
SCH QDISC(9) Linux Programmer’s Manual SCH QDISC(9)

NAME
SCH QDISC − Linux Queuing Discipline Module

SYNOPSIS
#include <linux/config.h>

#include <linux/module.h>

#include <asm/uaccess.h>

#include <asm/system.h>

#include <asm/bitops.h>

#include <linux/types.h>

#include <linux/kernel.h>

#include <linux/sched.h>

#include <linux/jiffies.h>

#include <linux/string.h>

#include <linux/mm.h>

#include <linux/socket.h>

#include <linux/sockios.h>

#include <linux/in.h>

#include <linux/errno.h>

#include <linux/interrupt.h>

#include <linux/if ether.h>

#include <linux/inet.h>

#include <linux/netdevice.h>

#include <linux/etherdevice.h>

#include <linux/notifier.h>

#include <linux/init.h>

#include <net/ip.h>

#include <linux/ipv6.h>

#include <net/route.h>

#include <linux/skbuff.h>

#include <net/sock.h>

#include <net/pkt sched.h>

int register qdisc(struct Qdisc ops *qops);
int unregister qdisc(struct Qdisc ops *qops);

struct Qdisc ops
{

struct Qdisc ops *next;
struct Qdisc class ops *cl ops;
char id[IFNAMSIZ];
int priv size;
int (*enqueue)(struct sk buff *packet, struct Qdisc *qdisc);
struct sk buff *(*dequeue)(struct Qdisc *qdisc);
int (*requeue)(struct sk buff *packet, struct Qdisc *qdisc);
unsigned int (*drop)(struct Qdisc *qdisc);
int (*init)(struct Qdisc *qdisc, struct rtattr *opt);
void (*reset)(struct Qdisc *qdisc);
void (*destroy)(struct Qdisc *qdisc);
int (*change)(struct Qdisc *qdisc, struct rtattr *opt);
int (*dump)(struct Qdisc *qdisc, struct sk buff *packet);
struct module *owner;

};

Linux 2.6 2005 95



SCH QDISC(9) Linux Programmer’s Manual SCH QDISC(9)

DESCRIPTION
A queuing discipline registers itself to the kernel using register qdisc. It uses unregister qdisc
in order to make the kernel forget about the queuing discipline. The argument qops must point
to a static struct Qdisc ops structure that has been initialised with the routines that the kernel
will use to operate the queuing discipline. The members of the structure should be initialised as
follows:-

next and cl ops should be initialized to NULL. The kernel will assign values to these.

id should be initialised to contain a null terminated string with the name of the queuing dis-
cipline.

priv size

must be set to the size of the main structure that will serve as an instance of the queuing
discipline. The contents of this structure is defined by the queuing discipline and is pri-
vate to the queuing discipline. The memory for this will be allocated by the kernel.

init must be set to the routine that will initialize the queuing discipline. qdisc will point to
the kernel’s structure for the queuing discipline instance. qdisc priv can be used to
obtain a pointer to the space that the kernel has allocated for the queuing discipline’s pri-
vate structure for the queuing discipline instance. opt points to a flat container structure
used to transport the parameters of the queuing discipline from the tc user space com-
mand to the queuing discipline in the kernel. The details of this latter structure are
known only to the queuing discipline and to the tc command. The macro RCA DATA

should be used to extract a pointer to this structure from opt. init must initialise an
instance of the queuing discipline based on the parameters contained in opt.

change must either be set to NULL or be set to a routine to change the parameters for the queu-
ing discipline instance. The arguments to change are the same as those for init.

reset must point to a routine that will reset the queuing instance given by qdisc to an initial
state. reset should use packet and queue oriented routines to free all packets in the queue
and free them. It should also reset all statistical data about the queue.

destroy

must point to a routine that will free any resources allocated, including packets still
queued. I recommend calling reset to do much of this.

dump should either be set to NULL or it should be set to a routine that saves parameter infor-
mation from the queuing discipline instance qdisc into opt. dump will be called when tc
requests details from the kernel. It is the authors hope that more details on dump will be
provided by experts.

enqueue

must point to a routine that will handle a request to enqueue the packet packet into the
queuing discipline instance qdisc. enqueue can either enqueue the packet or drop it.
Either way, it must update statistical information which depends on its actions. It should
return 0 on success or NET XMIT DROP if the packet was dropped.

dequeue

must point to a routine that will dequeue the packet packet from the queuing discipline
instance qdisc. It must update statistical information which depends on its actions.
dequeue should return the dequeued packet or NULL if it cannot dequeue a packet
because the queue is empty.

requeue

must point to a routine that will requeue the packet packet into the queuing discipline
instance qdisc. packet is a dequeued packet that for some reason cannot be sent (possibly
a hardware problem), so requeue should place packet at the head of the queue. It must
update statistical information which depends on its actions. 0 (zero) should be returned
to indicate success.

Linux 2.6 2005 96



SCH QDISC(9) Linux Programmer’s Manual SCH QDISC(9)

drop must point to a routine that will handle a request to drop the packet packet from the
instance of the queuing discipline queue. It should return the length of the packet on suc-
cess, or 0 on failure. drop must update statistical information which depends on its
actions.

The following structures are referred to below:-

struct tc stats
{

u64 bytes;
u32 packets;
u32 drops;

...
u32 qlen;
u32 backlog;

};

struct sk buff head
{

...
u32 qlen;

...
};

struct Qdisc
{

...
struct sk buff head q;
...
struct tc stats stats;
...

}

q The kernel will have created and initialised a queue for you to store your packets in. Of
course, if your queuing discipline requires multiple queues or this does not suit your needs,
you may well need to create your own queues. If you do so, then you must fake the
length of q to reflect the total number of packets that you are storing. When you add or
remove a packet, then you must increment or decrement the apparent length of q. (e.g.
++qdisc->q.qlen)

stats Some fields of stats must be kept up to date. As each new packet is enqueued packets

must be incremented and backlog and bytes must be increased by the length of the packet.
backlog in particular should always reflect the number of bytes queued. It should be
decreased by the length of the packet, for example, for each packet that is dequeued and
when you are explicitly requested to drop a packet (the drop routine is called) then back-

log must be decreased by the length of the packet dropped. For each packet that is
dropped, drops must be incremented.

The kernel places interrupt handling on hold while your queuing discipline is being services. This
means that interrupts are transparent to your queuing discipline code and you do not have to
worry about it. On the other hand, it is vitally important that none of your routines called by the
kernel should take too long to execute.

SEE ALSO
tc(8)

Linux 2.6 2005 97


