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Power spectral density‑based 
resting‑state EEG classification 
of first‑episode psychosis
Sadi Md. Redwan 1, Md Palash Uddin 2,3, Anwaar Ulhaq 4*, Muhammad Imran Sharif 5 & 
Govind Krishnamoorthy 6

Historically, the analysis of stimulus-dependent time–frequency patterns has been the cornerstone 
of most electroencephalography (EEG) studies. The abnormal oscillations in high-frequency waves 
associated with psychotic disorders during sensory and cognitive tasks have been studied many 
times. However, any significant dissimilarity in the resting-state low-frequency bands is yet to be 
established. Spectral analysis of the alpha and delta band waves shows the effectiveness of stimulus-
independent EEG in identifying the abnormal activity patterns of pathological brains. A generalized 
model incorporating multiple frequency bands should be more efficient in associating potential EEG 
biomarkers with first-episode psychosis (FEP), leading to an accurate diagnosis. We explore multiple 
machine-learning methods, including random-forest, support vector machine, and Gaussian process 
classifier (GPC), to demonstrate the practicality of resting-state power spectral density (PSD) to 
distinguish patients of FEP from healthy controls. A comprehensive discussion of our preprocessing 
methods for PSD analysis and a detailed comparison of different models are included in this paper. The 
GPC model outperforms the other models with a specificity of 95.78% to show that PSD can be used 
as an effective feature extraction technique for analyzing and classifying resting-state EEG signals of 
psychiatric disorders.
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Psychosis is a symptom commonly associated with an extended array of neurological and psychiatric disorders, 
including schizophrenia spectrum (schizophreniform, schizoaffective, and paranoid schizophrenia). The first epi-
sode of psychosis in schizophrenia can be hard to distinguish from other forms of psychosis. An early diagnosis 
relies heavily on identifying trait markers of schizophrenia in first-episode psychosis (FEP/first-episode schizo-
phrenia/FESz) patients. Electroencephalography (EEG) has been tremendously successful in the time–frequency 
analysis of neural activation patterns during different cognitive and behavioral assessments. Recent resting-state 
studies show that EEG can also be used to decode intrinsic brain activity in a task-negative state. Multiple stud-
ies involving spectral analysis support the alterations in resting-state delta/alpha activity in the schizophrenia 
spectrum1–3. Although researchers have recently found significant spectral entropy modulation deficits with task 
performance in patients with FEP/FESz, they did not find any significant pre-stimulus spectral entropy differ-
ences. Current speculation is that it reflects a deficit in the synchronization of the neural assemblies that underlie 
cognitive activity4. On the other hand, several cortical alpha networks have been shown to be pathological in 
FEP patients in a recent resting-state magnetoencephalography (MEG) study5. Interestingly, Power Spectral 
Density (PSD) has been used in analyzing the alpha band default mode network (DMN) in schizophrenia in 
another MEG analysis6. This raises the question of whether PSD can also be used as a potential biomarker for 
EEG analysis to identify FEP patients accurately.

EEG is a waveform representation of the (electrical) brain signals measured by the fluctuations of voltage 
induced by the neuronal ionic activity7. The effectiveness of EEG in decoding neurological and emotional states 
of the brain is attributed to the high temporal resolution of the signal8 and our understanding of which frequency 
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or pattern of the signal relates to a particular task, stimulus, or emotion. Several visual, auditory, and task-based 
stimuli have been developed over the years by researchers on account of EEG studies. These studies have eventu-
ally built the foundation of modern EEG-based emotion recognition, seizure detection, medical diagnosis, and 
brain-computer interface (BCI) systems. In particular, EEG is currently established as the primary method for 
seizure detection9. In contemporary EEG and MEG studies, delta, and alpha powers have been affiliated with 
attention and prolonged focus, signifying spontaneous resting-state brain activity. A more generalized model 
using multiple robust feature extraction techniques for highly accurate schizophrenia classification has also been 
proposed recently10. Several studies support the use of PSD as an effective EEG feature extraction method for 
machine-learning classification11,12. In another study, researchers used PSD of multiple frequency bands along 
with fuzzy entropy and functional connectivity for generalized anxiety disorder (GAD) classification with 97.83 
(± 0.4)% accuracy13. This signifies the potential utility of combining the spectral features of multiple bands for 
the EEG classification of FEP. The core objective of this work is to combine the PSD of delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–12 Hz), and low-beta (12–16 Hz) bands of resting-state EEG for the machine learning 
approaches. Since high-frequency gamma waves are typically associated with task or event-related potentials, 
only the low-to-medium frequency bands are chosen to investigate whether the EEG features associated with 
intrinsic brain activity have a significant difference that can be classified using machine learning. Another goal 
is to evaluate which machine learning models perform best for these features.

Machine learning models for EEG classification have been popularized with the success of linear discriminant 
analysis (LDA), support vector machine (SVM), and neural networks in multiple EEG paradigms. A random 
forest classifier has been proposed for the classification and analysis of mental states using single-channel EEG14. 
SVM has been successfully used in multiple sclerosis15 and epilepsy detection16. Gaussian Process Classifier 
(GPC) has also been proposed for classifying mental states17 and detecting neonatal seizures18. In this work, 
we analyze the effectiveness of multiple methods, namely random forest, SVM, and GPC, for classifying FEP 
patients and healthy controls based on the PSD of multiple EEG frequency bands. A medium-sized dataset 
of 28 controls and 44 patients has been balanced using borderline-SMOTE19 for this work. With a very small 
number of parameters, the computationally efficient GPC has performed very well, with an accuracy of 95.51 
(± 1.74)% and a specificity of 95.78 (± 3.3)%. The dataset used in this work is associated with the MEG study 
by Salisbury et al. in which machine learning network analysis of resting alpha-band neural activity identified 
several aberrant networks in FEP including the left temporal, right inferior frontal, right posterior parietal, and 
bilateral cingulate cortices5.

Contribution: The present study demonstrates a distinct and novel contribution in the field by leveraging the 
combined power spectrum of multiple frequency bands in resting-state EEG to detect FEP, offering promising 
clinical applications. This innovative framework establishes a fundamental groundwork for accurately classifying 
FEP and control subjects using resting-state EEG data. We anticipate that future advancements will build upon 
this foundation, employing more sophisticated neural network models and integrating various feature extraction 
techniques based on time–frequency analysis to enhance classification performance and diagnostic accuracy 
further. The potential for continued refinement and expansion of this framework underscores its significance 
in FEP detection.

Materials and methods
Electroencephalography (EEG)
Most publicly available EEG datasets are focused on diverse neural activation events of healthy and occasionally 
pathological brains. That being said, the publication of resting-state EEG studies and datasets has also increased 
in the past few years. Major depressive disorder20, depression21,22, cognitive states23, and multiple other psychi-
atric disorders22 have been studied using resting-state EEG as of late, and some of them have been published 
as datasets. In addition to the MEG study of resting-state cortical alpha networks of FEP/FESz5, Salisbury et al. 
also published the corresponding EEG datasets in 202224,25. To obtain resting data, EEG was recorded for 5 min 
using an Elekta Neuromag Vectorview system with a low-impedance 60-channel cap following the 10-10 system. 
For our work, we use the Resting Task 1 dataset, excluding the Resting Task 2 samples of 10 subjects that are also 
present in the Resting Task 1 dataset. The subject population consists of 72 subjects (44 patients and 28 controls 
matched for age, gender, and estimated premorbid IQ). In particular, MEG data was recorded for 53 participants 
while EEG data was collected for 72 participants. The MEG and EEG datasets are separate and only the EEG 
datasets were publicly available. The phenotype directory contains clinical assessment results and data, organized 
by type, for all subjects. The assessment results are categorized as follows: BPRS: Brief Psychiatric Rating Scale, 
SANS: Scale for the Assessment of Negative Symptoms, SAPS: Scale for the Assessment of Positive Symptoms, 
GAFGAS: Global Assessment of Functioning, SFS: Social Functioning Scale MATRICS: MATRICS Consensus 
Cognitive Battery, WASI: Wechsler Abbreviated Scale of Intelligence, and Hollingshead: Hollingshead Four-
Factor Index of Socioeconomic Status. For the medications information is given as follows: Chlorpromazine 
equivalency of prescribed medication at the time of the EEG scan. The demographic information of the subjects 
is presented in Table 1.

The dataset is obtained from OpenNeuro26 (accession number: ds003944). It is available under the Crea-
tive Commons License (CC0). The phenotypic information is also included in the dataset. The cognitive and 
socio-economic assessments have been conducted using the MATRICS score and SES score respectively, and 
the negative effects of FEP are evident in the patient population.

Preprocessing
The initial step of every EEG study is preprocessing the data to reduce the effects of several unwanted arti-
facts. The EEG signals used in this work are obtained in a 5-min period using a low-impedance 10-10 system 
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60-channel cap (Elekta Neuromag Vectorview system), with a sampling frequency of 1000 Hz. The online ref-
erence used in this system is the linked mastoids. Two additional electrooculogram (EOG) channels and an 
electrocardiogram (ECG) channel are also included in the data. EOG channels are particularly important as 
they capture the eye-blink artifacts that are also present in the EEG signals. Much work has been done to estab-
lish a correct method for EOG-related artifact removal based on Independent Component Analysis (ICA) and 
regression27. EEG signals also correlate with the ECG signal (heartbeat artifacts), which can be removed using 
ICA28 and Signal-Space Projection (SSP).

ICA is a blind source separation (BSS) technique that has revolutionized signal separation from mixed signals 
and has been used in numerous EEG and fMRI studies over the years. With the success of a fast and efficient ICA 
implementation, fittingly named FastICA29, it has become much easier to remove artifacts from EEG signals. 
In this work, FastICA is used to remove both EOG and ECG artifacts separately. We apply temporal band-pass 
filtering of 0.5–35 Hz before applying ICA to remove low-frequency drifts and high-frequency components that 
are not needed for this study. We extract 20 Independent Components (ICs) from all the channels to find out 
which components correspond to EOG and ECG artifacts and remove those components. The ICs for a sample 
subject are shown in Fig. 1.

A correlation method is used to detect EOG-related ICs in EEG data, based on the Pearson correlation 
between the filtered data and the filtered EOG channels. The thresholding is performed using an adaptive 

Table 1.   Demographic information of the subject population.

Group N (male, female) Average age (SD) Ethnicity—White, Black, Asian, mixed, undisclosed

All subjects 72 (46, 26) 21.96 (4.66) 46, 17, 5, 3, 1

Control 28 (16, 12) 21.33 (3.88) 21, 4, 3, 0, 0

FEP 44 (30, 14) 22.36 (5.06) 25, 13, 2, 3, 1

Figure 1.   All 20 ICs for a subject. From a cursory glance, the IC-001 and IC-002 appear to be related to 
unwanted artifacts. IC-001 is close to the eyes, which indicates EOG-related potential, and IC-002 appears to be 
incoherent compared to the other ICs.
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z-scoring approach, where components with z-scores above the threshold are flagged and masked. This process 
is repeated iteratively until no supra-threshold component remains, as shown in Fig. 2.

The ECG-related ICs are also identified using the same principle. Phase statistics30 are also applied to identify 
the heartbeat artifacts since these artifacts do not affect each EEG electrode with the same potential due to the 
temporal properties of the ECG signal. Figure 3 shows the ICs that correlate to the ECG signal, and Fig. 4 shows 
the effect of EOG and ECG-related artifact removal.

Cross‑spectral density (CSD)
Before proceeding to the feature extraction step, we verify sensor-to-sensor coherence by calculating the CSD 
of the channels to justify using spectral features for further analysis. The key objective of CSD is to compare two 
signals by measuring the spectral power distribution and determining the coherence between them. This analysis 
helps in understanding the relationship between the signals in the frequency domain, which is crucial for ensur-
ing that the sensors are recording coherent data that can be meaningfully analyzed together. CSD can be achieved 
through various methods, such as the Morlet wavelet (Continuous Wavelet Transform/wavelet decomposition) 
and Short-Time Fourier Transform (STFT). These methods decompose signals into their time–frequency com-
ponents, allowing for a detailed spectral analysis. In our approach, we utilize the Morlet wavelet to decompose 

Figure 2.   The ICs identified to be EOG-related IC (− 0.5 to 0.5 s range, 1000 time points).

Figure 3.   IC(s) identified to be ECG-related IC (− 0.5 to 0.5 s range, 1000 time points).
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every signal into time–frequency components, which facilitates the calculation of the spectral correlation of 
the signals. For each frequency band, we specify eight equidistant values (frequency scales) ranging from the 
lower-bound to the upper-bound. This detailed decomposition enables us to capture the coherence across dif-
ferent frequency scales, ensuring robust spectral feature extraction for subsequent analysis. The wavelet power 
spectrum can be defined as

where Wx is the wavelet transform and τ, s represent the position of the wavelet in the time and frequency 
domain, respectively31. The Morlet wavelet is given by

By combining the correlation between the power spectrums for each pair of signals, we eventually get a 60 × 60 
matrix for all 60 channels. The average CSD matrices for a sample subject across different frequency bands are 
presented in Fig. 5.

Power spectral density (PSD)
PSD is an effective method to differentiate between noise and features in a signal by making a spectral representa-
tion of the power distribution of its frequency components. Thomson’s multitaper spectral estimation method 
is used to compute PSD in this work32. The multitaper method is preferred over other similarly popular meth-
ods such as Welch’s method and simple FFT for computing PSD because it results in lower variance, increased 
frequency resolution, and reduced bias. This method starts by calculating a periodogram for each of the first 
K≈2NW Discrete Prolate Spheroidal Sequences (DPSS/Slepian tapers)33 and then averaging these periodograms. 
Figure 6 shows the power spectra of a sample subject’s preprocessed EEG data in μV2/Hz (decibels).

Resting state EEG signals are typically characterized by low amplitude and frequency fluctuations, which can 
make it difficult to distinguish between different states or conditions. By dividing the data into smaller segments, 
the EEG signals can be assumed to be more stationary within each segment, allowing for more robust analysis 
and classification. It is important to mention that, even though the CSD matrix is used to verify sensor-to-sensor 
coherence in this work, the main focus is the combined PSD of all the channels and not the sensor locations for 
the features. In summary, the data is divided into 30 s segments, and four PSD bands for each subject are com-
puted. The four bands are then combined for the classification step. Only the PSD features are used for machine 
learning classification without further processing or dimensionality reduction in this work. Segmenting EEG 
data of ~ 5 min length into 30 s results in 9 to 10 segments for each subject. The four frequency bands combined 
produce 240 PSD features for each segment which is adequate for machine learning classification.

(1)(WPS)x(τ , s) = Wx(τ , s)
2
,

(2)ψ(x) = exp

(

−
x2

2

)

cos(5x).

Figure 4.   Effect of artifact removal. The original signals are shown in the left panel, and the processed signals 
are in the right panel. 20 out of 60 channels are shown with 0.5–16 Hz bandpass filtering in a 10 s window; EOG 
artifacts are visible at ~ 4 s timestamp in the left panel.
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Random forest
Random forest is a tree-based ensemble learning technique34 that has been used many times in different classifi-
cation tasks. The core idea of a random forest classifier is to combine multiple decision trees using an ensemble 
(bagging) mechanism. The prediction of the random forest is given by the averaged prediction of the decision 
trees combined with the extremely randomized method35. A random forest of 200 decision trees with a maximum 
depth of 30 per tree is used in this work to classify PSD feature vectors.

Gaussian process classifier (GPC)
The GPC for binary classification is based on Laplace approximation36. With the joint probability p

(

y
)

p
(

x|y
)

 
derived from Bayes’ theorem, where y denotes the class label, the marginal likelihood p(y|X) is given by

Using a Taylor expansion of Ψ(f) the approximation q(y|X) to the marginal likelihood is derived as follows.

An approximation to the log marginal likelihood is derived by analyzing this Gaussian integral.
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Figure 5.   CSD analysis of a single subject. (a) delta, (b) theta, (c) alpha, and (d) low-beta CSD matrices denote 
coherence across channel signals.
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where

and θ is a vector of hyperparameters of the covariance function.
We use a stationary covariance function or radial basis function (RBF), as the Gaussian process kernel. With 

r = x − xi and a specified shape parameter ε, the Gaussian RBF is given as follows.

Support vector machine (SVM)
Support vector machines (SVMs) are widely used for classification because they build a linear decision surface 
from a very large feature space to which input vectors are mapped non-linearly37. Based on the properties of the 
optimal hyperplane (feature map), the SVM algorithm can be classified into linearly separable, linearly insepa-
rable, and non-linearly separable. For non-linear feature mapping, a kernel function is used to map the inputs 
implicitly. Similar to the GPC, we use the Gaussian RBF as the kernel function for our SVM model. For Gaussian 
RBF, φ the kernel function can be written as

Then the vector to the hyperplane (weight) is given by

(5)log q
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Figure 6.   Power spectral representation of EEG data. Each frequency band shows the characteristic PSD of the 
signal.
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The SVM classifier minimizes the following expression to separate the input feature vectors with the parameter 
λ > 0, which denotes the tradeoff between the size and flexibility of the margin for classification.

Multilayer perceptron (MLP) model
A multilayer perceptron (MLP) model was employed to classify the EEG data. The MLP is a type of artificial 
neural network consisting of multiple layers of neurons: an input layer, one or more hidden layers, and an out-
put layer. Each neuron in a layer is connected to every neuron in the subsequent layer, and the model uses a 
non-linear activation function to capture complex patterns in the data. For this study, we optimized the number 
of hidden layers, the number of neurons per layer, the activation functions, and other hyperparameters using 
cross-validation to achieve the best classification performance. MLPs have been widely used in EEG signal clas-
sification due to their ability to model complex, non-linear relationships in the data.

AdaBoost classifier
An AdaBoost classifier was also utilized in this study. AdaBoost, or Adaptive Boosting, is an ensemble learning 
technique that combines multiple weak classifiers to form a strong classifier. The algorithm iteratively trains weak 
classifiers, typically decision stumps, by focusing on the samples that were previously misclassified. This process 
is repeated, with each classifier’s predictions weighted based on their accuracy, to improve overall model per-
formance. We tuned the number of estimators and learning rate to find the optimal configuration for classifying 
the EEG data. AdaBoost has proven effective in various classification tasks, including EEG signal classification, 
due to its ability to enhance the performance of weak learners.

Low resolution electromagnetic tomography (LORETA) analysis
LORETA analysis estimates the sources of brain activity from EEG signals by addressing the inverse problem 
using a smoothness constraint. The process involves preprocessing EEG data, accurately positioning electrodes, 
defining a 3D brain grid, calculating a lead field matrix, and applying the LORETA algorithm to estimate and vis-
ualize source activity. It offers a non-invasive and cost-effective method with high temporal resolution, although 
it has lower spatial resolution compared to fMRI. LORETA is widely used in cognitive neuroscience and clinical 
research to study brain function and disorders, despite the inherent ambiguity of the inverse problem.

Results
The experiments were done using MATLAB R2022b and Python 3.10 in Microsoft Windows 11 (22H2) platform 
on an AMD Ryzen 7 3750H computer. The performance of each model is evaluated using fivefold cross-validation 
with 80% data used for training and 20% for testing. Note that using a larger training set ratio for EEG classifi-
cation is crucial for model accuracy and generalization38. It allows the model to learn complex patterns, avoid 
overfitting, and achieve robust parameter estimation. Additionally, it increases the statistical power of the model, 
essential for detecting subtle differences in clinical settings. As such, this approach supports rigorous validation, 
enhancing model robustness and reliability, which is vital for clinical applications like diagnosing first-episode 
psychosis. Consequently, we set the training-to-testing ratio as 80% to 20%. The final confusion matrix for each 
model is derived by taking the average of all confusion matrices, as shown in Fig. 7.

Initially, we applied principal component analysis (PCA) for feature reduction. However, PSD features from 
the higher frequency bands exhibited dominant variance. Surprisingly, while PCA aimed to streamline features, 
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Figure 7.   Confusion matrices averaged across test data.
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it inadvertently led to the elimination of lower-frequency features, contrary to our expectations. This unexpected 
outcome prompted us to explore diverse model parameters and kernels. We found that retaining all 240 features 
produced optimal results for certain models without succumbing to overfitting. It is important to note that PCA 
requires around 1000 cases for reliable analysis when using 240 features. Consequently, we proposed our PSD-
grounded approach for feature reduction, detailed in our methodology, based on empirical evidence to ensure 
the robustness of our findings.

We use precision, recall, and F1-score to evaluate the classification accuracy for each class. The mathematical 
expressions for precision, recall, and F1-score are as follows.

where TP, FP, and FN denote true-positive, false-positive, and false-negative predictions respectively. Specificity 
or true negative rate is defined as the recall of the negative class (control). The accuracy score, precision, recall, 
and F1 scores for the random forest, GPC, and SVM models are discussed in Tables 2, 3, and 4, respectively.

In addition to these models, a multilayer perceptron model and an AdaBoost classifier were employed that 
achieved 59.65% and 61.41% accuracy respectively. With an accuracy of 95.51 (± 1.74)% and specificity of 95.78 
(± 3.3)%, the GPC model has outperformed the other models (↑9.67% accuracy over random forest and ↑13.26% 
accuracy over SVM) and thus, decided as the best model for PSD-based classification of FEP vs. control. The 
proposed GPC model has a comparatively small number of parameters and can be considered a ‘shallow’ learn-
ing model. The high accuracy of GPC can be attributed to selecting a suitable covariance function for the input 
features. Other RBF kernels should also be considered for comparison. Deep recurrent neural network (RNN) 
models trained with time–frequency features, much like the recently proposed models for epilepsy classification, 
age prediction, and concussion classification39–41, can hypothetically outperform this model. Another aspect that 
requires further analysis is the method for computing PSD. Future studies should also consider Welch’s method 
for computing PSD to compare with the results of the DPSS method.

Discussion
In order to elucidate the underlying neurophysiological basis for the classification results, we employed sLORETA 
to estimate cortical EEG sources for the weighted grand average signal of the control and FEP groups42. Subse-
quently, a t-test was conducted to compare the power spectral differences between the cortical source estimates 
of the two averaged signals. The results revealed significant disparities in source powers (Fig. 8), which align with 
the inferences derived from the machine learning models. This finding suggests that the classification success 
achieved by the algorithms can be attributed to the distinctive cortical EEG source powers in control and FEP 
individuals. These results provide further support for the potential utility of EEG-based classification methods 
in differentiating individuals with FEP from healthy controls.

(11)Precision =
TP

TP + FP
,

(12)Recall =
TP

TP + FN
,

(13)F1 =
2× Precision× Recall

Precision+ Recall
,

Table 2.   Classification report for the random forest model.

Group Precision (SD) Recall (SD) F1-score (SD) Overall accuracy (SD)

Control 89.2 (± 4.8) 83.93 (± 1.9) 86.34 (± 2.3)
85.84 (± 2.72)

FEP 82.89 (± 1.9) 89.2 (± 4.9) 85.27 (± 3.2)

Table 3.   Classification report for the GPC model. Significant values are in bold.

Group Precision (SD) Recall (SD) F1-score (SD) Overall Accuracy (SD)

Control 95.93 (± 3.5) 95.78 (± 3.3) 95.72 (± 1.7)
95.51 (± 1.74)

FEP 95.56 (± 3.5) 95.3 (± 3.1) 95.26 (± 1.8)

Table 4.   Classification report for the SVM model.

Group Precision (SD) Recall (SD) F1-score (SD) Overall accuracy (SD)

Control 82.49 (± 3.6) 84.69 (± 4.2) 83.45 (± 2.2)
82.25 (± 2.18)

FEP 82.47 (± 3.4) 79.45 (± 5.3) 80.75 (2.5)
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In the MEG study associated with the data used in this work, four cortical alpha networks are described 
as pathological in individuals with first-episode psychosis. These networks involve the bilateral anterior and 
posterior cingulate; left auditory, medial temporal, and cingulate cortex; right inferior frontal gyrus and wide-
spread areas; and right posterior parietal cortex and widespread areas. Since individual anatomical data were not 
available, we used the standard MNI152 brain template for EEG source estimation in the sample subjects. We 
hypothesize that accurate source estimation based on individual subject anatomy (structural MRI), combined 
with machine learning, can provide insights similar to those of the MEG study. In summary, resting-state PSD is 
shown to be an appropriate feature in the EEG-based analysis of FEP, and the proposed GPC model emerges as 
the best model for such features, achieving the primary goal of this study as outlined. Future work should focus 
on EEG sources as well as combined PSD for machine learning-based inferences.

Conclusion
In this study, we have evaluated the use of machine learning methods for the classification of patients with 
first-episode psychosis (FEP) and healthy controls based on the Power Spectral Density (PSD) of resting-state 
EEG. We have reviewed various feature engineering techniques and machine learning models to demonstrate 
that FEP patients can be accurately detected utilizing resting-state EEG. In addition, we have demonstrated that 
low-to-medium frequency (delta-to-low-beta band) waves are pathological in FEP patients and can differentiate 
patients from healthy persons with the same degree of accuracy as task/event-related high-frequency waves. PSD 
is shown to be a reliable characteristic for the effective classification of FEP using machine learning. We conclude 
that resting-state EEG studies can lead to an accurate diagnosis of FEP/FESz and other psychiatric disorders and 
should be regarded as equally essential as stimulus-based EEG studies. As this study focuses solely on develop-
ing a machine learning model using PSD-based features for the resting-state EEG classification of first-episode 
psychosis, comparing it with purely statistical models such as ANOVA could be explored in future. In addition, 
understanding the pathological state could be a valuable area for future research.

Data availability
The denoised and preprocessed data used in this work is available at https://​zenodo.​org/​record/​73150​10 while 
the original EEG: First Episode Psychosis vs. Control Resting Task 1 dataset is available at https://​doi.​org/​10.​18112/​
openn​euro.​ds003​944.​v1.0.1.
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