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Abstract 

Classification using spatial data is foundational for hydrological modelling, particularly for ungauged 

areas. However, models developed from classified land use drivers deliver  inconsistent water 

quality results for the same land uses and hinder decision-making guided by those models. This 

paper explores whether the temporal variation of water quality drivers, such as season and flow, 

influence inconsistency in the classification, and whether variability is captured in spatial datasets 

that include original vegetation to represent the variability of biotic responses in areas mapped with 

the same land use. An Artificial Neural Network Pattern Recognition (ANN-PR) method is used to 

match catchments by Dissolved Inorganic Nitrogen (DIN) patterns in water quality datasets 

partitioned into Wet vs Dry Seasons and Increasing vs Retreating flows. Explainable artificial 

intelligence approaches are then used to classify catchments via spatial feature datasets for each 

catchment. Catchments matched for sharing patterns in both spatial data and DIN datasets were 

corroborated and the benefit of partitioning the observed DIN dataset evaluated using Kruskal Wallis 

method. The highest corroboration rates for spatial data classification with DIN classification were 

achieved with seasonal partitioning of water quality datasets and significant independence (p<0.001 

to 0.026) from non-partitioned datasets was achieved. This study demonstrated that DIN patterns 

fall into three categories suited to classification under differing temporal scales with corresponding 

vegetation types as the indicators. Categories 1 and 3 included dominance of woodlands in their 

datasets and catchments suited to classify together change depending on temporal scale of the data.  

Category 2 catchments were dominated by vineforest and classified catchments did not change 

under different temporal scales. This demonstrates that including original vegetation as a proxy for 

differences in DIN patterns will help guide future classification where only spatially mapped data is 

available for ungauged catchments and will better inform data needs for water modelling. 
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Nomenclature 

Classifee: Catchment selected as having the most similar data patterns to the Classifier catchment. 

Classified catchments: Catchments are paired together where they are matched in both inductive 

and deductive dataset types. 

Classifier: one catchment seeking other catchments with the most similar data patterns. 

Deductive: “the use of alternative data sources as a proxy to deduce the same conclusions as would 

otherwise be found by the corresponding inductive data. For deductive classification, catchment 

similarities are inferred from proxy data that represent the process drivers of DIN, in the absence of 

observed water quality data”. (O’Sullivan et al., 2022 pg 809) 

Inductive: “the use of observed data to draw inferences regarding that observed data. For inductive 

classification, catchment similarities are inferred from observed water quality and streamflow data 

collected from gauging stations and represent the hydrosphere only”. (O’Sullivan et al., 2022 pg 809) 

Match(ing)/(es): Catchments paired together for their similarities within a dataset.  

SHapley: Method for game theory approach to explanations (Lundberg & Lee 2017; Shapley, 1953) 

1. Introduction 

Catchment classification using spatial data as a proxy for drivers of water quality or flow is 

fundamental in hydrological modelling for catchments that are lacking necessary observed data 

(Nash & Sutcliffe 1970). In such situations, this classification approach based on spatially mapped 

drivers is referred to as deductive classification (Olden et. al., 2012, O’Sullivan et. al., 2012); it 

enables the transfer of flow and water quality data from gauged to ungauged catchments (Jaffrés et. 
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al. 2022, Kanishka & Eldho 2020) and is particularly relevant for the Great Barrier Reef lagoon where 

17 of the 35 feeder catchments are ungauged (O’Sullivan et. al., 2022). Land use in these ungauged 

catchments are perceived to contribute to a disproportionately higher nitrogen load compared to 

gauged catchments (Wells et al., 2021).  To increase certainty in classified models for the Great 

Barrier Reef catchments as much as possible, identifying the gauged catchments with the most 

similar nitrogen drivers to the ungauged catchment is important.     

Nitrogen process and transport drivers vary in relation to an extensive combination of biotic and 

productivity influences including ever changing seasons and flows, which affect Dissolved Inorganic 

Nitrogen (DIN) patterns in water quality observations (Kominoski et al., 2018, and Rodríguez-Castillo 

et al., 2017). In particular, temporal changes in antecedent vegetation, and water availability drivers 

are known to contribute to changed responses for DIN in Great Barrier Reef catchments (Liu et al., 

2021a and Liu et al., 2021b). These fluctuations in water availability and seasonal variability over 

space and time make spatial and temporal scales important to consider in classification and data 

transfer for model development and verification of DIN. 

For deductive classification, spatial data is sourced from maps that delineate the area of drivers in 

each catchment (Olden et al., 2012). The area of the drivers does not change for the period of time 

the spatial data represents, and so catchments deductively classified using spatial data are matched 

to the same combination of catchments for the entire mapping period. This approach is reported to 

be effective for classifying catchments based on most similar flow drivers (Hrachowitz et. al. 2013), 

however, differing water quality responses from homogenous land uses throughout catchments 

classified based on those flow drivers are evident (Swain & Patra, 2019, Merz et al., 2020). 

Evaluation of overall water quality behaviour throughout catchments, across timescales and in 

regional contexts is beneficial to make connections between seemingly unrelated or heterogeneous 

processes (Harman & Troch 2014, Peters-Lidard et al., 2017, Sivapalen et al., 2018). For daily or fine 

scale data considered in the context of yearly or coarser, dataset periods exceeding 12 years are the 
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minimum to encompass variability affecting water quality on seasonal scales such as floods, low 

flows and climatic cycles (Ciria & Chiogna, 2020, Howden et. al., 2011). Harris, et al., (2000) also 

found the length of the water year is not always fixed and classifying catchments on regimes that 

reflect the full cycle of ecological interactions, rather than the Gregorian calendar time cycles of the 

day, month and year are more appropriate. Both the magnitude of flows as well as understanding 

their context in different time periods assist with attributing water quality signatures from short 

points in time to their respective catchments (Heathwaite et al., 2021). Australia’s agroecosystems 

have evolved to the wet and dry climate cycles of La Nina, and El Nino which circulate over the 

Pacific Ocean (Holmgren et al., 2001). In response, nutrient production and transport drivers, and 

associated water quality responses can also fluctuate on fine timescales (Cruz-Ramírez et. al., 2019, 

Racchetti et. al. 2011, Ciria & Chiogna, 2020, Howden et. al., 2011).   An earlier study focused on the 

Great Barrier Reef Catchments that have regular monthly data over the long term, i.e., exceeding 10 

years to cover one full La Nina and El Nino climatic cycle, as well as irregular high frequency sampling 

that coincides with seasonally influenced rainfall events (O’Sullivan et al., 2022). This study 

developed a novel approach based on Artificial Neural Network Pattern Recognition (ANN-PR) 

models to match catchment spatial datasets as a proxy for catchments with corroborating matched 

Dissolved Inorganic Nitrogen (DIN) patterns. This method uses forward and back propagation to 

weigh all variables in relation to all others in the dataset and match catchments that share spatial 

data and water data patterns. In that study, a notable portion of both regular long term and high 

frequency DIN records for each catchment matched more than one catchment, and this can only be 

related to heterogeneous patterns for variables of time as a reflection of seasons or flows, that are 

the only other variables in the DIN dataset. Whilst O’Sullivan et al., (2022) made a significant 

contribution to catchment classification, the influence of time periods on classification, and 

assessment of the contribution of spatial drivers towards the classification outcomes remained 

limited in the proposed ANN-PR corroboration models. Accordingly, the gaps of interest in 

classification research regarding DIN are the influence of differing time scales on the classification of 
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catchments for DIN, and the relationship of spatial variables as explanatory drivers of DIN under the 

varying timescale influences. 

To address the deficit in knowledge regarding the drivers of DIN classification, variable inputs to ANN 

models are interrogatable using eXplainable Artificial Intelligence (XAI) approaches. XAI provides 

transparency and understandability to human end users of artificial intelligence model outputs and 

further builds trust when used for decision-making (Lundberg et al., 2020). It considers the 

contributions of each feature individually to overall system outcomes, and therefore each feature 

variable is uniquely influenced by the presence of the other features in the dataset (Arrieta et al., 

2020, Lundberg & Lee, 2017, Wang et al., 2022). The weighted influence of the Shapley method 

informs on input variable weightings for individual models only (Das & Rad 2020). However, the 

principle of equal weighting approach applied to traditional hydrological models infact facilitates for 

catchments that share similar weighted influence of variables as identified by Shapley to be 

classified. 

The objective of this study is therefore to make a novel contribution to classification methods via the 

application of datasets in new ways to ANN-PR models to explain heterogeneity in DIN water quality 

patterns observed in previous studies (e.g., O’Sullivan et al., 2022, Liu et al., 2021a) for Great Barrier 

Reef catchments. We aim to explore variations in DIN patterns that correspond to changes in 

classified water quality patterns under the different seasons or flow time periods. To identify drivers 

in the DIN pattern results for future application to ungauged areas we also aim to exploit 

information in currently mapped spatial feature types that corroborate with the ANN-PR informed 

results.  

The hypothesis evaluated in this study is that: catchments suitable to be classified for DIN differ 

depending on the periods of time represented in the dataset evaluated for classification, and these 

differences are influenced by spatial variables that drive DIN. This will be explored here through 

these research questions: Do classified patterns induced from water quality data change from 
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classification results found by O’Sullivan et al. (2022) where smaller portions of the dataset are 

considered for a novel aspect to this research, 1) in different seasons?  2)  in high and low flow 

events?  Finally, 3) do features within currently mapped spatial datasets explain changes in season or 

flow classification results to identify previously unconsidered drivers and facilitate the future transfer 

of the method to ungauged areas?   

We explore whether partitioning the full observed dataset included in an Artificial Neural Network 

Pattern Recognition (ANN-PR) classification evaluation affects catchments matched for similarities in 

DIN that flow to the Great Barrier Reef. For this study, partitioning included increasing and retreating 

flows and wet season vs dry season, this is to compare classification results for data collected in 

different time vs flow scales. To inform future transfer of the results to ungauged areas, we also use 

an adaption of XAI methods to find spatial variables in datasets that corroborate with catchment 

response for DIN (O’Sullivan et al., 2022). We finally evaluate whether identified spatial data 

features drive any changes in classification for different flows and seasons. 

2. Methods 

2.1. Study area 

To evaluate spatio-temporal influences on classification, the study area covered 11 catchments, 

located in north-eastern Australia, that provide flow to the Great Barrier Reef. These gauged 

catchments, relative to other gauged and ungauged ones in the region are shown in Fig. 1, and the 

spatial extent of gauged areas for catchments evaluated in this study are consistent with Khan et al., 

(2020). Details regarding the observed data available at the respective gauging station, i.e. sample 

site, for each catchment evaluated in this study, along with sampling frequency and period for DIN 

collected in each catchment are presented in Table 1.  
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Figure 1: Map of the study area showing the location of catchments evaluated in this study with 
gauged and ungauged catchments that flow into the Great Barrier Reef 
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Table 1: Observed data summary for the evaluated catchments. This table includes frequency, and range of all available DIN observations at the gauging 
stations between 2006-2018 . ^ Refer to Figure 2 and Table 2 for definition of records included in Wet Season, Dry Season, Increasing Flows and Retreating 
Flow datasets 

Catchment Name Normanby Barron 
North 
Johnstone 

South 
Johnstone 

Tully Haughton O'Connell Pioneer Plane Burnett Mary 

Gauging station ID 
for observed data 

105107A 110001D 112004A 112101B 113006A 119003A 124001B 125013A 126001A 136007A 138014A 

Gauged catchment 
area (km

2
) 

12,828 1,950 926 399 1,386 1,807 336 1,464 327 30,724 6,863 

Natural Resource 
Management Region 

Cape York Wet tropics Wet tropics Wet tropics Wet tropics Burdekin 
Mackay 
Whitsunday 

Mackay 
Whitsunday 

Mackay 
Whitsunday 

Burnett Mary Burnett Mary 

Gauged Catchment 
Centroid Latitude 
(decimal °) 

-15.46 -17.05 -17.5 -17.66 -17.87 -19.72 -20.77 -21.23 -21.24 -25.73 -26.19 

Gauged Catchment 
Centroid Longitude 
(decimal °) 

144.56 145.51 145.69 145.77 145.72 146.81 148.56 148.74 148.94 151.28 152.49 

DIN Record Period) 
3/10/2006- 
25/08/2017 

19/01/06- 
15/09/17 

30/01/2006-
15/09/2017 

24/02/2006- 
15/09/2017 

13/01/2006- 
19/04/2018 

20/12/2012- 
25/09/2017 

25/01/2007- 
24/08/2017 

18/10/2006- 
13/09/2017 

4/09/2009- 
26/08/2017 

23/10/20006-
15/09/2017 

25/09/2013- 
29/06/2018 

DIN sampling 
frequency 

Events  
Jan-March 

Regular (1) 
monthly, 
Events  
Jan-March 

Infrequent 
half yearly,  
Events  
Jan-March 

Regular (1) 
monthly, 
Events  
Jan-March 

Frequent (>1) 
monthly, 
Events  
Jan-March 

Regular 
monthly, 
Events  
Jan-March 

Irregularly 
One off 
Events 
 Jan-March 

Frequent (>1) 
monthly, 
Events  
Jan-March 

Regular (1) 
monthly, Events  
Jan-March 

Frequent (>1) 
monthly, Events  
Jan-March 

Frequent (>1) 
monthly, Events  
Jan-March 

Number of records in 
DIN record period 

244 318 94 414 723 80 87 402 302 400 176 

Number of records in 
Wet Season^ 

229 233 77 318 523 47 65 292 229 275 111 

Number of records in 
Dry Season^ 

17 87 17 98 204 33 22 111 75 127 66 

Number of records in 
Increasing flows^ 

233 146 52 227 420 43 81 321 148 222 103 

Number of records in 
Retreating flows^ 

12 172 42 187 303 37 6 81 154 178 73 

Max DIN (mg/L) 1.70 0.63 0.37 0.37 1.88 0.33 0.83 3.56 3.87 4.66 1.29 

Min DIN (mg/L) 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Mean DIN (mg/L) 0.06 0.12 0.15 0.13 0.24 0.07 0.11 0.23 0.42 0.16 0.20 

Median DIN (mg/L) 0.03 0.10 0.14 0.13 0.21 0.03 0.06 0.17 0.21 0.10 0.16 

Standard Deviation 
DIN (mg/L) 

0.13 0.09 0.07 0.06 0.15 0.09 0.14 0.28 0.53 0.32 0.20 

Jo
urnal P

re-proof

Journal Pre-proof



 

10 

2.2. Modelling and Conceptual framework 

Our earlier studies showed that the application of an Artificial Neural Network Pattern Recognition 

(ANN-PR) is effective in classifying catchments based on patterns in the Dissolved Inorganic Nitrogen 

(DIN) and the hydrological flow dataset (O’Sullivan et al., 2022). The ANN-PR method facilitates for 

each DIN observation to be independently classified to another catchment, and so is suited to our 

evaluation to classify DIN observations depending on the respective season or flow regime. 

Classification is then characterised through eXplainable Artificial Intelligence approaches. For this 

study, water quality and flow records from the most downstream gauging station utilised for each 

gauged catchment (Table 1) were obtained and arranged consistent with methods described in 

O’Sullivan et al., (2022). Data sets were then partitioned to include data for the following scenarios, 

to identify whether data included in the partitioned dataset only changed classification results: 

Increasing baseflows: positive geomean score, i.e., daily baseflow rates that exceed the average flow 

calculated from the commencement of the dataset; 

Retreating baseflows: negative geomean score, i.e., daily baseflow rates lower than the average 

calculated from the commencement of the dataset until that point in time; 

Wet Season: All dates within the time period following the date after commencement of the water 

year where all catchments exhibit positive geomean baseflows;   

Dry Season: All dates within the time period following commencement of the wet season each water 

year where all catchments exhibit negative geomean baseflows; and 

Non Partitioned: complete data set   
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Equations for nominating whether DIN observations were allocated to a Wet or Dry Season, or an 

Increasing and Retreating baseflow dataset are described in Table 2, and a visual example of the 

records included in each partitioned dataset scenario are shown in Figure 2. For simplicity, this novel 

research partitioned wet vs dry season for each catchment based on all catchments achieving the 

criteria for above vs below average flow .  

 

Figure 2: Visual representation of dataset records included in each dataset partition zone.    

The partitioned datasets were then classified with other catchments in the study area using the 

ANN-PR classification method (Figure 4). Because this classification is induced from observed water 

quality data, i.e. here for Dissolved Inorganic Nitrogen, this classification is referred to hereafter as 

inductive classification consistent with O’Sullivan et al., (2022).  

For this study, we also use feature relevance exploration XAI approaches (Arrieta et al., 2020) to 

identify similarities in spatial data attributes for catchments and evaluate their match rate with the 

inductive classification for DIN under differing flow and seasonal scenarios. The purpose of this step 

is to establish whether it is possible to classify catchments for DIN under differing flows or seasons 

based on using only spatial data as a surrogate for DIN. The workflow for this study is shown in 

Figure 3.  
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Figure 3: Workflow for identifying the most suitable catchment to classify under flow or seasonal 
scenarios and corroborating spatial drivers.  

 

2.3. Water Quality Data Pattern Matching 

A fundamental part of this research is to first partition water quality datasets to establish the 

catchments that inductively classify together under the different flow or seasonal dataset partitions. 

Water quality dataset establishment and detailed methodology for subsequent matching of 

catchments for the inductive classification used similar approach to O’Sullivan et. al., (2022) and is 

presented in Supplementary Material S1. Criteria for water quality dataset partitioning that is the 

novel aspect to this research are detailed in Table 2. 
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Table 2 Dataset partitioning for DIN observations. For this study, the dataset is partitioned by Wet 
Season vs Dry Season or Increasing vs Retreating flows. This partitioning created four sub datasets, 
and retained the Non-Partitioned form of the complete dataset used in O’Sullivan et al., (2022).  

Data Partitioning  Method of extraction from Complete 
Dataset 

Equation 

Non-Partitioned  Complete dataset included for control NA= ∈1…..∈n 
Where: N = Records to be included; A=  All; ∈ 
=dataset record; n = last dataset record 
 

Dry Season  Dry Season = water days 201-49. 
Commencement of dry season at day 
200 was based on negative geomean 
for flows for all catchments. 
 

NDS= ∈⍵201…..∈⍵49 
Where: N = Records to be included; DS=Dry 
Season;∈ =dataset record; ⍵=waterday; 

Wet Season  Wet Season = water days 50 – 200, 
Commencement at 50 was based on 
first positive geomean values for 
surface flows for all catchments after 
the commencement of the traditional 
water year on 1 October annually. 
 

NWS= ∈⍵50…..∈⍵200 
Where: N = Records to be included; WS=Wet 
Season;∈ =dataset record;⍵=waterday;n = last 
dataset record 
 

Increasing flows  Complete dataset records with 
baseflow and with a positive geomean 
score were allocated to this group 
 

N∩ = ∈∩1…..∈∩n 
Where:N = Records to be included;  
∈ =dataset record;∩=Geomean value of 
negative baseflows;n = last dataset record 
 

Retreating flow  Complete dataset records with 
baseflow with a negative geomean 
score were allocated to this group 
 

N∪ = ∈∪1…..∈∪n 
Where: N = Records to be 
included;∪=Geomean value of negative 
baseflows; 
∈ =dataset record;n = last dataset record 

2.4. Spatial Data Matching 

O’Sullivan et al., (2022) demonstrated spatial data as a catchment classification proxy for DIN 

patterns in water quality datasets. The novel aspect of this research involves adjustment to the ANN-

PR method introduced in O’Sullivan et. al. 2022 to pair multiple catchments together based on 

spatial data.  Explainable artificial intelligence (XAI) approach is also used to explore and explain the 

spatial data similarities.  

2.4.1. Spatial Dataset Construction 

The mapping data was obtained from the state of Queensland’s open access Q-Spatial mapping 

portal, for Queensland Land Use Mapping which is developed using the approach described in 

ABARES (2016), and Original Vegetation from Broad Vegetation Group Mapping (Neldner et al., 

2017). Broad Vegetation Group mapping represents the combination of mesic, landscape, geological 

situation, with the natural vegetation response to the unique combination of those influences at 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

14 

each location. Rather than including numerous mapping layers of all elements of the environment 

known to influence vegetation growth and productivity, Broad Vegetation Group mapping has been 

used as a proxy for biotic responses to abiotic factors. It is used here as a parsimonious dataset to 

spatially represent natural biotic (vegetation) responses to abiotic factors commonly used in water 

quality modelling.  Ecounit polygons were also created in this study via a merging of the Land Use 

and Original Vegetation mapping together. The purpose of the variables created in Ecounit mapping 

is to account for situations where environmental features that influenced evolution of the original 

vegetation persist and influence the nutrient responses of the same land uses in areas that naturally 

evolved different original vegetation types (O’Sullivan et al., 2022). ArcGIS ver 10.6.1 was used to 

extract the areas of variables in the Land Use, Original Vegetation and Ecounit spatial mapping 

datasets for each catchment.  

2.4.2. Catchment matching using Artificial Neural Network Pattern Recognition 

This study investigated whether different catchments classify together under different spatio 

temporal scales,  therefore more than one classifee is needed. Given ANN-PR only classifies one 

catchment as most similar for each catchment (ANN-PR#1) we repeated the ANN-PR classification as 

described in O’Sullivan et al., (2022) with the dominant classifee catchment removed to identify the 

secondary classifee catchment as ANN-PR#2, Figure 4. The benefit of ANN-PR for classification is its 

capability to facilitate direct comparison of classification results for both water quality and spatial 

data (O’Sullivan et. al., 2022). The model is designed to match each record in the input layer dataset 

to one catchment in the classifee dataset with the most similar data patterns as established by 

algorithms in the supervised training scenario.  
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Figure 4: ANN-PR approach developed to identify a secondary classifee for spatial data. Coloured 
dots represent datasets for individual catchments. The secondary classifee is identified based on the 
trained algorithm by hiding the primary classifee catchment data from the testing dataset. 

 

2.4.3. An eXplainable Artificial Intelligence (XAI) Method: Feature Matching System  

To explain catchments matched using ANN-PR, relative similarities in the proportion of each spatial 

variable in each catchment were evaluated. The purpose was to identify landscape or ecological 

reasoning for classification results generated by ANN-PR. The XAI method also classifies catchments 

based on shared features, but unlike ANN-PR, XAI does not limit the classification to one most 

similar catchment. All data within the spatial data tables for each catchment was converted to be 

the fraction of the total for each respective catchment (A from Eq 1). Rapid comparison of 

catchments with similar variable distributions Land Use, Original Vegetation and Ecounit dataset 

feature variables were visualised using standard heatmap function in Matlab. Colour scaling was 

adjusted to logarithmic to expose similarities in small fractions and eliminate zero. Catchments with 

matching feature dominance for each respective correlation categories of 0.51-0.60, 0.61-0.70, 0.71-

0.80, 0.81-0.90 and 9.1-1.0 were identified visually from the heatmaps.  
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2.4.4. An eXplainable Artificial Intelligence (XAI) Method: Deviations and SHapley additive 

deviations  

For hydrological classification studies, each variable is traditionally considered to have equal 

weighting in comparison to all other variables in the dataset, and laws of scaling for positive and 

negative influences of variables are also considered to average each other out in parameterisation of 

models after classification has been applied (Jehn, 2020). In contrast, game theory recognises up 

front that each variable in datasets used for classification is influenced by the additive influence of 

all variables with each other (Cohen et al., 2007, Lundberg & Lee 2017). For this study, both these 

approaches are combined whereby the fundamental influence of each variable towards DIN is 

considered equal, while simultaneously being scaled relative to the deviation of all other spatial 

feature variables using Eq 1. 

Ds= As-A∀                    Eq 1 

where: 

D: deviation of spatial dataset variable. 

A: proportional area of variable (A=area of variable /total catchment area) 

S: subject variable  

∀: all dataset variables excluding s 

 

The deviation of the spatial dataset variable was then evaluated in two ways. First, Standard 

Deviation valuations involved identifying, catchments with the same spatial variables that deviated 

from the average proportional area of all other spatial variables in their respective datasets. These 

catchments were then manually recorded as “matched”.  Second, consistent with SHapley game 

theory principles (Lundberg et. al., 2020; Shapley, 1953), the accumulative proportional area of 

spatial feature deviations were plotted for each spatial dataset type, Land Use, Original Ecosystem 

and Ecounit for each catchment, as well as accumulatively for the entire dataset to determine which 
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spatial feature deviations fell in the top 10% throughout the datasets for all catchments separately 

and combined. Spatial features with the highest 10% additive feature deviations for all catchments 

combined were selected and referred to as SHAP-AD (i.e., SHapley Additive Deviations) deviations 

for each catchment.   

Original Vegetation, Land Use, or Ecounits matched in the heatmap, all standard deviations and 

SHAP-AD were recorded to facilitate interrogation of the influence of the extraordinary spatial 

variables towards  corresponding catchment matches using water quality patters, i.e. inductive 

classification. 

2.5. Corroboration Metrics 

Catchment matching results for all datasets were evaluated to establish the feasibility of the 

approach for spatial data to be used as a proxy in place of partitioned water quality data for 

classification.  Fifteen catchment match results were identified for each classifier (i.e., five 

partitioned inductive water quality dataset scenarios of Wet Season, Dry Season, Increasing Flows, 

Retreating flows and non-partitioned, evaluated separately for each of the three dataset types of SF, 

BF or SFBF), were visualised on a graph which shows all corroborating classification results for all 

catchments on one figure. for rapid visual assessment whether matched catchments change under 

the different season or flow scenarios.  

For catchment matching using spatial data, 12 scenarios were evaluated for each classifier. These 

were three spatial datasets Land Use (LU), Original Vegetation (OV) and Ecounit (EU)) and 4 

iterations of the evaluation method (i.e. ANN-PR#1 with ANN-PR#2, Feature Matching, Standard 

Deviations and SHAP-AD). Catchment match results for each scenario were overlaid on the quilt 

graph for visual corroboration with the catchment match results for the water quality dataset 

matches. Where the same classifee was identified for the classifier in both inductive classification 

(i.e., pattern matching using water quality datasets) and deductive classification (i.e., pattern 

matching informed by spatial datasets) the classifee and classifiers were nominated as corroborated. 
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Corroboration rates for each evaluation technique for partitioned datasets scenario were calculated 

using equation 2. 

                                                             𝛿𝑇 =
∑ 𝐵𝑇𝐹𝑃                

𝐵𝑇(𝐹𝑃)𝑛1…..𝑛

𝑘ℕ
     Eq 2 

where: 

𝛿: Corroboration Rate for evaluation technique 

T: evaluation technique 

F: Dataset for flow state (BFSF, SF, or BF) with associated DIN  

P: Dataset partition for F (Wet Season, Dry Season, Increasing Flows, Retreating Flows) 

B:  number of catchments corroborated  

𝑘ℕ: Number of classifee catchments 

 

Kruskal Wallis nonparametric test was used to evaluate the independence of the corroboration rates 

for each evaluation technique (i.e., ANN-PR, Feature Matching and Deviation Evaluations), spatial 

dataset (LU, OV, EU), and partition type (Flows, Increasing flows, Decreasing flows, Season, Wet 

Season and Dry Season) from each other (Kruskal & Wallis, 1952). The significance level for testing 

the independence of dataset corroboration rates from each other was set at the default of p<0.05 

consistent with O’Sullivan et al., 2022. 

3. Results 

For inductive datasets, different catchments were matched together under different flow or season 

scenarios (Figure 5). Corroboration of inductive classification results with the deductive classification 

informed by spatial data varied for each catchment and dataset partition type (Supplementary 

Material Figure SF1).  
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Figure 5: Catchments matched by majority pattern matches for different season and flow data 
compared to the non-partitioned dataset. DIN dataset colour and shape icons identify catchments 
that matched together for the respective datasets. Three categories of catchment matches are 
shown for the combination of dataset partitions and distinguished by cell frames. 
 
3.1. Pattern Matching 

Patterns in the datasets partitioned for Increasing flow matched the majority of the patterns 

observed in another catchment dataset for all 11 catchments. Inductive classification, i.e., 

classification using observed water quality data, catchment matches vary depending on the dataset 

partition, and classification fell into one of three categories (Figure 5). The highest inductive 

classification rate was achieved for Wet Season dataset partitioning with 9 of the 11 catchments 

(>80%) pattern matching a majority of the dataset with another catchments dataset. Datasets 

partitioned for Increasing flows and the non-partitioned dataset both matched a majority of dataset 

patterns for 8 out of the 11 catchments (72%). Finally, datasets partitioned for the Dry Season and 

Retreating Flows both only matched 6 of the 11 catchments (<55%). Of the catchment matches, 

North Johnstone and South Johnstone were the only catchments that achieved the same catchment 

matches through all three Wet Season, Dry Season and Non-Partitioned dataset scenarios. In 

contrast, while catchment matches for Mary, Pioneer, Haughton and Tully remained consistent 

through the Wet Season, Increasing flows and the Non-Partitioned dataset, the same matches did 
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not persist for Dry Season or Retreating Flows partitioning of the datasets. Plane is the only 

catchment that has the same pattern match for both Dry Season and Retreating flows data 

partitioning, but the Plane catchment did not have a majority pattern match for the non-partitioned 

dataset. Barron did not have pattern matches for Non-Partitioned, Dry Season or Retreating flows 

(Figure 5). Collectively ANN-PR pattern matching of partitioned datasets revealed three inductive 

classifier categories (Figure 5). Plane, O’Connell and Haughton are nominated Category 3 where Dry 

Season and Retreating flows match to a different catchment than the other dataset partitions. Wet 

tropics catchments of Tully, South Johnstone and North Johnstone match only to the same 

catchment as the Non-Partitioned dataset, and Normanby, Barron, Pioneer, Burnett and Mary are 

nominated as Category 1, where dataset partitioning match catchments for Wet Season or 

Increasing flows dataset partitions and never for Dry Season or Retreating flow dataset partitions.  

Both ANN-PR#1 with ANN-PR#2 and XAI Feature Matching methods paired all catchments to at least 

one other catchment. Matching all deviations achieved 85% match rate, while SHAP-AD (largest 10% 

of feature deviations) achieved only a 33% match rate (Supplementary Material Figure SF1).  

3.2. Corroboration of catchment matches for Water Quality and Spatial datasets 

Corroboration between inductive classification for water quality patterns and each spatial data 

pattern match evaluation varied.  The highest frequency of corroboration was achieved for feature 

matches for Land Use in the Wet Season (Supplementary Material Figure SF1). For feature matching 

datasets, Ecounit Data which combines both Land Use and Original Vegetation had the highest 

corroboration frequency with the non-partitioned dataset. For ANN-PR#1, the non-partitioned 

dataset instead had the highest corroborations with Land Use data, while Wet Season partitioning 

had the highest corroboration with Ecounits for ANN-PR#1. Addition of ANN-PR#2 facilitated for 9 of 

the 11 catchments to corroborate a second classifier that was not identified in ANN-PR#1. Excepting 

Barron, South Johnstone and North Johnstone where ANN-PR#2 did not generate a catchment 

match for LU, and Plane where there appeared to be an issue in the results generated, because they 

were a duplicate of ANN-PR#1, the catchment matches generated by ANN-PR#2 for LU only 
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corroborated with Tully for the inductive classification results. In contrast, ANN-PR#2 for Original 

Vegetation and Ecounit generated secondary catchment matches that successfully corroborated 

with at least one of the inductive dataset catchment matches for the rest of the catchments 

(Supplementary Material Figure SF1). 

3.2.1. Corroboration for Evaluation Techniques  

Pattern Matching Corroboration rates show statistical independence between the three different 

evaluation techniques (p=0.015) and 5 different dataset partitions (p=0.001). In the pairwise 

comparisons, Feature Matching and ANN-PR combined evaluation techniques did not significantly 

differ from each other (p=0.879), however, both had significantly higher corroboration rates than 

Deviation Evaluations (p=0.015 and 0.010 respectively). This result shows that interrelationships 

between all variables in the spatial dataset collectively, as included in evaluations for ANN-PR and 

Feature Matching, have a more significant corroboration with water quality patterns for DIN 

compared to only considering spatial features that deviate the most, i.e., top 10%, from all others in 

the dataset.   

3.2.2. Corroboration for Spatial Datasets  

Although Original Vegetation (OV) and Ecounit (EU) had higher median and overall corroboration 

rates of catchment matches with water quality catchment matches than Land Use (LU), no 

significant difference in corroboration rates was found between the dataset types (ie. LU, EU or OV) 

p=0.067 (Supplementary Material Figure SF1).  

3.2.3. Corroboration for Partitioning 

Partitioning the dataset into seasons resulted in the best performing corroboration with a median 

corroboration rate of 0.3, a maximum corroboration rate of 0.57 and pairwise significance scores for 

independence from the other dataset partition corroboration results of mostly p<0.001 to p=0.026. 

The exceptions were the difference between corroboration rates for combined seasons partition and 

Non-partitioned datasets that were not classified as significantly independent (p=0.069). There was 

an insignificant difference between corroboration rates for the combined season partition compared 
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to Wet Season partition by itself (p=0.107). The median corroboration rate for seasons combined 

exceeded maximum corroboration rates for all the other partitions evaluated, with the greatest 

difference in performance with Retreating flows (Supplementary Material Figure SF1).  

3.3. Evaluation of Extraordinary Spatial Variables 

Evaluation of spatial features using XAI techniques showed in the wet tropics, corroborated 

catchments were dominated by spatial deviations for productivity in natural environments  as well 

as all the land uses on land with Original Vegetation mapped as mesophyll and notophyll vine forests 

(Supplementary Material Figure SF2). In contrast, corroborations for Burnett and Normanby Original 

Vegetation data were dominated by areas mapped open wood and or depositional areas. This did 

not persist when the combination of Land Use with Original Vegetation data was considered. 

Dominant Ecounit features for Burnett instead were more similar to Barron where production of 

relatively natural systems on open woodland areas (Supplementary Material Figure SF2). 

 

The SHAP-AD method identified that 17 of the 162 spatial variables were in the top 10% largest 

deviations from the average area for each catchment, compared to all other variables in the dataset.  

Evaluation of the top 17 spatial variables demonstrates that there are distinct differences between 

dominant spatial variables in catchments north of Haughton compared to catchments south of and 

including Haughton (Supplementary Material Figure SF3).  Ecounit, 1.2, which is produced from 

relatively natural environments on lands with complex mesophyll to notophyll vine forests of the 

wet tropics, was most prominent in the wet tropics catchments. While Ecounit 2.2 with the 

production from relatively natural environments with complex to simple, semi-deciduous mesophyll 

to notophyll vine forests sometimes with Araucaria cunninghamii (hoop pine), also dominated in all 

catchments north of Haughton, as well as Burnett. However, the Original Vegetation portions of the 

dominant Ecounit data were not in the most dominant spatial variables in the Original Vegetation 

datasets. The land use portion of the dominant Ecounits was, however, consistent with Land Use 

spatial datasets for the wet tropics. Land Use 2: Production on relatively natural environments 
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dominant in North Johnstone, South Johnstone and Tully catchments, as well as contributing to 

Barron and a smaller extent, Mary.  

For catchments south of Haughton, as well as Barron, Ecounits including 16.3 production from 

dryland agriculture and plantations on lands mapped with Original Vegetation of Eucalyptus spp. 

dominated open forest and woodlands drainage lines and alluvial plains were most prominent in 

Haughton, Pioneer, Burnett and to a lesser extent Mary and Barron. Meanwhile, Ecounit 13.3 of 

production from dryland agriculture and plantations on land originally characterised by dry to moist 

eucalypt woodlands and open forests, mainly on undulating to the hilly terrain of mainly 

metamorphic and acid igneous rocks only dominated in Mary, Burnett and Barron.   

In contrast to Land Use and Ecounit SHAP-AD results, North Johnstone and South Johnstone SHAP-

AD results for Original Vegetation features displayed negative deviations from the mean. 

Interestingly. Normanby and Burnett shared similarities for variable 21: Melaleuca spp. dry 

woodlands to open woodlands on sandplains or depositional plains, while Mary and Pioneer were 

the only catchments that shared positive deviations for dry woodlands to open woodlands, mostly 

on shallow soils in hilly terrain. Haughton, Pioneer and Burnett shared deviations for variable 6: 

Notophyll vine forests and microphyll fern forests to thickets on high peaks and plateaus. Tully and 

Normanby shared wetlands associated with permanent lakes and swamps, as well as ephemeral 

lakes, claypans and swamps. Includes fringing woodlands and shrublands, and Barron, Normanby 

and Tully shared Melaleuca spp. open forests and woodlands on seasonally inundated lowland 

coastal swamps and fringing drainage lines (Palustrine wetlands). Pioneer and Haughton shared 

deviations for Complex mesophyll to notophyll vine forests of the wet tropics bioregion. Both these 

catchments are located outside of the wet tropics, and pre-clearing extent for this vegetation type. 

In general, the wet tropics catchments are dominated by Original Vegetation of medium to large-

leaved vine thickets, production in relatively natural environments, or intensive uses dominate 
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contrast, Mary, Burnett and Normanby share a large deviation of open forests or dry woodland, with 

Burnett and Normanby sharing large deviations of depositional areas.  

3.4. Evaluation of dominant spatial features  

A full evaluation of spatial features and corroborated classification is provided in Supplementary 

Material S2. Catchments that had mesophyll or notophyll vineforest as a dominant spatial variable 

consistently shared water quality patterns and dominant spatial features across more than one 

dataset partition.  For example, in the wet tropics, all zones of the partitioned dataset were 

corroborated to spatial deviations dominated by productivity in natural environments as well as all 

the land uses mapped on land with Original Vegetation of mesophyll and notophyll vine forests. In 

contrast, all other catchments with variation of open forest type spatial features corroborated the 

spatial features with water quality matches for only a partition of the dataset, e.g, Normanby, 

Haughton or Pioneer with Burnett. In contrast, Mary corroborated with Barron and Pioneer and both 

corroborations included a variation of mesophyll or notophyll vineforest in the matched dominating 

spatial data. Evaluation of Feature Matching and Inductive Classification corroborations. Evaluation 

of the feature matching results is shown in Figure 6 with the record identifiers coloured to the 

corresponding dataset partition for the matched classifier. Interestingly, Category 2 catchments (All 

seasons and Flows) were never classified based on Original Vegetation or Ecounits that contained 

open woodlands or woodlands. Jo
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Figure 6: Scatter plots for spatial variables shared for catchment matches as grouped by water 
quality dataset partitions, evaluated and compare between OV, LU and EU spatial datasets. The top 
three plots show the most dominant 10% spatial variables using the SHAP-AD method, the bottom 
three plots show all spatial variables determined by the feature matching method. Y axis 
abbreviations: ND= Spatial Variable Not Differentiated; W=Water, PNE = Production on Natural 
Environments, PIA= Production on Irrigated Agriculture, PDA = Production on Dryland Agriculture, 
OW= Open Woodlands, WT=Wet Tropics. 

Feature matching and SHAP-AD revealed that for the wet tropics catchments, corroborated 

catchment features were relevant for all 5 dataset partitions where spatial variables included 

elevation (Figure 6). In contrast, while Feature Matching identified catchments matches for Wet 

Season and Increasing flows, but not Dry Season or Retreating flows (Category 1) identified that, 

these categories only corresponded to all identified land uses on Original Vegetation of Woodlands 

on Hilly Terrain and Open Woodlands on Alluvial areas this distinction was not exposed in the SHAP-
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AD evaluation. Likewise, excepting Intensive Uses and Not Disclosed, Feature Matching exposed for 

all other land uses on originally Open Forest on Woodland Areas, the catchments only matched for 

Dry Season and Retreating flows, i.e. Category 3 (Figure 6). 

3.5. Result Summary  

Results for all catchments, except for North Johnstone and Tully, supported the hypothesis that the 

best catchment to classify changes depends on the season or flow zone in the observed water 

quality dataset. Catchments matched together for DIN patterns in North Johnstone and Tully 

persisted regardless of the partitioning of the dataset. In contrast, pattern matching for all the other 

catchments changed depending on the season, or flow zone of the partitioned dataset. Likewise, 

spatial data deviation matches for Category 2 classified catchments (i.e. North Johnstone and Tully, 

as well as South Johnstone), uniquely did not include any open woodland original vegetation types in 

the corroborated catchment spatial data deviations. Instead, the deviations were dominated by 

original vegetation of notophyll or mesophyll vine forests regardless of Land Use spatial data and 

dataset partitions. While mesophyll and notophyll vine forest appeared in spatial data deviations 

shared between catchment classifications for O’Connell, Plane, the corroboration only applied 

during the Wet Season and Increasing flows zone for O’Connell. 

4. Discussion  

4.1 Influence of data timescale on classification 

The study results support the hypothesis that data from different time periods, i.e., dataset 

partitioned for different flow or seasons, influence the catchments that ANN-PR match together for 

inductive classification, but the application depends on the catchment.  In particular, we found 

partitioned water quality datasets matched catchments to one of three categories. Category 1 

supported the hypothesis in full, whereby catchment matches alternated under differing flow or 

season dataset partitions, Category 2 the hypothesis was not supported, instead the same 
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catchments matched together for all dataset partitions, including non-partitioned dataset, and 

Category 3 matched a dataset to one catchment only in some partitioning of the dataset, but the 

majority pattern matching threshold was not achieved for other partitions of the dataset. These 

three catchment response patterns to DIN are consistent with studies which also found dominating 

drivers of nitrogen patterns vary in different catchments depending on the season, flows and natural 

landscape variations (Liu et al., 2021a, Zhang et al., 2022a,b). These findings demonstrate that that 

application of classified catchments for water modelling need to consider the time scale and time 

period of the intended model outputs, as well as the data availability of the donor catchment.  

4.2 Timescale drivers of DIN variability 

The second part of the hypothesis that differences between season and flows are driven by spatial 

variables was supported by the finding that catchment matches using the partitioned datasets 

corroborated with catchment matches found via interrogation of spatial patterns. This finding was 

significantly stronger for datasets partitioned for season compared to the non-partitioned dataset. 

Datasets partitioned for Retreating flows had the lowest corroboration. This is consistent with 

previous observations for Great Barrier Reef catchments where differences in nitrogen have been 

attributed to temperature effects on biological processes in conjunction with the lower mobility of 

nutrients during dry and colder seasons, while the mobility of nitrogen and therefore pattern 

variation is known to become restricted on dryer environments (Liu et al., 2021a). The alignment 

between these studies and our findings suggests that the use of water quality data from distinctive 

seasons and periods of increasing flows provides more value to identifying catchments suitable for 

classification than all water quality data collected or compared for periods of retreating flows only.  
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4.3 Spatial data proxies for variable classification 

In this study, XAI Feature Matching and XAI SHAP-AD deviation evaluations of the variables in the 

corroborated spatial datasets identified spatial variable proxies of the likely drivers of DIN under 

various season and flow regimes in the Great Barrier Reef catchments. The clear delineation for 

dominant Land Use data north of Haughton compared to south of and including Haughton, based 

only on mapped Land Use data, did not corroborate with the three classification categories for the 

observed water quality data.  This result of three water quality categories compared to the two Land 

Use groups aligns with Jehn et al., (2020) who found heterogeneity exists among catchments 

classified for the same Land Use spatial variables. In contrast, SHAP-AD graphs that included other 

Original Vegetation and Ecounit spatial variables corroborated more closely with the three water 

quality categories. Although using the top 10 % of dominant features was useful for rapid 

comparison of catchment matches and similarities to general regions, the SHAP-AD evaluations had 

the lowest median corroboration rate of all the spatial data evaluation techniques. Significantly 

higher corroboration scores for the evaluation technique of Feature Matching, which included all 

spatial variables demonstrate important combinations that influence DIN patterns. Evaluation of the 

top 10% of features, as used in the SHAP-AD method overlooked the wholistic influence of all 

explanatory features.   

Category 2 classification was the only category that contradicted the hypothesis whereby the 

classified catchment persisted regardless of the dataset partition and was restricted to the wet 

tropics catchments. The persistence of the same catchment classifier across all dataset partitions 

indicates that the drivers of DIN in the Natural Resource Management Region catchments of the wet 

tropics (Table 1) areas may respond consistently, or be unaffected by changes in season or flows, 

and therefore be inconsequential for classification purposes. The unique response of DIN in the wet 

tropic’s catchments to Retreating and Increasing flows has also been noted in O’Sullivan et al., 2022 

which used the same water quality datasets and demonstrated that DIN to flow ratios remained 
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elevated in the Retreating flows for a larger portion of the flow profile in comparison to category 1 

and 3 catchments. Likewise, Liu et al., (2021a) found the wetter profile for the wet tropics 

catchments corresponded to different nitrogen patterns in these areas compared to the rest of the 

Great Barrier Reef catchments. While mineralisation of nitrogen is influenced by seasons through 

both temperature and  water availability (Maxwell et al., 2022), the influence of soils on nitrogen 

balances in rainforest environments, typical to wet tropics, are uniquely related to rainforest soils 

(Vallicrosa et al., 2022). The absence of alteration to catchment classification responses for only the 

wet tropics catchments suggest the nitrogen drivers unique to rainforest soils, or continually wetter 

environments that are characterised by vineforests, particularly at elevation, could be masking the 

seasonal influences of nitrogen mineralisation that are otherwise observed in the catchments that 

allocated to Category 1 and 3 classifications. Implications of these findings for water quality models 

is that data transfer between classified catchments in originally wet rainforest type environments 

characterised by vineforests may not need to consider flow or seasonal changes for classification. 

However, flow or seasonal variations do need consideration for catchments outside these areas.  

In contrast to Category 2 trends, Category 1 catchments matched for Increasing flows only, all 

shared similar deviations for primary production on original vegetation of open woodland. The 

corroboration did not continue to Dry Season or Retreating flows zone of partitioned datasets. This 

phenomenon of indistinguishable nitrogen patterns during times of Retreating flow has been 

observed by Liu et al., 2021a. Likewise, Jackson and Ash, (1998) found for production open 

woodlands landscapes, open woodland trees influence soil carbon making nitrogen more available 

during wet years for pasture uptake, with trees outcompeting pasture for nitrogen in dry years.  

Feature matching corroborated classifications for ANN-PR#1 were consistent with O’Sullivan et al., 

(2022). Additional catchments that are more suitable to classify for data transfer or different zones 

of partitioned water quality datasets were also identified using the ANN-PR#2 method. Here we 

found while classification results for the Non-Partitioned dataset persist, and are also consistent 
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with corroborations shown for the dominating spatial features, as demonstrated by the SHAP-AD 

evaluation, Feature Matching classification can more appropriately reflect the season or flow regime 

scenario of most influence.  

Our results for multiple catchment classification under differing dataset partition zones support the 

notion that the same approach for transfer of data from each of the classified catchments for 

nutrient modelling is not appropriate for all catchments over differing temporal (season or flow) 

scales, and that spatial data can explain the catchment responses.   This study demonstrates that 

Original Vegetation spatial data of vineforests are indicators for Category 2 classification dynamics. 

In comparison, Category 1 classification is more appropriate in catchments with matching spatial 

patterns for primary production on Original Vegetation of woodland. 

5. Conclusion 

Practical implications of the ANN-PR - XAI coupled methodology approach of this study is the finding 

that catchments most suitable to classify for DIN can change over seasons and spatial features can 

serve as a proxy indicator for the most suitable catchment to classify depending on data application.  

Here we found for gauged catchments that flow to the Great Barrier Reef, periods of data suitable to 

transfer, and catchments to classify for drivers of DIN altered depending on the relative deviation of 

spatial data, i.e. vine forests or woodland from the areas of all other original vegetation types in the 

catchment.  This finding will help inform future classification to the gauged catchments evaluated in 

this study where only spatially mapped data is available for ungauged catchments.  

Limitations for future application of findings of this study are that the suitability of spatial features 

identified as a proxy for drivers of DIN are specific only to the catchments evaluated and therefore 

transfer to other catchments require site specific verification. Further research on whether the 

deviation of vineforest and woodland spatial drivers exists in ungauged catchments that also flow to 

the Great Barrier Reef will confirm the suitability of this classification method for application to 

those ungauged areas.  Research on how to best apply spatial data as a proxy for changing classified 
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catchments in different flow or season scenarios has potential practical outcomes to increase 

certainty in parameter transfer used in process based models for DIN simulations for ungauged 

catchments.  
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Highlights 

a) Flow vs season data expose biosphere and hydrosphere variability on DIN drivers 
b) ANN-PR coupled with XAI expose spatial data features to classify for DIN 
c) DIN classification varies on season/flow scales, explained by original vegetation  
d) Original vegetation maybe a proxy for alternating/heterogeneous classification  
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