwe H, De Baets B, Willems P, Verhoest N (2016) Stochastic simulation of 

precipitation-consistent daily reference evapotranspiration using vine copulas 

Stochastic Environmental Research and Risk Assessment 30:2197-2214 

Reddy MJ, Singh VP (2014) Multivariate modeling of droughts using copulas and meta-

heuristic methods Stochastic environmental research and risk assessment 28:475-489 

Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions 

Journal of banking & finance 26:1443-1471 doi:https://doi.org/10.1016/S0378-

4266(02)00271-6 

Rosenblatt M (1952) Remarks on a multivariate transformation The annals of mathematical 

statistics 23:470-472 doi:https://doi.org/10.1214/aoms/1177729394 

Sak H, Yang G, Li B, Li W (2017) A copula-based model for air pollution portfolio risk and 

its efficient simulation Stochastic Environmental Research and Risk Assessment 

31:2607-2616 

Schepsmeier U et al. (2017) Package ‘VineCopula’  

Schepsmeier U et al. (2018) Package ‘VineCopula’  

Schoelzel C, Friederichs P (2008) Multivariate non-normally distributed random variables in 

climate research–introduction to the copula approach Nonlinear Processes in 

Geophysics 15:761-772 doi:https://doi.org/10.5194/npg-15-761-2008 

Serinaldi F (2009) Copula-based mixed models for bivariate rainfall data: an empirical study 

in regression perspective Stochastic environmental research and risk assessment 

23:677-693 

Skees JR, Barnett BJ (1999) Conceptual and practical considerations for sharing 

catastrophic/systemic risks Review of Agricultural Economics 21:424-441 

doi:https://doi.org/10.2307/1349889 

Skees JR, Hartell J, Murphy AG (2007) Using index-based risk transfer products to facilitate 

micro lending in Peru and Vietnam American Journal of Agricultural Economics 

89:1255-1261 

Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Université Paris 8,  

Song S, Singh VP (2010) Meta-elliptical copulas for drought frequency analysis of periodic 

hydrologic data Stochastic Environmental Research and Risk Assessment 24:425-444 

https://doi.org/10.1108/00214660780001202
https://doi.org/10.1108/AFR-11-2013-0039
https://doi.org/10.1111/j.1539-6975.2012.01476.x
https://doi.org/10.1111/j.1539-6975.2012.01476.x
https://doi.org/10.1108/AFR-12-2014-0043
https://doi.org/10.1108/AFR-12-2014-0043
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.1016/S0378-4266(02)00271-6
https://doi.org/10.1214/aoms/1177729394
https://doi.org/10.5194/npg-15-761-2008
https://doi.org/10.2307/1349889


31 

 

Tankov P (2011) Improved Fréchet bounds and model-free pricing of multi-asset options 

Journal of Applied Probability 48:389-403 

Van Den Goorbergh RW, Genest C, Werker BJ (2005) Bivariate option pricing using dynamic 

copula models Insurance: Mathematics and Economics 37:101-114 

doi:https://doi.org/10.1016/j.insmatheco.2005.01.008 

Vedenov D Application of copulas to estimation of joint crop yield distributions. In: American 

Agricultural Economics Association Annual Meeting, Orlando, FL, 2008. pp 27-29 

Vedenov DV, Barnett BJ (2004) Efficiency of weather derivatives as primary crop insurance 

instruments Journal of Agricultural and Resource Economics:387-403 

Wang SS (2000) A class of distortion operators for pricing financial and insurance risks Journal 

of risk and insurance:15-36 doi:https://doi.org/10.2307/253675 

Woodard JD, Garcia P (2008) Basis risk and weather hedging effectiveness Agricultural 

Finance Review 68:99-117 doi:https://doi.org/10.1108/00214660880001221 

Xu W, Filler G, Odening M, Okhrin O (2010) On the systemic nature of weather risk 

Agricultural Finance Review 70:267-284 

doi:https://doi.org/10.1108/00021461011065283 

Xu Y, Huang G, Fan Y (2017) Multivariate flood risk analysis for Wei River Stochastic 

environmental research and risk assessment 31:225-242 

Zhang L, Yang B, Guo A, Huang D, Huo Z Multivariate probabilistic estimates of heat stress 

for rice across China Stochastic Environmental Research and Risk Assessment:1-14 

Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of hydrological 

droughts in the East River basin, China Stochastic environmental research and risk 

assessment 27:1397-1406 

Zhu Y, Ghosh SK, Goodwin BK Modeling Dependence in the Design of Whole Farm 

Insurance Contract,| A Copula-Based Model Approach. In: Selected Paper prepared for 

presentation at the American Agricultural Economics Association Annual Meeting, 

Orlando, July, 2008. pp 27-29 

 

https://doi.org/10.1016/j.insmatheco.2005.01.008
https://doi.org/10.2307/253675
https://doi.org/10.1108/00214660880001221
https://doi.org/10.1108/00021461011065283


List of Figures 

 

Figure 1. An example of the five-dimensional canonical (C)-vine copula with variable one (U1, e.g., 

cumulative rainfall index at station 1) as the root node (indicated in red color) and the pairwise 

copulas (C) in each tree (T). The numbers, for example, 23|1 denote variable U2 and U3 conditioned 

U1 modeled by C23|1. 
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Figure 2. Study flowchart describes about data used and main steps of tests and copula-based method.  



 

Figure 3. Map of selected weather stations across Australia’s wheat belt spanning different climatic conditions. 

  



 

 

 

Figure 4. Boxplot of the cumulative rainfall index (CRI) in different weather stations and separately for three 

different seasons. Colors matched to Fig. 2. 

 

  



                 

Figure 5. Multidimensional Kruskal-Shephard scaling (non-dimensional unit) (Brechmann et al., 2013) of the 

weather stations using dissimilarity measure calculated by empirical pairwise Kendall’s τ of 

cumulative rainfall index (CRI). Colors matched to Fig. 2.  

  



       

Figure 6. Tests of interdependencies between weather stations using cumulative rainfall index (CRI) in 

different growing stages of wheat crop. The predicted median values (50%-quantile) for the three 

extreme events of each station conditioned on S05, S11 and S16 given extreme (5%-quantile), severe 

(15%-quantile), and moderate (25%-quantile) drought. The conditioning stations marked with bigger 

symbol overlaid by small points. 

 

  



  

 

 

 

 

 

Figure 7. Buffer loads at 99% quantile of loss distributions with different strike (5% and 25%) and aggregation 

levels (L1 – 4) using the cumulative rainfall index (CRI) and the corresponding risk-reducing effects 

for five weather stations in western Australia. 

  



 

 

 

 



 

 

Figure 8. Similar to Fig. 7 but for the south and south-eastern Australia. 

 

  



 

 

 

 

 

 

Figure 9. Similar to Fig. 7 but for the eastern Australia. 

  



        

Figure 10. Similar to Fig. 6 but for the entire Australia’s grain belt. 

  



 

 

 

 

 

 

Figure 2. Similar to Fig. 7 but for the entire Australia’s grain belt. 

  



 

 

 

Figure 3. Similar to Fig. 6 but for different seasons. 

 

 

 

 

  



 

 

 

 

 



 

 

Figure 13. Similar to Fig. 7 but for different seasons. 

 

 

 

 



List of Tables 

Table 1. Mean and standard deviation (SD) of cumulative rainfall index (mm) for the period of April – June (AMJ), July – September (JAS), and October 

– December (OND) for sixteen weather stations considered in this study. 

 

Code for 

Australian 

region 

Station ID Name Long – Lat 

AMJ JAS  OND 

Mean SD Mean SD Mean SD 

West 

S01 08088 Mingenew 115.440E – 29.190S 163.92 70.36 167.02 54.92 36.04 24.78 

S02 10111 Northam 116.660E – 31.650S 159.67 58.50 180.27 55.29 47.71 27.94 

S03 12074 Southern Cross 119.330E – 31.230S 98.80 45.55 89.27 34.16 44.79 29.24 

S04 10627 Pingrup 118.510E – 33.530S 117.55 43.06 123.36 37.28 60.74 37.69 

S05 12070 Salmon Gums 121.640E – 32.980S 100.51 39.38 103.17 33.43 70.01 35.40 

South 

S06 18064 Lock 135.760E – 33.570S 116.14 47.56 145.62 45.21 73.32 37.68 

S07 21027 Jamestown 138.610E – 33.200S 129.48 56.72 166.44 52.74 106.97 54.12 

South-East 

S08 76047 Ouyen 142.320E – 35.070S 86.55 43.78 95.82 38.65 87.20 53.40 

S09 79023 Horsham Polkemmet 142.070E – 36.660S 127.76 53.57 144.59 47.87 107.74 51.73 

S10 75031 Hay 144.850E – 34.520S 98.56 51.55 95.12 41.67 89.21 57.06 

S11 73000 Barmedman 147.390E – 34.140S 115.49 59.15 116.59 48.07 124.46 62.56 

East 

S12 48030 Cobar 145.800E – 31.500S 84.72 53.99 77.00 37.74 97.19 63.40 

S13 55054 Tamworth 150.850E – 31.090S 130.14 67.54 137.86 55.56 204.95 78.99 

S14 44030 Dirranbandi 148.230E – 28.580S 96.63 71.25 77.36 50.83 132.90 79.16 

S15 41023 Dalby 151.260E – 27.180S 114.25 71.08 101.43 60.02 231.55 88.05 

S16 35059 Rolleston 148.630E – 24.460S 113.33 86.80 80.29 65.71 200.03 89.22 

List of Tables Click here to access/download;table;Nguyen-Huy et al 2018 Systemic Risk Tables.docx

http://www.editorialmanager.com/serr/download.aspx?id=94227&guid=cd09d3de-7e46-44d5-87e2-39389743e3f6&scheme=1
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Table 2. Average diversification effects for the entire insurance area in three different aggregation 

levels: regional (i.e., west, south and south-east, and east), national (entire wheat belt region) 

and temporal (April – June, July – September, and October – December), with two strike levels: 

5% and 25%.  

 

Period Regional National 

AMJ WEST SSE EAST  

5% 0.88 0.67 0.72 0.48 

25% 0.94 0.78 0.8 0.52 

JAS     

5% 0.83 0.85 0.81 0.68 

25% 0.89 0.93 0.88 0.76 

OND     

5% 0.69 0.81 0.62 0.61 

25% 0.78 0.88 0.73 0.65 

 Temporal  

5% 0.25 0.25 0.26  

25% 0.32 0.33 0.33  

 

  



Table 3. Example of selected C-vine copulas for the west region in April – June (AMJ), south and southeast 

(SSE) region in July – September (JAS), and east region in October – December (OND) with the 

corresponding root stations (e.g., L0 = S02), parameters (θ1 and θ2), Kendall’s tau (τ), upper and lower 

tail coefficients (λU and λL), maximum log-likelihood (llmax), and Akaike Information Criterion (AIC). 

Copulas have no upper and/or lower tail denoted as na. 

    Tree Edge Copula θ1 θ2 τ λU λL 

WEST AMJ:  L0 = S02; llmax = 175.43; AIC = -336.85 

1 2,3 Clayton 1.58 0.00 0.44 na 0.64 

 2,1 S. Gumbel 2.38 0.00 0.58 na 0.66 

 2,4 Gaussian 0.71 0.00 0.51 na na 

 5,2 S. Gumbel 1.58 0.00 0.37 na 0.45 

2 5,3;2 Gaussian 0.51 0.00 0.34 na na 

 5,1;2 S. Gumbel 1.26 0.00 0.20 na 0.26 

 5,4;2 Frank 2.46 0.00 0.26 na na 

3 1,3;5,2 I na na 0.00 na na 

 4,1;5,2 I na na 0.00 na na 

4 4,3;1,5,2 I na na 0.00 na na 

SSE JAS: L0 = S08; llmax = 280.01; AIC = -544.02 

1 3,4 Gaussian 0.85 0.00 0.65 na na 

 3,1 S. Gumbel 1.82 0.00 0.45 na 0.54 

 3,5 S. Gumbel 2.1 0.00 0.52 na 0.61 

 3,2 S. Gumbel 2.16 0.00 0.54 na 0.62 

 6,3 S. Gumbel 1.82 0.00 0.45 na 0.54 

2 2,4;3 Frank 2.2 0.00 0.23 na na 

 2,1;3 S. Gumbel 1.6 0.00 0.37 na 0.46 

 2,5;3 I na na 0.00 na na 

 6,2;3 I na na 0.00 na na 

3 5,4;2,3 I na na 0.00 na na 

 5,1;2,3 I na na 0.00 na na 

 6,5;2,3 Gumbel 1.59 0.00 0.37 0.45 na 

4 1,4;5,2,3 I na na 0.00 na na 

 6,1;5,2,3 I na na 0.00 na na 

5 6,4;1,5,2,3 I na na 0.00 na na 

EAST OND: L0 = S13; llmax = 102.92; AIC = -183.83 

1 2,1 Gaussian 0.59 0.00 0.4 na na 

 2,4 Gaussian 0.52 0.00 0.35 na na 

 2,3 S. Gumbel 1.68 0.00 0.41 na 0.49 

 5,2 Gaussian 0.47 0.00 0.31 na na 

2 3,1;2 Joe-Clayton 1.17 0.57 0.28 0.19 0.30 

 3,4;2 Frank 1.5 0.00 0.16 na na 

 5,3;2 Joe-Frank 1.93 0.78 0.18 na na 

3 5,1;3,2 Gaussian 0.25 0.00 0.16 na na 

 5,4;3,2 Gaussian 0.36 0.00 0.24 na na 

4 4,1;5,3,2 I na na 0.00 na na 
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Chapter 5 

Diversification for wheat farming portfolio optimisation 
____________________________________________________________________ 

Article IV: Copula-based agricultural conditional value-at-risk 

modelling for geographical diversifications in wheat 

farming portfolio management 

Summary: 

Geographical diversification has been identified as a potential farmer adaptation and 

decision support tool that could assist producers to reduce unfavourable financial 

impacts due to variability in crop price and yield, associated with climate variations. 

This study investigates whether a wheat farm portfolio that is geographically 

diversified over three climate rain-fed locations could potentially reduce financial 

risks related to climate variability for producers in Australia’s wheat belt. We propose 

a new statistical approach: a set of popular and statistically robust tools commonly 

applied in finance and statistical theories including the Conditional Value-at-Risk 

(CVaR) and copula models are combined to evaluate the effectiveness of geographical 

diversification. CVaR is utilised to benchmark the loss (i.e., downside risk), while the 

copula function is employed to model joint distribution among marginal returns (i.e., 

profit in each zone). Fig. 9 reveal the graphical abstract of this study on geographical 

diversification for wheat portfolio optimisation in Australia. 

The results of mean-CVaR optimisations indicate that geographical 

diversification is a feasible agricultural risk instrument for wheat-farming portfolio 

managers in achieving their optimised expected returns while controlling the risks 

(i.e., targeting levels of risk). For example, by allocating about 10% of their production 

area to VIC, wheat producers in the SA region can adjust their expected profitability 

in the worst 5% of the cases from approximately 33.98% to 33.69% (i.e., a reduction 

of 0.29%), which in turn can reduce the downside risk from approximately 14.70% to 

11.51% (i.e., a risk reduction of 3.19%). This is because the average marginal return 

(and the standard deviation) in SA region is just 3.67% higher (and 1.09% lower) than 

that in VIC region. The kurtosis (and skewness) in the SA region is also 22.59% higher 

(and 27.06% lower) than that in the VIC region. Furthermore, the copula-based mean-
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CVaR model is found to better simulate extreme losses compared to the traditional 

multivariate-normal models, which underestimate the minimum risk levels at a given 

target of expected return. Among the suite of tested copula-based models, the vine 

copula is found to be superior in capturing the tail dependencies compared to the other 

multivariate copula models investigated. 

 

Source: Author 

Figure 9. Graphical display of the study on geographical diversification for 

wheat portfolio optimisation in Australia. 
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A B S T R A C T

An agricultural producer's crop yield and the subsequent farming revenues are affected by many complex factors,
including price fluctuations, government policy and climate (e.g., rainfall and temperature) extremes.
Geographical diversification is identified as a potential farmer adaptation and decision support tool that could
assist producers to reduce unfavourable financial impacts due to the variabilities in crop price and yield, as-
sociated with climate variations. There has been limited research performed on the effectiveness of this strategy.
This paper proposes a new statistical approach to investigate whether the geographical spread of wheat farm
portfolios across three climate broad-acre (i.e., rain-fed) zones could potentially reduce financial risks for pro-
ducers in the Australian agro-ecological zones. A suite of popular and statistically robust tools applied in the
financial sector based on the well-established statistical theories, comprised of the Conditional Value-at-Risk
(CVaR) and the joint copula models were employed to evaluate the effectiveness geographical diversification.
CVaR is utilised to benchmark the losses (i.e., the downside risk), while the copula function is employed to model
the joint distribution among marginal returns (i.e., profit in each zone). The mean-CVaR optimisations indicate
that geographical diversification could be a feasible agricultural risk management approach for wheat farm
portfolio managers in achieving their optimised expected returns while controlling the risks (i.e., target levels of
risk). Further, in this study, the copula-based mean-CVaR model is seen to better simulate extreme losses
compared to the conventional multivariate-normal models, which underestimate the minimum risk levels at a
given target of expected return. Among the suite of tested copula-based models, the vine copula in this study is
found to be a superior in capturing the tail dependencies compared to the other multivariate copula models
investigated. The present study provides innovative solutions to agricultural risk management with advanced
statistical models using Australia as a case study region, also with broader implications to other regions where
farming revenues may be optimized through copula-statistical models.

1. Introduction

Climate variability significantly influences agricultural production
and the subsequent revenues received from the sale of various crops.
However, recent extreme climatic events have been linked to large
losses in agricultural production, in both developing and developed
nations (Barriopedro et al., 2011; Coumou and Rahmstorf, 2012; Herold
et al., 2018). For instance, about one-quarter of the damaged agri-
cultural production in developing nations has been associated with
extreme climate-related disasters (FAO, 2015). In addition, the study of

Lesk et al. (2016) reported that extreme drought and heat events have
also caused a significant decline in cereal production ranging from 9 to
21% in both developed and developing nations. To mitigate and pos-
sibly, to reduce agricultural yields and the associated financial losses
that could be triggered by extreme climate events, agricultural adap-
tation strategies are required.

Portfolio theory suggests that the geographical diversification
strategy could assist farmers in reducing the impacts of the variabilities
faced in respect to the crop yield and prices associated with climate
variabilities and the changes in other types of factors (Bradshaw et al.,
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2004; Mishra et al., 2004). This means that farming systems are di-
versified over space to reduce the impact of systemic risks. However,
the effectiveness of geographical diversification strategies in agriculture
is to date poorly studied (see Larsen et al., 2015). To address this need,
especially for agricultural reliant nations (e.g., Australia), this study
aims to investigate the utility of geographical diversification in port-
folio management of wheat farming, an important grain crop for Aus-
tralia's agricultural sector (Murray and Brennan, 2009).

In classical Markowitz mean-variance (MV) portfolio optimisation,
efficient portfolios are optimised to minimise their variances and to
reduce overall financial risk (Markowitz, 1952). Hence, each portfolio
along the efficient frontier must have a minimum variance for that level
of return. However, despite its popularity, the MV method has limita-
tions. For example, the variance metric is a symmetrical measure that
does not take into consideration the direction of the co-movement.
Minimising the variance penalises the downside risk in a manner ap-
pearing the same as the upside risk of the portfolio return distribution.
This is an issue since an asset that experiences better than the expected
return is deemed to be a risky scenario relative to an asset that is suf-
fering from a lower than expected return. To address this issue, alter-
native risk-based measures such as the Value-at-Risk (VaR) and the
Conditional Value-at-Risk (CVaR) have been introduced to replace the
MV method.

Rockafellar and Uryasev (2000) have recommended CVaR as a
measure of alternative risk that is preferred to the common VaR con-
cept. A CVaR-based optimised portfolio only penalises for the loss (i.e.,
the downside risk), and not the gain (i.e., upside risk) in the portfolio
return distribution. It is related to but is superior to the VaR for opti-
misation applications for several reasons. Firstly, the CVaR tends to
satisfy the four properties of a coherent risk measure; translation in-
variance, monotonicity, subadditivity and positive homogeneity (Pflug,
2000). Secondly, the VaR is able to describe a loss of X or greater than
this, and thus, this last clause tends to be omitted in most cases when
people quote the VaR. CVaR, on the contrary, is an estimate of the size
of the tail loss, which gives a more accurate estimate of the associated
risk.

In the existing literature, common methods of calculating the CVaR
normally consists of the variance-covariance, historical and the Monte
Carlo simulation (Chernozhukov and Umantsev, 2001; Zhu and
Fukushima, 2009). Calculating CVaR also involves an estimation of the
tails of the joint distribution among the marginal returns (i.e., the profit
of each farm that is considered in the problem). However, the variance-
covariance and historical simulation method have some degree of re-
strictions, which might not be always reasonable, and necessarily true
in practice. For example, the variance-covariance method assumes the
returns to be normally distributed, which can be problematic from a
practical point of view. This is because many financial returns have
elongated and broadened tails in the dataset so a normal distribution
assumption can seriously underestimate the size (and the pivotal role)
of the tail end of the data (Ang and Chen, 2002; Embrechts et al., 2001;
Longin and Solnik, 2001). Simulations based on historical data also
assumes that the distributions of the returns in the future are similar to
those in the past. Furthermore, in most cases, there are relatively few
data points that are present in, for example, the 0–5th percentile or
extreme tail of the distribution. The Monte Carlo method is therefore
preferred in such circumstances since it is able to calculate the CVaR in
a similar fashion to historical simulation, while also being based on the
randomly generating scenarios from a model whose parameters are
acquired from the historical data.

As mentioned above, the non-linear interdependence at the tails
between the marginal returns need to be captured more effectively
relative to conventional approaches in order to obtain accurate esti-
mations of CVaR. This requires a robust multivariate prediction model
that is capable of fully capturing the joint dependence structure among
the related variables. A conventional approach commonly relies on the
utilization of a multivariate-normal distribution that assumes a

normality of the considered variable(s). However, there is no doubt that
the agricultural prices and crop yields have been shown to be non-
normally distributed (e.g., Goodwin and Ker, 2002), and therefore, any
approach that does not consider this important data limitation aspect
can lead to erroneous conclusions. Fortunately, copula functions (that
can analyse non-linearity in multivariate data) is able to provide an
alternative statistical approach to modelling the joint distribution of
multivariate datasets, allowing one to specify the marginal distribution
among the tested variable and their dependence structures in-
dependently. Due to their distinct merits in modelling multivariate joint
distributions, copula-based models have been applied extensively in
many fields such as insurance and financial risk modelling (Hu, 2006;
Kole et al., 2007), hydrology and water resources (Chowdhary et al.,
2011; Favre et al., 2004), drought studies, agricultural and precipita-
tion forecasting (Bessa et al., 2012; Ganguli and Reddy, 2012; Janga
Reddy and Ganguli, 2012; Nguyen-Huy et al., 2017; Vergni et al., 2015;
Nguyen-Huy et al., 2018).

Although copula method is a popular tool in financial risk literature
in general and also in portfolio analysis (Boubaker and Sghaier, 2013;
Huang et al., 2009; Kresta and Tichý, 2012), its application in agri-
cultural risk management and crop insurance aspects are relatively
recent (Bokusheva, 2014; Goodwin and Hungerford, 2014; Nguyen-Huy
et al., 2018; Okhrin et al., 2013; Vedenov, 2008). Furthermore, the
published literature in this area shows limited research has been un-
dertaken regarding the application of copulas in geographically di-
versifying risks in agriculture. In spite of this, some studies are parti-
cularly notable, for example, Larsen et al. (2015) proposed a copula-
based mean-CVaR model to inspect the potential benefits of risk re-
duction using a geographical diversification strategy for the case of a US
wheat farming scenario. The authors applied multivariate Archimedean
copula model and compared it with a traditional multivariate-normal
model as a benchmark tool. The mean-CVaR optimisation results in-
dicated the effectiveness of geographical diversification in risk man-
agement strategy from a farm's marginal return viewpoint. It was not
surprising to note that the multivariate-normal model led to an un-
derestimation of the minimum level of associated risk faced by the
wheat farmer at a given level of agricultural profitability. Importantly,
the study concluded the copula-based model performed more appro-
priately for extreme losses of the farm profitability. However, the
multivariate Archimedean copulas assume the same dependence para-
meter among the pair of variables. This sort of assumption is unrealistic
in practical scenario (Hao and Singh, 2016; Zhang and Singh, 2014;
Nguyen-Huy et al., 2018).

In this paper, we focus on wheat, a primary cereal crop in Australia.
However, wheat is mostly grown in drylands in Australia (i.e., as a rain-
fed crop) that exhibits one of the world's most extreme variable climate
conditions (Portmann et al., 2010; Turner, 2004). However, to the best
of the authors' knowledge, the effectiveness of geographical diversifi-
cation including the mean-CVaR optimisation in risk management
strategy has not been examined in Australian farming contexts. The
present study, therefore, utilises the contemporary vine copula method
in Monte Carlo simulation approach for calculating the corresponding
value of CVaR. This approach allows to randomly generate the sce-
narios of the marginal returns of wheat farming based on their joint
distribution. The primary merit of vine copula model (Nguyen-Huy
et al., 2017, 2018) (in comparison to the other types of multivariate
copulas) is that it allows the integration of different bivariate copulas
for the modelling of the flexible dependence among the pairwise vari-
able disregarding the marginal selections differences (Bedford and
Cooke, 2002).

By extending previous studies in the context of agricultural yield
modelling and seasonal precipitation forecasting studies in Australia
(Nguyen-Huy et al., 2017, 2018), the aims of the present study are as
follows. (1) To investigate the effectiveness of the geographical di-
versification strategy in reducing risks in agricultural operations. (2) To
demonstrate a robust statistical method, the vine copula-based mean-
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CVaR model, for quantifying optimum amount of diversification needed
for given level of risk. (3) To compare the traditional multivariate-
normal, multivariate Archimedean and vine copula model in simulating
the extreme losses. The vine copula-based mean-CVaR approach is ex-
pected to perform better and provide further insights into improving
conventional multivariate-normal models that underestimate the
minimum risk levels at a given target of profitability.

2. Materials and method

2.1. Data

In this study, we used aggregated yield and financial data from three
of Australia's key wheat producing zones collected from the Department
of Agriculture and Water Resources, Australian Government (AgSurf)
(http://apps.daff.gov.au/agsurf/) for the period 1990–2016. The three
broad-acre wheat zones include Wimmera (Victoria), Eyre Peninsula
(South Australia), and the North and East Wheat Belt (Western
Australia) where the “()” show the respective wheat growing States. For
conciseness and consistency, the study site names henceforth are based
on Australian States (i.e., VIC, SA & WA, respectively) for each of the
wheat growing zone. These zones, reported in previous studies
(Nguyen-Huy et al., 2017, 2018) have been selected as they are geo-
graphically distinct spanning across a wide range of climatic and wheat
growing conditions and so are expected to expose to different risks at
different times (Fig. 1).

The data are as per farm averages, including the wheat receipts ($),
the total area sown (ha) and the costs per hectare ($/ha). The total cost
consists of the contracts, chemicals, electricity, fertiliser, fuel, interest
paid, water charges, repairs, seed, insurance, labour and some of the
other related expenses. Marginal returns measured at the farm profit-
ability are expressed as the percentage of the gross revenue exceeds the
total cost. The marginal return of the ith zone ri, =i( 1,2,3) is calculated
as follows (Larsen et al., 2015):

=gross revenue wheat receipts toal area shown/ (1)

=
−

r
gross revenue total

gross revenue
cost

i
(2)

3. Method

3.1. Conditional Value-at-risk

Suppose that f x y( , ) denotes a loss function depending upon the
decision x , to be chosen from a feasible set of a realistic portfolio X , and
a random vector y. Let Ψ x α( , ) be the probability that the loss f x y( , )
does not exceed some threshold value α. The VaR function α x( )β , which
is the percentile of the loss distribution at the confidence level β, is
formally defined as (Rockafellar and Uryasev, 2000):

= ∈ ≥α x α Ψ x α β( ) min{ ( , ) }.β  (3)

By this definition, CVaR is able to measure the conditional ex-
pectation of the losses greater than that amount α. Therefore, the CVaR
function ϕ x( )β is defined mathematically as follows (Rockafellar and
Uryasev, 2000):

∫= − −
>

ϕ x β f x y p y dy( ) (1 ) ( , ) ( ) ,β f x y α x
1

( , ) ( )β (4)

Where p y( ) is the probability density function of the random vector y. It
is clear that the CVaR is a greater bound for the VaR at the same
confidence level. Also, with many advantages stated in the previous
section, CVaR offers a more consistent risk measure than VaR and
generally results more efficient in the context of portfolio optimisation
(Mulvey and Erkan, 2006). In addition, CVaR can be expressed as a
convex function allowing the construction of the portfolio optimisation
problem which can be efficiently solved by linear programming tech-
niques as shown in (Rockafellar and Uryasev, 2000) and will be de-
scribed in the forthcoming method section. Although VaR plays a role
in the optimal portfolio approach, it exposes some inherent restrictions
as mentioned above. Therefore, the risk of high losses could be reduced
through minimising CVaR rather than minimising VaR since a portfolio
with low CVaR will necessary have low VaR as well (Rockafellar and
Uryasev, 2000).

3.2. Portfolio optimisation problem

Suppose a portfolio consists of n production zones with a random
percentage of the marginal returns r r, ..., n1 , the marginal expected re-
turn E r[ ]i and wi is a share of the total hectares allocated to the pro-
duction zone (i.e., the decision vector or weight). The farmer's portfolio
optimisation problem, in the context of the agricultural sector, is to
maximise the expected returns (sum of all marginal expected returns
multiply with the corresponding weights) of the portfolio given a spe-
cified risk level β. The portfolio optimisation problem can then be
formulated as (Larsen et al., 2015):

∑− −
=

maximise w E r[ ],
i

n

i i
1 (5)

− −⎧
⎨⎩

≤

∑ ==

subject to
ϕ w ϕ

w
,

( )

1
,

β i

i
n

i1 (6)

where ϕ is defined as the target risk (CVaR) levels.

3.3. Calculating Conditional Value-at-risk

To solve the subject function in Eq. (6), the CVaR function in Eq. (4)
can be expressed as (Rockafellar and Uryasev, 2000):

∫= + − −− +
F w α α β f w r α p r dr( , ) (1 ) [ ( , ) ] ( ) ,β

1
(7)

where the indicator function:

= ⎧
⎨⎩

>
≤

+I I when I
when I[ ] 0

0 0.
(8)

The integral in Eq (7) can be approximated further by sampling the

Fig. 1. Location of the broad-acre wheat zones in Australia that spans across
different growing conditions. Wheat is grown mostly in temperate climate
condition in Wimmera (Victoria, VIC). Eyre Peninsula (South Australia, SA)
exhibits a mixture of the temperate and savanna while the entire North and East
Wheat Belt (Western Australia, WA) is dominated by savanna.
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probability distribution of r based on its density p r( ) as (Rockafellar
and Uryasev, 2000):

∑= +
−

−∼

=

+F w α α
m β

f w r α( , ) 1
(1 )

[ ( , ) ] .β
j

m

j
1 (9)

Therefore, the portfolio optimisation problem, as shown in Section
2.2.2, can be alternately formulated as the following linear program-
ming problem:
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where − =+f w r α u[ ( , ) ]j k and R denotes the target expected returns.
The sampling of vector r based on the copula methods is introduced in
the next section. The linear optimisation problem was solved using the
R-package fPortfolio (Würtz et al., 2009).

3.4. Copulas

As stipulated above, the calculation of the CVaR using the Monte
Carlo simulation method requires a knowledge of the joint distribution
of all marginal returns involved in the portfolio. To fulfill this re-
quirement, Sklar (1959) theorem suggests that the joint distribution
F x x( , ..., )n1 can be expressed as:

=F x x C F x F x( , ..., ) [ ( ), ..., ( )],n n n1 1 1 (12)

where →C: [0,1] [0,1]n is a unique copula function and F x( )i i are mar-
ginal distributions (margins) of variables of interest. Note that Eq. (12)
implies that the unknown joint distribution can be constructed by two
separate parts, including the copula function and the marginal dis-
tributions of the historical marginal returns.

Regarding the most suitable copula function, in this study, we have
considered several copulas that are commonly classified into different
families based on their construction methods, comprising, but not
limited to, the elliptical, Archimedean, vine, empirical, extreme value,
and the entropy copulas. For more details on the full suite of copula
functions, readers are referred to the studies of Joe (1996), Nelsen
(2006), and Bedford and Cooke (2002). In this paper, the first three
families including the elliptical, Archimedean, and vine copula are
tested and compared. The estimation and usage of these functions are
described in the next section.

3.5. Construction of the copula-based model

We employ the vine copula approach that was previously utilised in
our earlier published work (Nguyen-Huy et al., 2017, 2018) to develop
vine copula-based models for this study. Here, we briefly describe the
main steps of the vine copula model construction procedure. The first
step in constructing the copula model is to select the theoretical dis-
tribution functions that are able to approximately describe the histor-
ical marginal returns. This study adopts the parametric approach to fit
the historical marginal returns since later in the simulating process, the
reverse distribution function needs to be used to transform the copula-
modelled data back to the real scale values.

A set of twenty-five theoretical probability distributions are fitted to
the marginal return data, which follows earlier studies (Nguyen-Huy
et al., 2017, 2018). The candidate distribution is selected based on a
statistical assessment of the goodness-of-fit test, i.e., the Kolmogorov-
Smirnov statistic (KS). If the p-value of the KS test is greater than 0.05,
we cannot reject the null hypothesis that the observed data follow that

specific distribution. Then, the distribution with a lower Akaike In-
formation Criterion (AIC) is selected for that data. Further, the gra-
phical analysis is also performed to support selecting the most appro-
priate distribution function as in our previous works (Nguyen-Huy
et al., 2017, 2018).

In the second step, the copula parameters are estimated using the
maximum pseudo-likelihood method (Chowdhary et al., 2011), re-
quiring the marginal return data to be transformed in the unit hy-
percube. In general, this transformation can be performed by applying
either the fitted distribution (selected in the first step) or the empirical
distribution. Here we utilise the empirical method (Genest and Favre,
2007) to ensure that the dependence structure between the pairwise
data is independent of the marginal distributions. Thus, the marginal
returns are transformed into the pseudo-data using the corresponding
empirical distribution function F (.) as =u F r( )i i . Henceforth, the co-
pula parameters θ are estimated through the maximum pseudo-like-
lihood estimation method (Chowdhary et al., 2011):

∑=
∈ =

θ̂ c u u θarg max ln ( , ..., ; ),
θ Θ t

T

t nt
1

1
(13)

where c (.) is the copula density. The most accurately fitted copula
model is selected based on the Akaike Information Criterion

= − +AIC ll k2 ln( ) 2max as the function of the maximum log-likelihood
value ll( )max and the number of estimated parameters k.

Subsequently, a random vector u u( , ..., )n1 whose marginal distribu-
tions follow a uniform distribution is generated using the selected co-
pulas. The steps in randomly generating the data samples from the
fitted copulas are in accordance with the study of Brechmann (2010).
Finally, the simulated realizations of the marginal return for each zone
are obtained by inverse transformation following

= − −r r F u F u( , ..., ) [ ( ), ..., ( )]n n n1 1
1

1
1 . The six popular copula functions and

their rotated functions were employed in this analysis including Gaus-
sian, Student's t (symmetric but heavier tails), Clayton, Gumbel, Frank,
and Joe. These copula functions are employed in the construction of
both multivariate Archimedian and vine copula models. Readers may
refer to the previously published study of Zhang and Singh (2014) for
more details on the multivariate elliptical and Archimedean copulas,
including vine copulas. The computations are performed using several
packages, including: copula (Yan, 2007) and VineCopula
(Schepsmeier et al., 2017) available in R software (R Core Team, 2016).

Further applications of a vine copula model in climate extreme
event prediction and agricultural yield simulation can be found in our
earlier studies (e.g. (Nguyen-Huy et al., 2017; Nguyen-Huy et al.,
2018)).

4. Results and discussion

In this section, the modelled results generated to solve the problem
of farming portfolio-optimisation based on optimal copula-statistical
model are provided with a physical interpretation in context of the
applied models and the problem of interest. Fluctuations in marginal
returns potentially associated with extreme climate conditions are
firstly represented. Henceforth, the results of the copula model selection
are described using multivariate copulas and vine copula functions. The
conventional multivariate-normal model is also developed, for a com-
parison of the results with multivariate copulas and vine copula models.
Finally, we discuss the mean-CVaR optimisations and optimal portfolio
allocation results derived from models at different confidence levels.

4.1. Variations in the marginal return

Fig. 2 illustrates the historical marginal returns of each wheat
growing zones in Australia. The pattern of marginal return at SA ap-
pears to be most stable, except for 2007–8. The extreme losses occur-
ring in all zones for the period 2006–7 may be associated with one of
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most severe drought conditions on record, caused by the El Niño event
across most of Australia (Bureau of Meteorology). However, it is noted
that the marginal return at each zone generally moves in an opposite

direction to that in other zones. It can be observed clearly during the El
Niño year of 2006–07, while the marginal returns at the SA and the WA
farms dropped severely, that at the VIC farm increased considerably.
Moreover, the marginal returns at VIC and SA farms are seen to fluc-
tuate during the five consecutive El Niño years of 1991–5 (https://
www.longpaddock.qld.gov.au/), however, that of the WA farm during
the same period either remained stable or increased. If we study the
data further, the opposite co-movement of the marginal returns is also
indicated by the generally low correlation coefficients and the different
degrees of dependence between the marginal returns of each study zone
pair (see Table 1). The stochastic nature of the marginal returns at these
study zones clearly suggests that the geographical diversification can be
considered as a feasible risk management strategy to possibly assist the
wheat farmers in reducing their losses.

In Table 2, we summarize the basic statistics of the historical mar-
ginal returns. The difference between the highest (i.e., SA) and the
lowest (i.e., WA) average marginal return is found to be approximately
14%. Notably, VIC is seen to have the widest range of marginal return
that varies from −26% (loss) to 58% (gain), while the marginal return
at SA is seen to be the smallest, ranging from −19% to 53%. The
highest marginal return at WA is approximately 52%, whereas the
lowest is approximate −38%. It is worth pointing out that the max-
imum and the minimum values of the marginal returns at the VIC and
WA study sites suggest that these farming zones might potentially yield
a high profitability but they may also potentially have an extremely low
profitability. Both of these zones have the highest standard deviation, as
expected. Conversely, the SA farming region does not exhibit extreme
values of marginal return accompanying the lowest standard deviation.
Therefore, a visual conclusion derived from the analysis of the summary
statistics is that the growing of wheat in SA is likely to gain a more
stable benefit and a reduction in some risks. However, the skewness and
kurtosis also expose VIC has the lowest outliers in the lower tail (ex-
treme losses).

Table 2 also provides information regarding the higher moments of
the marginal return data indicating the unreality of the normal as-
sumption of marginal returns. It can be seen that WA study site has the
highest absolute values of the skewness (2.13) and the kurtosis (5.90)
factors, following by SA (1.5 and 1.9, respectively), meanwhile those
are the lowest at VIC (1.24 and 1.73, respectively). According to Curran
et al. (1996), a normal distribution has the skewness equal to 0 and the
kurtosis equal to 3. It is clear that the skewness and kurtosis of all the
three zones are significantly different to those of normal distribution.
Therefore, it is suggested that the distributions of the marginal returns
at three zones are non-normal and asymmetric. The results from the
Shapiro-Wilk normality test also reject the hypothesis that the marginal
return data are normally distributed with p-values less than 0.1. These
results, therefore, question the practice of the linear correlation analysis
and normal assumptions in previous studies, to justify the use of the
non-linear copula approach that is pursued in this study.

Fig. 2. Historical marginal returns over the period study 1990–2016 at the three wheat production zones in Australia: VIC, SA and WA.

Table 1
The degree of dependence of the farm-level return margins across the different
wheat growing study sites across Victoria (VIC), South Australia (SA) and
Western Australia (WA) measured by the Pearson's correlation coefficient,
Spearman's rho, and the Kendall's τ parameters.

Tested Study Site VIC SA WA

Pearson's correlation coefficient
VIC 1.0000 0.3643 0.3585
SA 1.0000 0.5770
WA 1.0000
Spearman's rho
VIC 1.0000 0.4438 0.3358
SA 1.0000 0.1978
WA 1.0000
Kendall's τ
VIC 1.0000 0.3105 0.2422
SA 1.0000 0.1339
WA 1.0000

Table 2
Summary statistics for the return margins at the three wheat zones: VIC, SA and
WA.

Statistical Property VIC SA WA

Mean 0.3018 0.3385 0.2962
Maximum 0.5825 0.5251 0.5150
Minimum −0.2630 −0.1849 −0.3816
SD 0.1808 0.1699 0.1776
Skewness −1.2370 −1.5076 −2.1309
Kurtosis 1.7342 1.9601 5.9013
Shapiro-Wilk test 0.8991 0.8436 0.8071
p-value 0.0128 0.0009 0.0002

Table 3
Selected marginal distributions with their parameters, Akaike Information
Criterion (AIC), and the p-value of the Kolmogorov-Smirnov statistic for mar-
ginal returns.

Zones Distribution Parameters AIC p-value

VIC Generalised Logistic location = 0.4533 −17.9163 0.9498
scale = 0.0421
shape = 0.2529

SA Generalised Logistic location = 0.5047 −30.1221 0.9975
scale = 0.0130
shape = 0.0775

WA Generalised Logistic location = 0.4586 −26.0397 0.9942
scale = 0.0217
shape = 0.1302
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4.2. Copula model

As the first step of the model construction, the historical marginal
returns are fitted to the theoretical distribution curves (Nguyen-Huy
et al., 2017, 2018). All of the three historical marginal return data can

be appropriately described by the generalised logistic distribution with
the estimated parameters shown in Table 3. The graphical assessment
involves the density, cumulative distribution function, quantile-quan-
tile, and probability-probability plots, which are analysed to confirm
the marginal distribution results. Fig. 3 displays the density and

Fig. 3. Graphical analysis of goodness-of-fit for selecting marginal distributions approximate to VIC (a–b), SA (c–d), and WA (e–f) returns with density and quantile-
quantile plots.
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quantile-quantile plots (as for example), while graphical analysis of
goodness-of-fit in conjunction with statistical test in Table 3 support the
selection of the generalised logistic distribution for fitting the returns in
VIC, SA, and WA.

Table 4 represents the summary results of the multivariate copula
functions with the corresponding parameters, maximum log-likelihood
ll( )max , and AIC. Based on the AIC, the results show that the Gumbel

copula is the most appropriate copula model regarding the case of
multivariate copulas. The same set of copula functions are employed for

the vine copula development and the selected vine copula model is il-
lustrated in Table 5. Similar to the procedure adopted for fitting the
marginal distributions, in this study we also applied graphical tools to
support the selection of the most suitable copula. Fig. 4 plots the con-
tours of the selected bivariate copulas for each pairs of the returns,
superimposed on empirical observations and simulated data derived
from the corresponding copulas.

Since there are three zones in this study it is pertinent to construct
three unique drawable D- and canonical C-vine copulas (Aas et al.,
2009). The vine copula with the construction data of VIC – SA – WA
combinations is selected among the three cases since this construction
yields the lowest AIC. It is noteworthy that the zone names imply the
nodes of the copula model with the corresponding and the respective
order whereas the dashed symbols denote the edges of the first tree of
the vine copula model construction.

Following the construction of optimal copula-statistical models, we
apply the copula-based Monte Carlo simulation and obtain 2700 si-
mulations (i.e., simulation is repeated in 100 times for the sample size
of 27 points) of the marginal returns for each zone from the chosen
Gumbel and the vine copula models (Nguyen-Huy et al., 2017, 2018).
For the purpose of comparison, the traditional multivariate-normal
distribution is also used in this study to generate another a set of si-
mulated data using the Monte Carlo simulation technique. In this case,
the marginal returns are assumed to follow a multivariate-normal dis-
tribution (i.e., the individual marginal return distributions and their
dependences are assumed to be normal). These three sets of randomly
simulated data (have been transformed back to the real values) are fi-
nally employed in the following geographical diversification analysis
and interpretation.

4.3. Mean-CVaR efficient frontiers

This section describes the mean-CVaR optimisations where the ex-
pected return of wheat farmer's portfolio are maximised subject to the
target risk (CVaR) constraint. Table 6 displays the examples of optimal
portfolios at three common confidence levels (i.e., 90%, 95%, and 99%)
from copula-based and conventional multivariate normal models. It is
noticed that, by definition, the CVaR risk measure evaluates the out-
comes versus the zero and, consequently, it is likely to have positive
and negative values. The reported values of the positive or greater than
zero CVaR (similar to the positive VaR) refers to the certain negative
outcomes (i.e., losses), and the negative CVaR correspond to certain
positive outcomes (i.e., the gains or the returns). For example, a value
of 95% CVaR of 0.10 (a positive value) refers to the scenario that the
expected return of the 135 worst scenarios (i.e., 5%*2700) is equal to
−10%, and conversely, a value of 95% CVaR of −0.10 (a negative
value) refers to the scenarios that the expected return of the 135 worst

Table 4
Copula parameters, maximum log-likelihood (llmax), and the Akaike
Information Criterion (AIC).

Copula function Parameters llmax AIC

Gaussian ρ1 = 5526, ρ2 = 0.453, ρ3 = 0.395 6.060 −6.121
Student's t ρ1 = 0.417, ρ2 = 0.371, ρ3 = 0.282,

ν = 4.000
5.526 −5.052

Clayton θ = 0.655 4.980 −7.959
Gumbel θ = 1.365 5.688 −9.376
Frank θ = 2.189 3.679 −5.358
Joe θ = 1.512 4.827 −7.653
Survival Clayton θ = 0.654 4.722 −7.444
Survival Gumbel θ = 1.342 4.980 −7.960
Survival Joe θ = 1.482 4.379 −6.759

Table 5
Structure of vine copula model with parameters, maximum log-likelihood
(llmax), and Akaike Information Criterion (AIC).

Tree level Edge Copula
function

Parameter llmax AIC

SA as center: VIC – SA – WA
T1 VIC, SA Survival

Clayton
θ= 0.949 8.389 −8.779

WA, SA Student's t ρ = 1.604,
ν= 2.000

T2 VIC|SA,
WA|SA

Survival Joe θ= 1.560

VIC as center: SA – VIC – WA
T1 SA, VIC Survival

Clayton
θ= 0.949 6.040 −6.079

WA, VIC Gumbel θ= 1.370
T2 SA|VIC,

WA|VIC
Gumbel θ= 1.082

WA as center: SA – WA – VIC
T1 SA, WA Student's t ρ = 1.604,

ν= 2.000
7.330 −6.660

VIC, WA Gumbel θ= 1.370
T2 SA|WA,

VIC|WA
Survival
Clayton

θ= 0.547

Fig. 4. Contour plots of selected bivariate copulas for each pairs of returns superimposed with standardized empirical observations (red points) and 1000 simulated
data (smaller grey points) derived from the corresponding survival Clayton, Student's t, and Gumbel copulas. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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scenarios is equal to 10%.
In order to compare the optimised values of mean-CVaR under

different distribution assumptions, the same targets of the expected
returns are selected for each confidence level. The two copula-based
portfolios produce a higher mean-CVaR value than the conventional
multivariate-normal portfolio. Thus, the results in Table 6 indicate that
if the joint distribution of the marginal returns is followed properly by a
non-normal distribution modelled as by the copulas, the wheat farmers
are likely to underestimate the minimum level of the risk measured by
mean-CVaR for a given expected return using the multivariate-normal

method. Since the marginal returns clearly do not follow the normal
distribution as shown in section 3.1 and Table 3, the risk level should be
measured based on the copula model.

The underestimation of risk under the assumption of a multivariate-
normal distribution is displayed clearly in Fig. 5. The mean-CVaR ef-
ficient frontier acquired from the traditional multivariate-normal
portfolio is plotted against those from the copula-based portfolios for
different confidence levels. As it can be seen from Fig. 5, the sig-
nificantly higher values of the frontiers can be observed from the co-
pula-based models compared to the multivariate-normal model. This is
because the copula-based models are able to account for the tails de-
pendences whereas the multivariate-normal distribution assumes the
coefficient of the tail dependence is zero, and therefore, it ignores the
co-movement in the tail of the joint distributions. As such, the portfolio
optimisation method relying on the conventional multivariate-normal
assumption might be less protective, whereas copula-based models are
more appropriate for farmers who are concerned with the extreme
losses of their farm profitability.

Regarding the copula-based portfolios, we can infer that the vine
copula is able to measure the risk much better than the Gumbel copula
for all considered confidence levels. It is because, by the construction
method, the vine copula models the dependences of each variable pairs
more flexible than the multivariate Archimedean copula (Bedford and
Cooke, 2002; Zhang and Singh, 2014). To examine this, we also inspect
the preservative capacity of the three model for modelling the de-
pendences among variable pairs. Fig. 6 displays a comparison of si-
mulated and observed rank-based correlation coefficients (Kendall's τ)
for the three models. It is clear that the vine approach is able to reserve
the dependences of all variable pairs compared to the multivariate
Gumbel and multivariate-normal model. Therefore, the Gumbel model
may overestimate the risks given the same target expected returns in
comparison to the vine model.

The single portfolios of each zone relative to the vine copula-based
frontiers are shown in Fig. 7. This figure reveals how risk reduction can
be achieved by a geographical diversification strategy. It can be seen
that the farmer's profitability currently growing wheat at VIC and WA
zones is below the efficient frontiers level whereas those for SA are on
the frontier curve. Geographical diversification is likely to improve the
profitability in both the VIC and the WA zones, but not in the SA
farming area for a given level of downside risk. Growing wheat in SA
could, therefore, face the maximum risk since it is located at the highest
point of the frontier curve, however, it has the possibility of reaching
the highest profitability as well. In addition, in the circumstances, the
producers could decide to be slightly less profitability by geographically
diversifying in order to reduce a relatively large downside risk. For
example, by allocating about 10% of their production area to VIC,
wheat producers in the SA region can adjust their expected profitability
in the worst 5% of the cases from approximately 33.98%–33.69% (i.e., a
reduction of 0.29%), which in turn can reduce the downside risk from
approximately 14.70%–11.51% (i.e., a risk reduction of 3.19%). This is
because the average marginal return (and the standard deviation) in SA
is just 3.67% higher (and 1.09% lower) than in VIC. The kurtosis (and
skewness) in the SA region is also 22.59% higher (and 27.06% lower)
than that in the VIC region (Table 3). By definition, the kurtosis factor is
able to measure whether the data are heavy-tailed or light-tailed

Table 6
Three examples of the optimal portfolios with the conditional value-at-risk (CVaR) and the target returns at 90%, 95%, and 99% confidence levels for the case of the
vine, Gumbel, and multivariate-normal (M-Normal) portfolios.

Copula Type 90% 95% 99%

Target Return Mean-CVaR Target Return Mean-CVaR Target Return Mean-CVaR

C-Vine 0.332 −0.0177 0.332 0.0680 0.332 0.2628
Gumbel 0.332 −0.0029 0.332 −0.0090 0.332 0.2611
M-Normal 0.332 −0.0651 0.332 −0.0229 0.332 0.0520

Fig. 5. Mean-CVaR efficient frontiers from the vine, Gumbel, and multivariate-
normal (i.e., M-Normal) model at confidence levels of 90%, 95% and 99%.
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relative to a normal distribution. Thus, we deduce that the SA region is
likely to have higher heavy tails or outliers in the lower tail (extreme
losses) since the high negative skewness implies the asymmetry to the
left of its marginal return distribution.

In accordance with the results, the ratios of the trade-off between
target risks and expected returns changes along the efficient frontiers.
In contrast to the high targets of the expected returns, the wheat pro-
ducers can increase their expected returns without exposing themselves
to higher risk through the geographical spread of wheat farms at the
lower levels of expected profitability. This is possible by balancing the
hectares allocated to the SA and VIC regions, and allocating a small part
to the WA region. This result is expected in terms of the reasons men-
tioned above between the SA and VIC zones. Importantly, WA has the
lowest average marginal return and the highest kurtosis and (absolute)

skewness. Therefore, the major benefits from growing in WA are de-
rived mostly from the low relationship (or opposite co-movement) of
the marginal returns with VIC and SA (see Table 1 and Fig. 2).

4.4. Optimal portfolio allocation

In this section, we analyse the optimal percentage allocation among
three growing zones. Firstly, we investigate the differences between a
feasible portfolio with equal weight (i.e., the total hectare is divided
equally into three zones) and an efficient CVaR portfolio. This com-
parison is performed by specifying the target expected return and then
optimising the portfolio which has the lowest risk for both cases. The
results illustrated in Table 7 indicate that the risk of the optimised ef-
ficient CVaR portfolio has been lowered from 3.45% to 3.37% for the
same target return.

We further explore on the optimal hectare allocation with the mean-
CVaR efficient frontiers. Fig. 8 represents the efficient allocation (i.e.,
optimal weight) (a), weighted returns (b), and the covariance risk
budgets (c) corresponding to different targets of the mean-CVaR effi-
cient frontiers (for 95% confidence level) for the vine copula-based
portfolios. Since the weighted return is the product of the optimal
weight (i.e., the hectare allocated) and corresponding marginal return,
its value illustrates the proportion of each zone contributing to the
expected marginal return. Thus, these figures appear to show a similar
pattern to figure (a).

It is clear that the optimal share allocated to each growing zone
varies depending on the different expected marginal returns and risk
levels. As expected, the optimal decision is to allocate all production to
the zone with the highest expected marginal return, i.e., SA in this case,
resulting in the maximum risk level. The optimal choice for the
minimum CVaR portfolio is to operate in all the three zones with the
highest proportion of growing land allocated to SA (50%), followed by
VIC (40%) and WA (10%). In order to achieve a medium to high level of
expected profitability, wheat should be grown mostly in SA and not at
all in WA. It is also optimal to allocate the majority of the land to SA
and VIC, and less than 10% to WA when targeting low to medium levels
of profitability and risk.

Figs. 9 and 10 are similar to Fig. 8, however, for the confidence
levels of 90% and 99%, respectively. It can be seen clearly that the
patterns of hectare allocation are different corresponding to the inter-
ested confidence levels. For the very worst cases (i.e., at the confidence
level of 99%), to optimize the minimum risk, the total hectare should be
allocated more in SA (55%) and lesser in WA (5%) since SA has the
lowest standard deviation.

Fig. 6. Comparison of the simulated (in box plots) and the observed (as red points) values of the Kendall's τ for the vine, Gumbel, and multivariate-normal (M-
Normal) model. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Mean-CVaR efficient frontiers at the 95% confidence level for the vine
copula model and single portfolios.

Table 7
Comparison of equal weight feasible and efficient CVaR portfolios (at 95%
confidence level).

Allocation and Risk
Level

VIC SA WA Expected
return

CVaR

Equal weight feasible portfolio

Hectare allocation 0.3333 0.3333 0.3333 0.3142 0.0345
Covariance risk budget 0.3702 0.2962 0.3336

Efficient CVaR portfolio

Hectare allocation 0.3978 0.3214 0.2808 0.3142 0.0337
Covariance risk budget 0.4603 0.2768 0.2630
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5. Discussion

It is not surprising that there is an argument on improving the ef-
ficiency of diversification strategies in agriculture. In the worst case
when a series of weather events are highly correlated, it is obvious there
may be no benefit of diversification. According to Mahul (1999), we
cannot diversify systemic risk if natural disasters occur concurrently
among a large number of farming systems. Some relevance may be
drawn from the study of Xu et al. (2010) in Germany, stating that
systemic weather risks are not possible to be diversified a regional scale.
Based on a study in the United States, Holly Wang and Zhang (2003)
stated that a wheat-cropping system can be geographically diversified
at the county level. Accordingly, the behavior of systemic weather risks
may be different over a global scale because of the differences in geo-
graphical topography and climatic conditions (Odening and Shen,
2014). In this study, geographical diversification has been examined as
a potentially effective strategy for risk reduction in an Australian
farming system. This study is important since portfolio managers can
achieve an optimal portfolio with specifically required target risks and
expected returns through the proposed copula-based mean-CVaR ap-
proach. This can be performed by adjusting the proportion of the total
growing hectare to acquire an optimal return-risk trade-off.

In regards to the methodology, the copula-based model is found to
be superior to the conventional multivariate-normal approach. It is
expected since the distribution of the marginal returns is not normal

and our results are in agreement with the study of Larsen et al. (2015).
However, while that author applied only the multivariate copulas with
lower tail, our study is employed copula functions that have either
lower tail or upper tail for more flexible and appropriate description of
data dependences. Furthermore, the vine copula is found to be better
than the multivariate copula (as used in the study of Larsen et al., 2013)
in modelling the dependence structures of the joint distribution by re-
serving the dependences among variable pairs. This finding reconfirms
the advantages of the vine copulas stated in Brechmann (2010) and
found by Zhang and Singh (2014).

This study points out several challenges in copula model develop-
ment that could form the subject of further investigation to address
these limitations. One such challenge is that underlying uncertainties in
the model that could influence of result when estimating the copula
parameters, including the potential sources of error that are derived
from data management and model structures generated by a purely
statistical approach. This could lead to major issues, where some of the
copula parameters may equally fit the statistical goodness-of-fit test
(Sadegh et al., 2018; Vrugt et al., 2003) but may in fact carry errors
within them to confound the overall accuracy of the simulated data.
This problem could also affect the process of finding a unique combi-
nation of copula parameters that are considerably superior to the
others. Furthermore, one combination of copula parameters may be
either be better than the others based on the goodness-of-fit measure or
it may be worse in respect to another parameter. For example, if a

Fig. 8. The percentage of hectare allocation among the three wheat zones at the 95% confidence level for the vine copula-based portfolios.
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copula family is selected according to the Bayesian Information Criteria
(BIC), the penalty for a two-parameter copula (e.g., Student's t, BB1,
BB6, etc.) could be greater than that based on the AIC value
(Schepsmeier et al., 2017).

It is also worth noting that the estimation of copula parameters
relies on the period of observed data (Nguyen-Huy et al., 2018; Sadegh
et al., 2018). This means that the dependence structure between any
observations could vary with the time factor, resulting in different se-
lection of copulas for modelling the relationship between the same
objects. For example, in our previous study (Nguyen-Huy et al., 2018),
the copula combination was different in each k-fold cross-validation
process where the dataset was split into different training and testing
subsamples. Therefore, the use of an acceptable group of samples to
reflect more information about the system behavior is encouraged ra-
ther than finding the best parameter combination which is implied as
the true representative of the system (Sadegh et al., 2018). In addition,
according to Sadegh and Vrugt (2014), choosing the best copula para-
meter combination may lead to an underestimation of the uncertainties
of the entire system. Finally, the limited length of the data can plausibly
affect the accuracy of the parameter estimation by increasing the un-
certainties (Bevacqua et al., 2017). All these reasons, and others, war-
rant a further investigation to mitigate the complications in selecting
the best copula model as well as the best parameters of the optimal
copula function.

The present study also comes with common assumptions that have

been reported in published literature. First, this study does not account
for the cost of growing crops in different zones (Larsen et al., 2015).
Second, it is assumed that the marginal distribution does not change
over the passage of time (Sadegh et al., 2018; Sadegh and Vrugt, 2014).
Finally, since the statistical model was developed using historical data,
this data is not able to account for the scenarios which have not been
occurred before. This means the model cannot be easily adjusted to
accommodate for the changes in factors such as climate, technology,
and cultivation practices. Therefore, in order to achieve more robust-
ness diversification benefits, it is important to incorporate the impacts
of all the costs that may occur in geographical distributing the farm
system as well as performing the model with under many projected
scenarios.

6. Conclusion

In this study, we have demonstrated the effectiveness of applying a
geographical diversification strategy to agricultural risk management.
The mean-CVaR, the most popular and appropriate measure of down-
side risk, was calculated using the copula-based approach. Compared to
the traditional multivariate-normal model, the copula-statistical ap-
proach was able to flexibly model the joint distribution of different
types of marginal datasets including those of the non-normal distribu-
tions. Furthermore, the study revealed that the vine copula-statistical
models were able to capture the full range of different dependence

Fig. 9. The percentage of hectare allocation among the three wheat zones at the 90% confidence level for the vine copula-based portfolios.

T. Nguyen-Huy et al. Weather and Climate Extremes 21 (2018) 76–89

86



structures and in particular the case where the joint distribution of
marginal returns exhibits the tail dependence, as also revealed in earlier
studies on precipitation and wheat yield forecasting (Nguyen-Huy et al.,
2017, 2018).

Although the results have useful implications for three major wheat
growing zones in Australia including VIC Mallee, SA Eyre Peninsula,
and WA North and East Wheat Belt, the approach is applicable to other
agricultural regions and crops outside of Australia. This is because the
models have a good ability to analyse joint dependences, and able to
examine the potential assistance that can be offered to the farmers as
part of the optimised geographical strategy in agricultural risk reduc-
tion. The approach is fairly justified to be used as a broad method for
modelling such problems since the multivariate joint distribution of the
marginal returns was constructed by the copula function and then
evaluated against the multivariate-normal approach for comparison
purposes. To optimize the method, the CVaR criteria were calculated
using scenarios from Monte Carlo simulation methods and the portfolio
optimisation was attained by maximising the expected marginal return
for given target levels of CVaR.

The optimised mean-CVaR results, as described by the corre-
sponding efficient frontier and optimal hectare allocation, indicated
that using geographical diversification to downside risk is viable. To be
more specific, the risk can be reduced for wheat producers in VIC and
WA region since both regions are located below the efficient frontiers.
To explain this, we consider SA, which was located on the frontier

curve, and therefore meant that zone was able to obtain the least
benefit from geographical diversification. Nevertheless, it was also
evident that SA was able to gain a relatively large risk reduction by
reducing the marginal return in a subtle way from the geographical
diversification since it was located at the riskiest point of the frontier
curve. In general, three optimal portfolio models in this study showed
that the geographical diversification strategy was an achievable tool for
agricultural risk modelling and management. However, the optimal
share of the hectares allocated to each zone varied depending on the
target risk and the profitability that the wheat producers expect.

The results in this paper also indicate the advantages of the copula
method in addressing the lower tail dependence of the joint return
distribution. That is, if the marginal returns are not normally dis-
tributed (as it is the case in this study), the multivariate-normal model
is likely to underestimate the minimum level of the downside risk at a
given target of expected marginal return by discounting the existence of
the lower tail dependence in the model. In this case, the copula ap-
proach developed in this paper is more appropriate and can be used to
analyse the benefits of the geographical diversification strategy. It was
evident that the vine copula performed better than the Gumbel copula
since it allowed each variable pairs to be modelled by different copula
functions.

Considering the results and their interpretation it is concluded that
wheat producers could possibly achieve a higher expected return given
the same level of downside risk by dividing the crops among the three

Fig. 10. The percentage of hectare allocation among the three wheat zones at the 99% confidence level for the vine copula-based portfolios.
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zones. While the results are at a regional scale, the method can be ex-
tended to a farm level as well as to the other crops. This study, however,
was unable to account for the costs that could possibly occur when
growing in different places, a dataset that could add value to the
modelling strategy followed in this paper. Thus, a follow-up study could
take into account the cost-related components in the performance of
geographical diversification strategy. Finally, a potential avenue of
future research could also be to consider the spatio-temporal impact of
climate conditions on the marginal returns across the different zones.
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Chapter 6 

Synthesis and Conclusions 
____________________________________________________________________ 

 

The present study has conducted a consecutive analysis on the compound influences 

of synoptic-scale atmospheric-oceanic modes on weather variables and agricultural 

production in Australia. In particular, the climatic impact on the precipitation 

variability is investigated first followed by a research of such influence on wheat yield. 

These studies have developed probabilistic forecast models, which can provide 

advanced information of precipitation and wheat yield with sufficient time ahead 

through observing climate conditions. The problems of weather systemic risk 

associated with widespread extreme events and potential adaptation strategies are 

implemented in subsequent studies. The findings of this study can therefore provide 

useful information and powerful tools to producers and risk managers. However, the 

study, with limited time, retains several challenges that need to be investigated further. 

This conclusion will briefly represent the difficulties faced in developing copula-based 

models. The important results and significant contributions of this study are 

summarised in the next subsections. Finally, potentially interesting paths for future 

research are suggested at the end of this chapter.           

6.1 Challenges in the development of copula-based models 

Copula technique has been proved as a useful tool for studying the joint distribution 

among random variables. However, our published studies always contain a discussion 

section where the difficulties and limitations experienced during the research 

implementation are discussed in more details. This section summarises several 

challenges in both developments and applications of copula models that could 

potentially form interesting subjects for further investigation to address these 

limitations in the future.  

In general, the development of copula-based models include two separate 

parts: fitting marginal distributions; and fitting copula functions. Both procedures can 

be processed through parametrical or non-parametrical methods (Kraus and Czado 

2017). Therefore, one such challenge is that underlying uncertainties in the model 
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when estimating the marginal distributions and copula parameters that could influence 

the result. These uncertainties include the potential sources of error that are derived 

from data management, estimating methods and model structures generated by a 

purely statistical approach (i.e., goodness-of-fit tests).  

In regard to the error related to the data management, there is the fact that the 

estimation of marginal distributions or copula parameters relies on the period of 

observed data (Nguyen-Huy et al. 2018; Sadegh et al. 2018). This means that the 

dependence structure within univariate or between variables could vary with the 

change of time factor, resulting in different selection of marginal distributions and 

copulas for modelling the relationship between the same objects. For example, in our 

previous study (Nguyen-Huy et al. 2018) where the dataset was split into different 

training and testing subsamples, the selected copula combination was different in each 

k-fold cross-validation process. Therefore, the use of an acceptable group of samples 

to reflect more information about the system behaviour is encouraged rather than 

finding the best parameter combination which is implied as the true representative of 

the system (Sadegh et al. 2018). In addition, according to Sadegh and Vrugt (2014), 

choosing the best copula parameter combination may lead to an underestimation of 

the uncertainties of the entire system. Finally, the limited length of the data can 

plausibly affect the accuracy of the parameter estimation by increasing the 

uncertainties (Bevacqua et al. 2017).  

Observations can be parametrically fitted to univariate distributions (margins) 

using maximum likelihood, moment matching, quantile matching or maximizing 

goodness-of-fit estimation (or minimizing distance estimation) methods (Cullen et al. 

1999; Delignette-Muller and Dutang 2015; Venables and Ripley 2013; Vose 2008). 

Clearly, the best fitting distribution selected for a variable may be different depending 

on the method used. Furthermore, marginal distributions can be fitted non-

parametrically using the kernel density estimator (Duong 2016; Geenens 2014; 

Geenens and Wang 2018; Sheather and Jones 1991). However, this method also relies 

on selection of the density function (e.g., Gaussian kernel), plug-in bandwidth 

parameter, lower and upper bound, and degree of the polynomial (e.g., log-constant, 

log-linear or log-quadratic fitting) (Nagler 2017; Nagler 2018). These selections may 

lead to different results of the marginal fitting process, and thus contribute to the 

uncertainty of final models.  
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Copula parameter can be estimated using different approaches ranging from 

fully parametric, semi-parametric to non-parametric methods, which potentially 

generate similar problems, mentioned above for fitting marginal distributions. The 

first method estimates the copula parameter jointly with the parameters of margins, 

known as exact maximum likelihood (ML) (or one-stage parametric maximum 

likelihood) (Cherubini et al. 2004). This method assumes that models are correctly 

specified and thus the log-likelihood function is correct. By contrast, if models are 

misspecified leading to the incorrect log-likelihood, then the maximizer is not the 

maximum likelihood and thus it may lose its desirable status (Kim et al. 2007). 

Alternatively, copula parameters can be estimated in a two-stage (or multi-stage) 

procedure called the inference function for margins (IFM) method (Joe 1997; Joe 

2005). In the IFM method, margins are first identified separately and then copula 

parameters are estimated by treating the given parameters of the margins in the log-

likelihood and afterwards maximizing the resulting function. This IFM technique is 

also a fully parametric method, incorrect estimate of margins may thus has an 

influence on the performance of the estimator (Kim et al. 2007). Furthermore, copula 

parameters can be estimated semi-parametrically using the pseudo maximum 

likelihood (PML) method as proposed by Genest et al. (1995), also known as canonical 

maximum likelihood (Cherubini et al. 2004; McNeil et al. 2005). The implementation 

of the PML method is similar to the IFM but the difference lies in the fact that the 

margins are estimated non-parametrically through empirical distribution functions of 

samples. While this method is not restricted by specific forms of parametric margins, 

it is generally not as efficient as the ML technique (Genest et al. 1995). Also, the PLM 

method is asymptotically efficient under a specific condition proposed by Genest and 

Werker (2002) but not to all common parametric copula models. Finally, copulas can 

be estimated non-parametrically based on kernel methods (Fermanian 2005; Gijbels 

and Mielniczuk 1990). However, the non-parametric estimation of copulas faces some 

challenges such as the boundary bias related to kernel curve estimation, and smooth 

factors and bandwidth selection (Chen and Huang 2007). While the comparison 

between these methods is not a part of this discussion, it is clear that different 

estimators may result in different copula selections, which is likely to be another 

source of error to the final model.    
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A purely statistical approach can lead to major issues, where some of the 

copula parameters may equally fit the goodness-of-fit test (Sadegh et al. 2018; Vrugt 

et al. 2003) but may in fact carry errors within them due to the estimator, and thus the 

overall accuracy of the simulated data is confounded. This problem can also have 

impacts on the process of finding a unique combination of copula parameters, which 

are noticeably better to the others. Additionally, one combination of copula parameters 

may either be superior to others based on a statistical goodness-of-fit test or inferior 

in regard to another measure. For example, when a copula family is chosen using the 

Bayesian Information Criteria (BIC), the penalty for two-parameter copulas (e.g., 

Student’s t, BB1, BB6, etc.) may be larger than that based on the AIC value 

(Schepsmeier et al. 2018). All these reasons require a further examination to diminish 

the complications in the selection of the best copula model along with the best set of 

parameters of the optimal copula function. 

The construction of vine copulas, which is based on ordered bivariate 

conditional copulas, can also contribute to the model uncertainty. For example, an n-

dimensional multivariate random vector can be constructed n(n-1)/2 unique C- and D-

vine copulas (Aas et al. 2009), it is required to optimise at least the same number of 

parameters where good starting values are important for the optimisation process. Aas 

et al. (2009) suggest a sequential estimation algorithm for the pair-copula 

constructions which is further investigated in Min and Czado (2010) and Smith et al. 

(2010). However, it is possible to construct a significantly large number 
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 of R-vine copulas (Morales Napoles et al. 2010). Dissmann et al. 

(2013) develops an automated algorithm to select the best R-vine structure using a 

maximum spanning tree method based on edge weights such as the absolute value of 

empirical Kendall's tau or Spearman's rho, AIC or corrected AIC, or BIC. Clearly, the 

selection of vine structures varies depending on the edge weight used. 

In short, a number of error sources may contribute to the uncertainty of 

statistical copula-based models. While the importance of good copula choice has been 

noted in the studies undertaken by (Garcia and Tsafack 2011; Woodard et al. 2011), 

research on selection and comparisons and of the best copula models may be 

complicated in relation to the reasons and uncertainties which have been discussed 

above. Developing such algorithms will be a promising direction for future research.  
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6.2 Summary of Important Findings 

This study found that the synoptic-scale atmospheric-oceanic circulation patterns have 

an important role on the variability of precipitation in Australia. In particular, the 

results indicate that there is a significant lagged correlation between average values of 

June – August Southern Oscillation Index (SOI) and Inter-decadal Pacific Oscillation 

(IPO) Tripole Index (TPI) with spring seasonal precipitation (September – November) 

across wheat belt zones, except for western regions. In general, the SOI-precipitation 

relationship is stronger in the upper tail implying that the influence of SOI during a La 

Niña event is dominant to that during an El Niño event. Furthermore, the associations 

between the two drivers and precipitation are opposite meaning that SOI has a positive 

relationship and TPI a negative relationship with spring precipitation in most of the 

Agro-ecological zones. However, IPO is known to modulate the frequency and impact 

of ENSO on precipitation variability in Australia; in particular there is a co-occurrence 

of a negative IPO phase and a La Niña event (Kiem and Franks 2004; Power et al. 

1999). This study also found that the inclusion of TPI into the bivariate forecast models 

(i.e., models use SOI to forecast precipitation) may have an impact on the present 

models but this modulation is not the same for different locations and phases. For 

example, when TPI is added into the forecast models, the Spearman’s rank coefficients 

between simulated and observed samples are improved for the zones in the east and 

south-east but reduced in the north-west. The results also found that the correlation 

coefficients in the upper right quadrant (i.e., impact of negative IPO phases and La 

Niña events) are greatly improved compared to others. The findings of this study are 

in agreement with previous studies published in the literature (Kiem and Franks 2004; 

Power et al. 1999; Verdon et al. 2004).       

This study has explored the individual and compound influences of large-scale 

climate drivers on the Australian wheat yield over different locations and times. The 

dominant role of the Indian Ocean in recent years in the inter-annual variability of the 

wheat yield compared to the Pacific and tropical regions has been confirmed in regard 

to previous work (Yuan and Yamagata 2015). The statistically significant correlation 

coefficients between wheat yield anomalies and averaged values over March – May 

of Dipole Mode Index (DMI) obtained from Indian region reveal that wheat yield can 

be forecasted at a very early stage (i.e., planting stage) in Queensland and New South 
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Wales. The climate drivers derived from the Pacific Ocean show more influences on 

wheat crops grown in the east (i.e., Queensland) while the tropical and extra-tropical 

synoptic-scale climate indices have an impact mostly on the south and south-east. The 

results also confirm that the co-occurrence of extreme climatic events may increase 

the variability of the wheat yield. Vine technique, as expected, is found to be superior 

to other copula approaches in modelling the tail dependencies. Furthermore, the D-

vine copula-based quantile regression model provides better accuracy of wheat yield 

forecast compared to the traditional linear quantile regression (LQR) method. The 

forecast information and developed models indicate noteworthy applications for 

improving food security by supporting an earlier planning of agricultural strategies 

and policies to optimise the profits of wheat crops.  

The study has evaluated the joint losses of a hypothetical drought index 

insurance caused by systemic weather risks in different aggregation scales through the 

C-vine copula-based model. The spatial and temporal interdependencies between 

weather events are investigated in different locations and seasons. The construction of 

C-vine copulas is found to be particularly useful for modelling different dependency 

structures between weather events and analysing systemic insurance losses. The 

findings reveal that both spatial and temporal diversification strategies possibly 

diminish the systemic weather risk in Australia. The dependencies between insurance 

payouts in different locations and seasons becomes smaller when decreasing the strike 

level. Furthermore, the precipitation deficiency in different seasons is found to be not 

perfectly correlated, therefore the systemic weather risk diversified over seasons may 

be more effective than over space. While insurance has been important in the 

agricultural sector as one of the formal risk-mitigation instruments, weather index-

based products have been considered a feasible alternative to overcome restrictions of 

the traditional crop insurance. Although the results of this study may not be a direct 

insurance product for farmers due to the problems related to the high basis risk, the 

assessment of systemic weather risks is an attractive topic to insurers for several 

reasons. First, covariate yield risk is largely driven by weather conditions. Second, 

weather derivatives could be beneficial for transferring systemic risk from insurers to 

reinsurers or to the capital market (Xu et al. 2010). This application answers the 

question of to what extent systemic drought risk exposure in different locations and 

seasons can be diversified spatially or temporally by increasing the aggregation level 
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of the insurance contracts. The results of this study therefore provide an efficient 

instrument for climate-related risk management and support pricing of weather index-

based insurance products. 

This study has demonstrated the effectiveness of geographical diversification 

strategy in mitigating weather-related risks in agriculture through a combination of the 

two powerful techniques in the fields of finance and statistics, which are Conditional 

Value-at-Risk (CVaR), and copulas. The optimised mean-CVaR results derived from 

copula models confirm that using geographical diversification to downside risk is 

feasible as indicated by the corresponding efficient frontier and optimal hectare 

allocation. In particular, the risk can be mitigated for wheat producers in Victoria 

(VIC) and Western Australia (WA) since both areas are located below the efficient 

frontiers. By contrast, the farms in South Australia (SA) are located on the frontier 

curve, indicating that they may achieve the least benefit from geographical 

diversification. However, it is found that SA may obtain a relatively large risk 

reduction by decreasing the marginal return in a subtle way from the geographical 

diversification because it is located at the riskiest point of the frontier curve. Three 

optimal portfolio models in this study generally reveal that the geographical 

diversification strategy is a feasible instrument for agricultural risk management. 

However, the optimal share of the total hectares allocated to each location may vary 

depending on the profitability and target risk that wheat producers expect. The findings 

of this paper also indicate the benefits of the vine copula approach in modelling the 

lower tail dependence of the joint return distribution. That means when the marginal 

returns are not normally distributed (as it is the case in this study), the traditional 

multivariate-normal model may underestimate the minimum level of the downside risk 

at a given target of expected marginal return by omitting the existence of the lower tail 

dependence in the model. We conclude that wheat producers can possibly reach a 

higher expected return given the same level of downside risk by distributing the crops 

across the three location as in this study. Although the results are found on a regional 

scale, the method can potentially be extended to a shire level, and to other crops and 

locations. 

In regard to the methodology, copula-based models, compared to other 

approaches, exhibit many advantages in modelling joint distributions of high-

dimensional multivariate time series. Copula technique allows modelling joint 
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distributions among multiple variables where each marginal separately with their 

dependence structure. In addition, copula parameters can be estimated using standard 

maximum likelihood procedures. In short, copula-based models provide a unit-free 

and non-parametric tool for measuring dependence and are free of influences of the 

marginal distributions and linear correlation. Copula models can provide further 

advantages by enabling the estimate of the multivariate joint probability showing 

different strengths across the joint distribution and conditional probability. Among 

copula models, the construction of high-dimensional copulas using the vine technique 

shows prevails over others by decomposing joint distributions of multivariate 

variables into a conditional consequence of bivariate copulas, also known as pair-

copulas. It is noticed that all pair-copulas can be any bivariate copula family, and 

therefore the full dependence structure comprising of asymmetries and tail 

dependencies can be taken into consideration via vine models. For example, a vine 

copula-based model can involve the pair of Clayton and Gumbel copulas accounting 

for strong left- and right-tail dependence among variables, respectively, into the joint 

multivariate distribution. Therefore, vine copulas provides much flexibility in 

modelling practical and high-dimensional data encountered in many fields. 

6.3 Significance and Scientific Contribution of the Study 

This research has firstly apply the copula theorem and the respective models for 

investigating the compound impact of climate mode indices on precipitation and wheat 

crop in Australia. The results can be used to verify critical assumptions of the linear 

and other forms of dependencies such as the symmetric relationship between synoptic-

scale climate indices and precipitation or what yield. The study also provides value-

based information for agricultural risk reduction and insurance contracts by applying 

better tools to measure the dependence between multiple random variables. The study 

also represents a more adequate methodological framework for modelling tail 

dependencies of multivariate distributions since such studies have not been performed 

in the present study region. The comprehensive analyses of systemic weather risk and 

potential adaptation strategies are expected to support the development of climate 

index-based insurance products. Therefore, the knowledge achieved from this study 

will be important for better understanding the influences of the climate mode indices 

on precipitation and wheat yield in Australia. The method evolved from this study will 
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be applicable to either agricultural planning or insurance product designing and may 

be extended to other regions or crops.  

6.4 Recommendations for Future Works 

The statistical copula-based framework has been successfully developed in this study 

for investigating the influence of climate conditions on precipitation and wheat crop 

in Australia. However, the results need to be interpreted with careful attention since 

the applications share common assumptions with the published literature. 

Furthermore, the present study faced several challenges on the uncertainty in 

developing copula models mentioned above that have not been solved completely due 

to limited time. Therefore, the following are proposed, which could be promising 

directions, for future research to enhance the understanding of climate impact and 

extent the use of copula methods: 

 Interactions between large-scale and local climatic drivers: the influence of 

synoptic-scale drivers on weather variables such as precipitation has been 

demonstrated in literature and in this study. However, regional synoptic 

patterns such as cut-offlows and easterly dips may have a strong influence on 

the precipitation in small areas (Verdon-Kidd and Kiem 2009). Future research 

may apply the copula technique to model the teleconnection between large-

scale and local climatic factors to downscale the precipitation forecast model.  

 Development of hybrid models: the common limitation of statistical models is 

that the simulations acquired from developed models are based on the joint 

behaviour between variables recorded in the history. This implies that these 

relationships are stable in future but this assumption may not be always hold 

in practice. Furthermore, statistical models are not able to explain the 

underlying mechanism of the interaction between variables, and therefore they 

are not easy to justify in the future. Clearly, it is desirable to develop a model 

that can integrate statistical techniques and eco-bio-physical equation in a 

hybrid models.   

 Reduction of uncertainties in the development of copula-based models: The 

construction of a copula-based model includes two separate parts, namely 

marginal distributions and copula functions. As mentioned above, both 
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procedures may have errors in their estimating processes by either parametric 

or non-parametric method. Therefore, it is essential to have more attempts in 

the future to mitigate these uncertainties in copula models, for example, 

comparison between estimation methods or optimisation of final models using 

the most robust statistical test. 
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Appendix A 

Seasonal rainfall forecasts using D-vine copula-based 
quantile regression 
____________________________________________________________________ 

 

Book chapter: Probabilistic seasonal rainfall forecasts using 

semi-parametric D-vine copula-based quantile 

regression  

Summary: 

This chapter applies an advanced statistical D-vine copula to forecast the seasonal 

cumulative rainfall in sixteen weather stations distributed over the Australia’s wheat 

belt. These stations span different climate conditions recording historical data for the 

period 1889 – 2012. The seasonal rainfalls are forecast in different quantile levels 

using different climate predictor datasets derived from eight synoptic-scale climate 

indices. The five-fold cross-validation was employed to evaluate the out-of-sample 

performance of both models. The corrected Akaike Information Criterion (AIC)-

conditional log-likelihood is employed to identify the most influential covariates to be 

additively incorporated into the multivariate probabilistic forecast model, resulting in 

a parsimonious predictive model.  

The result found a statistically significant correlation between El Niño 

Southern Oscillation (ENDO) and Indian Oscillation Dipole (IOD) indices and 

seasonal rainfall. In general, the concurrent relationships between climate mode 

indices and rainfall are strongest. With the development of climate forecast systems, 

climate information like prominent El Niño events could be successfully predicted up 

to two years ahead. Therefore, it is possible to achieve seasonal rainfall forecasts with 

high accuracy and longer lagged time using statistical models and climate drivers. In 

addition, lagged climate indices also expose significant evidence to support the 

seasonal rainfall forecast. Furthermore, the D-vine copula model is superior to the 

traditional quantile regression methods in forecasting rainfall in the median and the 

upper quantile levels.  

Climate indices derived from oceanic and atmospheric variability in the Pacific 

region, such as SOI, exhibit strong evidence for forecasting seasonal rainfall over 

much of the Australian wheat belt. The impact of the Indian Ocean on the seasonal 
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rainfall represents similar evidence in supporting the forecast of all weather stations. 

The extratropical region also shows a significant relationship with rainfall in some 

regions and during some seasons. The strongest and most spatially widespread 

evidence supporting JAS rainfall forecast comes from the JAS climate indices. Since 

the spread of the rainfall extremes is modelled through a joint distribution using a 

robust vine copula approach, these results will potentially improve risk-management 

and crop insurance.    
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[NON PRINT ITEMS]  

Abstract: 

Skillful probabilistic seasonal rainfall forecasts play a vital role in supporting water resource 

users, developing agricultural risk-management plans and improving decision-making 

processes. This chapter applies a novel statistical copula-based approach to develop a 

probabilistic seasonal rainfall forecast model using multiple large-scale oceanic and 

atmospheric climate indices. Here, a D-vine copula is employed to forecast the seasonal 

cumulative rainfall in sixteen weather stations across the Australia’s wheat belt. These stations 

span different climate conditions recording historical data for the period 1889 – 2012. The 

seasonal rainfalls are forecast in different quantile levels using different climate predictor 

datasets. The corrected Akaike Information Criterion (AIC)-conditional log-likelihood is then 

used to screen the most influential covariates to be additively incorporated into the multivariate 

probabilistic forecast model, resulting in a parsimonious predictive model. The mutually 

inclusive correlations between El Niño Southern Oscillation (ENDO) and Indian Oscillation 

Dipole (IOD) indices and seasonal rainfall are found to be statistically significant. Therefore, 

using the climate information, skillful rainfall forecasts can be made three to six months ahead. 

The D-vine copula model is found to outperform the traditional quantile regression methods in 

forecasting rainfall in the median and the upper levels. The information from lagged, 



concurrent and combined climate indices is therefore demonstrated to be a potentially useful 

predictor for forecasting seasonal rainfall in Australia’s wheat belt region.   

 

Key words: vine copulas; quantile regression; climate indices; rainfall prediction; 

conditional forecast.  

 

[Chapter Starts Here] 

1. Introduction 

Skillful probabilistic seasonal rainfall forecasting plays an important role in supporting water 

resource users, developing agricultural risk-management plans and improving decision-making 

processes. The use of climate information in explaining rainfall variability, and its application 

to managing climate risks, has been well documented globally (Nicholson & Kim 1997; Corte‐

Real et al. 1998; Enfield et al. 2001). However, traditional probabilistic forecasting approaches, 

focusing on the mean values, are unable to quantify the tail dependence when extreme events 

occur. In this context, the quantile regression method, as proposed by Koenker and Bassett 

(1978), is an essential tool for capturing the full dependency structure between the climate 

indices and seasonal rainfall. This approach measures the association of the predictor variables 

with a conditional quantile of a dependent variable without any specific assumption on the 

conditional distributions. Therefore, quantile regression models are useful for quantifying the 

dependencies between variables in the outer regions of the conditional distribution.    

This chapter develops a novel copula-based quantile regression method for 

investigating the impacts of various climate indices on rainfall variability, particularly when 

extreme events occur. In order to provide a clear focus, the Australian wheat belt will be used 



as a case study. Australia is an agricultural nation with climate variability that is more spatially 

and temporally diverse than any other country (Nicholls et al. 1997; Best et al. 2007). The 

remote, synoptic-scale drivers, including El Niño Southern Oscillation (ENSO) and Indian 

Ocean Dipole (IOD) modes, are the principal factors influencing the inter-annual and inter-

seasonal rainfall variabilities. ENSO and IOD are representative of the synoptic-scale processes 

of the air-sea interaction over the tropical Pacific and the Indian Ocean regions, respectively. 

Although many local factors such as atmospheric blocking and the subtropical ridge also 

influence the variability of Australian rainfall (King et al. 2014), the relationship between the 

remote drivers and Australian rainfall variation is the primary subject of discussion in this 

chapter. 

The effects of ENSO on Australian rainfall fluctuation have been extensively 

investigated since the early 1980s (McBride & Nicholls 1983; Nicholls et al. 1996). It is well 

known that the oscillating phases of ENSO are the main factors explaining Australia’s rainfall 

variability, in particular during the period July – March. Risbey et al. (2009) reported that 

ENSO has the strongest relationship to rainfall in the east of Australia, where generally  La 

Niña phases bring more rainfall and El Niño phases are linked to decreased rainfall. McKeon 

et al. (2004) found that the El Niño phases were associated with drought events over much of 

the Australia continent. Furthermore, ENSO also has a significant influence on the rainfall 

patterns in north and northeast Australia (Holland 1986; Brown et al. 2011). The ENSO-rainfall 

relationship varies across the Australian continent (Power et al. 2006; Nguyen-Huy et al. 2017), 

even within particular regions such as southeast Queensland (Cai et al. 2010) and southeast 

Australia (King et al. 2013). In general, the influence of ENSO on rainfall during the La Niña 

phase is stronger than during the El Niño phase. 

  The  Indian  Ocean  dipole, similar to  ENSO, is associated with the variability of 

Australian rainfall depending on seasons and times. IOD mainly modulates inter-annual rainfall 



in western and southern Australia during the winter and spring seasons (Risbey et al. 2009). 

The influence of IOD on the climatic conditions of southeast Australia has also been observed 

in some studies (Meyers et al. 2007) where it has been associated with drought events in this 

region (Ummenhofer et al. 2009; Ummenhofer et al. 2011). Moreover, it was also observed 

throughout the twentieth century that the increased occurrences of the positive IOD phases 

were key drivers of major drought events in south-east Australia, where ENSO conditions are 

not usually assumed (Cai & Rensch 2012). 

Several studies have identified the relative roles of climate mode indices on Australian 

rainfall variability within either particular regions (Gallant et al. 2007; Klingaman et al. 2013) 

or a whole country (Risbey et al. 2009; Schepen et al. 2012; Min et al. 2013). However, there 

has been less attention paid to the relationship between joint climate drivers and extreme 

rainfall. In one of the first studies, Nguyen-Huy et al. (2017) found that the rainfall forecast 

was significantly improved in the upper and lower tails using the combination of ENSO and 

Inter-decadal Pacific Oscillation (IPO) Tripole Index (TPI). Therefore, further studies of the 

association between rainfall and multiple climate modes are required to better understand how 

these remote drivers are able to modulate extreme rainfall over a monthly and seasonal 

timescale.  

In this chapter, we adopt the copula theorem (Sklar 1959) as a way to provide a 

powerful approach for modeling the non-linear dependencies among bivariate, trivariate and 

multivariate random variables. In a copula-based joint distribution, the associations between 

the relevant variables are modeled independently with the individual marginal distribution of 

each variable. As a result, statistical copula-based models can overcome the issues of normal 

and symmetric assumptions in traditional forecast methods. Therefore, recent years have 

witnessed extensive applications of copula-based modeling in a wide range of fields such as 

economics and finance (de Melo Mendes et al. 2010; Nguyen & Bhatti 2012), water resources 



and hydrology (Hao & Singh 2012; Grimaldi et al. 2016), agriculture (Bokusheva 2011; 

Nguyen-Huy et al. 2018), and environment (Kao & Govindaraju 2010; Sraj et al. 2015). 

This chapter aims to develop new understandings and applications of copula models by 

investigating the teleconnections related to climate variability between the different remote 

synoptic-scale climate drivers and extreme seasonal rainfall across the Australian wheat belt. 

Comparisons are made between the novel D-vine quantile regression and traditional quantile 

regression. Five-fold cross-validation is also applied to evaluate their out-of-sample 

performance and observe the sensitivity of the predictor set. The primary contribution of this 

chapter is to develop and validate the suitability of a copula-statistical methodology for the 

quantile-based forecasting of rainfall using large-scale climate mode influences and the 

implications of the model in agricultural risk-management and decision-making.         

A brief description of the data used and methodologies applied is presented in Section 

2. Results and analysis of climate-rainfall relationship and model performance are described in 

Section 3. Discussion of the results and future works and the conclusions are given in Sections 

4 and 5, respectively.   

2. Data and Methodology 

2.1 Cumulative rainfall index 

The monthly and seasonal total precipitation data employed in this chapter were obtained from 

the daily rainfall data covering the period from January 1, 1889 until December 31, 2012. These 

datasets are available from Scientific Information for Land Owners (SILO) and can be 

downloaded via the website of The Long Paddock, Queensland Government 

(https://legacy.longpaddock.qld.gov.au/silo/). These SILO databases are constructed from 

historical observational climate records provided by the Bureau of Meteorology (BOM). These 

https://legacy.longpaddock.qld.gov.au/silo/


time series are acquired for sixteen weather stations that are spread over the Australian wheat 

belt and span different climate regimes (Fig. 1). 

[Insert Figure 1 here] 

The cumulative rainfall index (CRI) is derived from measurements based on these daily 

observations. It is commonly used as the hypothetical underlying for agricultural weather 

insurance. In this study, CRI measures the rainfall within the two main vegetation periods of 

wheat crops that last from April 1 until June 30 and from July 1 until September 30. The index 

is calculated as follows (Xu et al. 2010): 
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where 
, ,j t iP  is the daily precipitation (mm) observed at day j  in year 1,...,124t   and station 

1,...,16i  . BT  and ET  denote the beginning and the end of the considered period, respectively. 

In Australia, wheat is the main grain crop grown in the wheat belt where the sowing season is 

commonly from the mid-April to June, depending the rainfall pattern. The harvest season is 

normally from mid-October until January of the next year. Therefore, two cumulative rainfall 

indices are derived for two  periods, namely April – June (AMJ CRI) (sowing stage) and July 

– September (JAS CRI) (before harvesting). In the context of weather index-based insurance, 

this index addresses drought risk (Martin et al. 2001; Xu et al. 2010). The information and 

statistics of these selected weather stations are described in Table 1. 

[Insert Table 1 here] 

It is clear that weather and climate regimes vary over the Australian wheat belt. In 

particular, the eastern part of the wheat belt has a subtropical and savanna climate with the 

average rainfall during AMJ higher than during JAS months. Furthermore, the rainfall 

variability in this region is generally higher than other remaining sites in both summer and 



winter. The south, southwest and west have a subtropical, savanna and temperate climate, 

experiencing more rainfall in the winter season. In addition, the western part of the wheat belt 

receives the highest rainfall on average. Remote drivers influence these weather systems 

mentioned previously in a complicated way, resulting in rainfall variability in Australia. 

2.2 Climate indices   

Eight synoptic-scale climate indices are used for a comprehensive analysis of their influence 

on seasonal rainfall variability. These climate mode indices have been well documented in 

many studies investigating the climate-rainfall relationship in Australia (Risbey et al. 2009; 

Kirono et al. 2010; Schepen et al. 2012). ENSO is represented by several different indicators 

including Niño3.0, Niño3.4, and Niño4.0 (i.e., sea surface temperature (SST) representative), 

Southern Oscillation Index (SOI) (air pressure) and El Niño Modoki (EMI) (coupled ocean-

atmospheric). The Dipole Mode Index (DMI) characterizes the intensity and Indonesian Index 

(II) the individual pole of IOD over the tropical Indian Ocean. The Tasman Sea Index (TSI) is 

included in this research to consider a potential link between extratropical SST and rainfall 

variability.  

In terms of the origin of these data, the monthly SST anomalies for the period from 

January 1, 1889 to December 31, 2012 are derived from NOAA Extended Reconstructed Sea 

Surface Temperature Anomalies (SSTA) data, version 4, downloaded from the Asia-Pacific 

Data Research Center (APDRC). Monthly SOI data were acquired from the Bureau of 

Meteorology, Australia (BOM). The seasonal climate indices are calculated as the average of 

three-month values. Table 2 summarizes the description of these climate indices including the 

formula of EMI and DMI calculations and their components.  



2.3 Methodology 

2.3.1 Copula theorem 

A copula, as explained by Sklar (1959), is a function used to link multiple univariate marginal 

distributions of random variables into a multivariate distribution. In brief, suppose a d-

dimensional random vector  1,...,
T

dX x x  has its marginal cumulative distribution functions 

(CDFs)    1 1 ,..., d dF x F x  and probability density functions (PDFs)    1 1 ,..., d df x f x . Their 

joint CDF is expressed as (Sklar 1959): 

        1 1 1 1,..., ,..., ,...,d d d dF x x C F x F x C u u      (2) 

 and the corresponding joint PDF: 
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where C  denotes the copula function and 
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 the corresponding copula density. If 

marginal distributions are continuous, then C  is unique and   , 1,...,i i iu F x i d   being the 

univariate probability integral transformation (PIT). Copula families are generally 

distinguished as empirical, elliptical, Archimedean, extreme value, vine, and entropy copulas. 

This study focuses on the use of the D-vine copula approach, described below, which serves a 

quantile forecast purpose.  

2.3.2 D-vine copulas 

D-vine copula, a special form of vine family, was first proposed by  Joe (1997) and further 

developed by Bedford and Cooke (2001, 2002). In short, the copula density in Eq. (3) is 

decomposed into the conditional and unconditional bivariate densities, so-called bivariate pair-

copulas, as follows (Czado 2010): 
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i j i

c u u c C u u u C u u u

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  
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In this construction, each pair-copula is selected independently from the others, 

allowing the flexible model of full dependence structure of high-dimensional random variables 

existing as the characteristics of asymmetric and tail dependences. Therefore, the D-vine 

approach can address the limitations of other copula families such as meta-elliptical or 

symmetric Archimedean copulas. 

2.3.3 Semi-parametric D-vine quantile regression 

Equation (2) reveals that the construction of copula-based models commonly includes fitting 

the marginal distributions and fitting the copulas. In general, these both procedures can be fitted 

either parametrically or non-parametrically. In this study, the non-parametric approach is 

employed to fit marginal distributions and the copulas are fitted parametrically, resulting in a 

semi-parametric quantile regression model. Constructing the model in this way can minimize 

the bias and inconsistency issues often faced by the fully parametric model when one of the 

parametric components is misspecified (Noh et al. 2013). 

As the first step, marginal distributions are fitted non-parametrically using the 

univariate local-polynomial likelihood density estimation method (Nagler 2017). Given a 

sample , 1,...,ix i n  with unknown PDF, the estimated kernel density is defined as (Geenens 

& Wang 2018):  

  
1

1
,

in

i

x x
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where h  is the bandwidth parameter and  K x  the smoothing kernel function. In this study, 

the Gaussian kernel and the plug-in bandwidth are used as in the methodology developed by 



Sheather and Jones (1991). The degree of the polynomial is selected as the log-quadratic fitting 

(Nagler 2017). 

The estimated marginal distribution functions YF  and jF  can be then obtained for the 

response variable Y  and predictor variables 1,..., , 1,...,dX X j d , respectively. These 

functions are used to convert the observed data to pseudo-copula data, which are,  
i

i
Yv F y  

and  
i

i
jj ju F x . These pseudo-copula data  v

i

v  and  
i

ju   approximate to an i.i.d 

sample from the PIT vector  1, ,...,
T

dV U U  and are therefore able to be used for the D-vine 

copula estimate in the next step (Kraus & Czado 2017). 

These pseudo-copula data are fitted to a D-vine model with an order 
1

... ,
dl lV U U    

where  1,...,
T

dL l l  is the arbitrary ordering resulting in d! possible models. Therefore, this 

study applies the new algorithm proposed by Kraus and Czado (2017) to automatically select 

the parsimonious D-vine model. In short, only the most influential predictors are added into 

the model in an order that minimizes the Akaike Information Criterion (AIC)-corrected 

conditional log-likelihood AICcll . As a result, the conditional quantile prediction model has the 

highest explanation for the response variable. Furthermore, this algorithm overcomes the 

common issue in terms of conventional regression, involving collinearity, transformation and 

the inclusion and exclusion of covariates.     

Finally, for quantile levels  0,1  , the quantile q  of a response variable Y  given 

predictor variables 1,..., dX X  can be obtained using the inverse forms of the marginal 

distribution function 1

YF   and the conditional copula function 
1

1

,..., dV U U
C  conditional on 1,..., du u  

which is defined as (Kraus & Czado 2017): 
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More details of this approach can be found in Kraus and Czado (2017) and Schallhorn et al. 

(2017).  

2.3.4 Linear quantile regression 

For the purpose of comparison, this study also utilizes the traditional linear quantile regression 

(LQR) model to predict rainfall with the same predictor sets for the D-vine copula model. The 

LQR approach, first introduced by Koenker and Bassett (1978), assumed the conditional 

quantile of the predicted variables to be linear in the predictors. This assumption can be 

expressed as (Schallhorn et al. 2017): 
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where the estimates of the regression coefficients j  are acquired by solving the minimization 

problem: 
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The LQR method has a number of limitations such as a very restrictive assumption of normal 

margins and the changeable slopes at different quantile levels (Bernard & Czado 2015; Kraus 

& Czado 2017; Schallhorn et al. 2017).   

2.3.5 Evaluation of model performance 

In order to assess the forecast performance of semi-parametric D-vine and linear quantile 

regression, this study applies a five-fold cross-validation test to evaluate the out-of-sample 

performance. Therefore, the total 124 data points (1889 – 2012) are split into five folds where 

each fold will become an evaluation data set respectively. The remaining data corresponding 



to each fold are used as training datasets. As a result, all data points are joined in training and 

testing processes. 

Since in this out-of-sample test the true regression is unknown (Kraus & Czado 2017), 

only a realization for each seasonal rainfall can be obtained, and an averaged cross-validated 

tick-losses function ,

j

mL  is employed to evaluate the forecasted α-quantiles for  0,1  . The 

expression of this computation is expressed as follows (Komunjer 2013; Kraus & Czado 2017; 

Schallhorn et al. 2017): 
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where iy  and 
,

i

m
q  denote the observation and forecast quantile using method m  at the station 

j  and a point i  in a sample size evaln .  The function  I 0y y       is the check or tick 

function. The lower values of the averaged cross-validated tick-losses function imply better 

performance of the forecast model.     

 

3. Results 

3.1 Climate-rainfall relationships 

The influence of climate indices on rainfall variability is inspected as an initial analysis prior 

to the development of the probabilistic models. The Kendall statistic has been used to estimate 

the rank-based measure of association between climate indices and CRI at different lag times 

in the entire dataset for different weather stations. The concurrent relationship of climate 

indices and CRI has been explored as well. Such simultaneous relationships may benefit the 

seasonal rainfall forecast models since the recent maturity of climate forecasting systems 

allows information of climate mode indices to be forecast with sufficient lead time and 



accuracy (Chen et al. 2004). The correlation coefficients between AMJ CRI and climate 

conditions during the period JFM and AMJ are illustrated in Table 3. All this climate 

information is used together with JAS climate indices to analyze JAS CRI, and the results are 

represented in Table 4. 

It can be seen from Table 3 that all JFM climate indices provide very limited 

information for forecasting of AMJ CRI. This is to be expected since the impact of remote 

drivers on rainfall variability, as mentioned before, is generally strong from July of the year 

being considered to March of the next year. The results agree with findings from a study 

undertaken by Schepen et al. (2012). The concurrent relationship between a range of climate 

indices and rainfall is stronger in AMJ. It is worth pointing out that the ENSO plays an 

important role in the variations of AMJ rainfall over the Australian wheat belt, as indicated by 

the significant coefficients between SOI and rainfall across most of the weather stations. 

According to Lo et al. (2007), SST-based indices are more useful as the predictors or drivers 

of Australian rainfall at longer times ahead compared to SOI. However, our observations show 

that the SOI can be potentially used to forecast rainfall at the same lead timescale with SST-

based indices depending on locations and seasons (see Tables 3 and 4). The mechanism for this 

relationship may be explained by the fact that the SOI is related to the large-scale surface 

pressure, and therefore its variability is more closely associated with the rainfall process. 

Furthermore, the collection of SOI data is based on consistent pressure values observed from 

two stations providing more confidence in the early record than SST-based indices that are 

interpolated from the observations of sparse stations (Risbey et al. 2009).  

The  Indian  Ocean  dipole, similar to  ENSO, is an index representing a coupled 

interaction of ocean–atmosphere phenomena in  the  equatorial  Indian Ocean (Saji et al. 1999). 

In this study, we found that the DMI and II anomalies derived from the Indian Ocean have a 

similar impact on Australian rainfall compared to that of the Pacific region. There is minimum 



evidence encouraging the use of any lagged climate drivers (i.e., JFM DMI and JFM II) to 

forecast AMJ CRI. However, variations of AMJ DMI are related to AMJ CRI along the east to 

the south-east and south Australia, but excluding the western region. The impact of II and 

extratropical index TSI can be useful as a predictor to forecast AMJ rainfall in some stations, 

but are very limited in general using either lagged or simultaneous information.  

[Insert Table 3 here] 

Table 4 represents the usefulness of lag ENSO information in forecasting seasonal 

rainfall, in particular in the east and south-east regions, during the period of July – August. 

However, it is interesting that the influence of different ENSO indicators on JAS rainfall varies 

at different locations. Niño4.0 affects the rainfall in the east region only while there is no 

significant correlation between EMI and rainfall at all weather stations. On the other hand, 

Niño3.4, SOI, and Niño3.0 extend their effects on JAS CRI to the south-east, south and west 

regions, respectively. The influence from the Indian Ocean anomalies on rainfall patterns is 

similar to ENSO, where the lag information of  AMJ DMI and AMJ II is potentially useful for 

forecasting JAS rainfall from the east to the south and south-west regions. The influence from 

the extratropical region on rainfall can be observed in the south-east, south-west and western 

Australia where AMJ TSI has a significant correlation with S10-11, S04 and S01, respectively.  

[Insert Table 4 here] 

As expected, simultaneous correlation coefficients between climate drivers and rainfall 

of the JAS period are stronger than the lag coefficients. In regard to ENSO phenomena, while 

EMI influences rainfall in the eastern region only (i.e., S11-16) and the impact from all Niño 

indices does not cover some regions in the south and west-east (i.e., S03 and S05-06), the 

information of JAS SOI can be used to skillfully forecast JAS rainfall over much of the 

Australian wheat belt. Taking into consideration the impact from the Indian Ocean, DMI affects 



most of the weather stations except S03 and S05. In addition, II can be used to compensate for 

the lack of forecasting information in these weather stations. These results agree with a study 

undertaken by Risbey et al. (2009) where IOD generally peaks in spring (September – 

October), but can be observed from May to November. Furthermore, there is no evidence 

supporting the use of TSI as a predictor for rainfall forecast over the wheat belt regions except 

for the western region where it is useful for explaining JAS rainfall in three out of five stations.  

The results indicate that probabilistic seasonal rainfall forecasts can be performed 

efficiently in all regions with sufficient lead time using multiple climate drivers. For these 

reasons, it is obvious that a robust rainfall forecasting model should take multiple climate 

drivers and lag information into account to achieve better performance, at least in terms of time 

sufficiency and spatial coverage. In addition, if the IOD and ENSO events occur together they 

can reinforce each other (Kirono et al. 2010), although this need not necessarily happen 

(Meyers et al. 2007; Risbey et al. 2009). The question of whether these combinations can 

improve the accuracy of rainfall forecasts will be addressed in the following section. 

3.2 Rainfall quantile forecast 

We now present the forecast of seasonal rainfall and the evaluation of D-vine, and benchmark 

these results with an LQR model performance. The rainfall forecast is made at three quantile 

levels: 0.05 (lower tail), 0.50 (median) and 0.95 (upper tail) for two periods of AMJ and JAS 

using various combinations of climate drivers as predictor variables. In particular, three 

predictor sets including climate indices observed in JFM (i.e., eight predictors), AMJ (i.e., eight 

predictors) and JFM+AMJ (i.e., sixteen predictors) are used to forecast AMJ CRI. Similarly, 

JAS CRI at sixteen weather stations is forecast using six predictor sets consisting of the former 

sets and three predictor sets of JAS, AMJ+JAS, and JFM+AMJ+JAS (i.e., twenty-four 

predictors). 



Figure 2 displays the results of the AMJ CRI forecast at the three alpha levels derived 

from all predictor sets and both models. The first visual inspection indicates that the results of 

rainfall forecast and model performance vary across the study regions depending on alpha 

levels, predictor sets and models used. In general, the D-vine copula model provides better 

accuracy than LQR for the west-west region (S01-02) at the lower tail and for the south (S06-

07) and south-east (S09-11) regions at the median and upper tail for all predictor sets. These 

findings imply that the impact of climate indices on these stations are more scattered and non-

linear at the median and upper extreme events which cannot be captured by the traditional LQR 

method. Furthermore, both models reveal that the use of simultaneous information or its 

combination with lag information does not always improve the forecasting performance. These 

outcomes reflect the spatio-temporal characteristic of influences of climate indices on 

Australian rainfall. 

[Insert Figure 2 here] 

This spatio-temporal variability affecting rainfall of climate drivers is especially 

emphasized in Fig. 3 where the D-vine copula model outperforms the LQR approach in most 

cases at the median and upper extreme levels. This highlights the usefulness of the copula-

based model in forecasting JAS rainfall above the median level. Furthermore, it is clear that 

the impact of climate on Australian seasonal rainfall is asymmetric where the upper tail is more 

scattered and non-linear. In regard to the use of different predictor sets, the results again show 

an inconsistent pattern of using information from lag, concurrent and their combination. For 

example, JAS climate information yields the best performance of JAS CRI forecast in the S16 

below the median levels. However, to forecast JAS CRI in the upper quantiles, the climate 

information of lagged and concurrent times and their combination are seen to provide almost 

the same results.  

[Insert Figure 3 here] 



 The differences in the forecasting performance of D-vine and LQR are illustrated as an 

example in Fig. 4 for S16. In this figure, the observations of AMJ SOI and JAS CRI are 

represented by dotted points overlaid with locally weighted regression lines of forecasted JAS 

CRI from five-fold cross-validation in three quantile levels (0.05, 0.50, and 0.95). It is clear 

that the relationship in the upper tail between observed AMJ SOI and JAS CRI is scattered and 

non-linear. This empirical pattern of dependence may explain the reason for the 

outperformance of the D-vine copula-based model in the quantile level of 0.95 where the LQR 

method is inadequate. Both models yield a small difference in the forecast lines of the lower 

and median quantile levels. However, there is large divergence between forecast lines in the 

upper quantile which is in agreement with the results derived from the average cross-validated 

tick-losses function (see Fig. 3).     

[Insert Figure 4 here] 

Finally, the results (not shown here) also spell out the fact that the influence of climate 

indices on seasonal rainfall can vary over a decadal timescale in the present study region. This 

was indicated by the change of predictor sets selected for the training model in each fold of the 

cross-validation process. Furthermore, the maximum number of selected predictors was four 

in all considered cases. These findings question whether it is possible to build up a certain 

predictor set of climate indices for rainfall forecast in each region. However, the answer to this 

problem, although will it bring interesting insights, is out of the scope of this chapter.                                

4. Discussion 

This chapter has explored the association between a number of climate mode indices and 

rainfall observed in many weather stations across Australia’s wheat belt regions. The stations 

selected were those that geographically distribute over the Australian wheat belt and experience 

different climate conditions. The lagged and concurrent information derived from the Pacific 



and Indian Oceans were found to be useful for rainfall forecast systems. Based on this analysis, 

the chapter also developed a quantile rainfall forecast model using the vine copula approach. 

The semi-parametric D-vine copula-based model used in this chapter showed better 

performance for rainfall forecasting in the median and upper levels. To minimize the model 

misspecification further (Noh et al. 2013), future research may apply the fully non-parametric 

copula-based approach (Schallhorn et al. 2017) meaning that both estimates of marginal 

distributions and copulas are non-parametric. Furthermore, the results from this chapter also 

showed that the LQR provides better agreement of rainfall forecast in the lower tail. Therefore, 

other several quantile regression models such as boosting additive (Koenker 2011) or non-

parametric quantile regression (Li et al. 2013) may be used in future work for the purpose of 

comparison. 

It is worth noting that the predictor datasets chosen for the training models in each fold 

of the cross-validation method and each location differed from each other. These changes 

reflected the spatio-temporal characteristics of the impact of various climate mode indices on 

Australian rainfall. Therefore, further research could assist in building up a certain predictor 

dataset of climate indices for rainfall forecast corresponding to each study site. This work can 

be done by using a comparison of model performance between a fixed predictor set and 

exchangeable predictor sets using a k-fold cross-validation approach. In order to provide a 

more comprehensive analysis, the rainfall forecast may be conducted at more time scale points.    

The Australian climate is also affected by many local factors such as atmospheric 

blocking and the subtropical ridge, which were not considered in this study. Atmospheric 

blocking to the southeast of Australia has been examined as the driver of rainfall increase across 

a large part of Australia while the position and intensity of the subtropical ridge affect rainfall 

in the east of Australia (Risbey et al. 2009; Cai et al. 2011; Schepen et al. 2012). According to 

Zscheischler et al. (2018), extreme events are often the result of the processes that many drivers 



interact together and have spatio-temporal dependencies. As a result, the risk assessment is 

potentially underestimated. Therefore, investigating the joint influence of large-scale and local 

drivers to improve risk management is an important consideration for future research. 

In practice, probabilistic seasonal rainfall forecasts can be derived from both empirical 

and dynamic climate forecasting models up to a year ahead (Goddard et al. 2001; Schepen et 

al. 2012). However, they all have their own advantages and limitations. The empirical models 

might be categorized into statistically-based (Rajeevan et al. 2007; Nguyen-Huy et al. 2017) or 

machine learning methods (Ramirez et al. 2005). Empirical models use the empirical 

relationships between historically observed variables and therefore depend on the availability 

of recorded data length and assume stationary relationships between variables. On the other 

hand, dynamic forecasting models (Druce 2001; Vieux et al. 2004) rely on numerical 

simulations directly modeling physical processes; however, they often cost more than statistical 

models in terms of implementation and operation. Therefore, a hybrid integrated forecasting 

system is preferred to provide greater accuracy and precision of rainfall forecasts, while being 

more economically viable.   

5. Conclusions        

This chapter has demonstrated that the information derived from large-scale oceanic-

atmospheric processes is potentially useful for seasonal rainfall forecasting in Australia. In 

general, the simultaneous relationships between climate mode indices and rainfall are strongest. 

this finding agrees with results from studies undertaken by Risbey et al. (2009). With the 

development of climate forecast systems, climate information like prominent El Niño events 

could be successfully predicted up to two years ahead (Chen et al. 2004). Therefore, it is 

possible to achieve seasonal rainfall forecasts with high accuracy and longer lagged time using 



statistical models and climate drivers. In addition, lagged climate indices also expose 

significant evidence to support the seasonal rainfall forecast.     

Climate drivers have an asymmetric influence on seasonal rainfall in Australia. Climate 

indices derived from oceanic and atmospheric variability in the Pacific region such as SOI 

exhibit strong evidence for forecasting seasonal rainfall over much of the Australian wheat 

belt. The impact of the Indian Ocean on the seasonal rainfall represents similar evidence in 

supporting the forecast of all weather stations. The extratropical region also shows a significant 

relationship with rainfall in some regions and during some seasons. The strongest and most 

spatially widespread evidence supporting JAS rainfall forecast comes from the JAS climate 

indices. Furthermore, the joint occurrence of extreme climate events may reinforce rainfall 

fluctuation (Nguyen-Huy et al. 2017) and may subsequently affect crop yield (Nguyen-Huy et 

al. 2018). Therefore, using a copula-based model with multiple climate indices as predictors 

could improve the forecast of seasonal rainfall ahead.  

The copula-based joint probability modeling method was applied to forecast the 

seasonal cumulative rainfall across Australian wheat belt using different predictor sets of 

lagged and concurrent climate indices. In addition, the traditional linear quantile regression is 

simultaneously implemented for a comparison. The five-fold cross-validation was employed 

to evaluate the out-of-sample performance of both models. Furthermore, the most influential 

predictors were selected based on the AIC-corrected conditional log-likelihood to form the 

parsimonious model. In general, the D-vine copula-based model shows greater potential for 

forecasting rainfall above the median level. The results imply that the impact of climate indices 

on rainfall is non-linear in the upper quantiles where they may be unable to be measured by the 

traditional LQR.  

The usefulness of lagged, concurrent or combined climate information for seasonal 

rainfall forecast varies with locations and times. The performance of seasonal rainfall quantile 



forecasts using the information of lagged climate indices may be higher than that of using 

simultaneous predictor sets. Furthermore, the selected parsimonious predictor sets are different 

from each other for each training model in each fold of the cross-validation method. Therefore, 

a potential study is to test the performance of seasonal rainfall using certain predictor sets for 

each location. In addition, future research may be conducted with more climate indices at more 

time scales using fully non-parametric models. 

Probabilistic seasonal rainfall forecasts derived from statistical models can provide 

important information to a variety of users related to water resource in regard to planning and 

decision-making processes. For example, seasonal rainfall forecasts may assist water managers 

to make operational decisions on water allocation for rival users (Kirono et al. 2010). In 

addition, seasonal rainfall forecasting is one of the most effective means to adapt and diminish 

the vagaries of adverse weather and support the development of risk-management strategies. 

For example, skillful quantification of seasonal rainfall in extreme cases with a sufficient time 

lag can support agricultural producers geographically diversifying farming systems to 

minimize climate risk and optimize profitability (Larsen et al. 2015). We are currently studying 

the use of a copula-based approach for evaluating the weather (rainfall) systemic risk (Xu et 

al. 2010; Okhrin et al. 2013) in Australia. Since the spread of the rainfall extremes is modeled 

through a joint distribution using a robust vine copula approach, these results will potentially 

improve risk-management and crop insurance.    
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List of Figures 

 
Figure 1. Selected weather stations across the Australian wheat belt (green border) spanning different 

climate conditions.   

  



 

 

 

Figure 2. Averaged five-fold cross-validated tick-losses of April – June cumulative rainfall index (AMJ 

CRI) forecast at sixteen stations using different sets of predictors January – March (JFM), AMJ, 

and JFM+AMJ and using D-vine (bar charts) and linear (symbols) quantile regression (LQR) 

for different quantile levels. 

  



 

 

 

Figure 3. Averaged five-fold cross-validated tick-losses of July – September cumulative rainfall index 

(JAS CRI) forecast at sixteen stations using different sets of predictors January – March (JFM), 

April – June (AMJ), JAS, JFM+AMJ, AMJ+JAS, and JFM+AMJ+JAS and using D-vine (bar 

charts) and linear (symbols) quantile regression (LQR) for different quantile levels. 

  



 

Figure 4. Exemplified scatterplot between observed July – September cumulative rainfall index (JAS 

CRI) and April – June SOI (AMJ SOI) (dotted points) overlaid with locally weighted regression 

lines of forecasted JAS CRI from five-fold cross-validation in three quantile levels (0.05, 0.50, 

and 0.95).  



List of Tables 

Table 1. Mean and standard deviation of cumulative rainfall index (CRI) in the period of April – June (AMJ) and July – September (JAS) for sixteen 

weather stations. 

Code ID Name Coordinates AMJ CRI JAS CRI 

    Mean Standard Deviation Mean Standard Deviation 

West 

S01 08088 Mingenew 115.440E – 29.190S 163.921 70.357 167.024 54.916 

S02 10111 Northam 116.660E – 31.650S 159.671 58.497 180.270 55.290 

S03 12074 Southern Cross 119.330E – 31.230S 98.798 45.547 89.271 34.163 

S04 10627 Pingrup 118.510E – 33.530S 117.550 43.055 123.364 37.276 

S05 12070 Salmon Gums 121.640E – 32.980S 100.510 39.377 103.171 33.431 

South 

S06 18064 Lock 135.760E – 33.570S 116.136 47.562 145.624 45.207 

S07 21027 Jamestown 138.610E – 33.200S 129.480 56.715 166.443 52.743 

South-East 

S08 76047 Ouyen 142.320E – 35.070S 86.548 43.783 95.815 38.653 

S09 79023 Horsham Polkemmet 142.070E – 36.660S 127.763 53.566 144.585 47.872 

S10 75031 Hay 144.850E – 34.520S 98.559 51.546 95.123 41.671 

S11 73000 Barmedman 147.390E – 34.140S 115.492 59.153 116.589 48.070 

East 

S12 48030 Cobar 145.800E – 31.500S 84.715 53.988 76.996 37.743 

S13 55054 Tamworth 150.850E – 31.090S 130.139 67.544 137.860 55.555 

S14 44030 Dirranbandi 148.230E – 28.580S 96.633 71.250 77.356 50.829 

S15 41023 Dalby 151.260E – 27.180S 114.245 71.076 101.434 60.020 

S16 35059 Rolleston 148.630E – 24.460S 113.331 86.799 80.285 65.712 

 

  



Table 2. Climate mode indices derived from NOAA Extended Reconstructed Sea Surface Temperature Anomalies (SSTA) data, version 4, and downloaded 

from Asia-Pacific Data Research Center (APDRC). SOI data acquired from Bureau of Meteorology, Australia (BOM). 

   

Predictor Variables Description Region 

Niño3.0 Average SSTA over 1500–900W and 50N–50S Pacific 

Niño3.4 Average SSTA over 1700E–1200W and 50N–50S Pacific 

Niño4.0 Average SSTA over 1600E–1500W and 50N–50S Pacific 

EMI 

C – 0.5 x (E + W) 

Where the components are average SSTA over 

C: 1650E–1400W and 100N–100S 

E: 1100–700W and 50N‒150S 

W: 1250‒1450E and 200N‒100S 

Pacific 

SOI Pressure difference between Tahiti and Darwin as defined by Troup (1965) Pacific 

DMI 

WPI ‒ EPI 

Where the components are average SSTA over 

WPI: 500–700E and 100N–100S 

EPI: 900–1100E and 00N–100S 

Indian 

II Average SSTA over 1200–1300E and 00N–100S Indian 

TSI Average SSTA over 1500–1600E and 300S–400S Extratropical 

  



Table 3. Kendall-tau correlation coefficients with significant p-values at 10% (bold) and 5% (underlined bold ) significance levels between January – March 

(JFM) and April – June (AMJ) climate indices and AMJ cumulative rainfall index (CRI) in sixteen weather stations.   

  S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 

JFM Niño3.0 -0.105 -0.132 0.009 -0.084 -0.069 -0.075 -0.059 -0.025 -0.036 -0.028 -0.022 0.041 0.055 -0.007 -0.019 -0.055 

JFM Niño3.4 -0.091 -0.099 0.030 -0.044 -0.017 -0.075 -0.026 -0.002 -0.020 -0.003 -0.007 0.021 0.035 -0.014 -0.037 -0.053 

JFM Niño4.0 -0.090 -0.099 0.047 -0.039 0.002 -0.070 -0.025 -0.001 -0.016 0.007 0.001 0.006 0.023 -0.021 -0.049 -0.059 

JFM SOI 0.042 0.056 -0.030 0.005 -0.020 0.013 -0.034 -0.061 -0.059 -0.090 -0.086 -0.103 -0.096 -0.035 -0.013 -0.006 

JFM EMI -0.047 -0.026 0.050 0.030 0.049 -0.028 0.020 0.007 -0.025 -0.017 -0.051 -0.085 -0.016 -0.072 -0.100 -0.104 

JFM DMI 0.027 0.006 0.046 0.023 -0.047 -0.005 -0.012 0.023 -0.011 0.007 0.012 0.001 -0.097 0.000 -0.052 -0.094 

JFM II -0.092 -0.136 0.029 -0.128 -0.031 0.006 0.000 0.003 -0.006 0.010 -0.002 0.081 0.118 0.038 0.016 0.076 

JFM TSI -0.137 -0.090 0.026 -0.136 -0.047 0.075 0.078 0.007 -0.008 0.023 -0.037 0.024 0.000 -0.042 -0.123 0.024 

AMJ Niño3.0  -0.038 -0.071 -0.007 -0.093 -0.099 -0.107 -0.103 -0.079 -0.139 -0.066 -0.033 -0.012 -0.044 -0.043 -0.067 -0.057 

AMJ Niño3.4  -0.067 -0.089 0.002 -0.122 -0.075 -0.087 -0.082 -0.032 -0.064 -0.065 -0.018 -0.018 -0.033 -0.038 -0.062 -0.092 

AMJ Niño4.0  -0.086 -0.096 0.012 -0.114 -0.077 -0.077 -0.049 -0.026 -0.054 -0.086 -0.018 -0.041 -0.033 -0.047 -0.072 -0.098 

AMJ SOI 0.164 0.127 0.037 0.135 0.135 0.201 0.163 0.141 0.175 0.101 0.131 0.071 0.132 0.118 0.129 0.149 

AMJ EMI -0.076 -0.054 0.003 -0.099 -0.026 0.027 0.041 0.060 0.037 -0.062 -0.029 -0.069 -0.007 -0.062 -0.055 -0.095 

AMJ DMI -0.098 -0.009 -0.014 -0.039 -0.072 -0.109 -0.151 -0.078 -0.114 -0.102 -0.127 -0.096 -0.157 -0.123 -0.126 -0.196 

AMJ II -0.035 -0.065 0.053 -0.126 0.046 0.070 0.094 0.061 0.045 0.084 0.057 0.111 0.143 0.081 -0.006 0.092 

AMJ TSI -0.062 -0.078 0.068 -0.109 0.060 0.068 0.083 0.069 0.039 0.081 0.068 0.107 0.085 0.121 0.034 0.126 

 

  



Table 4. Kendall-tau correlation coefficients with significant p-values at 10% (bold) and 5% (underlined bold ) significance levels between January – March 

(JFM), April – June (AMJ), and July – September (JAS) climate indices and JAS cumulative rainfall index (CRI) in sixteen weather stations.  

 S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 

JFM Niño3.0 -0.013 -0.071 -0.001 0.015 -0.035 -0.056 -0.072 -0.010 -0.046 0.036 -0.016 -0.078 -0.065 -0.065 -0.068 -0.100 

JFM Niño3.4 -0.001 -0.057 0.007 0.000 -0.034 -0.042 -0.054 0.023 -0.016 0.046 0.019 -0.036 -0.027 -0.027 -0.034 -0.080 

JFM Niño4.0 -0.004 -0.051 0.013 -0.017 -0.036 -0.036 -0.055 0.020 -0.017 0.019 0.009 -0.035 -0.026 -0.016 -0.052 -0.087 

JFM SOI -0.041 0.024 -0.051 -0.039 0.018 -0.030 -0.072 -0.107 -0.060 -0.123 -0.091 -0.027 -0.093 -0.035 -0.049 -0.022 

JFM EMI -0.023 -0.068 -0.016 -0.045 -0.035 -0.029 -0.065 0.054 0.022 -0.004 0.017 -0.013 -0.018 -0.006 -0.012 -0.082 

JFM DMI -0.113 -0.051 -0.019 -0.085 -0.081 -0.031 -0.008 -0.019 0.016 -0.015 -0.049 0.012 -0.026 0.004 -0.068 -0.034 

JFM II 0.002 -0.001 0.067 -0.039 0.063 -0.028 0.029 0.088 0.027 0.108 0.069 -0.010 0.047 0.071 0.007 0.027 

JFM TSI -0.048 0.018 0.065 -0.082 0.000 -0.028 -0.003 0.039 0.034 0.077 0.058 -0.002 0.005 0.035 -0.066 -0.031 

AMJ Niño3.0  -0.106 -0.119 -0.078 -0.091 -0.128 -0.046 -0.084 -0.163 -0.145 -0.063 -0.137 -0.172 -0.186 -0.240 -0.242 -0.274 

AMJ Niño3.4  -0.080 -0.090 -0.041 -0.055 -0.080 -0.029 -0.079 -0.100 -0.111 -0.060 -0.109 -0.138 -0.154 -0.188 -0.210 -0.240 

AMJ Niño4.0  -0.085 -0.094 -0.032 -0.070 -0.051 -0.026 -0.051 -0.065 -0.080 -0.059 -0.077 -0.115 -0.119 -0.138 -0.192 -0.214 

AMJ SOI 0.082 0.106 0.071 0.044 0.048 0.163 0.127 0.198 0.152 0.172 0.199 0.193 0.222 0.275 0.250 0.223 

AMJ EMI -0.024 -0.008 0.030 0.007 0.010 0.003 -0.034 0.066 0.023 -0.055 -0.026 -0.042 -0.030 -0.022 -0.057 -0.068 

AMJ DMI -0.091 -0.071 -0.036 -0.136 -0.090 -0.084 -0.141 -0.132 -0.117 -0.177 -0.118 -0.113 -0.127 -0.100 -0.101 -0.072 

AMJ II -0.054 -0.060 0.028 -0.148 0.033 -0.013 0.067 0.127 0.067 0.155 0.107 0.018 0.054 0.046 -0.024 0.039 

AMJ TSI -0.130 -0.071 -0.018 -0.169 0.004 -0.004 0.023 0.059 0.033 0.133 0.108 0.024 0.035 0.053 -0.052 -0.012 

JAS Niño3.0  -0.139 -0.139 -0.080 -0.126 -0.075 -0.081 -0.132 -0.212 -0.149 -0.117 -0.185 -0.156 -0.231 -0.222 -0.283 -0.289 

JAS Niño3.4  -0.127 -0.141 -0.060 -0.100 -0.074 -0.084 -0.112 -0.204 -0.144 -0.131 -0.206 -0.191 -0.279 -0.262 -0.342 -0.320 

JAS Niño4.0  -0.102 -0.140 -0.018 -0.083 -0.052 -0.108 -0.097 -0.188 -0.151 -0.131 -0.186 -0.209 -0.274 -0.259 -0.352 -0.335 

JAS SOI 0.192 0.195 0.154 0.118 0.124 0.225 0.208 0.299 0.271 0.249 0.285 0.290 0.317 0.310 0.318 0.351 

JAS EMI -0.081 -0.081 0.019 -0.030 -0.024 -0.077 -0.034 -0.009 -0.037 -0.089 -0.106 -0.144 -0.143 -0.124 -0.225 -0.187 

JAS DMI -0.158 -0.140 -0.093 -0.132 -0.083 -0.228 -0.257 -0.276 -0.249 -0.215 -0.173 -0.162 -0.196 -0.201 -0.191 -0.221 

JAS II 0.088 0.053 0.159 -0.010 0.109 0.219 0.246 0.298 0.265 0.321 0.293 0.198 0.254 0.221 0.154 0.237 

JAS TSI -0.111 -0.100 0.065 -0.148 0.002 -0.067 0.023 -0.011 0.003 0.093 0.081 -0.029 -0.007 -0.002 -0.075 -0.088 
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