Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

A Cooperative Architecture Based on Social Insects

Iain Brookshaw, Dr. Tobias Low
University of Southern Queensland
w0086292@umail.usq.edu.au

October 31, 2013

Abstract

In the last two decades, cooperative robotic
groups have advanced rapidly; beginning with sim-
ple, almost blind box pushing tasks and advancing
to the complexity of robocup’s autonomous soccer
matches. Groups of machines have been employed
to build structures, search for targets, mimic in-
sects and enact complex formations with precision
and aplomb. The complexity of the tasks accom-
plished have been both impressive and practical,
clearly illustrating the potential power of robotic
groups and demonstrating how they may be ap-
plied to solve real-world problems.

Building on this success, we have created a
software architecture that was intended to remove
the robotic agents’ dependency on complex com-
munications or detailed task specific information.
By incorporating biological models of stigmergic
social insect cooperation into the architecture, we
aim to ensure that the robots will be able to coop-
erate implicitly, without regard to group size and
with only a weak dependency on task specific in-
formation and group homogeneity.

We have conducted preliminary investigations
into the design’s feasibility by using computer sim-
ulations of a simple object passing task. This sim-
ple task has enabled us to establish that coopera-
tion is possible using this system. This paper will
discuss the system’s origins, design and future ex-
pansion.

1 Introduction

Given that cooperation among simple agents is more de-
sirable than a single complex machine, it follows that

a cooperative system should be as general as possible,
without being wedded to a single objective or based on
strong assumptions about other robots.

Many cooperative projects are based around one goal:
to play soccer [Pagello et al., 1999], to sort or group
objects [Holland and Melhuish, 1999], mimic an aspect
of insect behaviour [Phan and Russell, 2012], to pull
sticks or pegs [Ijspeert et al., 2001] and so on. Each
of these tasks may possess a number of components or
sub-tasks, implemented through a number of behaviours,
but usually the groups’ principle objective is explicitly
hand coded. This means that any minor change in ob-
jective usually implies starting from scratch. Thus in
may projects, it would be difficult to add new behaviours
without rebuilding the whole decision making process.

There are several systems that have addressed this,
creating broader software structures that permit multi-
ple tasks to be attempted. However, many of these em-
ployed direct, explicit communications between agents.
We will address the disadvantages of this in more detail
in Section 2, but the basic objections are the limitations
on group size, the strong requirement of homogeneity
and the fragility of radio-based networks.

We believe that these limitations are too restrictive
and present an architecture aimed at overcoming them.
We began with the biological inspiration of cooperative
insects, employing a model of stigmergic hive coopera-
tion that negates the need for both central control and
explicit cooperation (although insects do use explicit
communication channels, we focused on their implicit
methods. See Section 3 for details). By combining this
concept with ideas taken from behaviour-based architec-
tures of previous experiments we believe that we have
created a system that has the potential to be fully gen-
eral and not limited by group size, homogeneity or task.

In general, we sought to include the following key
points in our design:

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

e Agents should not explicitly communicate. This is
a restriction in both hardware homogeneity (neces-
sitating transmit and receive units and protocols)
and group size as well as being unnecessary.

e Agents should not need to be aware of a ‘global’
world model. Each agent should be able to cooper-
ate with the others based only on what it alone can
‘see’ at any given time. Long memories, maps and
global world models are not needful.

e Exact control is unnecessary. Because this is a
group architecture, it is not necessary to direct a
robot to do that job there and then. Instead, it
can be assumed that all tasks will be addressed by
a member of the group at some point. By taking
advantage of the distributed nature of cooperative
groups, the definite article has been discarded in
favour of more generality.

e Robots should be easily re-programmable for a va-
riety of tasks without modification to their decision
making mechanism. Behaviours should form ba-
sic interchangeable structures that provide the tools
necessary for the robots to solve a task.

Ultimately, tasks should be assigned by another
computer. While this is beyond the scope of this
project, the design should reflect this by clearly
defining the rules for behaviours.

These ideas have been implemented in a simple simu-
lated task.

2 Past Cooperative Robots

When building cooperative groups it is imperative that
they possess some form of communication. In some fash-
ion, all cooperative agents have some means of coordi-
nating their actions with others in the group.

In general, there are two ways of doing this: explic-
itly, by broadcasting their desired and intentions and
implicitly, by observing the actions of others. As de-
fined in Kernbach [2013] pg 120: “In explicit coopera-
tion, robots elaborate locally the preferences for their be-
haviours, based on local, eventually shared, world mod-
els.” Castelfranchi [2006] describes implicit cooperation
as a communication method where “[the] practical be-
haviour itself is the message,” where observation is the
foundation of cooperation.

Many cooperative projects employ explicit communi-
cations to simplify the cooperative task. Schmitt et al.
[2002] and Montijano et al. [2011] use explicitly linked
groups to improve localisation, while Bekey et al. [2011],
Arkin [1998] and Schwertfeger and Jenkins [2007] de-
scribe means by which groups may employ communica-
tions to engage in collective decision making.

By contrast other projects employ communications to
enable individual robots to make decisions on their own.
This decentralised approach removes a central controller
by giving all robots a finite list of behaviours. Robots
select the correct behaviour based on the information it
can perceive, input from other individuals in the swarm
and an internal decision making mechanism. This ap-
proach has its origins in the work of Brooks [Brooks,
2002]. In cooperative robotics the ALLIANCE system
of Parker [1998] is probably the most widely reported.
Other general, decentralised, behaviour-based architec-
tures include the early ‘nerd herd’” of Matarié [1997] and
the CAMPOUT architecture of Huntsberger et al. [2003].
In all of these explicit radio communications are a factor
in the design.

However, explicit communications have been criticised
as being power intensive, fragile and (most critically),
difficult to scale arbitrarily [Sahin, 2005]. Agent groups
cannot usually be easily supplemented in an ad hoc fash-
ion and so this approach is limited in a real world envi-
ronment [Agmon and Stone, 2011].

Despite the common usage of explicit communications,
some elegant systems have been created that employ
fully or partial implicit observation. The work of Ijspeert
et al. [2001] is often cited as one of the most significant.
In this elegant experiment, an number of very limited
robots cooperated to pull a series of sticks from match-
ing holes in the table-top. Each robot was too limited
to remove the entirety of the stick by itself, but relied
on other robots observing its difficulty and coming to its
aid.

The stick pulling project seems simplistic, but it
helped establish an important principle; that robots
can successfully attempt manipulative tasks without the
need for dense communication. This has been rein-
forced by a number of experiments: Kok et al. [2005]
created a robot-soccer team based on implicit coopera-
tion and ‘locker-room’ agreements, Pagello et al. [1999]
also produced a behaviour-based robotic soccer team us-
ing implicit cooperation. Behaviours were selected by
and arbitration module “...hand-coded by intensive use
of heuristic from soccer domain experience...”. Phan

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

and Russell [2012] successfully attempted to reproduce
weaver ant nest building behaviour by employing a group
of limited robots to curl a rubber “leaf”. Holland and
Melhuish [1999] used stigmergic ant sorting behaviour
(ants are able to sort different classes of young into
groups) to create a hardware system that grouped ob-
jects.

All of these implicit cooperative projects were success-
ful, in that the robots were able to achieve the task de-
sired in the absence of detailed communications. How-
ever, many of them succeeded by explicitly writing that
task into the robots’ software architecture.

3 Cooperative Insects

When describing cooperative systems, many sources
make reference to the impressive complexity of social in-
sects. The capacities of hive insects and the massive dif-
ference between the individuals and the constructs they
build are more fully discussed elsewhere [Turner, 2011;
Hoélldobler and Wilson, 1995; Sudd, 1970; Theraulaz et
al., 2003] and will not be examined further here. How-
ever, the behavioural models developed to explain coop-
erative hive behaviour contain the basis for combining
implicit, decentralised cooperation and general architec-
tures.

Individual social insects are quite diminutive and have
no central controller. Instead, they cooperate through
the local interactions of individuals, [Theraulaz et al.,
2003] and an individual’s perception of the environment.
For example, Turner [2011] describes termite swarm cog-
nition as being based on three major input elements:
tactile input or sensor information (Turner’s termites
were blind), fluctuations in the local environment and
a “rich medium of chemical communication between ter-
mites. ..”

Theraulaz et al. [2003] makes this more general,
expressing social insect spatial patterns in terms of
“template-based patterns” — where the building activ-
ities are controlled by the physical or chemical het-
erogeneity in the environment — and “stigmergy and
self-organised patterns”, where stigmergy controls the
agent’s actions. They also postulate that, in social in-
sects, positive feedback results from social interactions —
such as recruitment, imitation, etc., while negative feed-
back is caused by the environment.

In our architecture it is the stigmergic interactions and
environmental feedback that are of most interest. Hol-
land and Melhuish [1999] describe stigmergy as:

“...amechanism that allows an environment to
structure itself through the activities of agents
within the environment: the state of the envi-
ronment, and the current distribution of agents
within it, determines how the environment and
distribution of agents will change in the future”

In other words, the agents gain the information they
need from the current state of the environment; an envi-
ronment that is being actively modified by other agents;
they observe an environment that bears the marks of
other agents’ actions and base their own actions accord-
ingly.

While insects do possess the ability to explicitly inter-
act and communicate with nest-mates (chemical trails
or markers, recruitment, etc.), we do not include such
elements in our design. Such explicit avenues of commu-
nication suffer from the same problems as explicit com-
munication among robots; we do not want to force the
group into tight restrictions.

Instead, we focus on the observable environment to
control behavioural selection. In this sense, our archi-
tecture could be considered an insect comprising only
of Turner’s first, sensory input element and Theraulaz’s
negative, stigmergic feedback. Probably the most suc-
cinct description of the insect we wish to copy is to be
found in Gordon [1999]:

“An ant is not very smart. It can’t make com-
plicated assessments. it probably can’t remem-
ber anything for very long. Its behaviour is
based on what it perceives in its immediate en-
vironment.”

Theraulaz et al. [1998] discuss a response-threshold
function for behavioural selection aimed at just such a
creature. We use this model as the basis for our system
of stigmergic observation based cooperation.

They base this model on three quantities: stimulus
(s), threshold () and probability (P), related by the
following equation:

n

P = n Siden (1)
Sij T Vi

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

ARCHITECTURE OVERVIEW

SENSORS

Object List Object List

SURVIVAL ACTIONS BEHAVIOURS

First Priority

Second Priority
Motor Comands

Motor Comands

Figure 1: An overview of the architecture showing the
three parallel spheres of operation and the Object List
linking them.

Where:

refers to the agent ¢ and j to behaviour j.
defines the probability of agent i enacting
behaviour j

si,; refers to the stimulus for that agent and
behaviour. This is an increasing quantity
that drives up F; ;.

.

0;; is the threshold for this agent and be-
haviour.
n represents the degree of non-linearity de-

sired in the relationship.

Brambilla et al. [2013] describes this relationship as a
Probabilistic Finite State Machine (PFSM), as there are
a finite number of behaviours available to each agent
and some probability for the activation of each be-
haviour. According to Theraulaz et al. [1998] “individual
i engaged in task j with probability” P. The thresh-
old decreases with successful behaviour implementation
and thus encourages successful behaviours to be re-
implemented. It forms a primitive learning mechanism,
leading ultimately to specialisation. This model reap-
pears (with various differences) in a variety of sources
[Schmickl and Crailsheim, 2008; Merkle and Midden-
dorf, 2004]. Brambilla et al. [2013] also lists a number
of other projects who have employed a PFSM of some
form.

4 The Architecture Design

The central component of our architecture is the Ob-
ject List. All sensor information is reduced to a list of

recognised objects, recording their type and location rel-
ative to the observing agent. This is the only informa-
tion about the surrounding world that is available to any
component of the architecture.

In addition to the Object List, the architecture con-
sists of three main areas (see Figure 1). All processes
are intended to be executed in parallel.

1. Sensor Interpreter, responsible for filling the ob-
ject list. It is here that object recognition takes
place and sensor data is reduced to object type and
location information. It was assumed at an early
date that this would be a visually based sensor.

2. Behaviours, the basic building blocks of tasks. Be-
haviours follow fixed rules and are the users’ inter-
face into the architecture. They are intended to
be created as “plug-ins” that could be pulled in or
out without re-building the decision making process.
Section 4.3 discusses the behaviours’ construction
and shows the two processes needed to drive them:
a selection process (based on social insect models)
and execution process. Behaviours are constructed
from actions (see Section 4.2).

3. Survival Process, ensures that obstacle avoid-
ance and other asynchronous survival actions can
respond rapidly to changes in the environment with-
out reference to the behaviours. At any time sur-
vival actions can take control of the motors based on
the contents of the Object List. However behaviours
may declare specific object types as exceptions.

4.1 Sensors and The Object List

While it would be very difficult to interpret the actions
and intentions of another non-homogeneous robot suc-
cessfully [Parker, 1998], it is relatively simple to recog-
nise another agent. We proceeded from the assumption
that all agents could be expected to bear an identify-
ing mark (such as a coloured square or light). This was
considered an acceptable requirement as such a marker
could easily be placed on any machine.

We then took this idea further, assuming that all
recognisable agents could be localised relative to the ob-
serving robot. This is another non-trivial problem, but
modern computer vision is capable of this [Schmitt et
al., 2002]. Thus we could assume that other agents
could be observed and their position known relative to
the observer.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Taking this idea further again, we assumed that an ob-
server robot would be able to identify and localise other
objects besides its companion robots. Objects such as
target object, beacon object, obstacle object and so on
could be expected. This is a minor limitation but we con-
sidered it acceptable on the grounds that in a given en-
vironment useful objects will be fairly consistent across
most conceivable tasks.

This creates a central object list in the local memory
of each agent, comprising of whatever an agent can ‘see’
at that moment. This is the basis of our system and
the only real-world information available to the other
processes in the architecture.

4.2 Motor Actions

Although this is a behaviour based system, we wished
to make the behaviours as formulaic as possible, reduc-
ing the necessary user input in behaviour creation with
an eye for the eventual automation of behaviour con-
struction. To make this possible, behaviours were tightly
constrained and outsourced motor control loops to a pre-
defined set of motor actions.

This was made possible by enforcing the concept of
the Object List as the only legitimate source of infor-
mation. If the only known information is the type and
location of nearby objects, then the physical actions pos-
sible are sharply reduced. The programmer can only ex-
press movements in terms of object types and locations
- either their presence or their absence.

On the surface, this appears to place us in the un-
enviable position of having to write an action for any
conceivable combination of object, location and objec-
tive. Clearly, this is not feasible. However, if we assume
that conceivable tasks are limited to manipulating ob-
jects in three-dimensional space (in any event, stigmergic
cooperation requires that the agent move through and
change objects in the environment [Holland and Mel-
huish, 1999]), all we are actually trying to do is move
the agent to and from objects. Thus actions such as
move_to_object () are universal for all object types.

The physical structure of the robot further limits the
actions that can be performed. In this sense, the actions
become motor driver functions that take the location of
a given object (of any type) in space as input. A sim-
ple library of these can be written to cover the physical
actions that the machine can perform.

ACTION FUNCTION DESCRIPTION

The calling behaviour
will have given the following as inputs
- a pointer to the Object List.
- the relevant Object Type, T.
- desired values for loop
termination.

Get position of
closest object of type T

from object list
If the answer is YES for
any of these questions,
quit this action, returning
to the calling behaviour.

Check for
Termination
Criteria

Has Relevant Object
Type Dissapeared?

Has the Active
Behaviour Changed?
Do control calc's

Has the Control
Loop Succeeded?

Has the Survival
Process Siezed control
of the motors?

Write motor values

Figure 2: All motor action functions follow this basic
template. The Green Blocks represent sections that are
universal, only the rounded boxes are specific to each
action. The purpose of action functions is to determine
the current motor values for the effectors.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

All actions ultimately comprise of a control loop which
had a single objective describable in terms of one object
type and its ultimate state. By convention they were
written on the assumption that the closest instance of
object type T was the desired specific object. Thus the
input to all actions followed the same pattern: a pointer
to the Object List, an integer object type label and a
floating point number indicating the termination condi-
tion (eg: the minimum distance we wish to move to) if
relevant. Figure 2 shows the action function format.

4.3 Behaviours

Behaviour based design often exhibits a distressing level
of subjective intuition. Brambilla et al. [2013] noted
that:

“Unfortunately, in swarm robotics there are
still no formal or precise ways to design individ-
ual level behaviours that produce the desired
collective behaviour. The intuition of the hu-
man designer is still the main ingredient in the
development of swarm robotics systems”

By combining the Object List with the Motor Actions
to create Behaviours on a standard template, we aim to
constrain this intuition within clear rules, to the point
that behaviours are formulaic and require the absolute
minimum of task-based information.

Behaviour are the users’ interface into the architec-
ture. Assuming that the recognisable objects and avail-
able actions are sufficient, modifying the behaviours al-
lows simple and efficient means of addressing new tasks.
Execution and selection are separate parallel processes.
These components are illustrated in Figure 3.

In this architecture a behaviour is defined as a sin-
gle goal, the accomplishment of which completes one as-
pect of the group’s task. Behaviours are constructed
from “action blocks”, discrete units executed sequen-
tially that define relevant object types and the actions
to be taken. Behaviours are selected by an adaption of
the insect model described in Section 3.

4.3.1 Behaviour Selection

Behaviours are selected based on a modification of Equa-
tion 1:

S: .
P.=R;,—>2 2
2] 2] Sij + ei,j ()

i refers to the agent i and j to behaviour j.

P is the rank of this behaviour, the be-
haviour with the highest value of P is ac-
tive.

R is the relevance of this behaviour (see Sec-
tion 4.3.2) and is either 1 or 0. This
links the external information of the Ob-
ject List with the internal behaviour se-
lection process.

s is the internal stimulus for this behaviour.
This is a linear function of time and in-
creases if the behaviour is inactive and
decreases if the behaviour is active. All
behaviours have the same rate of increase
and decrease.

f isthe internal threshold. This also evolves
linearly with time, but in the reverse di-
rection to s. Both stimulus and threshold
are constantly moving for all behaviours,
their direction is determined by the active
or inactive status of a given behaviour.

Equation 4.3.1 provides the behaviour selection mech-
anism. This is continually calculated as behaviours are
executed. If the active behaviour does not have the high-
est value of P, it is terminated and replaced with the new
active behaviour. Once this occurs, the new active be-
haviour stimulus is set to 1 and all other stimuli are set
to 0.

In contrast to Theraulaz et al. [1998] P has been sim-
plified to become a first past the post rank.

The constants governing the increase of both 6 and s
were calculated by selecting initial conditions for stim-
ulus and threshold (0 and 1) and the desired time re-
quired for an inactive behaviour to return a higher P
value than the active behaviour (assuming in both cases
that R = 1). We found that, if this time is 60 sec-
onds the rate of change for s is ds/dt ~ 0.0111 and 6
is df/dt ~ 0.0083. The sign depends on whether the
behaviour is active or inactive. In our simulation stimu-
lus was initialised to 0 and threshold randomly allocated
between 0 and 1.

However, not all behaviours will be relevant at all
times; for instance, a robot cannot grasp an object of

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

BEHAVIOUR
SELECTION
PROCESS

Update
Threshold

Update
Stimulus

Compute
Relevance

Compute
P

Set Active
Behaviour

BEHAVIOUR
EXECUTION
PROCESS

Call ACTIVE
Behaviour

Active
Behaviour

Action Block 1

Action Block 2

Action Block 3

Action Block n

Figure 3: The behaviour selection and execution processes. Note that these operate in parallel, behaviour selection
is continuously running. Actions are obliged to recognise when the active behaviour has changed and terminate.
All elements of this diagram have access to the Object List. The rounded boxes represent the behaviour function
elements. These can be set by the user. All else is intended to be part of the architecture and is not modified.

type T if no instances of T exist. Thus we created the
concept of behavioural Relevance and included it into
equation 1.

4.3.2 Relevance Calculation

Each behaviour requires certain object types to exist in
order to be relevant. It may require these to exist in an
and relationship (eg: type; and types...and type,) or
the user may require a logic or relationship (eg: type; or
type,). Conversely, there may also be object types that
must not exist for relevance. A search behaviour, for
instance is not relevant unless the target object does not
exist. Once again these non-existing objects may need
to be arranged in and and, or relationship.

From this, we clearly have the and, or, nand and nor
statements of classical logic, which we may view as exist
or_exist, not_exist and or_not_exist requirements.

Thus each behaviour must specify what makes it rele-
vant at any given time. There may be any number of ob-
ject types defined in any relationship to each other, but
experience has shown that behaviours work best when
the fewest object types are needed, as there is no formal
requirement preventing over-defined relevance.

When a behaviour is called, it uses functions provided
by the main architecture to store its relevant object types
in a common repository along with their logic require-
ments. The separate behaviour selection process contin-
ually computes the relevance of all the behaviours, along
with P for all behaviours (see Figure 3). The current
value of P is then multiplied by relevance.

Because the robots interact with their environment,
the execution of behaviours will change the objects in
view. What was relevant at the beginning of a behaviour
will very likely be irrelevant by its end. As we did not
wish to be restricted to one action per behaviour, we
needed a mechanism that permitted relevance to be re-
computed and updated as the behaviour advanced. To
this end we created the concept of a Action Block.

4.3.3 Action Blocks

An Action Block is a single section of code that defines all
information related to a single action and then executes
that action. The full structure is described in Figure 4.

Behaviours are created by joining action blocks in se-
quence. This formalisation limits user input to defining
the relevant object types, setting survival excepted types
(see Section 4.4) and selecting the action itself. Each ac-
tion block must check if the behaviour has been changed

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

BEHAVIOUR ACTION BLOCK DEFINITION

PREVIOUS ACTION BLOCK

Quit Is this behaviour active?
Behaviour

Define Relevant

Type_1 must

Types EXIST

OR Type_2
must EXIST

Type_3 must
NOT EXIST

OR Type_4

must
NOT EXIST

Define Survival
Exception Types

Call Action Function

ACTION_n

NEXT ACTION BLOCK

Figure 4: The action block format. The square boxes
illustrate what is required, the rounded boxes what the
user may modify for each action block. Note that it is
not necessary to use all possible combinations of exist
and not_exist. Any number of object types with any
number of logical conditions may be used. Likewise, any
number of exception types may be set.

before it begins. Action blocks do not contain explicit
loops.

There is no formal limit to the number of action blocks
in a behaviour. Behaviours are defined as a single goal of
a broader task, but this goal may require several actions
to complete. In practice, we found that a minimum of
action blocks was desirable.

4.4 Survival Process

By constraining the behaviours as described above, we
found it necessary to outsource survival actions to a sep-
arate process. This was considered a better solution than
the alternative; forcing obstacle avoidance to be incorpo-
rated into behaviour or action formats. As it is conceiv-
able that there would be times and places when survival
actions would be unnecessary, behaviours can set object
types that were to be ignored by the survival process.
For example, a “pick up object” behaviour must be able
to approach close enough to the object to acquire it.
Therefore that behaviour would flag “object” as a type
to be ignored by the survival process.

In our experiments we only used the one survival ac-
tion: avoid. It simply took control of the motors and
steered away from the closest object, if that object was
not flagged an exception type and was within a minimum
distance.

5 Simulation

To test these ideas we created a simulation using the
ARGoS simulator (Autonomous Robots Go Swarming)
[Pinciroli et al., 2012]. The simulated robots are very
simple agents, consisting (for our purposes) of two wheel
motors arranged in a differential relationship, an omni-
directional camera, a one degree of freedom gripper,
proximity sensors and a coloured beacon (see Figure 5).

The test task was relatively simple: a number of agents
were arranged randomly in a 2x2 meter square in the
centre of a large field. In this square (also placed ran-
domly) was a ‘ball’ (see Figure 5. The purpose of the
task was to pass the ball from one agent to another. This
very limited task enabled us to observe the interactions
between agents. We wished to demonstrate that our ar-
chitecture could fulfil the requirements of the task (pass
the ball) without producing more data than could be

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 5: Still from a simulation run showing four robots
and the ‘ball’

easily analysed. We judged the success of the architec-
ture by measuring how long each robot gripped the ball.
This enabled us to assess the division of labour and the
efficiency of the system. In an ideal scenario, the ball
should have been gripped by any agent for nearly 100%
of the simulation (which would indicate that it is being
continually passed) and held for about the same time by
all agents (indicating a equal division of labour).

Each robot was equipped with the following be-
haviours: search _for_ball, search_for_agent,
acquire_ball, move_ball_2_agent and receive_ball.

The ball was identifiable by a red light. The robots
were identified by a blue light. The ARGoS two-
dimensional physics engine was used and all objects dis-
tributed using a uniform, Gaussian distribution. The
computer’s system clock was used as the random seed,
ensuring that no two simulations employed the same
pseudo-random number sequence. All simulations were
terminated at 600 seconds.

The robots were permitted to roam around the field
at will, but could only see two meters in any direction.
No artificial noise was added to either the sensors or the
motors, both of these being considered ‘perfect’.

6 Results

We conducted a number of simulations of the type de-
scribed in Section 5. We investigated the length of time

Number of | Average Standard
Robots per | Grip Dura- | Deviation
Simulation | tion (%)

3 83.45 15.84

4 69.62 9.43

5 57.91 13.14

8 34.15 9.95

Table 1: The average time the ball was gripped by the
robots as a percentage of the 600 second simulation runs
— this is the percentage time the ball was in ‘play’. There
were four different groups sizes and 10 simulations per
group size.

the ball was gripped by a robot and how this was effected
by the number of robots in the simulation.

Initially the task was designed for four machines. We
ran simulations with groups of three, four, five and eight
robots. For each group size we ran ten simulations of
600 seconds duration. Table 1 shows the results of all
simulations. Figure 6 shows the results from the ten
four robot simulations.

7 Discussion

Figure 6 shows that each robot in the four robot group
spends approximately the same amount of time holding
the ball. This illustrates that there is a roughly even
distribution of labour. Interestingly, we found that this
was similar for other group sizes, although Table 1 shows
that the total gripped time decreases with group size.
Thus we would argue that, for these group sizes and task,
there is little evidence of specialisation. Possibly this
would appear if the groups were larger and distributed
over a wider area or the task was more complex. In the
above tests the robots could see a large part of the arena,
which probably retarded specialisation as the object lists
would be similar for all agents.

The fairly equal distribution of labour indicates that
cooperation is occurring. In addition to this, the total
gripped time is not insignificant, especially for smaller
groups. Thus this group is not wasting time. How-
ever, as the total gripped time decreases with group size
(Table 1) larger numbers of robots increasingly get in
each-others way. However, we believe that these results
demonstrates that the architecture functioned as a co-
operative system; work was being done for a significant

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

average time in possession -- 4 robots in a 600 sec. task

150

140

130

120

110

100

time (sec)

90

80

70

60

50
-1 0 1 2 3 4

5 6 7 8 9

test no.

Figure 6: The results of 10 simulations for a four robot group. This plot shows the average time each robot in the
group has the ball (seconds) in each 600 second simulation. The maximum and minimum times for each simulation

are also shown.

percentage of the time and division of labour was rea-
sonably equal.

What would be the practical applications of this sys-
tem? Brambilla et al. [2013] list a number of applications
for swarm and cooperative robots:

“...including exploration, surveillance, search
and rescue, humanitarian de-mining, intrusion
tracking, cleaning, inspection and transporta-
tion of large objects”

This is what could be described as the usual list, re-
peated with minor variations in most cooperative robot
sources. While we do not have any particular task in
mind for this architecture, its internal constraints and
observations of the simulation suggest some guidelines
for practical applications.

The most important of these is the absence of the def-
inite article. As mentioned in Section 1, this architec-
ture was not designed with detailed instructions in mind.
This is realised by the description of behaviour relevance
by object type, rather than specific objects and the con-
vention that all actions relate to the closest interest of

10

type T. This lack of precision means that actions that
may seem vital to a human observer will be ignored by
a robot, thus they may not respond in a fashion that a
human may consider logical (although it is logical from
the robot’s limited point of view). In all tasks what an
individual robot can achieve is limited by its restricted
perspective.

Because of this we consider that the most applica-
ble tasks are ones that enable the relatively simplistic
agents to operate at their own pace. Tasks that require
continuous execution, like cleaning or digging would be
very applicable. Ultimately we envisage a central ma-
chine with a broader understanding of the environment
sending out teams of autonomous agents to solve tasks
without direct oversight. Our architecture would be es-
pecially suited to a colony approach. A colony could be
established with any number of blank worker robots who
could have new behaviours installed at run-time in re-
sponse to new situations and then left to solve them on
their own.

We believe that such colonies would be of most benefit
in very hostile environments where direct human over-
sight is impossible, such as radiation hazard zones, re-

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

mote locations, deep sea, or space environments.

8 Future Work

In this paper we have introduced the basic concepts of
our architecture and conducted proof of concept tests. In
the near future we hope to expand the simulation to a
more complex task. Simple ‘construction’; ‘sorting’ and
‘cleaning’ tasks are being considered.

We are also in the process of implementing the ‘pass-
ing’ task in hardware. At the time of writing, the physi-
cal robots are slightly simpler than their simulated coun-
terparts (a non-articulated scoop rather than a gripper
and a forward facing camera), but will provide insight
into the real world problems of the architecture. We an-
ticipate that sensing will be noisier and less reliable than
in the simulation. We have added a ‘confidence’ value
on each detected object and changed Relevance from a
Boolean to floating point value to account for this. We
hope to have the hardware version operational in the
near future.

If successful, the hardware implementation will illus-
trate that the architecture is sufficiently robust to func-
tion in the real world. The more complex simulations
will demonstrate that the architecture is capable of pro-
ducing cooperation on practical tasks.

9 Conclusion

We have presented an new architecture for implicit, de-
centralised robotic cooperation. This architecture was
intended from its inception to be separated as much as
possible from task specific information and not to require
strong inter-agent homogeneity as would be required for
explicit communications. It is based on previous be-
havioural robotic projects and biological models for hive
insect societies.

We have demonstrated through a simple simulated
task that it is capable of successful cooperation and a
consistent division of labour. We hope to shortly ex-
pand this demonstration to more complex tasks and real
world operation.

We believe that this design addresses at least some of
the limitations of previous robotic groups and could be
applied to a number of real-world problems, ultimately
creating autonomous robotic colonies.

11

References

Noa Agmon and Peter Stone. Leading multiple ad hoc
teammates in joint action settings. In Interactive De-
cision Theory and Game Theory, 2011.

R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

George A. Bekey, Robert Ambrose, Kumar Vijay, David
Lavery, Arthur Sanderson, Brian Wilcox, Junku Yuh,
and Yuan Zhery. Robotics, State of the Art and Future
Chalanges. Imperial College Press, 2011.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari,
and Marco Dorigo. Swarm robotics: a review from the
swarm engineering perspective. Swarm Intelligence,
7(1):1-41, 2013.

Rodney A. Brooks. Robot: The Future of Flesh and
Machines. Penguin Books, 2002.

Cristiano Castelfranchi. Silent agents: From obser-
vation to tacit communication. In Jaime Sichman,
Helder Coelho, and Solange Rezende, editors, Ad-
vances in Artificial Intelligence - IBERAMIA-SBIA
2006, volume 4140 of Lecture Notes in Computer
Science, pages 98-107. Springer Berlin / Heidelberg,
2006. 10.1007/11874850_14.

Erol Sahin. Swarm robotics: From sources of inspiration
to domains of application. In Erol Sahin and William
Spears, editors, Swarm Robotics, volume 3342 of Lec-
ture Notes in Computer Science, pages 10-20. Springer
Berlin / Heidelberg, 2005. 10.1007/978-3-540-30552-
1.2.

Deborah M. Gordon. Ants at Work, How an Insect So-
ciety Is Organised. Simon & Schuster Inc., 1999.

Owen Holland and Chris Melhuish. Stigmergy, self-
organization, and sorting in collective robotics. Artif.
Life, 5(2):173-202, April 1999.

Bert Holldobler and Edward O. Wilson. Journey to the
Ants: a story of scientific exploration. Harvard Uni-
versity Press, 1995.

T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu,
H. Das Nayar, H. Aghazarian, A.J. Ganino, M. Gar-
rett, S.S. Joshi, and P.S. Schenker. Campout: a con-
trol architecture for tightly coupled coordination of
multirobot systems for planetary surface exploration.
Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 33(5):550 — 559, sept.
2003.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

AukeJan Ijspeert, Alcherio Martinoli, Aude Bil-
lard, and LucaMaria Gambardella. Collaboration
through the exploitation of local interactions in au-
tonomous collective robotics: The stick pulling ex-
periment. Autonomous Robots, 11:149-171, 2001.
10.1023/A:1011227210047.

Serge Kernbach, editor. Handbook of Collective Robotics:
Fundamentals and Challanges. CRC Press Taylor &
Francis Group, 2013.

Jelle R. Kok, Matthijs T.J. Spaan, and Nikos Vlassis.
Non-communicative multi-robot coordination in dy-
namic environments. Robotics and Autonomous Sys-
tems, 50(23):99 — 114, 2005. Multi-Robots in Dynamic
Environments.

Maja J. Matari¢. Behaviour-based control: examples
from navigation, learning, and group behaviour. Jour-
nal of Experimental € Theoretical Artificial Intelli-
gence, 9(2-3):323-336, 1997.

Daniel Merkle and Martin Middendorf. Dynamic
polyethism and competition for tasks in threshold re-
inforcement models of social insects. Adaptive Behav-
ior, 12(3-4):251-262, 2004.

Eduardo Montijano, Johan Thunberg, Xiaoming Hu,
and Carlos Sagues. Multi-robot distributed visual con-
sensus using epipoles. In Decision and Control and
European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 2750 —2755, dec. 2011.

Enrico Pagello, Antonio DAngelo, Federico Montesello,
Francesco Garelli, and Carlo Ferrari. Cooperative
behaviors in multi-robot systems through implicit
communication. Robotics and Autonomous Systems,

29(1):65 — 77, 1999.

L.E. Parker. Alliance: an architecture for fault toler-
ant multirobot cooperation. Robotics and Automation,
IEEE Transactions on, 14(2):220 —240, apr 1998.

Tuan A Phan and R Andrew Russell. A swarm
robot methodology for collaborative manipulation of
non-identical objects. The International Journal of
Robotics Research, 31(1):101-122, 2012.

Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Gio-
vanni Pini, Arne Brutschy, Manuele Brambilla, Nithin
Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, Mauro Birattari, Luca Maria Gambardella,

12

and Marco Dorigo. ARGoS: a modular, parallel, multi-
engine simulator for multi-robot systems. Swarm In-
telligence, 6(4):271-295, 2012.

T. Schmickl and K. Crailsheim. Taskselsim: a model of
the self-organization of the division of labour in hon-
eybees. Mathematical and Computer Modelling of Dy-
namical Systems, 14(2):101-125, 2008.

T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig.
Cooperative probabilistic state estimation for vision-
based autonomous mobile robots. Robotics and Au-
tomation, IEEE Transactions on, 18(5):670 — 684, oct
2002.

J.N. Schwertfeger and O.C. Jenkins. Multi-robot be-
lief propagation for distributed robot allocation. In
Development and Learning, 2007. ICDL 2007. IEEE
6th International Conference on, pages 193 —198, july
2007.

John H. Sudd. An Introduction to the Behaviour of Ants.
Edward Arnold, London, 1970.

G. Theraulaz, E. Bonabeau, and J-N. Denuebourg. Re-
sponse threshold reinforcements and division of labour
in insect societies. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 265(1393):327—
332, 1998.

Guy Theraulaz, Jacques Gautrais, Scott Camazine, and
Jean-Louis Deneubourg. The formation of spatial
patterns in social insects: from simple behaviours
to complex structures. Philosophical Transactions of
the Royal Society of London. Series A: Mathematical,
Physical and FEngineering Sciences, 361(1807):1263—
1282, 2003.

. Turner. Termites as models of swarm cognition.
Swarm Intelligence, 5:19-43, 2011. 10.1007/s11721-
010-0049-1.

	Introduction
	Past Cooperative Robots
	Cooperative Insects
	The Architecture Design
	Sensors and The Object List
	Motor Actions
	Behaviours
	Behaviour Selection
	Relevance Calculation
	Action Blocks

	Survival Process

	Simulation
	Results
	Discussion
	Future Work
	Conclusion

