
HOS-Miner: A System for Detecting Outlying

Subspaces of High-dimensional Data

Ji Zhang1, Meng Lou1, Tok Wang Ling2, Hai Wang1

1Department of Computer Science, University of Toronto,

Email: {jzhang, mlou, hai}@cs.toronto.edu
2Department of Computer Science, National University of Singapore

Email: lingtw@comp.nus.edu.sg

Abstract

We identify a new and interesting high-dimensional outlier detection problem in this
paper, that is, detecting the subspaces in which given data points are outliers. We
call the subspaces in which a data point is an outlier as its Outlying Subspaces. In
this paper, we will propose the prototype of a dynamic subspace search system, called
HOS-Miner (HOS stands for High-dimensional Outlying Subspaces), that utilizes a
sample-based learning process to effectively identify the outlying subspaces of a given
point.

1 Introduction

Outlier detection is an important step in data mining that enjoys a wide range of
applications such as the detection of credit card frauds, criminal activities and excep-
tional patterns in databases. Outlier detection problem can typically be formulated
as follows: given a set of data points or objects, find a specific number of objects that
are considerably dissimilar, exceptional and inconsistent with respect to the remaining
data.

To deal with the above definition of outlier detection problem, numerous research
works have been proposed. They can broadly be divided into the distance-based
methods [5, 6, 8] and the local density-based methods [3, 4, 7]. However, many of
these outlier detection algorithms are unable to deal with high-dimensional datasets
effectively as many of them only consider outliers in the entire space. This implies
that they will miss out on the important information about the subspaces in which
these outliers exist. Recently, a new technique in high-dimensional outlier detection
uses evolutionary search method [1] where outliers are detected by searching for sparse
subspaces. Points in these sparse subspaces are assumed to be the outliers. All the
exiting outlier detection techniques, regardless of in low or high dimensional scenario,
invariably fall into the framework of detecting outliers in a specific data space, either
in the full space or a certain subspace. We term these methods ”space → outliers”
techniques. For instance, [1] detects outliers by first finding locally sparse subspaces,
and [6] discoveries the so-called Strongest/Weak Outliers by first finding the Strongest
Outlying Spaces.

1



x


x


x


x


x


x


x

x


x


x


*
p


x

x

x
x


x


x


x

x
x


x


*
p


x


x

x


x


x


x

x


x

x


x


*
p


Figure 1: 2-dimensional views of the high-dimensional data

While knowing which data points are the outliers can be useful, in many appli-
cations, it is more important to identify the subspaces in which a given point is an
outlier, which motivates the proposal of a new technique in this paper to handle this
new outlier detection task. First, let us consider the example in Figure 1 where three
2-dimensional views of the high-dimensional data are presented. Note that point p
exhibits different outlying degrees in these three views. In the leftmost view, p is
clearly an outlier. However, this is not so in the other two views. There are also a
number of real-life applications that can benefit from the results of the this new task.
In the case of designing a training program for an athlete, it is critical to identify the
specific subspace(s) in which an athlete deviates from his or her teammates in the
daily training performances. Knowing the specific weakness (subspace) allows a more
targeted training program to be designed. In a medical system, it is useful for the
Doctors to identify from voluminous medical data the subspaces in which a particular
patient is found abnormal and therefore a corresponding medical treatment can be
provided in a timely manner.

We will identify this new and interesting high-dimensional outlier detection prob-
lem in this paper, that is, detecting the subspaces in which given data points are
outliers. We call the subspaces in which a data point is an outlier as its Outlying
Subspaces. We now formulate this new problem as following: given a data point or
object, find the subspaces in which this data is considerably dissimilar, exceptional
or inconsistent with respect to the remaining points or objects. This problem can be
mathematically stated as: for any given point p, find the set of subspaces S such that
for each subspace s ∈ S, we have ODs(p) ≥ T , where OD is the distance function used
(to be discussed in the sequal). If the answer set is empty for p, we say that p is not
an outlier in any subspaces.

In this paper, we will propose the prototype of a dynamic subspace search system,
called HOS-Miner (HOS stands for High-dimensional Outlying Subspaces), that utilizes
a sample-based learning process to effectively identify the outlying subspaces of a given
point. In contrast to the so-called ”space → outliers” outlier detection techniques, our
method can be described as a ”outlier → spaces” technique. To our best knowledge,
this is the first such work in the literature so far.

The main features of HOS-Miner include: (1) The outlying measure, OD, is based
on the sum of distances between a data and its k nearest neighbors. This measure is
simple and independent of any underlying statistical and distribution characteristics of
the data points. (2) The properties of OD are investigated and incorporated to speed
up the search for outlying subspaces. (3) A fast dynamic subspace search algorithm
with a sample-based learning process is proposed. (4) A refinement mechanism is
incorporated to screen superfluous outlying subspaces in the final result.



 Dynamic Subspace


Searching


Detected


Subspaces

of Query Data


Users


Query Data


High-

dimensional


Dataset


Indexed High-


dimensional data


Sampled Data


Downward and


upward pruning

possibilities


X-tree


Indexing


Dynamic Subspace


Searching


Random

Sampling


Filter


Figure 2: The overview of HOS-Miner

2 Outlying Degree Measure and Its Properties

For each point, we define the degree to which the point differs from the majority of
the other points in the same space, termed the outlying degree (OD in short). OD
is defined as the sum of the distances between a point and its k nearest neighbors.
Mathematically speaking, the OD of a point p in space s is computed as:

OD(p, s) =

k
∑

i=1

Dist(p, pi)|pi ∈ KNNSet(p, s)

where KNNSet(p, s) is the set containing the KNNs of p in s.
OD maintains two interesting properties that allow the design of an efficient outlier

subspace search algorithm.
Property 1 : If a point p is not an outlier in an m-dimensional subspace s, then it cannot

be an outlier in any subspace that is a subset of s.
Property 2 : If a point p is an outlier in an m-dimensional subspace s, then it will be an

outlier in any subspace that is a superset of s.
The above properties are based on the fact that the OD value of a point in

a subspace cannot be less than that in its subset space. Mathematically, we have
ODs1

(p) ≥ ODs2
(p) if s1 ⊇ s2.

3 HOS-Miner

In the section, we present an overview of HOS-Miner. Figure 2 shows an overview of
the system. It mainly consists of 4 modules. The X-tree Indexing module performs
X-tree [2] indexing of the high-dimensional dataset to facilitate k-NN search in every
subspace. Sample-based Learning module randomly samples the dataset and perform
dynamic subspace search to estimate the downward and upward pruning probabilities
of subspaces from 1 to d dimensions. Subspace Outlier Detection module uses the
probabilities obtained in the Learning module to carry out a dynamic subspace search
to find all the subspaces in which the given query data point is an outlier and the
Filtering Module screen superfluous outlying subspaces in the final result that will be
returned to the users.



3.1 Subspace Pruning

To find the outlying subspaces of a given point, we make use of the properties of OD
to quickly detect the subspaces in which the point is not an outlier or the subspaces
in which the point is definitely an outlier. All these subspaces can be removed from
further consideration in the later stage of the search process.

There are two basic pruning strategies: the upward pruning strategy and the down-
ward pruning strategy. In the downward pruning strategy, we make use of Property
1 of OD to quickly prune away those subspaces in which the point cannot be an out-
lier. This is because if ODs1(p) < T , then ODs2(p) < T , where s1 ⊇ s2 and T is
the distance threshold. In the upward pruning strategy, Property 2 of OD is utilized
to detect those subspaces in which the point is definitely an outlier. The reason is
that if ODs2(p) ≥ T , then ODs1(p) ≥ T . Hence, these detected subspaces can be
immediately returned in the answer set and excluded from further exploration in the
subsequent search.

Next, we will compute the savings obtained by applying the pruning strategies
during the search process quantitatively. Before that, let us first give three definitions.
Definition 1 : Downward Saving Factor (DSF) of a Subspace

The Downward Saving Factor of an m-dimensional subspace s is defined as the
savings obtained by pruning all the subspaces that are subsets of s. In other words,
the Downward Saving Factor of s, denoted as DSF(s), is computed as:

DSF (s) =

m−1
∑

i=1

Ci
m ∗ i

where Ci
m denotes the combinatorial number of choosing i items out of m items.

Definition 2 : Upward Saving Factor (USF) of a Subspace
The Upward Saving Factor of an m-dimensional subspace s, denoted as USF(s),

is defined as the savings obtained by pruning all the subspaces that are supersets of
s. It is computed as

USF (s) =

d−m
∑

i=1

[Ci
d−m ∗ (m + i)]

e.g. Refer to a 4-dimensional space, DSF ([1, 2, 3]) = C1

3 ∗ 1 + C2

3 ∗ 2 = 9 and
USF (1, 4]) = C1

2 ∗ (2 + 1) + C2

2 ∗ (2 + 2) = 10.

Definition 3 : Total Saving Factor (TSF) of a Subspace
The Total Saving Factor of an m-dimensional subspace, in terms of a query point

p, denoted as TSF(m, p), is defined as the combined savings obtained by applying the
two pruning strategies during the search process. It is computed as follows:

TSF (m, p) =







pup(m, p) ∗ fup(m) ∗ USF (m), m = 1
pdown(m, p) ∗ fdown(m) ∗ DSF (m)

+pup(m, p) ∗ fup(m) ∗ USF (m), 1 < m < d

pdown(m, p) ∗ fdown(m) ∗ DSF (m), m = d

where

(1) fdown(m) and fup(m) are the percentages of the remaining subspaces to be
searched. specifically,

fdown(m) = Cdown left(m)/Cdown(m)



and
fup(m) = Cup left(m)/Cup(m)

Let dim(s) denote the number of dimensions in subspace s. Cdown left(m) and
Cup left(m) are computed as:

Cdown left(m) =
∑

dim(s)

where s is unpruned or unevaluated subspaces and dim(s) < m.

Cup left(m) =
∑

dim(s)

where s is unpruned or unevaluated subspaces and dim(s) > m.

Cdown(m) and Cup(m) are the total subspace search workload in the subspaces
whose dimensions are lower and higher than m, respectively. Intuitively, fdown(m)
and fup(m) approximate the fraction of DSF and USF of an m-dimensional sub-
space that are potentially achievable in each step of the search process.

(2) pup(m, p) and pdown(m, p) are the probabilities that upward and downward prun-
ing can be performed in the m-dimensional subspace respectively. In other
words, pup(m, p) = Por(ODs(p) ≥ T ) and pdown(m, p) = Por(ODs(p) < T ),
where s is an m-dimensional subspace. A difficulty in computing the two prior
probabilities, i.e. pup(m, p) and pdown(m, p), is that their values cannot be
known without any priori knowledge of the dataset. To overcome this difficulty,
we first perform a sample-based learning process to obtain some knowledge about
the dataset and then apply this knowledge in the later subspace search for each
query point.

3.2 Sampling-based Learning Process

To facilitate the computation of pup(m, p) and pdown(m, p), we adopt a sample-based
learning process to obtain some prior knowledge about the dataset before subspace
search of the query points are performed. In this learning process, a small number of
points randomly sampled from the dataset are obtained and the subspace searches are
performed on each of the sampling points. For each sampling point sp, we set

pup(m, sp) = pdown(m, sp) = 0.5, 1 < m < d
pup(m, sp) = 1 andpdown(m, sp) = 0, m = 1
pup(m, sp) = 0 and pdown(m, sp) = 1, m = d

This implies that we assume there are equal probabilities for upward and downward
pruning in the subspaces of any dimension, except 1 and d, for each sampling point.
After all the m-dimensional subspaces have been evaluated for sp, the pup(m, sp) and
pdown(m, sp) are computed as the percentage of m-dimensional subspaces s in which
ODs(sp) ≥ T and the percentage of subspaces s in which ODs(sp) < T , respectively.
The average pup and pdown values of subspaces from 1 to d dimensions can be obtained
as follows:

pup(m) =
∑S

i=1
pup(m, spi)/S

pdown(m) =
∑S

i=1
pdown(m, spi)/S



where S is the number of sampling points, pdown(1) = pup(d) = 0.
For each query point p, we set pup(m, p) = pup(m) and pdown(m, p) = pdown(m)

in the computation of TSF(m, p) of the query point p.

3.3 Dynamic Subspace Search

In HOS-Miner, we use a dynamic subspace search method to find the outlying sub-
spaces of the sampling and query points. The basic idea of the dynamic subspace
search method is to commence search on those subspaces with the same dimension
that has the highest TSF value. As the search proceeds, the TSF of subspaces with
different dimension will be dynamically updated and the set of subspaces with the
highest TSF value are selected for exploration in each of subsequent steps. The search
process terminates when all the subspaces have been evaluated or pruned. Note that
the only difference between the dynamic subspace search method used on the sample
points and query points lies in the decision of values of pup(m, p) and pdown(m, p): For
sample points, we assume an equal probability of upward and downward pruning (re-
ferring to Section 3.2) while for query points we use the averaged probabilities obtained
in the learning process.

3.4 Result Refinement

Given the typically large number of data points in the dataset and outlying subspaces
for each data point, which may overwhelm the users, we devise a filter in HOS-Miner
to help refine the result returned by HOS-Miner. For each data point, HOS-Miner
only returns the outlying subspaces with the lowest possible number of dimensions.
This is because the subspaces that are supersets of a known outlying subspaces are also
outlying subspaces. This outlying subspaces selection process adopts an upward search
strategy which starts with outlying subspaces of the lowest number of dimension. A
subspace is discarded if it is found to be a superset of a previously selected subspace.
The whole selection process terminates when all the subspaces returned by HOS-
Miner have been examined. Now, we will give an example to illustrate such outlying
subspaces selection process. Let us suppose that the outlying subspaces of a data point,
in a 4-dimensional space, are [1,3], [2,4], [1,2,3], [1,2,4], [1,3,4], [2,3,4] and [1,2,3,4]. The
filter will only return [1,3] and [2,4] to the users and ignore all the rest. This is because
all of remaining subspaces are supersets of either [1,3] or [2,4] or both.

4 The Plan of Demo

Our demo will consist of the following 4 parts.
First, we will present the new task of detecting the outlying subspaces of high-

dimensional data by pictorially showing the different distribution nature of high-
dimensional data points in varied subspaces, which motivate our research work. We
will also show the audience some real-life applications in which our technique can be
potentially applied. These examples will provide the audience with insights into the
interesting notion of outlying subspaces for high-dimensional data and the valuable
knowledge that can be explored from them.

Second, we will showcase the system architecture of HOS-Miner. Among the fo-
cuses of system architecture demostration are the sampling-based learning module, the
dynamic subspace search module and the filtering module, the three core modules of



HOS-Miner used to perform fast subspaces learning, exploration/pruning and filtering
in high-dimensional space.

Third, by using both synthetic and real-life datasets, we will show to the audience
the experimental evaluation of HOS-Miner and the comparative study of HOS-Miner
and the latest high-dimensional outlier detection technique, i.e. the evolutionary-based
searching method, in terms of efficiency and effectiveness under a wide spectrum of
settings.

Finally, we will showcase the prototype of HOS-Miner and the audience will be
encouraged to play the demo interactively themselves.

References

[1] C. C Aggarwal and P.S. Yu. Outlier Detection in High Dimensional Data. Proc.
ACM SIGMOD’00, Santa Barbara, California, 2001.

[2] S. Berchtold, D. A. Keim and H. Kriegel. The X-tree: An Index Structure for
High-Dimensional Data. Proc. VLDB’96, Mumbai, India, 1996.

[3] M. Breuning, H-P, Kriegel, R. Ng, and J. Sander. LOF: Identifying Density-Based
Local Outliers. Proc. ACM SIGMOD’00, Dallas, Texas, 2000.

[4] W. Jin, A. K. H. Tung, J. Han. Finding Top n Local Outliers in Large Database.
Proc. SIGKDD’01, San Francisco, CA, August, 2001.

[5] E. M. Knorr and R. T. Ng. Algorithms for Mining Distance-based Outliers in
Large Dataset. Proc. VLDB’98, pages 392-403, New York, NY, August 1998.

[6] E. M. Knorr and R. T. Ng. Finding Intentional Knowledge of Distance-based
Outliers. Proc. VLDB’99, pages 211-222, Edinburgh, Scotland, 1999.

[7] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos: LOCI: Fast
Outlier Detection Using the Local Correlation Integral. Proc. ICDE’03, pages
315, Bangalore, India, 2003.

[8] S. Ramaswamy, R. Rastogi, and S. Kyuseok. Efficient Algorithms for Mining
Outliers from Large Data Sets. Proc. ACM SIGMOD’00, Dallas, Texas, 2000.


