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Abstract 

Machine vision systems in agricultural applications are becoming commonplace as 

technology becomes both affordable and robust.  Applications such as fruit and 

vegetable grading were amongst the earliest applications, but the field has diversified 

into areas such as yield monitoring, weed identification and spraying, and tractor 

guidance. 

 

Machine vision systems generally consist of a number of steps that are similar 

between applications.  These steps include image pre-processing, analysis, and post-

processing.  This leads the way towards a generalisation of the systems to an almost 

‘colour by number’ methodology where the platform may be consistent between 

many applications, and only algorithms specific to the application differ. 

 

Shape analysis is an important part of many machine vision applications.  Many 

methods exist for determining existence of particular objects, such as Hough 

Transforms and statistical matching.  A method of describing the outline of objects, 

called s-ψ (s-psi) offers advantages over other methods in that it reduces a two 

dimensional object to a series of one dimensional numbers.  This graph, or chain, of 

numbers may be directly manipulated to perform such tasks as determining the 

convex hull, or template matching.   

 

A machine vision system to automate yield monitoring macadamia harvesting is 

proposed as a partial solution to the labour shortage problems facing researchers 

undertaking macadamia varietal trials in Australia. 

 

A novel method for objectively measuring citrus texture is to measure the shape of a 

light terminator as the fruit is spun in front of a video camera.  A system to 

accomplish this task is described.   

 

S-psi template matching is used to identify animals to species level in another case 

study.  The system implemented has the capability to identify animals, record video 

and also open or shut a gate remotely, allowing control over limited resources.
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1 Introduction  

 

An ongoing technological revolution is changing the face of agriculture in Australia.  

As farmers and families become exposed to, and comfortable with low cost, 

powerful computing platforms in their houses, cars and mobile telephones, more 

attention is turning to the uses of advanced technology to assist in the most resource 

intensive tasks. 

 

This research has been undertaken in search of new uses for cheap image sensors.  

The starting point is a base level of user technology that is both cheap and reliable.  

Webcams such as the items produced by Logitech ™ and Creative ™ are providing 

increasingly high resolution image capture technology.  The mass production of 

these items means that the price is kept low.  Further research and development has 

introduced a new low cost, rugged platform of ‘smart cameras’ for many agricultural 

applications. 

 

Agricultural applications are an ideal target for the implementation of machine vision 

technologies.  The ability to use image sensors remotely, requiring no contact with 

the subject or intervention by an operator provides a measure of robustness usually 

difficult to achieve in this area. 

 

This research has identified a need for real time, on-site processing.  Due to physical 

and geophysical constraints, communication and interaction with users may occur 

rarely.  A major advantage of on-site processing is the reduction of data 

communication and storage requirements.  This has led directly to investigation of 

new methods of shape encoding and processing. 

 

 

 



2 

 

1.1 Aims and objectives 

This research commenced with the broadly defined area of machine vision in 

agriculture.  A whole-of-field approach was used to provide a breadth of research, 

rather than selecting a small arbitrary subfield in which to specialise. 

 

During initial reviews, it became apparent that there are many existing models for 

image processing applications, each specific to a particular application to a greater or 

lesser extent.   

 

The National Centre for Engineering in Agriculture (NCEA) is a joint venture 

between the Queensland Department of Natural Resources and Mines (QNRM) and 

the University of Southern Queensland (USQ).  NCEA specialises in developing 

collaborative teams of private and public sector research individuals and 

organisations to provide industry focused solutions.  The focus of NCEA’s activities 

is undertaking engineering research relevant to the agribusiness sector and the natural 

resource base it utilises.   

 

Being a member of the NCEA has presented unique opportunities for in-depth 

research into diverse applications for machine vision technology and the underlying 

generic model linking these solutions. 

 

This project attempts to define and demonstrate a single model that can be applied in 

the majority of machine vision applications relating to agriculture.  A toolset of 

general purpose software and analysis techniques will be described.  This toolset 

allows machine vision solutions to be quickly developed to suit specific applications 

without the need for extensive training on the part of the end-user. 

 

1.2 Case study overview 

Several discrete projects have arisen from the research and an overview of each 

project is provided below.  A more thorough coverage is provided in later chapters. 
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1.2.1 Macadamia project 

Initial work had been undertaken by Professor J Billingsley [1] to consider  the most 

efficient and accurate method of determining the location of macadamia nuts as they 

are harvested.  The result of Professor Billingsley’s study was a proposal for a 

prototype machine vision system.   

 

The project, funded by Horticulture Australia Ltd as project MC003020 was 

undertaken as part of this thesis.   

 

Macadamia trees have around five years lead time between planting and 

commercially viable harvest of macadamia nuts.  Plant breeders are continually 

creating and trialling new varieties to improve production from their orchards.  The 

viability of a particular tree is determined by a number of factors, such as yield and 

disease resistance.  As there is such a long lead time, it is vital to determine as early 

as possible the yield produced by a specific trial cultivar. 

 

The current method of determining yield is to manually rake, collect and count every 

nut under trees in the varietal trials.  As there are currently 1600 trees in industry-

funded varietal trials, the manual labour constituted in this work is considerable.  It 

has been estimated that up to 59%, or $109,824 [2, 3] could be saved by the industry 

each year by automated mechanical harvesting.   

 

There are also proven benefits to using this technology in production harvests.  The 

prime example is the creation of yield coverage maps, which have been proven [4-6] 

to increase efficiency in many other agricultural cropping industries.   

 

In simple terms, the problem is to determine the presence of macadamia nuts using 

images from a video stream (Figure 1).  This can be achieved easily through the use 

of colour segmentation.  However, the presence of leaves, husks and other trash in 

the image dictates that we must use circle detection to verify nut location. 
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Figure 1 Example of an image from a macadamia harvester 

 

This project uses object location and object tracking.  The result of this research is a 

robust system for identifying and counting macadamia nuts in real time, together 

with novel location techniques to pinpoint the original position to within 10cm of 

each identified nut. 

 

1.2.2 Citrus project  

In 2003, an enquiry was received by the NCEA to measure the texture of skin of 

citrus fruit.  The current method in varietal trials is for human experts to subjectively 

measure texture by feeling the fruit and looking at the surface for the degree of 

indentations [7]. 

 

Malcolm Smith from the Department of Primary Industries, Bundaberg, was 

interested in automated methods.  After investigating alternative and expensive 

methods using stylus measurement instruments (similar to a record player pin 

reading from the spinning fruit), he contacted NCEA for advice on other methods.   

 

A machine vision solution was proposed and has been completed as part of this 

thesis.   

 

A citrus fruit has three types of variations in skin texture, macro (form), micro 

(waviness), and oil glands (roughness) as displayed in Figure 2.  Varietal trials are 

undertaken, similar to those undertaken in the macadamia industry, to identify the 
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best variety based on several characteristics.  The consumer tends to prefer smoother 

fruit.  The waviness texture variations have the most effect on consumer appraisal. 

 

Figure 2 Example of an image of a citrus fruit 

 

From detecting circles, to determine the extent of the fruit, this project moved on to 

detecting texture.  It was determined that the most efficient way of detecting the 

texture was to use shaped light, and monitor the shape of the fruit at the shadow 

boundary of a light set at 90 degrees to the image sensor.  In this way, minor changes 

in fruit circumference will be readily visible and measurable.   

  

A prototype device was created to spin the fruit while examining it with an image 

sensor.  The problem then reduced to a method of measuring texture in a way that is 

statistically valid and repeatable. 

 

1.2.3 Animal identification project 

December 2003 brought the next machine vision application to NCEA.  A University 

of Queensland Animal Sciences PhD student, Neal Finch, proposed a project to deny 

or allow access to artificial watering points.  The Great Artesian Basin Sustainability 

Initiative [8] was in the process of removing artificial water drains from the 

landscape and replacing them with artificial watering points.  This scheme was 

introduced to reduce evaporation and other issues with water wastage.   
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The removal of widespread access to water from the landscape has the effect of 

forcing animals to gather at a single location to drink.  At this time, with a trap 

around the water point in which animals entered via an automated gate, a producer 

could deny access to feral animals, such as pigs, or trap them inside once they had 

entered.  The objective was to identify a way to automatically detect the species of 

animal entering the watering point. 

 

A machine vision solution was proposed, and was again undertaken as part of this 

thesis work.  This project has been funded in part by the Natural Heritage Trust 

(Australia) Project 46954.  A system was established that can determine the presence 

of an animal (Figure 3) and take action based on an automatic classification of that 

animal 

 

 

Figure 3 Example of an animal image 

 

This application incorporates object detection, location, tracking and classification.  

The classification of the detected animal is accomplished using evidence gathering 

techniques, with shape information forming the central focus. 

 

The investigation of the three case studies above illustrates some of the potential uses 

for machine vision in agricultural applications.  The next section describes the 

structure of the thesis. 
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1.3 Thesis overview 

This thesis consists of nine chapters.  There is a CD of software tools included to 

accompany the physical thesis.  These tools may also be downloaded by contacting 

the author. 

 

Chapter 2 provides an overview of the current position of machine vision 

applications in real world agricultural fields.  This chapter also provides a breakdown 

of the types of applications, their use and current trends.  A theoretical model to 

generalise machine vision applications is introduced and discussed, with regard to 

the application and practical implementation of machine vision undertaken as part of 

this thesis. 

 

Some new algorithms for s-psi techniques are introduced in Chapter 3.  S-Psi 

methods are recommended as viable tools for object detection, location and 

classification. 

 

Chapter 4 describes the methodology used in this research, in particular the hardware 

and software regimes used and analysis techniques.  A generic hardware platform is 

described, and a thorough description of the ‘Rugged Outdoor Camera’ (ROC) vision 

platform designed and built by the author during this thesis work is also provided. 

 

Chapter 5 continues with the examination of the macadamia nut application.  

Comprehensive prototype setup is detailed, together with software implementation, 

new algorithms, and field trial results.   

 

Chapter 6 moves on to the citrus fruit skin texture project, and again details the work 

undertaken and the results achieved by the completed system.   

 

Chapter 7 is the species identification project.  Again, the prototype information and 

field trial results are gathered together in this chapter. 

 

Chapter 8 generalises all of the case studies by describing the fundamental shape 

analysis and feature identification techniques that were implemented.  A toolkit for 
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new researchers in the field of machine vision is proposed, accompanied by 

suggestions and guidelines for approaching real-world machine vision projects.  

Emerging projects are described in terms of the models and the toolkit application. 

 

Chapter 9 concludes the thesis with a summary of the journey travelled.   

 

Appendix A contains further details of the CD contents. Appendix B consists of a 

tutorial for programming in DirectShow. The hardware design for the ROC is 

specified in Appendix C. Appendix D lists some raw data examples from the species 

identification application. 

 

The software on the enclosed CD includes: 

• DirectShow filter templates for VC6/VC7 

• DirectShow application templates for VC6/VC7 

• DirectShow application sample for VB 

• Implementations of DirectShow filters with sample code for 

o Canny edge detection 

o Hough circle detection 

o Sobel edge detection 

• Sample media files 

• Sample results files for case studies 
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2 Machine vision in agriculture  

 

Machine vision algorithms in general are only briefly discussed in this chapter.  The 

readers is referred to relevant books such as Davies [9] and Billingsley [10].  As 

relevant machine vision topics are encountered, comment is made where required.   

 

There has been considerable effort placed into machine vision theory and algorithms 

over the last 25 years.  This is filtering through from research based, high cost 

applications to more practical uses in almost all fields.   

 

There are currently two main trends in mainstream machine vision research at the 

moment.  The first is in hardware.  Machine vision systems are becoming smaller 

and more suitable to stand alone, embedded systems.  Zuech [11] predicts an 

eventual move back to centralised systems with enough cheap computing power and 

communications bandwidth to process multiple image capture devices.  Most other 

analysts are predicting a move toward smart cameras [12, 13]. 

 

In software research, a considerable amount of effort is spent towards investigation 

of neural networking.  In this field, the objective is to have learning algorithms that 

are flexible enough to generalise objects that have not previously been presented, 

into the correct classifications.   

 

2.1 Agricultural applications 

Agricultural machine vision applications can be seen to lie in one of the following 

areas: 

 

Location 

Tracking 

Classification/recognition 

Measurement/guidance 
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Note that this is a sequential hierarchy.  Tracking applications must use location to 

find the object of interest first.  Classification applications may use tracking to follow 

the object between frames.  Guidance applications may use tracking and 

classification to determine current position and change of position.  In this way, we 

can investigate the links between applications with reference to the level of 

processing required. 

 

The earliest machine vision applications in agriculture were in fruit and vegetable 

grading.  Practical applications have been around for over 25 years, and early 

examples include potato grading [14] and  carrot grading [15].  However 

implementations more than 10 years old have become obsolete in the face of current 

processor size, speed and power consumption.  For example, new processors were 

introduced into the PC market in 1995 with operating speeds of up to 200MHz.  This 

speed is now available on slower embedded (single chip) computers.  Since 2005, 

common desktop PC’s have incorporated processors that operate at over 3GHz.  Ever 

since, there has been a growing trend towards dual-core, multicore or multiprocessor 

systems that are capable of executing more than one application or thread of code 

simultaneously or in parallel. 

 

Over recent years, there have been many published examples of machine vision 

being implemented in agriculture.  Recent publications have been reviewed.  Figure 

4 below illustrates where these publications fall in the application areas. 

 

Papers published
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Location Tracking Classification Guidance

 

Figure 4 Recently published papers on machine vision in agriculture. 
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2.2 Location 

Location of objects in an image is one of the basic level applications for a machine 

vision system.  Most applications will have algorithms for this process at some level.   

In some applications, the core algorithm is related solely to the location of objects.  

In the macadamia project, the location of macadamia nuts in the video stream is the 

major task to be accomplished. 

 

The simplest method of object location is to simply apply a threshold and segment an 

image into target and non-target regions.  Figueiredo et al.  [16] describe a poultry 

behaviour system based on this method.  This paper does not handle clusters of 

multiple birds, which are reported as errors, nor tracking, which would make the 

system much more robust.  The error rates reported are high, ranging from 20-70% 

 

Location can also be achieved by relying heavily on prior knowledge, such as the 

application described by Phillip and Rath [17], which implemented a system for 

detecting the stem and calyx region on an apple.  This research used shaped light to 

assist in object detection by reflections generated around the stem area.  This paper 

describes a classification structure to determine the stem from the shape of the 

reflections.   

 

Both Plebe and Grasso [18] and Stajnko et al.  [19] describe locating fruit on the tree 

in orchards, the former oranges and the latter apples.  Even though standard image 

sensors are used for oranges, and a thermal imaging device for apples, both projects 

proceed to use variants of feature extraction for determining a positive match.  

Feature extraction is a useful technique for algorithms that detect some portion(s) in 

an image that can be combined to indicate the existence of an object at a certain spot.  

Classic examples of these techniques are Hough transforms and their variants.  [20] 

 

Image registration techniques encompass a large proportion of location algorithms.  

In these applications, the requirement is to find the common areas of two images and 

determine the translation, rotation and scaling between them.  Erives & Fitzgerald 

[21] describe a system for correlating multiple images taken with differing 

wavelength filters (multispectral imaging), where pixel intensity relates to 
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wavelength response.  Phase correlation registration methods were used in this 

application, with Fourier transforms made on each image and the resultants 

correlated.  This solution is not as yet real-time, but may become so as embedded 

processing power increases. 

 

2.3 Tracking 

After an object of interest has been located, it is far simpler to track the object in 

successive frames, rather than locating it again in every frame.  Tracking requires the 

constraint that the images should translate (or indeed, the objects should translate) by 

less than half the image size to ensure that the object of interest is visible in at least 

two consecutive frames.  Obviously, increasing the frame rate increases the volume 

of raw image processing required, yet more ‘hits’ on the object will allow a model 

(such as a Kalman Filter) to be created, thereby increasing the accuracy of predicted 

position, and reducing processing time. 

 

Tracking has important implications in animal studies, for example welfare and 

behavioural investigations.  Sergeant et al.  [22] reported on the use of a machine 

vision system to track multiple birds in a poultry broiler house.  Objects are located 

in each frame by segmentation, the centroids are determined and motion vectors 

determined.  This is then used in successive images to resolve position.  Shape 

analysis is used in this paper to identify single bird position within a large region of 

segmented pixels.  A cost function based on the parameters area, compactness, line 

angle, split line length and concavity curvature automatically determines the best 

split into multiple single objects.   

 

Similar to the poultry application, Zelek and Kanwar [23] describes an application 

monitoring multiple pigs in a pen with a vision system.  At the time of publishing, 

the authors reported that image segmentation was not feasible in real time, however 

the increases in technology have somewhat outdated this research.  Several other 

shortcomings, such as the requirement for manual initialisation and orthogonal 

rectangular windows for detection were identified.  This paper uses ‘blob’ tracking, 
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where pixels are segmented and the centre of mass for each distinct area is treated as 

a single object.  The chief problem with this method is the lack of any higher level 

information in generating the list of objects.  This can cause false positives from 

noise, or false negatives from lack of target discrimination. 

 

A mechatronic application has been developed by Frost et al.  [24], where a specific 

point on a pig is to be identified as accurately as possible as the input into the robotic 

measuring device.  The image is of a single pig in plan view and uses edge detection 

to determine the outline.  From the outline, four changes of curvature (concavities) 

are detected and can be used to predict the full position of the animal.   

 

A software application called EthoVision has been developed and is described by 

Noldus et al.  [25].  This software can identify objects by threshholding, reference 

subtraction or colour matching.  Designed for tracking insects, it is a generic utility 

for object tracking given manual setup information. 

 

2.4 Classification / recognition 

By far the highest proportion of practical applications fit into the classification area.  

These systems find use in fruit and vegetable grading, weed detection, and many 

other applications for produce grading.  There is potential for immense labour 

savings in this field, as well as higher levels of correct classifications when compared 

to subjective human grading. 

 

The basic concept of most applications is to classify the sampled item into predefined 

grades, based on some elements or features present and detectable.  In most produce 

industries, differing grades of product receive different prices, so it is important to 

separate and pack appropriately.  There are also different penalties involved in 

misclassification, which implies a weighted error structure, to ensure the best return 

for the given error rate.  For example, if a single grade ‘B’ item is found in the same 

batch where the majority of products are classified as being of grade ‘A’ (higher 

quality), the entire batch of products may be automatically downgraded to the lower 
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quality grade, grade ‘B’.  In  most product industries, higher grade products attract 

higher prices.  The number of misclassifications and errors should be taken into 

account so that pricing can more accurately reflect the quality of the entire batch f 

products rather than being based on just one, or a few, low grade products in the 

batch. 

 

2.4.1 Direct pixel based classification 

Many algorithms use characteristics of individual pixels, or areas of pixels, to 

determine the classification for that area.  The areas are then usually combined to 

determine either local or global classification structures. 

  

Bennedsen et al.  [26]  identifies defects in images of rotating apples using images 

taken with 740 and 950nm filters.  Each successive image is resized, shifted and flat 

mapped to give multiple views of the same areas of skin.  A threshold is applied to 

each pixel, and the multiple images are summed.  Areas with at least 3 out of 6 votes 

are classified as defects.  Given that the rotation of the fruit is known, a far better 

method, more in keeping with real time systems, would be to track the position of the 

defect in each successive image.  This would eliminate false positives reportedly 

caused by shadows. 

 

A line segment detector was described by Davies [27], where the line segments 

indicate the presence of insects among rice grains.  The Vectorial Line Segment 

Detector involves the application of two 7x7 masks to each pixel.  The response of 

this stage is ANDed with an intensity threshold of the original image to provide 

accurate detection.  Results have been reported as no false positives and one false 

negative in a trial of 60 images containing 150 insects. 

  

Image analysis without a camera is described by Warren [28], where the images of 

chrysanthemum leaves are acquired by placing the leaf in a standard desktop 

document scanner.  The images generated are then processed by automatic 

measurement of characteristics.  A simple adaptive threshold converts the image to 

binary levels, reducing the processing required.  The measurements are made using 

heuristics and a-priori information and categorised into 2-9 discrete states.  Shape 
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information by higher level coding would prove beneficial to this project, adding 

flexibility to the classification rules. 

 

Funck et al.  [29] implemented a number of pixel based algorithms for detection of 

wood surface defects.  Edge detection, gradient masks, region extraction, entropy 

threshholding and clustering techniques were tested on 70 images containing 10 each 

of 7 different defects.  The study showed that combining the region growing 

technique with clustering algorithms provided the best overall accuracy. 

 

Yadav & Jindal [30] investigated the use of grey level imaging to determine the 

percentage of broken rice kernels after milling, however no results were supplied.  

The broken kernels could be detected using shape analysis techniques.  The paper 

suggested that the imaging would require manual positioning of the kernels to 

separate each object.  This would not be required using shape analysis as the 

detection of touching objects is now a standard processing step. 

 

Red, green and infrared wavelengths were used by Marchant et al.  [31] to classify 

vegetation from background.  A red/near infrared (NIR) ratio threshold was 

determined to have the lowest proportion of pixels misclassified over four images.  

The images were manually ‘ground truthed’, or classified into vegetation and non-

vegetation prior to the automatic algorithm processing.  Choice of threshold was 

determined by modality calculations on the full image histograms.  This method will 

not work as effectively when the image is either all or no vegetation. 

 

Philipp & Rath [17] investigated the different colour spaces and transformations and 

their efficiency at vegetation discrimination.  Logarithmic Discrimination Analysis 

provided excellent results using pixels transformed into i1i2i3 colour space (98% 

accuracy); however the processing period was 10 minutes per image using a 

350MHz processor.  The processing time in this case could be cut substantially using 

dedicated hardware. 

  

Image processing can apply equally to large scale satellite land cover maps, as 

discussed by Maxwell et al.  [32].  In these applications, each pixel may represent a 
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large area, and the channel value for that pixel will represent the optical average of 

intensities over that area.  Threshholding is performed simply based on Mahalanobis 

distance of each pixel from a known crop type pixel.  This work would benefit from 

the implementation of field shape analysis, which would cut down the errors from 

scattered pixels of misclassified types.   

 

Alchanatis et al.  [33] selected two wavelengths (660nm and 800nm) using acousto-

optic tuneable filters.  These filters may cost up to $US160,000 making this 

technology unfeasible for widespread use at the current time.  Fixed filters passing 

these wavelengths, however, are readily available.  A threshold for classifying weed 

and cotton leaves was determined using a training set of 78 images.  Around 15% of 

both false negatives and false positives were reported. 

 

CIE-Luv colour space is used by Tantaswadi [34] to provide a Euclidean distance 

measure between colours to discriminate defects in cotton samples.  This 

isodiscrimination contour is generated into a Look Up Table (LUT) for each RGB 

value.  Each pixel is then classified into target or non-target based on the RGB 

intensities.  Again scattered misclassified pixels could be removed by judicious use 

of region based techniques. 

 

Noordam et al.  [35] describes potato grading, an area which has been investigated 

by many researchers.  This application uses mirrors to provide a full 3D view of the 

object.  Linear Discriminant Analysis is used with Mahalanobis distance to separate 

pixels into defect or non defect areas.  Classification with 90% accuracy is achieved 

for pixel based region checking. 

 

Sena Jr et al.  [36] reported 94.7% accuracy over 720 images of damaged and non 

damaged maize plants.  The threshold was determined by searching the excess green 

histogram for the optimal threshold between foreground and background.   

 

2.4.2 Models 

Jeyamkondan et al.  [37]  used the bimodal distribution in the red channel to 

distinguish meat from background.  A Fuzzy c-means process was then applied to 
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separate each image into two areas of least cost (meat and fat areas), determining an 

adaptive threshold.  A classification into distinct grades was then performed with 

several linear regression models, giving equivalence with manual grading results. 

 

Both Granitto et al.  [38] and Marchant & Onyango [39] compared the use of 

Baysian classifiers to Artificial Neural Networks (ANNs), and both concluded that 

the Bayesian methods are more efficient as well as more accurate. 

 

Aleixos et al.  [40] provides details of a system that processes five citrus fruit per 

second.  Each fruit object is located by simple threshholding as the lighting is well 

controlled.  The edge is chain coded and touching fruit are identified by large 

changes in the boundary tangent.  Geometrical features are extracted as well as 

defect information from the colour channels.  The end result is a classification based 

on all features into one of three grades using a Bayesian discriminant model, with 

cross category accuracy of over 90%.   

 

Lee et al.  [41] reports a machine vision system for detection of weed targets.  The 

images were segmented into a binary image by a Bayesian LUT.  The images were 

further enhanced by the application of morphological operations including shrinking 

and swelling.  Leaf shape features such as area; centroid and area to length ration 

were then determined and classified with a Bayesian classifier.  The accuracy 

reported in this study was as low as 30% in some outdoor trials.   

 

Fuzzy Logic 

Fuzzy c-means and Fuzzy Gustafson–Kessel methods were used by Meyer et al.  

[42] to segment images into a fixed number of classifications (plant/residue/soil) in 

this research.  These methods are unsupervised classifications, given the number of 

clusters.   

 

Multi dimensional image processing was introduced to the lumber industry by Kline  

et al.  [43], with an RGB image sensor, laser distance ranging system and X-ray 

scanner, providing five different streams of information.  Histogram techniques were 

used to detect modality in each of the channels and extract regions.  Fuzzy 
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membership functions are used at a higher level to determine the defect class.  

Accuracy up to 89% was reported. 

 

2.4.3 Artificial neural networks 

Many other projects have used Artificial Neural Networks (ANN) for classifying 

fruit.  For example Kondo et al.  [44] describes a system where the number of layers 

in the neural network was varied manually until the best result was achieved.   

 

Guyer & Yang [45] reported 73% classification accuracy using an artificial neural 

network with genetic algorithms for forward propagation of weight learning.  This 

research investigated defects in cherries in a pixel-wise manner.  The pixel values 

from multi spectral images were passed to the ANN for classification.  Training 

images required 36 seconds; each process thereafter required 2.8 seconds.  Around 

70-75% accuracy was achieved, with most of the errors being misclassification 

between types of defects.   

  

Goel et al.  [46] compared ANNs and Decision Trees on airborne multispectral 

images (72 wavelengths) of corn crops to determine nitrogen application rate and 

weed infestations.  Decision tree algorithms delivered between 27% and 43% 

misclassification rates when both weed and nitrogen effects were considered.  Even 

split, misclassification errors were between 14% and 30%.  An ANN was 

implemented with 2 hidden layers on the same data giving 30-40% 

misclassifications.  In later work, Uno et al.  [47] attained greater prediction accuracy 

(about 20% validation RMS error) with an ANN model than with either of the three 

conventional empirical models based on normalised difference vegetation index, 

simple ratio, or photochemical reflectance index. 

 

Moshou et al.  [48] also used multispectral information at 543, 630m 750 and 861nm 

wavelengths to identify yellow rust disease in wheat, using a spray boom mounted 

spectrograph.  This research reported up to 99% accuracy using a multilayer ANN 

with 10 hidden neurons. 
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Patel et al.[49] used histograms of each of the RGB channels as direct inputs to a 

neural network with 384 input nodes and 24 hidden nodes.  The accuracy reported 

was between 85% and 93% for various defect types.   

 

Siddaiah et al.  [50] demonstrates a combination of ANN and fuzzy rules, where the 

membership rules are updated by training a Neural Network with the correct 

classifications for defect types in sample images. 

 

2.5 Guidance and measurement 

Automatic guidance on tractors has been available since 1913 [51].  The first system 

was a mechanical furrow following device with a centring wheel mechanically 

driving the steering mechanism.  Improving on mechanical methods, GPS systems 

have recently revolutionised guidance systems on tractors, however high accuracy 

GPS systems are still so expensive that there is a large market for cheaper machine 

vision solutions.  Machine vision solutions will also identify and track the 

(vegetative) target, rather than a preset line.  This will allow deviations by the tractor 

where required to ensure that crop integrity is retained.   

 

Work by Billingsley and Schoenfisch [52-54] described one of the first automated 

vision guidance systems implemented on a tractor.  This system used trapezoidal 

Region of Interest (ROI) windows to lock onto crop rows.  A line of best fit 

calculation was performed to generate cross track errors as the visual target moves 

within the ROI windows.   

 

The windrower described by Fitzpatrick et al.  [55] is another early example of 

vision guidance on tractors.  This system detects the cut line from the last swath and 

automatically steers the tractor.  The discrimination of the cut line is performed with 

a ‘best fit’ step function.  This system also displays some data fusion, adding GPS, 

obstacle avoidance and manual control to the decision making process. 

 

Tillett et al.  [56] used a Kalman Filter model of a series of crop rows to perform 

predictive control of a steerage hoe.  This application used a band pass filter to 
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extract the row information from the image.  This filter however has as its basis a 

sinusoidal function where the frequency – which relates to the distance between rows 

– is known.  On loss of signal from the row tracking algorithms, the guidance state 

machine retains a straight heading, on the assumption that the rows are more likely to 

be in straight lines. 

 

Slaughter et al.  [57] also used a trapezoidal ROI window to determine crop row 

position.  This study used a median measure for estimating the location of the crop 

row within the ROI.  The accuracy was reported as 4.2mm RMS under ideal 

conditions to 11.9mm under heavy weed loads. 

 

Hague et al.[58] implemented an Extended Kalman Filter updated with row position 

detected with a modified Hough Transform for line detection.  This methodology 

uses prior knowledge of the row type and row width to assist in detection and 

tracking. 

  

Sogaard & Olsen [59] reported a system which does not use segmentation to detect 

crop rows, instead a grey level histogram is used directly in a least squares regression 

fit.  The calculations determine the most likely position of the known crop row 

spacing in each segment of the image.  This technique is susceptible to errors 

introduced by inter row weeds; however a quality of fit value is reported for these 

circumstances. 

 

A unique guidance system that is not crop dependent was described by  Vaughan et 

al.  [60].  This application guides a robotic sheepdog gathering a flock of ducks.  In 

this instance, the camera is mounted not on the robot, but at the side of the arena 

discriminating between the robot and the flock of ducks.  This system describes a 

model based on varying levels of attractive and repulsive potential fields.   

 

Measurement 

As well as guidance platforms, machine vision is becoming a standard in 

measurement applications.  The main advantage of machine vision solutions is non-

contact sensing.  This provides robustness advantages over mechanical methods. 
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Regression models can be used to provide a classification based on some given 

values.  Schofield et al.  [61] used multiple measurements of the visible surface area 

of a pig, viewed from above, to estimate weight and weight gain of pigs over 

multiple days.  The mean weight of a group of pigs could be estimated to within 5% 

of their actual weight.  The area was based solely on threshholding pixel intensities, 

yet with enough repeats, inaccurate measurements can be filtered out.  White et al.  

[62] reported extension of this work into detection of pig type using a radial basis 

function neural network.  Accuracies between 65% and 81% were reported for 

classification of pig type.  At the same research centre, Wu et al.[63] measured pig 

volume with three pairs of stereo cameras.  The pigs are viewed on a blue 

background for contrast.  A 3D map is constructed from a combination of each of the 

three range images, in turn built from the two stereo images. 

 

Peacock & Boyce [64] used stereo vision to estimate distance to cow teats for an 

automated milking system.  Combined with novel actuators using air pressure 

differentials, this system is a complete measurement and guidance application. 

 

Thus there is great potential for the use of measurement and guidance systems for 

further agricultural applications including those studied in this thesis. 

 

2.6 Conclusions 

The material in this chapter displays just how ad-hoc most machine vision 

applications are.  There are as yet no grand unifying theories of optimal system 

design.  Many scientists working in the ANN field would argue that these systems 

are approaching the point where true intelligence will emerge, yet there is still 

substantial work to be done.  On the other hand, workers dedicated to problem 

solving in a more direct method cannot yet agree on even the most effective colour 

space to use for any given application, or the means to decide such.  Therefore, this 

research provides insight into a methodology that can be used generically for 

machine vision application development.   
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3 S-Psi coding 

 

One major area of focus in this research has been the development of new algorithms 

using s-psi methodologies. Much of the available advanced theoretical work has 

concerned intensive techniques such as Hough transform.  For applications in the 

field, it is desirable to use more pragmatic methods, which are not as computationally 

expensive.  Significant among these is the use of an edge tracing routine, yielding a 

Freeman chain, which becomes an s-psi profile.  Although it is quite feasible to 

encompass intensive computation on recent PC’s, there is a need to embed the 

algorithms on a much simpler chip that can be used for a robust, low cost platform.  

 

S-psi coding is similar to Freeman’s chain [65] in that it codes the direction of steps 

taken around the boundary of a shape, but it also codes the distance of the step.  

Freeman’s chain assumes unit step size, but using the exact inter-pixel distance offers 

s-psi methods some advantages which can be used in subsequent processing steps. 

 

Freeman’s chain has been used extensively in handwriting recognition techniques 

[66] where chain codes are used in a multi classifier architecture to label each 

handwritten character.  This type of chain coding has also been used in fingerprint 

analysis [67], and many other areas where shapes can be inferred as or from lines and 

line segments. 

 

S-psi has also been used in a variety of ways.  It is called Tangent Space by Latecki 

and Lakamper [68], who use curve evolution to determine minimum cost for 

transformation of curves.  This provides a shape similarity measure for two objects.   

 

S-psi has also been called Turning Function by Arkin et al.  [69] who also used it as 

a shape similarity measure based on the L/sub 2/ distance.  Davies [9] also discussed 

this method for use as a general shape encoding method.   
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This method has the potential to be an effective tool for a general form of shape 

analysis.  The following sections explore in detail some of the algorithms of this 

method. 

 

3.1 Basic algorithm 

Given an arbitrary shape in an image, there is a function F(x, y) that determines each 

pixel’s membership to the object.  The function is not relevant in our discussions, but 

is the subject of a complete field of research in its own right.  Segmentation, texture 

analysis and cluster analysis are but some of the methodologies used to determine 

this membership function. 

 

The membership function is used by an object tracing routine to determine the edges 

of the shape.  Standard edge detectors such as Canny [70] and derivatives only 

provide a binary image with edge pixels indicated.  This provides absolutely no 

information about object shape.  The tracing method, however, will indicate edge 

pixels as well as encoding the entire object.   

 

The edge of the shape is traversed in a consistent direction.  For the purposes of 

standardisation, retain the object on the right of the boundary.  As each step on a 

standard grid is taken, record the direction (ψ) and the step length (ds).  This chain 

pair contains all the information to completely and uniquely recreate the object. 

 

Chain codes are based on directional steps.  The most common use either 4 or 8 

angles (Figure 5). 
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Figure 5 Chain encoding directions for steps in outline tracing 

3.1.1 Edge tracing routine. 

The sequence of tracing the edge of an object is given below: 

 

Search image course grid for a target pixel. 

When found, step directly up (direction 0) until non-target pixel is found.  Step down 

one pixel.  This is the inside edge of the object and the start point. 

 

The edge is then traced by a combination of checking and stepping.   

For each edge pixel found: 

Check neighbouring pixels for a non-target pixel.  Commence in the last stepped 

direction, rotating the search anti-clockwise until a non-target pixel is found.  Rotate 

clockwise one and step.  This is the next pixel in the chain.   

Continue checking and stepping until the start point is reached again. 

 

Figure 6 below is displayed as a general example.  Starting at the pixel ‘a’, the chain 

code generated is: 

 

2343445446666000000210 

 

This method uses the centre of each pixel as the coding point.  The midpoint of the 

line joining two boundary pixel centres could also be used.   
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Figure 6 Edge encoding for a sample object 

 

The s-psi graph related to this object and generated chain is displayed in Figure 7.   

 

 

Figure 7 S-psi graph for a sample object 

 

Figure 8 displays some basic shapes and the corresponding s-psi curves.  Note the 

cyclical properties of the graph means that any direction is equivalent to itself plus 
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2π.  The presence of straight edges is easily recognisable in the s-psi curve as 

horizontal areas.  Similarly, the presence of curved edges in the object can be 

identified by straight oblique lines in the s-psi curve. 

 

Figure 8 Sample shapes and s-psi graphs 
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3.2 New methodologies 

The following algorithms are extensions to the current s-psi methodologies.  The 

assumption is made that the curve corresponds to a closed shape, and that the shape 

is compact. 

 

Psi = ψ  

ψ  is coded on 0 to 2π scale. 

The s-ψ curve is “wrap around”, so ψ-1 refers also to ψn 

Linkx refers to the x
th   s-ψ doublet in the chain 

 

3.2.1 General 

Some simple conclusions can be drawn from an s-ψ chain with n items of perimeter 

increment . 
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Cross Product 

The cross product is the vector perpendicular to two links in the chain.  The cross 

product is useful for determining the area formed by the completion of the 

parallelogram between the two links. 

)sin( 01101 ψψ −=× ssLinkLink o      (3.5)
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Dot Product 

The dot product is the projection of one vector onto another vector, or the distance of 

one vector in the direction of another vector. 

 )cos( 01101 ψψ −=• ssLinkLink o
    (3.6) 

 

Figure 9, Figure 11, Figure 12 and Figure 12 are examples that will be used for 

demonstration purposes through the following algorithm descriptions. 

 

 

Figure 9 An example of an input frame 

 

Figure 10 The binary foreground/background example image 

 

 

 

Figure 11 The traced edge of the input frame 
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Figure 12 The S-Psi graph of the input frame. 

 

 

3.2.2 Compression 

For a given chain of n items, there exists a compressed chain of maximum n and 

minimum 3 items that can also uniquely describe the object.  All links with non-zero 

dψ can be merged. 

 

Demonstration:  

Consider a chain segment of a vertical straight line with ψ:  0,0,0,0 and s: 1,1,1,1.  

This can be compressed to a single link ψ: 0 and s: 4. 

 

In this case, the minimum chain code length =
vn , as all straight lines may be 

compressed to a single step. 

 

The worst case scenario for this compression is that every step has a non-zero dψ.  

As an example, consider a circle.  In this case, the compressed coding is identical to 

the original. 

 

Algorithm: 

 j=0 

 For i=0 to n 

  If 01 <>−+ ii ψψ  then 

   Store jj s,ψ   

   j=j+1 
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   0,1 == + jij sψψ  

  else 

   ijj sss +=  

 jn v =   

This technique is lossless, as the original outline may be exactly reconstructed.  

There are also methods such as described by Schuster and  Katsaggelos [71], which 

reduce the bitcount for encoding the chain by using predictive models.  These 

techniques can reduce the size of the chain by up to 50%, but can also lose edge 

information. 

 

3.2.3 Edge approximation 

One valuable tool of this methodology is the ability to approximate edges, but retain 

exact substantial corner information.  This method replaces curved or rough edges 

with straight lines. 

 

To accomplish this, a change threshold may be selected manually or automatically.  

This threshold will be the amount of deviation (in radians) that will be approximated 

by a straight line.  Obviously, a threshold of 0 will result in no change to the original 

chain. 

 

Figure 13 Example of edge approximation, using 1.0 radians 
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Figure 14 Example of edge approximation, using 1.3 radians 

 

Figure 15 Example of edge approximation, using 2.0 radians 

 

Algorithm: 

j=0 

For i=0 to n 

 If dψj-i>threshold 

  j++ 

  linkj=linki 

 Else 

  linkj+= linki 
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3.2.4 Area 

The area of a shape is the number of pixels contained within the boundary of the 

shape.  Depending on coding methodology, this can either include or exclude pixels 

comprising the boundary.   

 

General: 

∑= yxpArea ,         (3.7) 

Where yxp , is the set of all member pixels. 

 

Consider that the s-psi chain is a set of vectors in 2D space, and the vector addition 

of any two successive links completes the triangle.  In this case, we can build the 

object from a set of triangles, with one vertex fixed and the other two incrementing 

along the chain of vertices.  The sign of the area made by the triangle is given by the 

middle internal angle. 

 

Note that a compressed s-ψ chain will result in many less calculations. 

 

A demonstration of this is given below: 

 Given an arbitrary shape with corners ABCDEF,  

Triangles can be produced from ABC, ACD, ADE and AEF. 

In the example figure below, Area = ABC – ACD +ADE +AEF 

  

 

 

 

A B 

C D 

E F 
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Algorithm: 
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For i=2 to n (using equation 4 for addition and equation 5 for cross product) 
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tt

itt

vv
AreaArea

vvv

      (3.8) 

Note that the addition is signed, giving the area exact to within the precision of the 

pixilation error. 

The area thus generated will always be less than the true ‘pixel count’ area, but a 

correction factor can be generated directly from the psi chain links.  The following 

equation is used for each ψi, ψi+1 pair. 
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deltapositiveretainddthendif

d ii

    (3.9) 

The equation above follows from the fact that the pivotal pixel for the two links may 

be treated as a 1 by 1 square.  The area calculations may then be envisaged as two 

lines intersecting at the centre of the square.  Thus, for a zero direction change link, 

the true area will be ½ pixel greater than the calculated area.  Similarly, a pixel with 

a direction change of 2 (for example links AB, BC above) will have added ¼ pixel to 

the calculated area, so ¾ pixel needs to be added for the true area. 
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Figure 16 Example calculation of S-Psi area. 

 

Real Area: 7449 pixels, calculated area: 7481.8 pixels (error<0.5%) 

 

3.2.5 Point / member 

Given an arbitrary shape, a starting coordinate 
00 , yx and an arbitrary point pp yx ,  to 

check, it is possible to determine whether the point is inside the shape, outside the 

shape, or on the edge with a maximum of 
vn calculations.  In this algorithm, the sum 

of the angles made from the point to each of the corners of the object will sum to 

either 2π or 0.  Figure 15 displays example internal and external points for a shape.  

The internal point angles sum to 2π. 

 

Figure 17 Example internal and external points. 



35 

 

Algorithm:         (3.10) 

 

( )pp yyxxv −−= 001 ,
r

        

For i=1 to 
vn  

 
)( 1

1

1

iisumsum

ii

iiii

vv

edgeonispixelvvif

svv

∠−∠+=

→=∠−∠

∠+=

+

+

+

ψψ

π

ψ

 

If πψ 2=sum
, then the point is inside the shape described by the chain, otherwise the 

point is outside. 

 

 

3.2.6 Convex hull  

The convex hull of a shape is the outline of the object with no concavities.  

Concavities may be defined as a pair of links with negative delta ψ.  This feature is 

useful for coarse shape matching, for instance, where the macro features (maximum 

length, bounding rectangle etc) are more important than the detail. 

The convex hull is found by processing the chain in sequence.  Each pair of links 

with a negative delta-ψ is merged.  If a pair of links is merged, the new link is 

checked with the reverse direction also.  This process is continued until there are no 

pairs of links with negative delta-ψ.   

 

Algorithm:         (3.11) 

 

j=0 

linkj=link0 

For i=1 to n 

If ψ(linki)< ψ(linkj) 

 Linkj=linkj+linki 

 While ψ(linkj)<ψ(linkj-1) and j>0 

  linkj-1= linkj-1+ linkj 

  j=j-1 

 Else 
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  j=j+1 

 

Figure 18 An example of a convex hull 

    

3.2.7 Mathematical smoothing 

Smoothing can be done mathematically given unit size steps 

For i=0 to n 

 ( ) 4/*2 11 +− ++= iiii ψψψψ       (3.12) 

   

Note that this may need a correction factor and will not necessarily be a lossless 

translation.   

The correction can be calculated by summing the new components and determining 

the error.  That error can be spread evenly between each of the steps.  This will 

ensure that the shape is closed again at the completion of the algorithm thus: 

 

Error = 
∑
∑

dy

dx
         (3.13) 

For i=0 to nv 

 ψi+= 
vn

Error
         

 

Any convolution smoothing regime may be used, such as application of Gaussian 

masks [1 2 1]/4, [1 2 5 2 1]/10 etc.  Median filtering, however, will not work due to 

the loss of accurate directional information implied. 
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Figure 19 Smoothed example image 

 

 

Figure 20 The smoothed s-psi graph 

 

Figure 20 above displays the end result of the smoothing process on the s-ψ graph. 

As the outline is traced clockwise, turns to the right (such as the tail and the nose 

areas at s=64 and s=273, respectively) are areas of increasing psi in the graph, and 

turns to the left are decreasing. Transitions between turn directions are local minima 

and maxima. Straight lines in the outline (at any orientation) are horizontal sections 

of constant ψ in the graph. 

 

 

3.2.8 Shape analysis using template matching 

Shape analysis using template matching is generally performed with the application 

of a minimum distance calculation.  Euclidean distance can be used with caution 

because any occlusions or obstructions will cause shifting of parts of the curve due to 
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changes in the perimeter length.  This problem was overcome by Latecki and 

Lakamper [68], using minimum deformation energy calculations to determine the 

closest matching template.  In this circumstance, corresponding maximal/minimal 

arcs were identified and matched.  The energy was calculated as the percentage of 

the original length by the cost to deform matching segments. 

 

 

3.2.9 Histogram matching applied to s-psi 

Histogram matching can offer an indication of ‘likeness’ or similarity between 

shapes.  In this algorithm, the frequency histogram of psi steps is generated and 

matched against templates.  Examples include Iivarinen and Visa [72] where each 

letter of the alphabet is classified based on the histogram generated.  It should be 

noted that the histograms indicate a level of similarity only, the shape cannot be 

reconstructed.   

 

3.2.10 Feature identification  

A major advantage of s/psi coding is the ability to search for two dimensional 

features in 1d space.  Consider an arbitrary shape where one section or part of the 

edge has a known radius of curvature (ρ).  Finding the location of this feature on the 

edge becomes a matter of a search of the 1 dimensional s-ψ chain where dpsi = ρ. 

 

This becomes an important practical tool for template matching and evidence 

gathering.  Any arbitrary object can be described by a searchable feature set 

completely describing the outline.  A machine vision application may then 

implement a search routine on the generated s-ψ curve from for the features of each 

template.  

 

As an example, considering the graph displayed in Figure 20 above, a tail can be 

considered an area in the graph with a sharp rise and a maxima between psi=0 

(tracing directly up) and psi=2π/4 (along the back of the animal). 
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Figure 21 Feature extraction from s-spi graph 

 

Similarly, other features as displayed in Figure 21 can be described by non variant 

properties and with reference to the position of nearby features. 

 

3.2.11 δs-δψ coding 

In this methodology, the object is recorded by links of delta psi and delta s.  This 

provides three distinct types of links in the chain: 

δψ=0, δs ≠ 0.  This represents a straight line segment: there is no change in angle 

between the start and end of the line segment, length δs. 

 

δψ≠0, δs = 0.  This represents a corner.  There is a discontinuity in the δψ graph with 

0 distance travelled.   

 

δψ≠0, δs ≠ 0.  This represents a curved line.  Arc length = δs and δψ represents the 

change in tangent of the arc.  The magnitude of the curvature of the segment is 

then
sδ

δψ
. 

 

This coding is completely rotation invariant, which one of the major advantages to 

using this technique. This coding however is not invariant to starting point or 

direction.  To relate back to a physical object, the chain will need the start point and 

starting direction recorded.   

 

The formulation of start point invariance may be accomplished by a simple standard 

procedure, for example maximum ds*dψ.  In this way, the chain may be shifted to 
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always commence at the same point for an arbitrary shape, regardless of real 

orientation.  In this fashion, a circle will start at any point, a square at any corner, a 

rectangle at a long-short side transition corner and so on.  Examples of this are given 

below: 

 

Circle 

A circle of radius S/2π can be coded by a single link: 

 δs  δψ  

S 2π 

 

This single link completely describes the shape.  This link indicates that there is a 

single edge segment, of length S.  The tangent to the arc changes in direction by 2π 

evenly around the segment.   

 

Square 

A square with side s will be coded by: 

 δs   δψ  

 s/4  0   (first straight edge, length s/4) 

 0,  π/2   (90 degree corner) 

 s/4,  0   (second straight edge, length s/4) 

 0,  π/2   (90 degree corner) 

 s/4,  0   (third straight edge, length s/4) 

 0,  π/2   (90 degree corner) 

 s/4,  0   (fourth straight edge, length s/4) 

 0,  π/2   (90 degree corner) 

 

Semicircle 

A semicircle with radius r will be coded by: 

 δs     δψ 

 π*r   π (semicircle arc) 

 0,   π/2 (90 degree corner) 

 2*r,    0 (straight edge) 

 0,   pi/2 (90 degree corner) 
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This technique adds rotation invariance to any search algorithms, which may afford a 

substantial reduction in processing timer required.  This coding method also allows 

highly complex shapes to be described by a few chain links, enabling a high degree 

of compression to the storage and/or transmission of shape data. 

 

3.3 Practical applications 

There are many circumstances where the application of S-Psi methodologies may be 

more efficient than the alternatives previously discussed.   

 

Consider a circle detection/ arc detection routine where the radius of the arc is 

unknown.  Standard operating practice would generally be to implement an edge 

detection filter and then use a Hough transform to search parameter space for a peak 

meeting a certain threshold.  Using s-ψ, this can be accomplished directly, with edge 

detection per se.  As the edge is tracked, dψ can be monitored for constant values, 

indicating an arc. 

 

3.4 Conclusions 

This section has investigated the formal methodology for using s-ψ coding.  These 

algorithms have been generally discounted as a viable option in the field until now, 

mainly due to limited work in the area.   

 

This chapter has presented the background and basics of s-ψ coding, and extended 

the algorithms into generic shape analysis and coding.  These algorithms have great 

potential in many practical applications due to their efficiency and flexibility.  These 

algorithms also use minimal CPU cycles when compared to parameter searching 

methods, a great advantage in embedded systems.   
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4 Methodology 

 

Machine vision can be broadly described as the practical application of computer 

vision.  In most applications, the mere capture and storage of images is not sufficient 

as there must be some knowledge or information extracted from the image or data 

stream.   

 

 

4.1 Application model 

Image processing can be seen as a number of discrete steps that are of a similar 

nature, whether the application be agricultural or otherwise. 

 

4.1.1 Image acquisition 

In early machine vision systems, dedicated specialist hardware was required to 

capture meaningful optical data.  With the rapid growth in personal desktop 

computers, webcams have entered the marketplace as a cheap method of face to face, 

personal communications.  This has the advantage of user ‘burn-in’, where the 

brands that survive are the most reliable and provide the highest quality to price ratio. 

 

As always, there is a trade off between quality and communications bandwidth.  For 

applications requiring extremely high quality images, dedicated hardware is still 

necessary, not for the image capture itself, but for the means to transfer the raw 

pixels to an area of memory where further processing can be done.  For instance, a 

640*480 video stream with 24bits per pixel at 30fps will require 27MB/sec transfer 

speed.  Communication at this speed was not possible for an external device until the 

advent of FireWire ™ and USB 2.0 ™. 

 

Currently the popularity of mobile phones with built in digital cameras is fuelling an 

explosion of technology development and distribution of miniaturised image sensors.  

Devices such as Omnicam™ OV9620 are providing mega-pixel images from a 5mm 
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by 5mm footprint device.  System-on-chip manufacturers are participating with chips 

designed for video processing, such as Atmel’s new AVR32 processors. 

 

4.1.2 Pre-processing tasks 

The pre-process stage of a machine vision system is more applicable to some 

solutions than others.  This can consist of many algorithms to remove noise and 

excess information.  In some applications, this may mean converting to a different 

colour space, or sub-sampling.  At the end of this stage, the data should be in a 

format most conducive to the processing of the next stage.  Noise and artefacts 

should be removed where possible, and the data trimmed to include only the region 

of interest.   

 

4.1.3 Image analysis 

The image analysis stage is the heart of the application.  In this process, the raw data 

is transformed into information.  The different methods for achieving this are too 

numerous to list or discuss here.  Fortunately, there are some similar methods that 

almost all machine vision programmers use to extract information from images, such 

as edge detection (by comparing the intensity differences between neighbouring 

pixels), colour detection and comparing the outlines of shapes to standard “template” 

shapes to find common features that may identify a particular shape to a high degree 

of confidence.  At this stage, there is no general, unifying theory of analysis.  There 

are, however, some basic tools that can be utilised to quickly build a specific 

solution.   

 

These tool families may be generalised as: 

 

Feature Extraction 

 Line detection, Hough transforms, Parameter estimation, Shape descriptors. 

Segmentation 

 Texture, Colour. 

Geometry 

 Chain codes, Shape, Curvature scale space (CSS). 

Statistical Methods 
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 Histograms, Probabilities. 

Model based 

 Contours, prior knowledge. 

 

Artificial Neural network techniques are a separate category of tools.  These 

algorithms attempt to build a generic classifier based on some learning methods, 

however there is a fine line between overtraining – where the network is not generic 

enough to make generalisations, and under training – where the correct classification 

rate is lower than optimal. 

 

4.1.4 Post processing tasks 

After the main processing, the system has acquired some knowledge of the image, or 

added to the set of knowledge built up over multiple frames.  All practical 

applications must then utilize this information in some way.  In general, post 

processing tasks may be summed into one of three categories.  Each application may 

use one or more of these. 

 

Reporting: The information can be stored for reporting directly in any format from 

raw images appended with a date/time stamp to lists of interesting events. 

Summarisation: The information can be summarised or archived and stored for 

presentation or offline process at a later time.   

Output interfacing: Most practical applications will have some method of interfacing 

to the physical world.  Produce grading machines usually have automatic sorting 

facilities so signals from the image process can determine where each item 

terminates.  Also common are switches, alarms, alerts, and digital messages.   

 

4.1.5 Offline processing 

Some systems may not have the requirement to process all data either in real time or 

locally.  In these circumstances, it may be appropriate to store the data for offline 

processing on a different platform.  Offline processing is also used for testing 

purposes for validating algorithms. 
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4.1.6 Additional inputs 

The inputs to a practical system are not only from the visual spectrum of light, but 

can also be from other information sources such as: 

• Infrared(IR)/Near Infrared(NIR), 

• Hyperspectral/multispectral imaging devices, 

• Electronic sensors (Speedometers, Radar, GPS, temperature sensors, 

Date/Time Clock), 

• User input. 

 

4.2 Personal computer platform 

One of the main aims of this project was to demonstrate the use of technology 

accessible to the mainstream user.  A perfect example is the use of webcams.  These 

devices have been developed for the mass market of computer users to communicate 

easily via the internet.  As such, these devices have had huge market success and are 

now mass-produced in ever cheaper packages.  The quality to cost ratio is also 

improving, and devices that initially cost thousands of dollars can now be bought 

almost as groceries off the shelf for a few dollars. 

 

The introduction of Universal Serial Bus (USB) was enabling for this technology, as 

one of the main limitations is communications bandwidth.  USB 1.1 has the ability 

for asynchronous communication rated at up to 12Mb/s, whereas the newer USB2.0 

will allows transfers at 480Mb/s. 

 

Taking a standard, moderate resolution of 320 by 240 (although this is becoming low 

resolution in the current resolution technology expansion), and using 24 bits per pixel 

results in 1,843,200 bits per frame with no compression, or 55 Mb/s.  Clearly, 

compression is currently used in these devices to reduce communication problems, 

but for machine vision applications, the less compression the better as lossy 

compression can lose valuable information. 
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This project commenced investigation into machine vision applications using an 

Omnivision SmartCam Deluxe (OV511), which runs at 320*240 pixels and streams 

via USB at 25 fps.   

 

The receiver end of this type of communications stream must have the processing 

capacity to read the incoming data, uncompress it if required, process each frame, 

and produce output.  Any desktop personal computer purchased after about 2001 

meets these criteria.  Older machines have been used successfully with frame grabber 

cards, but these technologies are disappearing as newer digital communications 

appear. 

  

Microsoft DirectShow ™ technologies have been used as the cornerstone of the PC 

based machine vision applications developed in this thesis.  DirectShow is a member 

of the DirectX (Hardware Abstraction Layer software) suite of tools.  This suite 

allows developers to program in a way that suits the application without knowledge 

of the end user hardware.   

 

DirectShow tools started with Windows 3.0 in 1990 and are currently at version 9.0c.  

DirectShow is a modular based architecture, with registered and documented 

standard input and output interfaces between modules.  The DirectShow Software 

Development Kit (SDK) can be downloaded as part of the Microsoft Platform SDK 

from www.microsoft.com/downloads. 

 

4.2.1 DirectShow 

DirectShow was specifically devised for handling video and audio streams.  Each 

step of the chain from input, processing and output are represented as separate 

modules (called Filters).  The filters have standard input or output interfaces (called 

Pins) that stream data between filters.  Standard control interfaces can be accessed to 

change the behaviour of the filter.  The streaming procedure is logical only, the data 

is retained in memory at a certain location and it is a pointer to the data that is passed 

between processes. 
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The filters are connected in a chain (Filter Graph) that has one or more input devices 

(for example, video capture devices or files) and one or more output devices (video 

renderers to display on the default screen, file writers, or null renderers consume 

frames). 

 

As a frame of video (or audio) is received by each filter, it performs specific 

processing, and then forwards the frame over to the next filter in line.  Notifications 

to the host application can be initiated by any filter. 

 

One of the tools provided with the SDK is GraphEdit – a graphical user interface that 

allows the creation and modification of filter graphs.  Figure 22 demonstrates an 

example screenshot. 

 

 

Figure 22 An example of graphedit 

 

In the example in Figure 22, there are four modules.   

The first is a file reader, which is reading from the file “2005_12_14_8_19_58.avi”.  

The data read from the file is passed to an AVI (Audio Video Interleave) splitter 

filter, which decodes the raw data stream into frames and multiple streams, if they 

exist on the file.  The next filter decompresses the frames, as the file was stored using 

MPEG-4 (Moving Picture Experts Group, Version 4) compressor.  The last filter 

renders the stream to screen. 
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A set of standard filters are available for use with GraphEdit and these are: 

 

File Source (Async.) – This filter reads data from any file asynchronously, i.e., the 

processor is not blocked waiting for the read to complete.  There are other filters that 

read from internet addresses.  Standard interfaces can be used to set the current read 

address, bytes required and frame frequency. 

 

File Writer – This filter dumps raw data to a file.  The data must already be pre-

coded into container format such as AVI or WMV (Windows Media Video) if a 

standard media player is to be used to replay the file later. 

 

Video Renderer – this filter will render the most appropriate size and colour space to 

match the current screen capabilities.  The output window can be moved, stretched 

and resized just as a normal window can. 

 

Infinite pin tee –This filter is used to split a single stream of data into multiple 

streams.  Each stream of data is distinct and separate and can have different 

processes performed.  This type of filter can be used, for example, to both process 

the data and record to a file at the same time. 

 

Compression/Decompression (codecs) – Microsoft Windows contains several codecs 

pre-installed and others are installed with various software packages.  Standard 

codecs such as MPEG-4 and Microsoft Video-1 are most likely to work with any 

other machine loaded with Microsoft Windows. 

 

Capture device filters – Almost every webcam and other video capture device 

installs a DirectShow filter as part of the install process.  Inserting one of these filters 

into GraphEdit then allows for direct, real time streaming video from the device.  

Other user filters can then be added to the filter graph for machine vision processing. 

 

4.2.2 Programming 

In addition to using GraphEdit to create filter graphs, this can be done 

programmatically.  Microsoft DirectShow can be programmed in Visual Basic (VB) 
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and Visual C (VC), however reduced functionality is available in VB.  The user can 

create and run graphs from VB, but cannot access all the control interfaces.  Projects 

for this thesis have been written in Microsoft Visual Studio 6 and Microsoft Visual 

Studio.Net. 

 

Overviews of DirectShow programming can be found in books such as Pesce’s 

Programming Microsoft DirectShow for Digital Video and Television [73], or on the 

Microsoft MSDN website at http://msdn.microsoft.com/library/ 

 

Appendix B provides a detailed programming tutorial, including code snippets and 

templates for immediate use.  This tutorial provides a starting point for the 

development and deployment of a machine vision solution in hours.   

 

4.3 Embedded platform  

The PC/webcam hardware platform is suitable for many applications where power 

and stability are provided.  There are many applications however, where the 

processing should be performed in a mobile device, preferably using limited power.  

At the time of commencing these projects, there were no devices available on the 

market for a reasonable price that enabled embedded processing at the camera.   

 

The author has designed and manufactured an embedded PC and camera 

combination based on an ARM (Advanced Reduced instruction set computer (RISC) 

Machine) processor with an Omnivision image sensor module.  This device has been 

labelled the Rugged Outdoor Camera (ROC).  One of the main benefits of this 

platform is very low power consumption.  The processor runs full speed using less 

than 100mA at 6V, which means a single torch battery (4Ah) will power the system 

almost 2 days.  A rechargeable battery with a small solar panel (6V/1W) will power 

the system indefinitely.  This makes the system ideal for both mobile applications 

and remote sites without mains power. 

The basic processor is an Atmel™ ARM9 AT91RM9200, which is a low powered, 

full function PC.  Full specifications may be found at: 

http://www.atmel.com/dyn/products/product_card.asp?part_id=2983 
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The processor contains, in summary: 

200MHz CPU 

4 serial ports 

USB device 

USB host 

SD/MMC interface 

SPI 

TWI 

16kB internal SRAM 

General Purpose Input/Output pins (GPIO) 

 

As a Reduced Instruction Set Computer (RISC), there are fewer instructions, and the 

processing is streamlined.  The board design also includes 16MB external SDRAM, 

4MB serial Dataflash, Secure Digital Card interface, 4 channel Analogue to Digital 

Converter (ADC), and an LCD interface. 

 

The camera interface is tied to unused GPIO pins.  This has the advantage of 

providing flexibility, as any image sensor module can be used, but it is not as fast as 

the Direct Memory Access (DMA) transfer techniques implemented on newer Intel 

XScale processors.  A schematic diagram of the high level hardware design is given 

in Figure 23 and brief descriptions of the embedded hardware are given in Section 

4.3.1. 
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4.3.1 Hardware design 
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Figure 23 The design for an embedded processor module design 

 

The hardware design is separated into seven logical blocks: Power, CPU, Memory, 

Serial Devices, Camera, and I/O devices.   

 

Appendix C provides detailed schematic diagrams, PCB layout diagrams and a parts 

list for the embedded processor. 

 

4.3.2 Software architecture 

There are several operating systems that could be used on this hardware platform, 

including Windows CE ™, and versions of Linux.  The downfall of any operating 

system, for these purposes, is the overhead processing.  This project has not used an 

operating system, instead basing all tasks around the processing of each frame.  As 

the CPU is not using DMA access to read the image frame into the memory buffer, 

no other processing can be scheduled simultaneously.  There is a small amount of 

idle time available at the end of each line, and a substantial number of cycles at the 
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end of each frame.  During this time, the processor can schedule any off-vision 

processing required. 

 

There are generally two parts to software on an embedded system: the bootloader and 

the main program.  The bootloader runs first, initialising the hardware and preparing 

the system for the main application.  Generally the bootloader is stored in some non-

volatile memory area accessible to the system on start up.  In this system, the first 

12KB of the Dataflash is automatically downloaded into internal SRAM on reset.   

 

The pseudo code is: 

 Initialise Stack pointers 

 Setup GPIO pins as peripherals 

 Swap clock speed to 180MHz 

Initialise External SRAM 

 Initialise UARTs, TWI, SPI, Clock,  

Check for bootloader updates on SD card, serial port or other interface 

devices 

 Copy Main program from Dataflash to external SRAM 

 Set the Program Counter to Main Program initialise routine. 

 

Note that the main program can be anything from a small dedicated process to an 

embedded O/S such as Windows CE or Linux. 

 

4.3.3 Embedded image processing. 

In general, an embedded image processing application is a devoted process.  Adding 

an O/S adds overhead.  The benefit of an O/S is more portable code, but at the 

expense of many CPU cycles.   

 

Generic embedded image processing. 

The following pseudo code summarises the steps involved in bringing the system to a 

functional state and reading, storing and processing images. 

 Initialise Serial interfaces 

 Initialise SD card interface 
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 Initialise Interrupt handlers 

Main loop: 

 Wait for Vsync (beginning of frame) 

Row loop: 

 Wait for Href (beginning of line) 

 For 320 pixels: 

  Wait for PClk (pixel valid signal) 

  Copy 16 bit pixel values to internal SRAM area 

 Copy Line data to external SRAM 

 Goto Row loop until 240 lines read   

 

Transform Frame.  The same code may be used as any DirectShow filter. 

Perform output stage – report or accumulate results, physical interface, write 

frame to mass storage device if required. 

 

Check user interface – check for incoming commands from local or remote 

users. 

 Goto Main Loop. 

 

 

This embedded hardware platform will provide an entry point into many applications 

where a machine vision solution was previously not feasible due to cost, power, or 

size limitations.   

 

4.4 Testing framework 

Regardless of the platform used, there must be a rigorous testing framework in place 

for any application that is expected to be used in real world applications. 

 

The measurement regime for any application will usually be specific for that 

application, but there will be areas of global consistency: 

Ground-truthed accuracy 
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Robustness and reliability 

Measurement statistics  

Ongoing accuracy 

 

Each of these will be discussed below as they are critical to the success of the 

research described in this thesis. 

 

4.4.1 Ground Truthing 

After a prototype application or algorithm is written, there must be a way to test the 

accuracy for that method.  Ground truthing provides a means of manual 

determination of the actual/correct results, which can be checked against the machine 

vision system results.  In most situations, there is merit in the creation of a test 

harness, consisting of a number of ground truthed video clips which can be processed 

automatically.  The generated results are compiled and compared to the correct 

results, and an accuracy figure is generated at the completion of each run.  In this 

way, algorithm changes can be tested over a range of inputs without manual 

intervention.  This allows rigorous testing after each significant change to the 

algorithms.   

 

4.4.2 Robustness and reliability 

Practical applications will always require some robustness and reliability trials.  

When the system is in the field, regardless of the configuration, there will be physical 

impacts on the system.  Consider a system using a laptop PC and webcam.  Cooling 

and airflow issues should be checked, mounting for the camera should be sturdy.  For 

a normal production system, downtime is not an option.  The application must be 

reliable enough to run unassisted whenever required.   

 

4.4.3 Measurement statistics 

For any application, there will be different levels of classification results.  For 

example the animal species identification may be binary; the animal is either a sheep 

or a goat.  Other results may be less clear cut.  For example classifying a defect in 

produce grading may depend upon the size of the area, subject to measurement 
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ambiguities.  Other applications, such as the citrus texture measurement discussed 

previously, are manually subjective and difficult to ground truth effectively.   

 

For each type of application, appropriate statistical methods should be used to 

determine the accuracy of the automated system.  Key Performance Indicators (KPIs) 

are generally accepted as useful tools in measuring performance in both financial and 

non-financial situations, and these methods can be applied directly to machine vision 

applications.   

 

4.4.4 Ongoing Accuracy 

In any application there may be accuracy drift over time.  This happens not only due 

to software changes and hardware degradations, but also due to changes in the items 

under consideration.  For example, new types of defects may be present depending 

upon seasonal effects.  For all these reasons, an annual accuracy review is 

recommended. 
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5 Macadamia yield monitor application  

5.1 Introduction 

The primary purpose of the macadamia yield project was to design and develop a 

vision based yield monitoring device.  This device relates quantity of nuts collected 

to collection location with sufficient accuracy to identify the yield from individual 

trees.  A prototype system for use within the Macadamia industry plant breeding 

program has been developed as part of the project. 

  

Mechanised yield assessment offers an opportunity to reduce the cost of assessing 

field trials [2].  This project was commissioned by Horticulture Australia Limited to 

evaluate yield assessment using mechanised processes (MC03020).  It has been 

estimated by Hardner [3] that the cost reduction by mechanised harvesting could be 

up to 59%, or $AU109,824 pa.  This offers substantial savings to the individual 

growers undertaking progeny trials, as well as the funding body which provides 

research funding for progeny trials. 

 

The standard measurement of harvest yield is the weight of nuts collected after 

several runs of the harvester along rows of trees.  As cultivars are generally planted 

in mixed rows, the count or weight of nuts from each square meter under each tree is 

required.  The usual method of cultivar testing is the manual collection and counting 

of fallen macadamia nuts by workers.  This method is relatively accurate, but is 

becoming too costly due to rising employment costs and the general reduction of 

available skilled workers in the agricultural industry.  An ideal solution to 

automating this task would be to mechanically weigh the nuts dynamically as they 

are collected, however this is not feasible in this situation due to the spatial 

restrictions inherent in a standard harvester with augers. 

 

Macadamia trees are planted at intervals of 6m in rows 8m apart.  The nuts (see 

Figure 24) are harvested between May and September each year.  As the nuts ripen, 

they fall to the ground which has been cleaned of weeds by a mulcher prior to the 

start of the season (Figure 25). 
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Figure 24 Macadamia nuts on the tree. 

 

 

Figure 25 Macadamia nuts on ground ready for harvesting. 
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A standard harvester utilises a set of rollers with flexible fingers (pinwheels) spaced 

at such a distance to capture nuts between the fingers (Figure 26).  The nuts are then 

carried around by the fingers until removed by spikes between the rollers into the 

auger system.  The stream of nuts are transported by a series of augers across the 

direction of travel to one side of the harvester, then to the back of the harvester where 

they are collected into a large collector bin. 

 

Figure 26 Macadamia nut harvester and auger. 

 

The nuts at any one point in the auger system have been accumulated from a thin 

diagonal slice of the field, not a horizontal slice.  The exact original position is 

dependent on the ratio of harvester speed and auger speed (Figure 27).  Coupled with 

the fact that there may be random delays in parts of the stream due to auger action or 

jammed rollers, this harvest method cannot provide any spatial data accurate to an 

individual tree.   
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Figure 27 a) Sequential accumulation of nut stream exiting the system at time period 5.  b) 

Original field position for nuts 

 

NCEA initially prepared a report evaluating several options and considered that 

using a vision system was most likely to succeed.  Billingsley [1] verified the 

feasibility of a vision system and initial project results were reported in Dunn and 

Billingsley [74].  Because of the complicated Green’s function and the requirement 

for position sensing in both x and y, any sensing system that inspects the rollers must 

detect lateral position accurately; a single mechanical sensor will not suffice. 

 

A further application of this project in the commercial arena has also been identified.  

Yield mapping of commercial harvests with this technology will provide an 

immediately intuitive, visual indication of crop production patterns.  Armed with this 

information, producers may make more informed decisions about resource 

management functions such as watering and fertilising macadamia trees. 

 

5.2 Key performance indicators 

The following KPI measurements have been identified by representatives of the 

Australian Macadamia Society, CSIRO, QLD DPI and NSW Dept of Agriculture as 

relevant metrics to measure the performance of the system: 
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1. Cost.   

There must be a positive net effect on the bottom line of the implementation of this 

project into the harvesting process of varietal trials.  The current cost of manual 

harvesting is $7.70 per tree per harvest [2].  The maximum cost of the machine 

vision system process should be $5.70 per tree per harvest [2]. 

 

2. Count Accuracy 

The current accuracy of manual collection of nuts cannot be 100% as there is some 

ambiguity of nut origin at the crossover points in the field.  No matter what system is 

used, this ambiguity can not be overcome.  However, a consistent measurement for 

each tree will provide the required information. 

 

The accuracy of the vision system should exceed r2=0.90.   

 

3. Position Accuracy 

The yield map reported by the machine vision system should be accurate to within 

10cm spatially within the orchard.   

 

4. Speed 

The machine vision system and harvester should be capable of 3m/s ground speed 

(10km/hr) with no loss of accuracy. 

 

5. Size of machine 

The harvest of varietal trial nuts has been envisaged as a single person operation.  As 

such, the harvester must be easy to transport and use.  The harvester should fit on a 

trailer for ease of transportation and be loaded/unloaded/operated by an individual. 

 

6. Type of orchard  

The machine vision system and harvester should be capable of operating in orchards 

ranging from 5m x 2m to 10m x 5m spacing between trees. 
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5.3 Materials and methods 

5.3.1 Nut detection hardware 

For a machine vision system to work effectively there must be a clear, unobstructed 

view of the area.  Most macadamia nut harvesters have either a single back auger, or 

dual banks of pinwheels.  In either case, there is no feasible mounting point for any 

type of camera to have a clear view of the nuts before or during the pick up 

operation.   

 

Hidden Valley Plantation has designed and built a harvester that is ideally suited to a 

machine vision solution.  The harvester has a single, front mounted auger which 

provides around sixty degrees of visible pinwheels with nuts (Figure 28).   

 

 

Figure 28 Macadamia nut harvester with single front mounted auger. 

 

The harvester has 1800mm of working width and standard cameras usually have 320 

pixels width resolution.  To achieve the total coverage required with 3 cameras, each 

pixel must be at least 2mm2.  As average nuts have diameters larger than 15mm, this 

resolution is sufficient to discriminate the nuts from the background. 
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Cameras with 3.6mm focal length lenses were positioned 600 mm from the rollers in 

a sheltered cowling.  This focal length and position provides 600mm horizontal field 

of view.  The pinwheel and cameras were covered so no sunlight enters, all light was 

provided artificially.  This reduced changes due to shadows as the tractor moves in 

and out from under trees.  Figure 28 displays a picture of the prototype at Hidden 

Valley Plantations.  Note that the unit has a lid to shield it from direct sunlight and 

the lid is hinged to allow access to the rollers for cleaning. 

 

Initial trials were undertaken early in this project (2003) with standard white rollers 

on the harvester.  Video footage was acquired with a JVC analogue video recorder 

mounted behind the pinwheels.  With use, the standard white rollers become 

smudged with dirt and almost indistinguishable from the nuts being collected.  The 

solution to this problem was to have the pinwheels moulded with blue tint in the 

plastic.  This provided adequate colour separation to distinguish background 

(pinwheels) from foreground (nuts and trash). 

      

In terms of image acquisition and data processing, trials commenced using a fan-less 

533MHz VIA mini-ITX PC, encased in a sturdy Pelican case.  Windows 98 was used 

as the operating system platform.  This system was chosen as it had no moving parts, 

with a 512 MB Compact Flash card as the storage media.  Three Logitech Quickcam 

Pro 4000 cameras were used as the image sensors.  These cameras provided high 

image quality for a reasonable price (AU$150.00).  As each camera required a USB 

host port to provide the bandwidth for full streaming video, a PCI USB host 

controller card was inserted to provide the third USB port. 

 

This system was designed to be 'headless', i.e., with no monitor attached.  This 

provided extra ruggedness, but presented some difficulties in user interface.   

  

After problems with the speed of this system became obvious, the project moved to a 

1 GHz VIA motherboard.  This still presented challenges with the user interface and 

setup time.  A DELL Latitude D600 laptop was then utilised as the main processing 

unit.  A parallel connection to a 24*2 segment LCD and switch provided a user 

interface mounted within easy reach and view of the driver.  The Rugged Outdoor 
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Camera (ROC) system developed at NCEA was then customised for use in this 

project. 

 

The final hardware configuration consists of four ROCs – three ‘Nutcams’ and one 

‘Treecam’.  Each unit was connected via 2 serial UART lines, one channel upstream 

and one channel downstream.  The Treecam handled the accumulation and storage of 

all data onto a single SD card.  The data may be downloaded at the end of each run, 

or each day for post processing. 

 

5.3.2 Location hardware 

After the image processing phase, the location of the identified nuts must be recorded 

to the required accuracy.  Initial project designs included a bicycle wheel attached to 

the tractor for odometry purposes.  The location of the tractor on the farm could then 

be recorded or identified manually at the start of each run.  The wheel proved to be 

unsatisfactory due to bouncing and skipping.   

 

Global Positioning System (GPS) options were investigated.  Base level GPS (eg 

Garmin 18) are accurate to +- 3m, which would not provide individual row 

information at any given point.  Differential GPS (DGPS), works on normal satellite 

signals, as well as an error correction signal, either from another satellite service (eg 

SBAS) or radio beacon (coastguard beacons are available off the east coast of 

Australia.  See Appendix 1).  DGPS provides sub-meter accuracy within the field.  A 

DGPS system (CSI wireless Minimax) was purchased to provide location 

information to the system.   

 

The interface is RS-232 with standard NMEA signals (see www.nmea.org).  The 

‘GPGGA’ string was chosen as the input, which provides latitude, longitude, height, 

number of satellites, and signal quality.  Initial problems occurred due to the aerial 

being mounted close to the harvester.  Multipath problems from signal bounce 

caused loss of accuracy.  The aerial was subsequently mounted on a 2m pole, 

bringing the antenna up to head height (Figure 29 and Figure 30).  This significantly 

increased the accuracy attained. 
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Figure 29 Treecam and GPS receiver. 

 

 

Figure 30 GPS antenna and radar mounted on the macadamia nut harvester 
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Even with this advanced GPS, the system could not discriminate position to the 

required in-field position of 10cm.  A ground speed radar (Dickey-John) was sourced 

to provide odometry information (Figure 31). 

 

 

Figure 31 Ground speed radar mounted on the macadamia nut harvester 

 

The radar provides a frequency modulated square wave relative to the ground speed.  

The radar was mounted at the front of the harvester, aimed at the ground at 

30degrees to the horizontal.  The output of the radar was connected to a 

Timer/Counter input pin.  Each change of state adds to a register, which accumulates 

the total distance and current speed.  After trials and calibration, each change of state 

was triggered after 6mm travelled (Figure 32).  This allowed lateral distance to be 

measured to the required accuracy, but not transverse distance between the rows.   
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Figure 32 Ground speed radar showing radar direction and output waveforms 

 

A new location method has been devised to locate the tractor accurately both 

laterally and transversely in a particular row by mounting a camera on the harvester 

focused perpendicular to the direction of travel (Figure 33).  This Treecam identifies 

tree trunks streaming past and records trunk width and position.  The position in the 

image that the tree is identified is directly and linearly related to the angle from the 

camera to the tree.  If the trees are identified at 60frames per second, and the tractor 

is travelling at maximum speed of 2m/s along a run 0.5m away from the tree line, 

then the system should detect at least 10-15 frames of identified tree moving from 

left to right in the image.  Once we have identified a tree, we can use triangulation 

methods to determine lateral distance, as we know current speed from the radar. 
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Figure 33 TreeCam – local positioning by tree detection. 

 

Radio Frequency Identification (RFID) 

A system has been developed based on the Texas Instruments TIRIS™ Radio 

Frequency Identification (RFID) architecture.  The reader uses Electromagnetic 

coupling to charge a passive tag.  The tag, once charged, has enough energy to burst 

transmit the data stored, typically a unique 64 bit number, back to the reader.   

 

With unique tags at known positions in the plantation, this technology can 

completely remove the requirements for GPS input.  Consider a plantation with a 

single tag on the first tree of each row.  As the tractor passes the tree, the system 

identifies exactly which row in the plantation is currently being harvested.  The other 

sensors can then position the harvester accurately down the row. 
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Table 1 summarises the advantages, disadvantages and accuracy of the different 

location methods.  Note that for the full system, a fusion of several items is required. 

 

Table 1 Location technologies. 

System Advantages Constraints Accuracy 

GPS Standard units  available, 

cheap 

Occasional dropouts, 

Variable reliability under 

tree cover 

+- 3m 

DGPS More accurate, standard 

units available  

More expensive, Variable 

reliability under tree 

cover 

 

+-<1m 

RFID Cheaper than GPS, 

reliable in all areas. 

Requires knowledge of 

unique tag placement 

within the plantation. 

Reader must pass within 1 

m of tree 

<1m 

Standard 

Odometry 

Fitted standard on most 

new tractors 

Indicates current speed 

only, not position  

5% km/hr  

Radar 

Odometry 

Robust, non contact Indicates current speed, 

not position 

+-3% m/s 

Tree 

Triangulation 

Robust, non contact Must know distance 

between trees and current 

speed. 

+-12mm  

 

A fusion of the radar odometry, tree triangulation and either RFID or DGPS 

produces accuracy in advance of any current systems in the market.   
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5.3.3 Nut detection software 

The main requirement for this software was to process an image in real time to 

determine the presence and location of nuts on the roller.  This was achieved using 

colour and shape information. 

 

5.3.3.1 Colour 

Red/Green/Blue intensity plots for sample nuts and the blue roller background is 

shown in Figure 34.  As shown, in the left-most plot, there is a distinct separation in 

the Red/Blue colour channels that will allow accurate identification of non-

background areas.  Figure 35 illustrates that trash such as leaves and twigs picked up 

by the rollers cannot be separated from nuts based on colour data alone.  This means 

that there must be some shape checking to ensure only nuts are counted. 

 

 

Figure 34 Intensity contrast for nuts on a blue background. 
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Figure 35 Intensity contrast for trash on a blue background 

 

5.3.3.2 Lighting effects 

Given that the harvesting of macadamia nuts is an outdoor occupation, there will 

generally be varying degrees of light present on the roller and nuts as the harvester 

goes in and out of shadow under trees.   

 

To reduce the effects of trees and varying light conditions, a cover was manufactured 

for the harvester top to completely cover the pinwheels and cameras.  Lights were 

mounted between the cameras to provide complete and constant light coverage of the 

pinwheels.   

 

Three 12V fluorescent lights were attached to the system initially, but enhanced 

foreground/background contrast was realised with four 12V/50W yellow filtered 

halogen lamps.   

 

5.3.3.3 Shape 

For each frame to be processed, the shape algorithm performs the following tasks:  
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Divide the frame into a grid at a reasonable pixel size, depending on the distance 

from the camera to the rollers.  In the prototype system, this value was around 4 

pixels, which was slightly less than half the diameter of the average macadamia nut.  

This ensures that no nuts will be missed by a fast scan of the image. 

 

At each of the grid points, search for a non-blue value, indicating the presence of 

something on the rollers – either a nut, or trash.   

 

From this identified object point, step vertically up, down and right until a boundary 

is reached.  This provides at least three points on the edge of a potential circle.  If any 

direction is more that twice the diameter of an average nut, this point should be 

skipped as it is probably trash.  Figure 36 displays an example grid search with the 

first circle identified. 

 

 

 

Figure 36 An example scan of an image grid  

 

After a potential circle has been identified, we need to verify whether or not a circle 

actually exists in this position.  Given that the image is discrete and the circle 

boundary is not an exact line, we can check two points, at the radius plus or minus a 

percentage TB from the centre for a boundary in this region.  If the inner pixel meets 

the target value and the outer pixel does not, then there is an edge between the two. 
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In a digital circle, there are approximately 2*pi*radius pixels on the edge and thus 

2*pi*radius discrete angles to check.  Given that there is a size limitation, the circle 

can be approximated by only 16 points, at angles 0, pi/8, 2*pi/8, 3*pi/8 radians, 

rotated by pi/2 radians 4 times to complete the circle.  After checking and summing 

the matching angles, if the count is over a threshold percentage of the angles then 

there is a circle described by (a,b,r).  These circle parameters are stored to ensure that 

the same circle is not found more than once.  No further points on the main grid in 

this area are checked. 

 

Figure 37 below, is the virtual search space of an example image.  This is not 

actually generated by the system, as only selected grid points are evaluated.  Figure 

38 shows the end result of this processed example frame, with the identified nuts 

circled.  Note that the two nuts close together have been identified correctly, and the 

small leaf in the image has been discounted correctly. 

 

 

Figure 37 An example of virtual search space.  The black pixels have been identified as the 

background, the white as non-background 
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Figure 38 An example frame after being processed 

 

5.3.4 Tree detection software 

The algorithm for tree detection is based solely on the relative brightness intensity of 

portions of the image.  For each row, the average pixel intensity is measured.  Any 

pixel with less than half of the average intensity is marked as dark – or trunk.  The 

columns are then processed with a low pass filter to find the darkest vertical area.  

This area is marked as a tree trunk and the horizontal position recorded.  Note that in 

the absence of a visible tree in the closest row, trees in further rows will be 

identified.  These can be easily differentiated by the rate of change of the position of 

the identified tree.   

 

Figure 39 displays an example frame from a webcam mounted sideways on the 

harvester, aimed at the row of trees.  Figure 40  shows the example frame processed 

for trunk position.   
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Figure 39 An example of an input frame showing a tree trunk 

 

 

 

Figure 40 An example of the processed frame showing the identified tree trunk 

 

The centre of the tree is identified at harvester height, not ground height.  This means 

that trees not growing straight will need to be measured in the field at harvester 

height, not as planted. 

 

The imaging unit is linear so the distance from the centre of the image to the centre 

of the tree trunk can be converted directly to an angle.  The field of view of a 

standard camera with a 4.5 mm lens is 40 degrees.  This means that a tree is in view 

from 20degrees ahead of the harvester to 20 degrees behind.   
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Note the trunk has been identified with the centre and width.  Plotting only the 

centres for each frame down a row of trees produces graphs such as Figure 41.  The 

interval between each frame is 0.033 seconds. 

 

 

Figure 41 An example of Treecam data plotting tree sightings for each frame 

 

Note that the slope of the locus formed by the identification of trunks, together with 

current speed information, will provide lateral distance from the camera to the trunk.  

In the case of ‘A’ above, the tree identified is clearly a tree in the current tree line, 

but ‘B’ is one row over.  This system is invulnerable to noise as there is feedback 

from the odometer.  If, for example, someone walked past the Treecam, the lack of 

odometer data will show that the tractor is not moving and invalidate the reading. 
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5.3.5 Sensor fusion 

In the previous sections, the various sources of data available to this system have 

been described.  The next task is to merge the data from the following sensors: 

• 3x Nut identification cameras,  

• 1x Tree identification camera,  

• 1x Differential GPS, and 

• 1x Radar odometer 

 

Each sensor is providing data independently and at various speeds.  To accumulate 

the data each sensor stamps the message with an internal timestamp.  These 

timestamps, accurate to microsecond level, allow post process algorithms to align the 

data streams. 

 

Each data item is logged in the following format: 

<Microsecond>, <data type>, <data> 

And the file is labelled with the date/time stamp of the start of the run.   

 

The different types of data are: 

 

NUT – This signifies the identification of a single new nut.   

Associated Data: Camera id, horizontal position of the centre, vertical position of the 

centre, nut diameter. 

 

TREE – This signifies the detection of a tree from the tree camera. 

Associated Data:  horizontal position of the centre of the tree, width of the tree. 

 

ODO – Each low-high change of state of the signal from the ground speed radar is 

logged. 

Associated Data: none 

 

GPS – The GPS system has been configured to output the standard ‘GPGGA’ string  

data at 5Hz.   
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Associated Data: Full GPGGA string.  GPGGA, Time, Latitude, S, Longitude, E, 

signal type, #satellites, HDOP (signal quality), height, M, filler. 

 

Figure 42 is an example of graphing GPS data directly. 

 

 

Figure 42 An example of the GPS data 

 

Figure 43 displays a close view of the area in the square above. 

 

Figure 43 A close view of the GPS sample data 
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Figure 37 clearly demonstrates where the harvester has turned at the end of the run at 

point A, reversed to get in line for the next run, and continued.  Note also, the 

deviation in the line between point B and C, less than a meter off the true straight 

line course, but obviously demonstrating that GPS alone is not enough for 10cm 

accuracy. 

 

At a speed of 2m/sec, the ground speed radar produces spikes at around 5 ms 

intervals, or 10mm.  The obvious initial way to use this data is to take the heading 

from the last two or more GPS positions, and interpolate the odometry points 

between them.  Problems arise, however, as the GPS data is not reliable under tree 

coverage and accuracy decreases, at times drastically.  This may cause substantial 

heading errors, invalidating this method. 

 

Post-processing algorithms are used for amalgamating the data.  In this case, we have 

standard ‘tracks’ along the field which provide a template for the movement.  The 

GPS data is used to identify which track we are on.  The tree data is then used, 

together with the instantaneous speed, to determine lateral and transverse positions of 

the tractor. 

 

5.3.6 Post processing algorithm 

The most important part of data fusion is accurate timing.  If unsynchronised data is 

accumulated, there is no method of rescheduling back into the original reference time 

sequence.  Each sensor system uses an internal high-resolution timer to timestamp 

messages. 

 

In the post-processing step, each piece of data is examined and used to assist in the 

transfer of raw data to accurate yield maps.  The steps required in post processing are 

detailed below. This process performs a fusion of the sensor data to give a best 

estimate of the absolute location at all times. 

  

A.  Determine Harvester Location and Heading (World Co-ordinate System) 
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1. Either raw GPS records or predetermined GPS path points are passed through 

a b-spline type smoothing algorithm  

• In the case of Raw GPS records the distance between control points is 

dynamically determined by the HDOP signal quality field in $GPGGA.   

• In the case of predetermined paths, the controls points are aligned with 

known locations. 

2. Odometer readings are placed on interpolated positions on the b-spline curve.   

3. Treecam records are examined simultaneously, and when a successful 

triangulation occurs, this determines closest tree by comparing position with a 

reference map.   

4. Positioning error is calculated (difference between Treecam and map 

position), and initial GPS signal records in current run are back-adjusted to 

allow for the error.   

5. Steps 1-4 are repeated until calculated Treecam position matches the 

reference map within 5mm 

6. When a Treecam position is finalised as per steps 1-5, the cumulative position 

error is applied to all future raw GPS records, and the algorithm then 

continues to work through the records in a progressive fashion until done.   

7. At any point, heading is assumed to be aligned with line connecting closest 

corrected odometer positions. 

This method of progressive post-processing with Treecam has been very successful, 

capable of maintaining position even with very poor GPS signals.  However success 

is dependent on two factors: 

• A high percentage of Treecam 'hits': Provided trees are reasonably 

maintained, as is usual in varietal trials, 80% is quite achievable which is 

adequate for the algorithm. 

• A high accuracy in the GPS position at the start of each row: Differential 

GPS is adequate, but other options need to be considered where DGPS 

coverage is poor. 

B.  Determine the position of nuts within the harvester (Local Co-ordinate System) 

1. The positions of separate components (cameras, GPS etc) are recorded using 

a local co-ordinate system, measured in metres with the GPS antenna as the 
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origin and direction of travel as the y-axis.  This information together with 

component serial numbers etc is stored in a harvester configuration file.   

2. When a nut is detected, pixel (x, y) is converted to the local co-ordinate 

system and offsets are applied to allow for the relative positions of 

components. 

C.  Transform Nut position to World co-ordinates, and assign to tree in reference 

map. 

1. A transform is applied that combines nut position (local CS), harvester 

position and heading (world CS) to calculate nut position in World/GPS co-

ordinates.   

2. Nuts appearing in the same place but from different cameras/frames are 

filtered  

3. Nuts are then assigned to trees in a reference map.  The actual method for this 

depends on the end user's requirements - for example it might be simply the 

closest tree, or the nut may have to lie within a polyline marking the canopy 

boundary 

 

5.4 Results 

5.4.1 Test setup 

In review, the relevant KPI's to be rigorously tested against performance are: 

• Count Accuracy – the number of nuts counted. 

• Position Accuracy – position of nuts in field. 

• Accuracy at various speed 

 

To test all these performance indicators in a single trial setup, the following 

experiment design has been devised. 
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In any given row, the outline of a checkerboard is drawn on the ground with paint.  A 

series of 1m by 1m squares are measured out and the outline drawn.  For initial 

testing, nuts are laid only on the horizontal boundary lines at 10cm intervals.  In 

subsequent testing, all the nuts are removed from alternate squares and the nuts 

remaining in the other squares are manually counted.   

 

 

 

The distance from the nearest tree to the checkerboard start is measured, and the 

checkerboard can be reproduced at various intervals down the row.  Note that the 

accuracy tested is a higher degree than the macro level 1m squares, as it is the 

boundaries between the squares that will be used to identify location accuracy issues. 

 

After the harvester passes over the checkerboard, the remaining nuts in each square 

are manually counted and noted.  In this way we can test the accuracy of the vision 

system, the accuracy of the location system and the efficiency of the rollers in a 

single test.  This test can be repeated at different speeds to compare accuracy figures 

and ensure that the speed KPI is met. 

 

1m 

1m 

Figure 44.  Trial Layout.  White squares have nuts removed, dark squares have nuts counted. 
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If the output of the machine vision system should be a coverage map of the entire 

row, the checkerboard should be clearly visible at the appropriate locations in the 

row.  Virtual checkerboards can be overlaid onto the yield map, and the nuts 

identified in each region counted.  The error can be determined directly between the 

vision system and the test layout. 

 

5.4.2 Field trials 

Field trials were undertaken over 2004, 2005 and 2006 harvest seasons.   

Treecam testing 

The accuracy of the Treecam has exceeded 90%.  Given that there are high weeds 

and low hanging branches partially obscuring the tree trunks, this is considered a 

reasonable degree of accuracy. 

 

Results from four trials conducted on 24th August 2006 are presented here as 

representative data (Table 2).  The full data for these trials may be found on the 

software CD in the Case Study Results\Macadamia Yield Map folder. 

 

Table 2 The accuracy of the Treecam process.  The average accuracy is 92% 

File/run (time) Real trees Identified Missed 

075023.* 34 30 4 

081409.* 34 33 1 

083737.* 34 31 3 

085221.* 34 32 2 
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Figure 45 A satellite view of Hidden Valley Plantations  

 

Figure 45 illustrates the extents of the Hidden Valley Plantation macadamia 

orchards.  Testing has progressed in most of the numbered fields. 

 

Figure 46, Figure 47, and Figure 48 display the end result for a single run of data 

(trial 075023).  Commercial harvests will have hours of data rather than minutes, and 

will be displayed as a ‘blob’ map overlaid onto the orchard.  The various levels of 

overlay colour directly relate to intensity of nuts collected over the area. 
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Figure 46 An example processed yield map overview 

 

 

 

Figure 47 An example processed yield map displaying identified trees and nuts 
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Figure 48 An example processed displaying identified nuts under one tree 

 

In the same set of trials, nuts were laid in a line adjacent to each tree across the 
direction of travel.  The nuts were spaced 10 cm apart.  The area between the lines of 
nuts was cleared of visible nuts.  The number of nuts were counted before and after 
the harvester passed over the area.  As the results show, 85% of nuts were correctly 
identified in this sequence of tests.  The missed nuts are due to occlusions from 
leaves and trash, insufficient lighting, or transverse nut movement.  These results 
also indicate nuts found between the tree lines.  These will be a combination of real 
nuts not cleared from the area, and spurious counts from trash.  The results of this 
trial are displayed in Table 3. 

. 

 

Table 3 Nutcam results 

run/tree 

075023 

real 

count Identified 

081409 

real 

count Identified 

083737 

real 

count Identified 

085221 

real 

count Identified 

5 11 10 10 9 10 9 10 9 

6 14 9 12 11 12 9 12 11 

7 14 10 13 12 11 10 11 9 

8 13 10 15 9 11 11 12 12 

9 14 12 14 13 14 13 11 11 

10 12 12 12 10 14 9 7 7 



86 

 

Total 78 63 76 64 72 61 63 59 

Percent   80.77%   84.21%   84.72%   93.65% 

 

 

5.4.3 KPI results 

Current results are as follows: 

 

1. Position Accuracy – position of nuts in field.  KPI exceeded.  The tractor in-

field position is accurate to within 12mm, using DGPS and Treecam 

positioning.   

 

2. Count Accuracy – Nuts counted.  KPI not yet accomplished.  Work is 

continuing for improving the accuracy.  The correlation of nuts collected to 

nuts counted is high, however an exact count is preferred for research 

purposes.  Further algorithm improvement using all the colour channels is 

expected to increase the accuracy of correct nut detection. 

 

3. Speed.  KPI met.  The position trials have been performed at various speeds, 

up to a maximum of 10km/hr. 

 

4. Cost.  KPI met.  The estimates given in (Hardner, 2004) have been 

confirmed and are detailed in Table 4 below for 1600 trial trees at 4 sites in 2 

regions over 4 harvests: 

 

Table 4 Estimates for the cost of the system 

Cost Breakdown $/hr Hours/tree/harvest $/tree/harvest 

Harvest labour –

machinery operator 

30 0.01 $0.30 

Machinery operating 

costs –fuel, disposables 

10 0.01 $0.05 

Transport labour – 

Driver/operator 

30 0.02 $0.62 

Transport operating costs 10 0.02 $0.21 



87 

 

– fuel, disposables 

Annual maintenance 100 0.0025 $0.25 

Harvester depreciation _ _ $0.32 

Vision system 

depreciation 

_ _ $0.32 

Nut mass assessment 20 0.138 $2.75 

Total   $4.82 

 

5. Size of Orchard.  KPI met.  The trials have been successfully conducted on 

various fields at Hidden Valley Plantation, ranging from 5m x 2m to 8m x 

5m. 

 

6. Size of Machine.  KPI met.  This prototype development has proven that the 

technology can be fitted to any machine with a front auger, including smaller 

units.  Further work is also being undertaken to attempt to install a vision 

system on a machine with a back mounted auger, as these system are much 

more widespread in production harvesting. 

 

 

5.5 Conclusions 

This project has proved the concept and has had considerable hours of testing.  Many 

refinements have been made to the original ideas, including a method of determining 

in-field position to an unprecedented accuracy. 

 

A commercial unit is being built for the 2007 harvest season.  This unit will be used 

to compile yield reports for all state government varietal trial plots.   

 

The techniques created here for in-field location may be generalised to any orchard 

crop where the collection is undertaken by a machine travelling along the rows.  This 

will prove valuable to many industries that cannot take full advantage of the latest 

GPS technology due to signal interference from overhead branches. 
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The ability to identify and count items on a mobile harvester can also be applied to 

diverse applications, ranging from sugar billets to lettuce.  Some pre-grading can also 

be performed by a harvester system, reducing the workload and variability of 

produce at the packing shed. 

 

5.5.1 Model summary 

Below is a summary of this case study in the terms identified in Chapter 4. 

 

Image Acquisition.   

Treecam - Use ROCs for 30fps image acquisition in YUV space. 

Nutcam - Use ROCs for 60fps image acquisition in RGB space. 

Pre Process.   

Nutcam – binarise the image based on blue/non blue target pixels.   

Treecam – none. 

Analysis. 

Treecam – Identify dark vertical stripes (tree trunks). 

Nutcam – Identify and track circles in binarised image. 

Post Process. 

 Treecam – Report microseconds, x position and width of tree trunk.  Store 

accumulated data to SD card. 

 Nutcam – Report microseconds, x/y position and diameter of all identified 

nuts.  Send data downstream via serial communication.   

Offline Processing. 

 The data accumulated from all sensors are converted to a single time sorted 

datastream and mapped graphically as a yield map. 
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6 Citrus texture application 

6.1 Introduction 

A machine vision system has been created as a non-destructive method to obtain a 

reliable measure of surface texture from sample fruit.  The citrus industry uses 

surface texture as an indicator of quality, together with colour and other attributes 

that are harder to measure such as sweetness and juice content.  While machine 

vision has long been used in grading citrus fruit, it is currently limited to defect and 

colour classifications [40, 75]. 

The skin texture of citrus fruit is a combination of three different types of spatial 

variation.  Sub-millimetre wrinkles (scent glands) are found over the entire skin and 

are irregular, but have relatively constant coverage.  Small dimples 1mm-5mm in 

depth are randomly spaced around the fruit.  It is the depth and quantity of these 

which have the greatest impact on the skin texture grade.  The third type of variation 

is deformation from the normal spheroid shape.  These lumps or flat spots can be 

caused by rough handling, or may be due to variety.  These three parameters are 

generally referred to as roughness, waviness and form in production machining.  

Figure 49 displays an example of each of these parameters. 

Figure 49 Example citrus fruit image 
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The best measure of the texture of a fruit is given by the arithmetical mean deviation 

of the profile Ra by Leach[76].  Where Ra is defined as  

∑
=

−=
n

i

ia ZZ
N

R
1

1
        (6.1)  

Where Z is the distance measured from the centre of the object.  

 

This can be measured directly from a fruit using an expensive stylus instrument 

where a needle, similar to that of a record player, touches the skin of the fruit as it 

revolves.  The changes in position are amplified and recorded.  A serious problem is 

that this method only provides a single sample from one ‘latitude’ around the fruit, 

which may or may not be representative of the entire surface. 

 

Using a simple plan image of the fruit will not provide adequate results as the 

classical texture measurements will not account for dimple depth, merely contrast 

changes in skin colour. 

 

Given the random spacing of the dimples on the fruit and the reflective quality of 

freshly picked fruit, we can use specular reflection to calculate an effective measure 

of texture.  If the fruit to be measured were perfectly smooth then, as in Figure 50 

below, the illuminated area would appear as slowly varying intensity, and the 

terminator as an even edge. 

 

Figure 50  Light terminator on smooth fruit showing the resulting image 
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6.2 Key performance indicators 

In a practical application, the most important performance indicators are 

classification success.  This is harder to measure when the current methodology is 

subjective.  In this project, the requirements were: 

 

• Accuracy.   The classifications produced by the system should correlate 

with manual classification r2 > 0.90 

 

• Repeatability.  An important requirement is for similar fruit to yield similar 

results.  This can be measured directly by processing the same fruit multiple 

times.  The resulting measurement should be within 3-sigma at 10% of the 

midpoint of the scale. 

 

• Cost.  The system should be affordable as a research tool.  This system would 

still require refinement to be implemented as a production grading tool. 

 

6.3 Materials and methods 

A prototype texture measurement system was designed using a Logitech webcam, a 

12V, 50W halogen bulb and a 12V DC motor and gearbox combination (Figure 51).  

The cost of the unit was under $AU200, with the webcam the most expensive 

component at around $140. 

 

 

Figure 51 Prototype citrus texture measurement system. 
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The web camera captured images at 30 frames per second as the fruit was revolved.  

The light source was positioned at 90 degrees to the camera to provide a clear 

terminator line.  The fruit was turned at 4 seconds per revolution, which provides 120 

frames per sample fruit revolution.   

 

The unit is placed under a light hood to remove ambient light effects. 

 

For a textured fruit (Figure 52), the light intensity reaching each pixel of the camera 

is a function of the angle of the surface at the observed point.  Measuring the 

intensity of light reaching the camera then provided an indication of the angle 

between this normal and the axis of the camera.   

 

 

Figure 52  Original image of a citrus fruit 

Taken in horizontal rows, the intensity graph produces a map of the specular 

reflection.  The intensity levels thus measured are superimposed on those due to any 

macro deformations in the shape of the fruit.  To remove the effect of those 

deformations, the deviation from the moving mean of the intensity graph is 

calculated. 

 

Relating this back to equation 6.1, the Row Texture (rt) for a row with n pixels is 

determined as: 

i

n

i

i II
n

rt −=
=
∑

1

1
        (6.2) 
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For the sample image, we can process m lines to determine the frame texture (ft) 

thus: 

( )
m

i

irt
m

ft
1

1

=
∑=         (6.3) 

This measure is then summed around each rotation of the fruit and again averaged to 

provide a single number for each fruit (Rvisual).  This texture measure is related 

directly to the physical texture of the fruit by a constant. 

 

visuala kRR =          (6.4) 

 

Figure 53 shows a sample frame for which the intensity graphs for each colour 

channel for the 40 central rows are overlaid onto the grey scale representation of the 

fruit.  The blue channel exhibits the widest response and these intensity levels are 

processed to determine the texture.  The blue graph at the top of the figure represents 

individual deviations from the mean. 

 

 

Figure 53 An example processed image of a citrus fruit 

From Figure 53, it is clear that several well-defined brighter areas exist in this 

portion of the fruit.  The size and location of these areas are averaged over each 

frame and are accumulated over the series of frames to provide a single number 

representative of the texture of the sample fruit (Rvisual).   
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6.4 Results 

After measuring the fruit continuously, Rvisual for the fruit is seen to settle to a final 

value, as shown in Figure 54. 
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Figure 54 Temporal measure of the texture of a citrus fruit 

 

This demonstrates the fact that each sample fruit must revolve for around 6 seconds, 

or 180 frames, to determine a representative steady state value.   

 

Repeatability is a major factor for the success of this system.  Every fruit should have 

a repeatable measure of surface texture to within minimum limits. 

 

After 20 individual tests of 12 different citrus fruit with random placement on the 

system, the following results were produced (Table 5).  A subjective manual grading 

exercise was also undertaken by 6 consumers with the instructions to order the fruit 

from smoothest to roughest.  The results were tabulated by simple majority votes 

classification (Table 6). 
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Table 5 Results for the machine vision grading of three types of citrus fruit 

Fruit Mean Std Dev Fruit Type 

1 16835 719 Navel Orange 

2 35374 789 

3 22260 787 

4 31269 823 

5 35362 714 Valencia 

Orange 
6 33386 731 

7 12088 441 

8 15356 608 

9 14496 500 Murcott 

Mandarin 

 

10 12743 427 

11 19523 522 

12 28410 669 

 

 

 

Table 6 Results from the manual grading of three types of citrus fruit 

Manual Grading (smoothest-roughest) Fruit Type  

1-3-4-2 Navel Orange 

7-8-6-5 Valencia Orange 

10-9-11-12 Murcott Mandarin 
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Figure 55  Graphical representation of trial results 

 

The results (Figure 55) indicate a strong correlation between the machine vision 

results and the subjective visual measurements.  In every case, the subjective 

measurements are upheld by the Rvisual measurement produced by the system.   

 

The midpoint of the arbitrary measurement scale is 25000, so the repeatability KPI 

requires all 3-sigma values (3 standard deviations) to be less than 2500.  Table 7 

demonstrates the 3-sigma results. 

  

Table 7 3-sigma results for machine vision grading of three types of citrus fruit 

Fruit Std Dev 3sigma 

1 719 2157 

2 789 2367 

3 787 2361 

4 823 2469 

5 714 2142 

6 731 2193 

7 441 1323 
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8 608 1824 

9 500 1500 

10 427 1281 

11 522 1566 

12 669 2007 

 

 

The system has been used in research work at the Department of Primary Industries, 

Bundaberg, Queensland.  Malcolm Smith has used the device for determining texture 

differences between citrus fruit rootstocks.   

 

‘I measured 15 individual fruit from each of these 47 trees and they were measured 

in a random order.  The 15 fruit sample was collected from each tree at random from 

all around the tree at about chest height; this was done without knowledge of the 

rootstock treatment (a code number is used throughout the sample harvesting and 

assessment process to prevent any bias, and it is only after the assessment is 

complete that the code number is matched to the rootstock treatment).’ (M Smith, 

pers.  Comms) [77]. 

 

Malcolm Smith reports the results: ‘The machine was able to detect highly 

significant differences in skin texture between rootstocks.  The differences 

correspond with comments in my notes regarding the visual texture of various 

samples, and I am in no doubt that the machine is detecting real differences in skin 

texture.  What is particularly exciting about the results is that the LSD (0.05) comes 

out at around 283, which is far lower than I would have expected.  This gives me 

confidence that the machine (and our sampling procedures) now enables us to detect 

quite small differences between rootstocks, even when the variability WITHIN the 

samples is quite high.  In short, if the rootstock is affecting skin texture then we will 

detect it.’ 
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6.4.1 KPI results 

1. Accuracy.  KPI exceeded.  Small scale experiments show high correlation 

(r2>0.9).  Large scale experiments are infeasible due to cost constraints.   

 

2. Repeatability.  KPI exceeded.  Results from 20 repeats of 12 fruit show 3-

sigma values within 10% mid-scale value. 

 

3. Cost.  KPI Exceeded.  At under $AU200 per unit, this system provides a 

valuable tool for researchers utilizing surface texture as a measurement 

parameter. 

 

6.5 Conclusions 

This project has demonstrated the usefulness of machine vision techniques to areas 

where standard measurement systems are too expensive or infeasible due to time 

constraints. 

 

A full prototype system has been developed and deployed to a research location, 

where it is in constant use.   

 

Results show a high degree of repeatability and accuracy, providing a cost effective 

tool for measurement of citrus skin texture. 

 

This technique may be applied in any situation where the texture comprises of 

components with visible difference at the terminator of directed light.  Further 

experimentation in this field will be directed to correlation of single and multiple 

images to final accurate results with a view to decreasing the measurement time 

requirements. 

 

Further experimentation is also required to determine k, the scaling figure between 

Rvisual and the physical measurement Ra. 
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6.4.2 Model summary 

Below is a summary of this case study in the terms identified in Chapter 4. 

 

Image Acquisition.   

The image acquisition was performed with a Logitech QuickCam Pro 4000 

webcam.  A dedicated PC application was developed and deployed for this project. 

Pre Process.   

Detect citrus edge and reduce to separate colour channels.   

Analysis 

 Intensity averaging over multiple rows and frames to produce Rvisual. 

Post Process 

 Summation and recording of objective texture measurement for each fruit. 

Offline Processing 

none 
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7 Animal identification application 

 

7.1 Introduction 

In an open agricultural environment such as the Australian rangelands, resource 

management is a key issue.  There is an increasing demand to ensure that the 

available feed and water are utilised in the most efficient and effective manner.  Feral 

animals and other wildlife exploit resources provided for livestock, which means that 

more must be supplied to compensate, or the livestock will get less access to these 

resources.   

 

The Great Artesian Basin Strategic Management Plan is a joint Australian 

Federal/State government and landowner initiative, which aims to replace open 

flowing bore drains with pipe and trough systems [8].  The widespread 

implementation of this scheme provides an opportunity to control invasive species at 

an ecosystem level.  Figure 56 illustrates the extent of the land covering the Great 

Artesian Basin [Source: Queensland Environmental Protection Agency]. 
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Figure 56 Map illustrating the extent of the Great Artesian Basin 

 

A machine vision solution was proposed by Neal Finch, School of Animal Studies, 

from the University of Queensland.  The project proposed was to erect a fence 

around the new pipe and trough water points, and use automated gates in the fence to 

control access by animals to that water.  The only solution that could be guaranteed 

to work with both domestic and wild animals was a computer controlled system that 

could detect not only the presence of an animal, but also the species, and also control 

the automated gates.   

 

There is a national trend towards tagging all production animals with Radio 

Frequency Identification (RFID) devices (Figure 57).  These devices allow the 

opportunity for greater control over the animal and for information to be recorded for 
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that animal.  This creates the possibility that a control system could simply detect the 

presence of an animal wearing a tag and allow or deny access to that animal 

accordingly.  There are two problems with this approach.  The first problem is that 

RFID readers are not 100% reliable.  There will be occasions where the tag is missed 

or misread due to the relative positions of the tag and the antenna.  In this scenario, 

the animal would eventually get to water if it continued to try until the tag was read 

correctly. 

 

Figure 57 Standard RFID cattle ear tag device (25mm diameter) in comparison to a 20c piece 

 

The more serious issue is in loss rates of RFID tags.  The most common tags are 

incorporated into a device that is attached to the animal’s ear.  These devices are 

estimated to have a loss rate (in cattle) of between 1% per year by a technical 

consultant [78] to 10% per year by a Cattle Breeder [79].  For animals with no tag, 

there would be no access to water.  For valuable animals this is unacceptable, and 

indeed for any system there should be a bias toward errors allowing access rather 

than denying access. 

 

An important feature of a machine vision solution is that there is no physical contact, 

reducing the need for system maintenance and also stress on the animals being 
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monitored.  Computing capabilities have developed to the point that systems 

processing real-time video data are now feasible.   

 

Previous work using machine vision has been done in detecting lameness and 

behaviour prediction in livestock [80].  This research used statistical modelling and 

complex predictive algorithms to calculate the most likely position and orientation of 

the object in the next time step.  This method used prior knowledge of the object and 

features of the object in the determination.   

 

The main species to be determined in this animal identification project were: sheep, 

goat, cattle, horse, pig, emu, and kangaroo.  The algorithms, however, are generic 

and extensible to any objects passing a set camera position in random time.  This is a 

completely different proposition to a conveyor belt producing objects at a nominally 

set time, within minimum and maximum limits. 

 

The research has allowed the development of a prototype low cost system 

incorporating image capture hardware and processing software for use in agricultural 

applications in remote locations.  The intelligent machine vision systems developed 

allow control of a gate remotely after identifying the species passing in front of the 

camera.  Software developed includes algorithms for shape and movement 

classification which can be compared against a database of animal classes for animal 

categorisation and subsequent real time control of access.   

 

7.2 Key performance indicators 

The end result of this project was a complete unit to control access to a watering 

point using a camera (with appropriate hardware and software to identify animals or 

read a RFID ear tag) and an automated gate at the end of the laneway.  This unit will 

have the capability to record RFID ear tags of appropriately tagged animals that enter 

the watering point and use that capability integrated into the units’ software to 

control the gate.  The system also has a ‘fail safe’ default control that opens the gate 

(access to water) if the unit fails. 
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The following requirements have been identified as necessary for the successful 

completion of this project: 

 

Accuracy 

The animal recognition software should perform in excess of 90% accuracy to 

correctly identify an animal from the species list under perfect conditions.  Perfect 

conditions are defined as no dust or rain, and a single animal travelling at under 

2.2m/sec.   

 

Under normal conditions the machine vision software will exceed 85% accuracy to 

correctly identify an animal.  Normal conditions are defined as any field conditions 

excluding conditions where visibility is less than 10 metres (eg.  dust storms and 

heavy rain).   

 

Robustness 

The ability of a complete unit to run for a continuous period of 12 months under field 

conditions with a less than 5% hardware failure rate.  Any failure should cause the 

system to revert to ‘safe’ mode, allowing complete access to water for all animals. 

 

Cost 

The unit price of the system should be under $AU5,000.  This will allow access to 

the technology to all sized production landholdings.  This includes the automated 

gate and laneway/race, power supplies and camera, but not the fencing around the 

water point, or the water point infrastructure. 

 

Power Consumption 

The unit should be capable of stand alone processing for indefinite periods.  This will 

be accomplished with matched batteries and solar panels.   
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7.3 Materials and methods 

7.3.1 Hardware 

The initial prototype of this system was constructed at the University of Queensland 

Gatton campus (Figure 58).  A series of yards was constructed connected by a short 

laneway.  One area contained a water trough; the other area was for feeding.  A blue 

tarpaulin was used as a backdrop for the machine vision component.  The automated 

gate was an off-the-shelf 12V DC gate motor. 

 

 

Figure 58 Prototype of the animal identification system.   

 

After several trials and changes of configuration, the system now has a set format.  A 

standard section of portable laneway has been designed in conjunction with RPM 

Rural Products.  This section of multi species fencing has an identification area built 

in (Figure 59).  The raised area in the middle of the blue wall of the laneway is the 

RFID tag reader antenna.  This system has been patented under Australian patent 

2004218711 “Control of Animals using Electronic Recognition Technology”. 
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Figure 59 Portable laneway incorporated into the fence surrounding a water point.   

 

The PC platform was trialled initially to support the animal identification system.  

However there are limitations on the use of PC technology.  A laptop consumes up to 

3A in processing mode, slightly less with the computer screen powered down.  This 

equates to 72Ampere-hours per day, a substantial amount of power for a remote 

system.   

 

Several units were assembled for testing the proof of concept (Figure 60).  These 

units consisted of a HP nx6120 notebook with 12V power adapter, two deep cycle 

120Ah truck batteries connected in parallel, and a 60W solar panel (Figure 61). 

  

Figure 60 Laptop platform showing HP nx6120 notebook plus 2 deep cycle batteries and 

compressor to operate the gate. 
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Figure 61 60W solar panels used to supply the laptop and air compressor 

 

The units were placed in custom built insulated boxes, (Figure 62).  This helped 

reduce heat build up from solar radiation and provided protection from the elements.  

Internal heat build up was dissipated by way of a rotary vane, powered if the internal 

temperature reached 50° C. 

 

 

Figure 62 Insulated boxes that were used to house the prototype animal identification system 

 

A 50mm hole was cut in the side, and a camera mount installed for the web cameras 

to be fitted.  Another hole directly beneath was fitted with an IR panel for night 
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lighting of the laneway.  The IR panel contained a light sensitive switch to ensure 

operation only during periods of darkness.   

 

Using this methodology, software could be written and trialled with relative ease, 

with the resources of a full PC available.  Motion detection algorithms were written 

to record images of the animals proceeding along the laneway past the camera.  

These images were then used to generate a library for algorithm development. 

 

The project then progressed to using the ROC platform for video capture and 

recording.  Mounted in tough Pelican cases (model 1040), the system developed at 

NCEA was customised specifically for this project (Figure 63).  The units are 

190mm x 130mm x 54mm and attached to a swivel mount for fast and easy 

deployment.   

 

 

Figure 63 A ROC prototype enclosed in a black Pelican case  

 

7.3.2 RFID hardware 

There are only two substantially different types of RFID hardware for reading 

National Livestock Identification Scheme (NLIS) tags on the Australian market.  

Fixed units for reading RFID tags are usually permanently mounted on raceways or 

crushes and log the identity of the animal each time it passes the reader.  Portable 

units are handheld and can be used to scan animals with RFID tags in the field.   

 



109 

 

This project acquired an EDiT-ID race reader for development and testing purposes.  

The data transmitted by most readers is in standard RS232 ASCII format text, 

consisting only of the unique identifier read from the tag and carriage return.  The 

antenna was mounted on the back side of the laneway and painted blue (Figure 59).  

As animals pass the antenna, the tags are read and the tag ID recorded. 

 

7.3.3 Enclosure design.   

Initial laneway structure was not considered important – merely a fenced off lane 

wide enough for all animals to pass through.  However, there are many facets to this 

part of the project that have required research.  One major finding is that the laneway 

must be orientated such that animals walking down the laneway can directly see the 

water directly.  Animals trained to respect fences (generally production animals such 

as cattle and sheep) will not willingly enter a laneway unless they have been trained 

to it, or they have direct line of sight to the water. 

 

There are two general uses for this system; exclusion and drafting (Figure 64 and 

Figure 65).  In most situations, the main use of this technology will be in excluding 

unwanted species from accessing the watering point.  However, there may be some 

situations where a species should be drafted into a holding pen.  An example of this 

is collecting/trapping feral goats for harvesting. 

  

Figure 64 .  Basic design of an enclosure for exclusion of animals from water 
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Figure 65 Basic design of an enclosure for either allowing animal access to water and then 

release or allowing animal access to water and trapping  

 

7.3.4 Laneway design.   

The layout of the laneway also plays an important role in the success of the complete 

system.  If the laneway is too wide, animals (especially sheep and goats) pass 

through with overlapping parts of their bodies, obscuring the outlines.  A novel set of 

animal separators was designed and implemented by Neal Finch, School of Animal 

Studies, University of Queensland (Figure 66). 
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Figure 66 Laneway designed for animals to traverse in single file with ‘fingers’ at each end 

 

The ‘fingers’ on the entry and exit to the laneway are mounted on springs and are 

entirely a visual deterrent to animals entering side by side.  This system was initially 

successful, but after a short period of acclimatisation, some animals, especially goats, 

ignored the fingers and pushed their way through in multiple groups. 

 

A V-Race was provided by Rural Pacific Management Ltd (RPM) who were 

commercial partners in the project.  The base of the V-race is 400mm wide, with the 

back plane angled to 800mm at the top (see Figure 59).  This configuration only 

allows sheep and goats to physically pass in single file, yet also allows Brahman 

bulls weighing in excess of one tonne to traverse the laneway.  Tests indicate over 

90% of animals pass single file through this system. 

 

 

7.3.5 Algorithms 

As per the generic model discussed in Chapter 4, there are several discrete steps in 

the process. 

 

7.3.5.1 Image input. 

A calibration technique has been used to ensure that the camera field of view was the 

same in all experiments.  The camera was positioned 3m from the centre of the lane, 
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at a height of 1m.  A target cross painted on a metal plate is placed at 1m high in the 

centre of the laneway and the camera is focused upon that cross.  This setup routine 

ensured size invariance to initial stages of the project.  It is anticipated that this 

routine may be discarded in later phases.  The image is captured in RGB colour 

space. 

 

7.3.5.2 Pre-process 

Depending on the background of the image, there are many methods of identifying 

‘interesting’ objects.  These methods are discussed below. 

 

Colour ratios. 

The initial method was to use a blue background by covering the inside of the 

laneway, furthest  from the camera with a sheet of marine ply painted blue (Figure 

67). 

 

 

Figure 67 Example image illustrating blue background, with a goat in the laneway 

  

In this manner, the background can be separated from the foreground by a simple 

threshold on the blue chromaticity information present in the image.   

 

BGR

B
bchroma ++

=
        (7.1)
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A threshold was applied to convert the resultant image into a binary image.  In most 

algorithms, binary target/non target details were required for analysis (Figure 68). 

 

 

 

Figure 68 The resultant binary image of a goat in the laneway. 

 

 

Note that this process also removes shadows present in the image, as they have the 

same surface reflectance as the background, simply darker. 

 

This method is highly accurate and effective in daylight, but it is not at night.  When 

lit with IR lights, a standard image sensor (with IR block filter removed) will respond 

most vigorously in the red colour channel and to a lesser extent the other two 

channels.  Any automatic white balance algorithms will then initiate colour balancing 

on the image.  This means that every pixel in the image will have a similar colour 

ratio. 

 

Under IR lights, however, some objects are more reflective than others.  For 

example, TiO2, (titanium dioxide), is particularly reflective.  This compound is added 

to most light coloured paint as a matter of course and thus the blue background 

(painted) is highly reflective.  This provides a discrimination method for night 

viewing as the animal reflectance will generally be less than the painted background.  

Again applying a simple threshold will provide a distinct target function. 
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Figure 69 Example frame, with a blue background to the laneway, showing a feral pig in the 

laneway at night 

 

 

Figure 70 Example frame resultant image of a feral pig in the laneway at night 

 

 

Note that even though there is noise in the original image (Figure 69), caused by 

areas of inconsistent IR lighting, there is enough information to determine the shape 

of the animal, and thus perform the template match for species identification (Figure 

70).   

 

Motion detection. 

Another method of detecting objects is motion detection.  The method used most 

commonly is reference image subtraction.  This is where a standard ‘reference’ 

image is subtracted from every frame.  The resulting image is substantially non-zero 

only where there is a major difference. 
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Figure 71 Initial reference image of the blue background 

 

 

Figure 72 Current image of a goat in the laneway 

 

 

Figure 73 Resultant image of a goat in the laneway after subtraction of the reference image 

 

While this method works just as well at night or day, there are some substantial 

problems.  Shadows thrown by objects are detected as part of the object (as seen in 
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Figure 73).  More drastically, any changes in ambient lighting from the reference 

image will add an offset to all pixels.  This can however be mostly removed by 

judicious use of mean shifting.  Another problem is the selection and updating of the 

reference image.  If for example an image with an object in it was taken as the 

reference image, every image after the object moved would show the negative of the 

object as a target area. 

 

Another method is successive subtraction, where each image is subtracted from the 

next.  This removes noise generated by large image changes, however only shows the 

moving edges. 

 

Figure 74 Motion image 1 of a goat moving down the laneway with a blue background 

 

 

Figure 75 Motion image 2 of a goat moving down the laneway with a blue background 
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Figure 76 Resultant binary image from subtracting image 1 from image 2 and threshholding 

 

An advantage of this method is that it offers ‘front’ and ‘back’ edge detection for 

free, however flat areas along the top of the object are not detected, as the horizontal 

motion does not have contrast changes.  Also, if the animal stops moving, it 

effectively disappears from this algorithm.  Another problem is that moving shadows 

are detected as edges. 

 

Multiple variable temporal reference images 

A method devised during the course of this project promises excellent results.  The 

basis of this technique is a set of reference images with differing levels of temporal 

adjustment.  Both temporal mean filtering [81] and temporal median filtering [82] 

can be used.  The application of mean filtering is described below. 

 

The general algorithm for mean filtering is described by the function  

 

  (7.2) 

 

 Where: 

  is the intensity of the accumulated mean frame pixel; 

 is the intensity of the current frame pixel; and 

T is the required level of filtering.   

The process is applied sequentially to each pixel of the image. 
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For example, Ti=2 provides an average of the last 2 frames.  Ti=100 provides a low 

pass filter effect on the image.  This means that noise in a single frame will not affect 

the image at all, and an object that moves into the frame and stops will slowly 

become visible over multiple frames.  When the object leaves, it will slowly fade 

from the image. 

 

In this way it is possible to build a set of reference images with high pass and low 

pass attributes.  Each incoming frame can then be subtracted from each of the set of 

references, giving a set of temporally significant images.   

 

Consider a set of images with T = [10, 100].  It is obvious that we have both a low 

pass filter, and a relatively high pass filter.  The results can be combined using 

logical operations, for example the following equation. 

 

ResultImage=   (7.3) 

 

This provides a combination of both filters to use as a reference image.  The input 

image is then subtracted from this reference, and a threshold applied to produce the 

binary image for further processing. 

 

One problem with this method is ‘artifacting’ – the production of areas above the 

threshold produced by bias towards the object as it moves across the image and is 

incorporated into the reference image set.  The solution to this is to dynamically 

increase the time constant for target pixels.  In this way, any pixels identified as 

‘targets’ will add much less weight to the reference image than non-target pixels.  If, 

however, the target pixel is a new fixture on the image stream, it will still eventually 

be combined into the reference image. 

 

Prior knowledge 

Given the specifics required for this project there are a number of ‘known’ items.  

These include: 
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It is known that target objects will be travelling across the frame.   

The background may be either a single flat colour or a natural scene.   

The field of view is known and will be lit by Near Infrared Radiation (NIR) lights at 

night.  This removes most of the variation from the image processing task. 

 

The temporal distance between image frames is known.  The maximum speed 

animals will travel through the laneway was determined as 2m/sec.  Given these two 

items, this allows the application of tracking techniques to follow the animal in 

successive frames, rather than detection and identification of an animal in every 

frame.   

 

Temporal continuity of the video stream ensures that an animal cannot appear in 

mid-frame; it will enter the image from one side, and must also leave one side of the 

image.  Consequently, any object that appears or disappears from the centre of the 

image must be noise. 

 

7.3.5.3 Image processing 

At this point in the process stage, the image is segmented into notional target and 

non-target areas.   

 

Object Shape. 

To determine the objects shape, the object needs to be found, and the edge traced.  

While edge detection algorithms could be used to detect some edges, they offer no 

directional information and also there is no guarantee of a closed shape (i.e.  

finishing where it starts).  Directional information can be gained by using Sobel 

filters [83], however this requires in 12 pixel accesses per step.  Testing pixels 

directly for target/non target values as described in the algorithm below results in an 

average of just over 2 pixel accesses per step. 

 

This project has implemented an edge tracing routine that is based on standard chain 

directions, but accumulates into an s-psi graph.  This ensures a closed shape is found.  

The s-psi chain is then normalised for length and matched against a library of 

templates for classification. 
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The following pseudo code details the algorithm. 

 

For each Image received. 

 Determine threshold for target/non-target discrimination 

For each previously found object, determine current position and 

validate existence and correct identification. 

 For each point on a grid 

  Check pixel = target and not in previously found object list 

Step <up> until non target pixel found.  This is now a point on 

the edge. 

Call GetOutline to trace the entire shape of the object into s-psi 

chain 

  Normalise s-psi into unit size chain (256 links) 

Check list of objects found last frame for match 

Determine direction of travel 

Apply a-priori information as probability modifiers 

Correlate with classes 

Decide on class. 

Getoutline: 

While not at start point 

Change direction leftwards and check pixel until non target reached 

Change direction rightwards and check pixel until target reached 

 Step this direction and increment distance travelled 

 Record distance and direction in s-psi chain 

 

Object Matching. 

Once the object has been traced, the result is a full s-psi chain.  Some of the 

techniques derived in Chapter 3 can be applied to process this information.  These 

techniques are discussed below: 

 

Remove the legs 

 The trace of the legs provides limited information about the shape of the animal, and 

will serve only to corrupt the rest of the s-psi chain in a time-variant application.  The 
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top, front and back edges of the animal will generally change only marginally 

between frames, while the legs of the animal are constantly moving.  The leg 

information is removed by tracing left and right from the start point of the s-psi chain 

until the outline drops to 1/5th  maximal height.  After this point, the object is no 

longer a closed chain, and directionality will affect subsequent processing. 

 

Determine the direction that the animal is travelling 

The direction of travel can be easily determined by where the object enters the 

screen.  Any animal will travel nose first in normal movement, so the leading edge 

may be assumed to be the nose of the animal.  The s-psi chain is then reconfigured 

starting at the leading edge and finishing at the tail. 

 

Determine size and orientation 

Use the bounding box algorithms to determine the size and orientation of the s-psi 

chain.  All animals will fit within a square to rectangular orientation, with 

height/width ratio from 1:1 to 1:2. 

 

Search for Features 

Each species of animal has general features that may be used to bias the probability 

matrix toward or away from determination.  For example, most goats have tails that 

will generally be extended up and back from the animals rump, but sheep tails will 

always hang down if they are intact. As per Chapter 3, a tail is identified directly 

from the s-psi graph by a simple inexpensive search for an area of the chain with a 

local maxima around 2π/4 between areas of constant psi. 

  

Apply heuristic rules 

Cattle and horses are always larger than 1 m.  Goats and sheep are always smaller 

than 1.5m.  Pigs and kangaroos generally drink at night, other animals usually by 

day.  These decision support rules are applied as probability modifiers to the final 

classification process. 
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Correlate the s-ψ chain to the template library 

A library of shape templates has been created from sample video clips of each of the 

animal species.  The s-ψ chain is normalised and smoothed prior to correlation.  This 

provides size invariance to the algorithm so that immature and smaller animals are 

still correctly identified.  The s-ψ chain is then matched to each item in the library.   

The correlation is done repeatedly with phase shifts of the current chain of between -

10 and +10 steps. The best match values for each library species is added to the 

evidence based matching routine. 

 

Match 

If the accumulated probability for any species falls above a set threshold, treat the 

object as identified.  Continue building evidence each frame by tracking the object to 

ensure that the correct decision has been made. 

 

7.3.6 Template library 

Below are the templates of the animals identified in this project.  The images on the 

left are the outlines in the space domain, the matching s-ψ graph is on the right.  

Figure 77 displays an example s-ψ graph, with the matching tail, head and back 

sections circled. 

 

Figure 77 Example template s-ψ graph 
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7.3.6.1 Goats 

 
 

 

 

 

 

7.3.6.2 Sheep 
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7.3.6.3 Cattle  
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7.3.6.4 Pigs 

 

 

 

 

 

 

7.3.6.5 Horses 
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7.3.6.6 Emus 

 

 

 

 

7.3.6.7 Kangaroos 

 

 

 

Note that larger animals (cattle and horses) may be identified from the outline of the 

front of their body, as they are generally too long to fit in a single image frame. 

 

7.4 Results 

During the course of this project, over 5000 animal events were recorded.  Over 1400 

animal events were ground-truthed manually.  This was done by a human identifying 

the species of each animal in the video clip. The manual classification details were 

stored in a file for comparison with the automatic classification.  The results are 
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tabulated in tables 8, 9 and 10.  As shown in Table 10, all animals identified except 

sheep are correctly classified in over 90% of instances. 

 

Animal events marked as ‘missed’ are the animals that were not identified by the 

system.  This occurred for a variety of reasons, including multiple animals and fast 

travelling animals.  In particular, the high level of missed classification for kangaroos 

is due to fast hopping animals being in the field of view for only one or two frames.   

 

Table 8 Confusion matrix 

Real \ Log Goat Sheep Pig Kangaroo Emu Cow Horse Missed Total 

Goat 540 10 3 9 1 0 0 21 584 

Sheep 29 169 12 0 0 0 0 3 213 

Pig 0 1 72 0 0 0 0 5 78 

Kangaroo 0 0 0 16 1 0 0 9 26 

Emu 0 0 0 1 69 2 0 12 84 

Cow 0 0 0 0 4 233 11 54 302 

Horse 0 0 0 0 0 0 0 0 0 

Total                 1287 

 

Table 9 Complete system accuracy 

Real \ Log Goat Sheep Pig Kangaroo Emu Cow Horse Missed 

Goat 92% 2% 1% 2% 0%     4% 

Sheep 14% 79% 6%         1% 

Pig   1% 92%         6% 

Kangaroo       62% 4%     35% 

Emu       1% 82% 2%   14% 

Cow         1% 77% 4% 18% 

 

Table 10 Cross-Classification accuracy 

Real \ Log Goat Sheep Pig Kangaroo Emu Cow Horse 

Goat 96% 2% 1% 2% 0%     

Sheep 14% 80% 6%         

Pig   1% 99%         
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Kangaroo       94% 6%     

Emu       1% 96% 3%   

Cow         2% 94% 4% 

 

A sample of full results indicating date, time and file is given in Appendix D.  The 

raw data generating the above tables is provided on the CD under the folder Case 

Study Results\Animal Species Identification. 

 

7.4.1 KPI results 

The following results against the KPI targets are detailed below: 

 

1.  Accuracy.  KPI not yet met.  While the results cross both ideal and normal 

environmental conditions, the accuracy for sheep recognition is below the required 

level.   

 

2.  Robustness.  KPI met.  Several systems have been run over a period of at least six 

months with no failure.  The only hardware failure encountered to date has been with 

solar panel regulators and blown fuses. 

 

3.  Cost.  KPI exceeded.  The unit price of the complete system has been evaluated at 

around $AU4000 by the commercial partner to the project.   

 

4.  Power Consumption.  KPI met.  The camera/computer system draws under 

100mA at 12V, requiring only a 10W solar panel and 12Ah battery to ensure 

continuous operation.   

 

7.5 Conclusions 

This project has proved the concept that a machine vision system can accurately 

identify animals to species level and has had a considerable number of hours testing.  

There are currently six complete system units in the field being tested.   
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The system hardware has progressed from full PC and associated support equipment 

to a stand-alone unit capable of indefinite run time on site.  The system is in final 

commercialisation negotiations and will be available to end users in 2007. 

 

Algorithms for detection, tracking and identification have been developed and 

implemented on both a PC platform and an embedded system (ROC) platform.   

 

The animal shape algorithms have proven to work effectively in a real world 

situation.  The main limiting factors to this technology are now environmental issues 

generic to remote sensing technology in natural environments.  Specifically, dust 

masking the shape of the animals, variable lighting conditions and animal behaviours 

(bunching, moving fast through the field of view) caused the majority of 

misclassifications. 

 

7.5.1 Model summary 

Below is a summary of this case study in the terms identified in Chapter 4. 

Image Acquisition 

The image acquisition was initially performed with a Logitech Quickcam Pro 

4000 webcam.  Phase 2 of this project moved to image capture by thROC. 

Pre Process 

Determine method and threshold for image segmentation.  The most effective 

algorithms were using blue background for discrimination.   

Analysis 

 Edge tracing, probability modifiers, classification by template matching.   

Post Process 

 Activate gate, record images and NLIS if available.   

 Summarise activations and record.  Transfer to remote site if applicable. 

Offline Processing 

 Testing only: Record video sequence for template library updates. 
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8 Generalising shape analysis 

8.1 Introduction 

Shape analysis has been demonstrated in the previous chapters on a per-project basis.  

There are, however, many common threads between all these projects that may be 

considered part of a generic methodology for shape analysis. 

 

When discussing shape analysis, we are usually interested in classifying an object by 

use of its shape.  This can be represented by geometry, points, lines and planes, or by 

higher order descriptors, such as Freeman’s chain, s-psi curves, scale space or Bezier 

curves. 

 

In many applications, there can be rotational, translational and scale factors applied 

to the target shape.  This means that we need to find invariant representations of the 

shape before we apply higher order analysis techniques, or suffer the penalty of 

searching for the object at every conceivable angle and position. 

 

So to analyse the shape, we need to Detect, Describe and Match (or measure).  These 

requirements are discussed separately, in detail, in the following sections. 

 

8.2 Shape detection 

As with any process, the first requirement is a place to start.  For machine vision 

applications, that must be contrast.  It is necessary to be able to differentiate 

‘something’ from ‘something else’.  The lowest level of this contrast will be colour.  

Regardless of the colour space (YUV, RGB, Greyscale, LAB etc), there must always 

be a means of differentiation in (at least one of) the wavelengths that the image 

sensor is detecting.  For example, a white goat against a blue background will be 

discernable regardless of the colour space, but a white goat against a white 

background will be almost indistinguishable unless the image sensor is capable of 

NIR or thermal IR wavelength detection.   
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Some feasible methods of direct object detection are: 

• colour discrimination; 

• motion discrimination; 

• location, or 

• frequency domain analysis 

 

In all but the simplest applications, there will be some level of shape analysis.  An 

example exception is in simple colour sorting applications, where the grade is simply 

a percentage measurement of the pixels that meet target colour requirements.   

 

While it may be the shape that is important in an application, the method of 

measurement may or may not require outlines.  For example, the citrus application 

showed that the shape of the dimples is important, but could be measured without 

outlines per se. 

 

8.3 Shape descriptions 

There are several methods of describing a shape.  As discussed above, the description 

should be invariant to translation, rotation and scale to ensure that the matching 

process may be done efficiently. 

 

Using the outline is the most common, and this may be accomplished using 

techniques such as s-psi chain and Freeman’s chain.  B-Spline chains and Bezier 

curves also have uses in reducing the data to describe the edge. 

 

Other methods use statistical properties to approximate the shape.  Descriptors such 

as area, perimeter, compactness and orientation may be combined to provide a 

method of differentiating shapes. 

 

Euler number, profiles and moments are other descriptors that can be used 

effectively.   
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Methods involving parameter space are common, such as Curvature Scale Space, 

described by Mokhtarian [84, 85]. 

 

8.4 Shape matching or measurement 

Procrustes Analysis is a technique for minimising the sum of the Euclidean distances 

of one shape from another.  This is done by centring the shape (removing the 

translation component), and rotating and scaling each shape to find the minimum 

difference in circles enclosing each shape.   

 

Template matching is commonly used for edge shape descriptors such as s-ψ.  The s-

ψ  technique has a bonus in this area as it is already translation invariant and can be 

made rotation invariant by using ds,dψ chains as described in chapter 3.  Scale 

invariance can be added by normalising the templates and the matching chain to a set 

number of points.  This reduces 2D shape matching to a 1D minimisation function. 

 

Statistical techniques may be used for simple geometrical descriptors such as area 

and circularity.  In this circumstance, the simple Sum of Squares is adequate to 

provide a distance function given several numerical descriptors, providing they can 

be scaled to similar units. 

 

8.4.1 Higher dimensionality 

There is no reason shape analysis has to be complete in two dimensions.  If the goal 

of a shape analysis technique is classification, we can use time as another dimension.  

Consider a video stream with an object moving across the frame at a constant (or 

non-constant) rate.  Evidence gathering techniques can be used to build a probability 

tree of the different object possibilities.  Updated every frame, it is possible to have a 

higher confidence level in the classification than from a single snapshot.  Both speed 

and motion type (constant, jerky, sinusoidal) can be used as data. 

 

Even the third normal space dimension, depth of image, can be used if either stereo 

vision is used (two cameras/multiple cameras), or side-to side movement is built into 

the system.   
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Even in 2D images, there are multiple dimensions available.  Consider a standard 

colour camera with an RGB space image output.  Using standard image processing 

techniques it is possible to: 

• convert to grey scale and use contrast differences to detect edges; 

• use a single colour channel; 

• use the difference between channels, or a mathematical combination thereof 

(eg 1.5R-2.2B+0.7G). 

 

Unfortunately, combining colour channels can result in too much information, as 

there are infinite combinations.  Add in multi spectral data and it gets more 

complicated.  There are standard cameras that provide infra-red sensitivity.  Hyper 

spectral data is also provided by satellite image capture devices.  These devices 

capture many wavelengths of light, of which the human visible range is only a small 

part.  Tuneable filters could also be added to a standard camera to allow only certain 

bands of light.   

 

All of these sources of data need to be considered for a complete system. 

 

8.5 Toolkit 

This section aims at providing a starting point for an investigation into a new 

application.  As for many applications, the overriding concern should be to keep the 

system as simple as possible to operate.   

 

8.5.1 Image capture 

The image sensor used should meet minimum environmental standards depending on 

the application.  Most common webcams can withstand normal conditions, but will 

need housing for external applications.   

 

The image sensor should have approximately double the resolution required to 

provide minimum accuracy.  For example, if an object is to be measured to 1mm 

accuracy, ensure that there are 2pixels per mm in the design. 

 



134 

 

Ensure that the image is stored in a fashion conducive to further processing.  The 

simplest and most logical method is a frame-buffer area in memory, with each 

horizontal pixel adjacent in memory, in per pixel blocks.  For example, RGB should 

be stored as RGBRGBRGBRGB.  Similarly, YUV format should be stored as 

YUVYUVYUV etc.  This reduces the amount of mathematical operations required 

for most processing algorithms as the stride between horizontal or vertical pixels is 

known. 

 

8.5.2 Pre-processing 

One of the most important aspects of the system is to describe the target definition 

correctly and generic enough to cover situations that will occur in practice. 

 

A colour space conversion application is included in the software (copy the files 

from the CD Folder ‘Applications/MVColourSpaceExplorer’, run RegisterMe.bat 

then MVColourSpaceExplorer.exe) for use in colour space investigations.  A 

mathematical conversion from RGB (sRGB) space to any other linear colour space 

can be entered.  Each new colour parameter will be displayed in greyscale in a 

separate window.  Auto conversion to YUV, XYZ and HSV are provided.   

 

Figure 78 demonstrates the user interface for the colour space conversion utility.  

Figure 79 displays the output for a certain frame using various colour space 

mappings. 

 

 

 

Figure 78 Colour Space Explorer 
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Figure 79 Example colour Space processed frames.  From top: RGB, YUV,Cie XYZ, HSV 

 

For a real application, a target function can be defined with the aid of colour or 

motion segmentation, or a combination of both as used in the project examining 

identification of animal species. 

 

Possible tasks for the pre-processing step include: 

• Colour conversion/segmentation 

• Motion detection/segmentation 

• Noise reduction 
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8.5.3 Analysis 

At this point, the application requirements must be considered for the best method of 

proceeding.  The level of analysis complexity will depend on the objects to be 

detected, described and matched.  If the requirement is for a simple ‘is there an 

object in front of the camera?’, a correspondingly simple target pixel count may 

suffice.  More complex requirements will obviously entail more effort. 

 

The general analysis families are: 

• Feature Extraction 

o Line detection  

o Hough transforms 

o Parameter estimation 

o Shape 

• Geometry 

o Chain codes 

o Shape 

o Curvature Scale Space 

• Statistical 

o Histograms 

o Probabilities 

• Model based  

o Contours 

o prior knowledge 

• Artificial Neural Networks 

 

Use the templates provided (described in Chapter 4 and Appendix B) to implement 

any of the above pre-processing and analysis techniques into processing filters.  Each 

technique can be implemented as a linear algorithm, suitable for implementation in 

this format.  Some ANN techniques are more suitable for parallel processing, but 

linear techniques can be performed (although they will obviously be slower). 
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8.5.4 Post processing 

Use the application templates provided (described in Chapter 4 and Appendix B) to 

implement a complete machine vision solution.  The post processing step will usually 

be done at the application level, accumulating or using information from the filters.  

The application has the appropriate resources to utilise the file system and hardware 

input/output techniques. 

 

8.6 Conclusions 

This chapter has provided a generic model framework for real world machine vision 

applications.  The tools required to construct a complete machine vision software 

solution have been provided and described.   

 

An overview of shape analysis has shown that most machine vision applications will 

have some shape functionality required at one or more levels.  The basic 

requirements of shape detection, description and matching or measurement can be 

applied to any object detection routine.  An examination of all the available input 

data should be undertaken before commencing system design. 
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Chapter 9 Conclusions 

9.1 Introduction 

This thesis has dealt with practical applications of machine vision.  New algorithms 

and methodologies have been introduced, particularly for s-psi theory and 

application. 

 

9.2 Contributions  

This thesis has formalised the S–psi operations in machine vision.  This will allow 

the use of S-psi processing in more mainstream applications.  S-psi has been 

overlooked recently as a viable method for shape analysis as there has been no 

research or advances in the field.   

 

Machine vision has been implemented into several new areas in agriculture.  As 

technologies are introduced to the real fields, there is a growing awareness of the 

benefits produced by automation and increased information produced by machine 

vision applications.  The uptake of technology is accelerating as it becomes more 

accessible and, importantly, robust and reliable. 

 

This research has provided practical solutions to current problems.  The specific 

applications described in this document, namely macadamia, animal identification 

and citrus texture analysis, are real world problems solved by the judicious use of 

machine vision.  In each of these areas, a viable solution has been developed and is 

now in use. 

 

A toolkit for Do It Yourself machine vision applications has been provided.  Another 

model for generic applications has been introduced and described.  This approach is 

suggested for any machine vision system, using templates provided as an immediate 

starting point.  A model consisting of: Image capture, Pre-process, Analysis, Post-

process and Offline processing has been described and recommended as the skeleton 

of any implementation of vision processing. 
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This research has resulted in the creation of a cheap, low-powered embedded 

machine vision platform for use in remote or mobile applications.  The Rugged 

Outdoor Camera will be a useful tool for research students, DIY machine vision 

hobbyists, or for inclusion in real-world production systems.   

 

9.3 Publications, reports and articles from this thesis 

The following list of papers, presentations and reports have been generated from the 

work presented in this thesis. [74, 86-96] 

 

2003. 

Banhazi, T., Dunn, M., Cook, P., & Durack, M.  (2003).  Review of Precision 

Livestock Farming (PLF) technologies for the Australian pig industry (Project 

report).  Toowoomba: Australian Pork Ltd. 

Dunn, M., Billingsley, J., & Finch, N.  (2003).  Machine Vision Classification of 

Animals.  In Mechatronics and Machine Vision 2003:Future trends (pp.  157-163).  

Baldock, UK: Research Studies Press Ltd. 

Dunn, M., & Billingsley, J.  (2003).  Machine vision system for counting macadamia 

nuts.  Paper presented at the Australasian Conference on Robotics and Automation, 

Brisbane. 

 

2004. 

Dunn, M., & Billingsley, J.  (2004).  A Machine Vision System for Surface Texture 

Measurements of Citrus.  Paper presented at the Proceedings 11th IEEE conference 

on Mechatronics and Machine Vision in Practice, Macau. 

Dunn, M., Billingsley, J., Raine, S., & Piper, A.  (2004, November).  Using Machine 

Vision for Objective Evaluation of Ground Cover on Sporting Fields.  Paper 

presented at the Proceedings 11th IEEE conference on Mechatronics and Machine 

Vision in Practice, Macau. 
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2005. 

Bjursell, A., Dunn, M., Withers, K., Senior, G., Lundie-Jenkins, G., & Billingsley, J.  

(2005, December 2005).  Application of Machine Vision Technology to identification 

of Oestrus in the Julia Creek Dunnart (Sminthopsis douglasi).  Paper presented at the 

22nd Annual Meeting – Australian & New Zealand Society for Comparative 

Physiology & Biochemistry, Dunedin. 

Dunn, M.  (2005).  Implementation of Precision Agriculture Technologies in the 

Macadamia Industry (Project Report).  Toowoomba: Horticulture Australia Ltd. 

Dunn, M., Billingsley, J., & Bell, D.  (2005).  Implementation of Precision 

Agriculture Technologies in the Macadamia Industry.  Paper presented at the 

Proceedings 12th IEEE conference on Mechatronics and Machine Vision in Practice, 

Manila. 

 

2006. 

Billingsley, J., & Dunn, M.  (2006).  Strange vision - machine vision applications at 

the NCEA.  Sensor Review, 25(3), 202-208. 

Dunn, M., Billingsley, J., & Bell, D.  (2006).  Vision based macadamia yield 

assessment.  Sensor Review, 26(4), 312-317. 

N.  Finch, P.  J.  Murray, M.  Dunn, and J.  Billingsley, "Control of access to water 

using machine vision classification of animals," Australian Journal of Experimental 

Agriculture, vol.  46, pp.  837-839, 2006. 

Galea, M.  (2006, May 2006).  Vision tool keeps ferals away.  Australian Farm 

Journal, 16, 22-23. 
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9.4 Further research 

This research has shown the scope of s-psi algorithms with relation to shape analysis, 

and it is envisaged that the use of these algorithms extends beyond this field.  An 

example might be modelling object behaviour from identified position and 

configuration using s-psi techniques.   

 

Further work is anticipated into the Animal Species Identification Project.  This 

project will be extended into other countries to deal with native and introduced 

species relevant to that area.  A new method of automatic library accumulation with 

user supervision will be incorporated to make this system stand alone and 

customisable.  In this way, the system may be used for any sequence of items moving 

past the camera (or indeed, a moving camera), with the only limitation being on the 

size of the object. 

 

The macadamia implementation will be extended to use RFID technology for macro 

field placement.  There is also scope here to investigate automatic image registration 

of aerial or satellite photographs (from Google Earth™ for example) using a farm 

map gathered from Treecam readings. 

 

NCEA is currently investigating several new machine vision technology applications 

that will require exploration using the models, templates and techniques described in 

this document.   
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Appendix A: CD contents  

The structure of folders contained on the CD is below: 

• Case Study Results 

o Animal Species Identification 

o Macadamia Yield Map 

• DirectShow 

o Applications 

o Filters 

� Binaries 

� MVCannyEdge 

� MVHoughCircle 

� MVSobelEdge  

o Include 

o Lib 

o Templates 

� VB 

� VC6 

� VC7 

• Media Samples 

 

The contents of these folders are as follows: 

 

Case Study Results/Animal Species Identification 

This folder contains the raw and processed (ground-truthed) data from the animal 

species identification project.   

<name>_log.csv These files contain the algorithm logs for each frame of video in 

file <name.avi> 

 

Example entry 

136 191 150 Cow 
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The format of this message is: 

Frame # 

X position of the centre of the identified animal 

Y position of the centre of the identified animal 

Identified species 

 

<name>_fgt0.csv These files contain the manually ground truthed logs for each 

frame of video in file <name.avi> 

 

Example entry 

716 159 157 Goat 

 

The format of this message is: 

Frame # 

X position of the centre of the identified animal 

Y position of the centre of the identified animal 

Identified species 

 

Results.csv This file contains each animal event, summarised by start frame and end 

frame, for each matching pair of algorithm and ground truth log files. 

 

Case Study Results/Macadamia Yield Map 

This folder contains the raw and processed data from 4 trials of the macadamia yield 

map project. 

 

<name>.GPS These files contain the raw gps data as logged by the Treecam.  Note 

that this data is little endian. 

<name>_gps.txt These files contain the gps data converted to normal text mode.   

 

Example string: 

$GPGGA,215152.20,2650.18766,S,15255.00311,E,2,06,1.1,64.1,M,41.0,M,8.0,0007

*6B 
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<name>.NUT These files contain the raw nut data as logged by the Treecam.  Note 

that this data is little endian. 

<name>_nut.csv These files contain the gps data converted to human readable 

comma separated value files (in hexadecimal values). 

 

Example entry: 

f0 0e 1 7 84 27 0 0 0b 14 6 

 

The format of this message is: 

1 Header (always 0xf0) 

2 Nutcam serial #  

3  Message type (1=nut message) 

4 Time since trial start (in microseconds) 

9 nut found X position 

10 nut found Y position 

11 nut found size (radius) 

 

 

<name>.ODO These files contain the raw Odometry data as logged by the Treecam.  

Note that this data is little endian. 

<name>_odo.csv These files contain the odometry data converted to human readable 

text form. 

 

Example entry: 

3992 9 

 

The format of this message is: 

Time since trial started (in microseconds) 

Accumulated # radar clicks (1click=5mm) 

 

<name>.TRE These files contain the raw Treecam data.  Note that this data is little 

endian. 
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<name>_tre.csv These files contain the Treecam data converted to human readable 

text form. 

 

Example entry: 

21617 304 4 

 

The format of this message is: 

Time since trial started (in microseconds) 

Identified X position of tree trunk 

Identified tree trunk width 

 

<name>final.jpg This is a visual image of the post processed data illustrating nuts 

and trees identified in that trial. 

<name>final.tcw This is a drawing file of the end results as above by accessible by 

TurboCad reader applications. 

 

DirectShow/Applications 

This folder contains the Colour Space Explorer program for investigation of optimal 

colour space algorithms to use in new machine vision applications.  To use this 

program, copy the entire folder to a local disk and run the batch file registerme.bat.  

This should produce a message box similar to Figure 80. 

 

Figure 80 DirectShow filter registration success message 

 

The executable file MVColourSpaceExplorer.exe can now be used. 

 

This folder also contains the sample executable MachineVisionApplication.exe, a 

standard program to process video from a camera or file.  This application can also 

incorporate the sample filters described below. 
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DirectShow/Filters/Binaries 

This folder contains the compiled versions of the sample Machine Vision Template 

Filters.  Copy the complete folder to a local disk and run the batch file 

RegisterFiles.bat.  This will register the algorithms to run on the local PC.  These 

filters will now be available for selection under Options->Select Filter menu of the 

machine vision template applications. 

 

DirectShow/Filters/MVCannyEdge 

This filter contains source code for a sample implementation of Canny’s Edge 

Detection algorithms. 

 

DirectShow/Filters/MVHoughCircle 

This filter contains source code for a sample implementation of a Hough Transform 

for circle detection. 

 

DirectShow/Filters/MVSobelEdge 

This filter contains source code for a sample implementation of a Sobel Filters for 

edge detection. 

 

DirectShow/Include 

The contents of this folder should be copied to <DirectShow SDK Install 

Path>/Include before commencing programming work with the DirectShow 

templates provided on this CD.   

 

DirectShow/Lib 

The contents of this folder should be copied to <DirectShow SDK Install Path>/Lib 

before commencing programming work with the DirectShow templates provided on 

this CD.   
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DirectShow/Templates/VB 

This folder contains the file required to create DirectShow Machine Vision Template 

applications using Microsoft™ Visual Basic 6 or 7. 

 

DirectShow/Templates/VC6 

This folder contains the file required to create DirectShow Machine Vision Template 

applications and filters using Microsoft™ Visual Studio 6. 

 

DirectShow/Templates/VC7 

This folder contains the files required to create DirectShow Machine Vision 

Template applications and filters using Microsoft™ Visual Studio 7 (.net) 

 

Media Samples 

This folder contains samples of avi files from the various projects. 

 

 

 



154 

 

Appendix B: Programming in 

DirectShow 

There are two areas that will be briefly touched upon here:  the Application, and the 

Filter. 

The following sections require at least rudimentary knowledge of programming in C 

or C++ and, preferably, Microsoft™ Visual Studio.   

 

Setting up the build environment 

Download the DirectX Software Development Kit (SDK) from the Microsoft 

Download Area (www.microsoft.com/downloads).  For preference, use version 

October 2005 or earlier.  Versions after this require download and install of the 

Windows Platform SDK also.   

 

Install to a high level directory for ease of access (eg C:\DXSDK).  The help files 

have been removed from this SDK into the Windows Platform SDK, which is 

available for download from the same site. 

 

Copy the contents of the folder Lib from the CD to <install directory>/Lib. 

Copy the contents of the folder Include  from the CD to <install directory>/Include. 

 

Compile the baseclasses.  DirectShow is founded on a series of baseclasses, or 

helper classes.  These are the building blocks of almost all tasks most users will 

perform in DirectShow.  This is accomplished by opening the project file relevant to 

the version of Visual Studio from <install 

directory>\Samples\C++\DirectShow\BaseClasses.  Build in both Debug and 

Release Configuration. 

 

The search directories must be added to the search path.  Add <install 

directory>\Include to the list of include directories.  Add <install directory>\Lib to 
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the list of library include directories.  In Visual Studio .Net this functionality is found 

in Tools->Options->Projects->VC++ Build Directories.  In Visual studio 6 follow 

Tools->Options->Directories. 

Application programming 

Obviously, we can use GraphEdit to create a filter graph, save it and run it every time 

machine vision processing is required, but this is not user friendly, nor is it 

conducive to customisation.  An application can build a filter graph in exactly the 

same way as a user manually adding filters and connecting pins.   

 

There are a number of steps that can be followed to create an application.  

Alternatively, a generic template for an application has been included in the software 

on the CD attached to this document. 

 

New Applications 

 

Include the following header into an application: 

 

#include <direct.h> 

 

And the following libraries into the linker input section: 

 

<install directory>\Samples\C++\DirectShow\BaseClasses\debug\strmbasd.lib 

Quartz.lib  

 

In the Initialise routine add: 

 

IGraphBuilder *   m_pGrB; //General  interfaces for building 

graphs 

ICaptureGraphBuilder2 *  m_pBld; //Specific interfaces for video capture 

 

CoInitializeEx(NULL, COINIT_APARTMENTTHREADED); 

 //required to initialise the Common Object Model (COM) 
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HRESULT hr = CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC,  

                          IID_IGraphBuilder, (void **)&m_pGrB); 

 //create the IGraphBuilder interface 

 

HRESULT hr =CoCreateInstance(CLSID_CaptureGraphBuilder2, NULL, 

        CLSCTX_INPROC, IID_ICaptureGraphBuilder2,  

        (void **)&m_pBld); 

 //create the ICaptureGraphBuilder2 interface 

 

m_pBld->SetFiltergraph(m_pGrB); 

 //attach the interfaces  

 

 

At this point, we have an accessible graph builder in m_pGrB and a Capture Graph 

Builder,  m_pBld, which is a helper interface specifically for video and audio capture 

filter graphs. 

 

Now each filter can be added by: 

 

IBaseFilter * filter; 

filter= CoCreateInstance(CLSID_VideoRenderer, 0, CLSCTX_INPROC_SERVER, 

                IID_IBaseFilter, reinterpret_cast<void**>(&pF)); 

m_pGrB->AddFilter(filter,”short description”); 

 

 

Replacing <CLSID_VideoRenderer> with the GUID of the required filter.   

The filters can be joined together by rendering a single output pin: 

 

m_pBld->RenderStream(NULL, NULL, filter_pin, NULL, NULL); 

 

Alternatively, the filters can be joined by manually connecting each output pin to an 

input pin: 
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pl1 = GetPin(filter1,"Output"); 

 pl2 = GetPin(filter2,"Input"); 

 m_pGrB->Connect(pl1,pl2); 

 

This offers flexibility for creating filter graphs to meet specific purposes.   

 

Templates 

As an easy starting point, a template user application is included on the CD.  This 

provides immediate entry to machine vision programming.  The template provides 

access to both video capture device streams and reading from video media files.  In 

addition, standard or custom filters may be added to the processing chain. 

 

VC6: 

From the CD folder ‘Templates/VC6’, copy file ‘mvtemplateapp.axw’ to folder  

‘Program Files\Microsoft Visual Studio\Common\MSDev98\Template’.   

 

Under ‘File->New->Project’, there is now a new template ‘Machine Vision 

Application Appwizard’ which will create a working application.   

 

VC7: 

From the CD folder ‘Templates/VC7’, copy complete folder ‘MVtemplateAppVC7’ 

to folder ‘Program Files\Microsoft Visual Studio .NET 2003\Vc7\VCWizards’.   

Also copy single files ‘MVtemplateAppVC7.vsdir’ and ‘MVtemplateAppVC7.vsz’ 

to folder ‘Program Files\Microsoft Visual Studio .NET 2003\Vc7\vcprojects’. 

 

Under ‘File->New Project’, there is now a new template ‘MVtemplateApp’ which 

will create a working application.   

 

VB6/VB7: 

From the CD Folder ‘Templates/VB’, copy complete folder MVAppVB to any install 

path.  Copy file VBDXInterface.dll to ‘Windows/System32’ directory.  Open 
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MVAppVB.vbp for a working application in Visual Basic.  (Upgrade will commence 

automatically for VB7 and VB.NET) 

 

 

 

Figure 81 Example screen shot from the machine vision template application  

 

This simple application will allow playback of files (File->Open Media File), or 

viewing output from a video capture device (File->Select Capture Device).  In 

addition, a single process filter may be added to the filter graph (Options->Select 

Filter). 
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Figure 82 Select Filter dialog box. 

 

All standard installed filters and user created filters are displayed for selection. 

 

Using this tool, an Input-process-output filter graph may be created and run 

programmatically.  Customisation from this point is simply a matter of extensions to 

the code provided.   

 

MSDN documentation provides samples for tasks such as: 

• Adding a file writer filter to capture the processed images to file; 

• Adding a playback panel for fast forward, rewind, play and pause of media 

files, and 

• Splitting into multiple streams for different processing. 
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Filter programming 

 

For any but the simplest routines, customised filters will be required to process the 

video streams.  Again a standard template has been created for immediate use and is 

included on the CD attached.   

 

In a normal filter, code is required to implement the input pin, output pin and the 

handle the processing.  The template provided, however, deals with all the 

background processing requirements and allows the user to focus on the image 

processing algorithms. 

 

There are only two functions provided and required in file <projectname>.cpp: 

InitVars: This is called once at the creation of the filter.  Memory areas and global 

variables may be created and initialised. 

TransformFrame: This is where the processing is carried out.  This function is 

called once for each frame that passes through, regardless of whether the source is 

providing 1000 frames per second, or 1 frame per day.   

 

Pointers are provided to the memory location at the start of the input frame and the 

output frame.  To simply copy the frame, the user can loop through each pixel and 

copy the values from input to output. 

 

Once the source project has been compiled, there will be a filter called 

<projectname> available to add to filter graphs, either in Graphedit, or user 

applications. 

 

In addition to the template file, there are a number of example filters provided, to do 

such processing as colour channel separation, colour segmentation, edge detection 

and more.  The details are listed in Appendix A. 
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Templates 

As an easy starting point, a template user filter is included on the CD.   

 

VC6: 

From the CD folder ‘Templates/VC6’, copy file ‘mvtemplatefilter.axw’ to folder  

‘Program Files\Microsoft Visual Studio\Common\MSDev98\Template’.   

 

Under File->New Project, there is now an option for a new ‘MV Template Filter’ 

 

VC7: 

From the CD folder ‘Templates/VC7’, copy complete folder ‘MVtemplateFilterVC7’ 

to folder ‘Program Files\Microsoft Visual Studio .NET 2003\Vc7\VCWizards’.   

Also copy the individual files ‘MVtemplateFilterVC7.vsdir’ and 

‘MVtemplateFilterVC7.vsz’ to folder ‘Program Files\Microsoft Visual Studio .NET 

2003\Vc7\vcprojects’. 

 

Under File->New Project, there is now an option for a new ‘MV Template Filter’ 

 

VB6/VB7: 

Functionality is not available in these languages. 
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Figure 83 New Filter Wizard. 
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Appendix C: ROC Hardware Design 

This section contains the detailed schematic drawings, PCB layout diagrams and 

Parts list for the ROC. 

 

Schematic diagrams  
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Figure 84 Processor schematic diagram 

The processor block contains the central processing unit and immediate support.  The 

main connections are the Data and Address bus (D and A), the Peripheral Buses (PA, 

PB and PC) and the power supplies (VDDIOM, VDDIOP, and VDDCORE).  To 

generate the correct frequency for the clock, the Phase Lock Loop (PLL) components 

are required (PLL, XIN, XOUT).  The input frequency is 18.432 MHz and the PLL 

system can generate any frequency up to 200MHz using a combination of software 

multipliers and dividers. 
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Figure 85.  Power supply schematic 

 

This section generates the three different power levels required by the various part of 

the circuit.  With an acceptable input voltage range of between 6 and 16 Volts, output 

voltages of 5, 3.3 and 1.8 Volts are produced by low-dropout switching regulators.   

 

IC9 is a low voltage regulator that holds the CPU in reset until the input voltage has 

reached acceptable levels. 
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Figure 86 Serial interface schematic 

 

This section of the design contains the serial input and output interfaces.  There are 

two Universal Serial Asynchronous Receivers/Transmitters (USARTs) with RS232 

output levels to interconnect to PC’s and other serial devices. 

 

The Joint Test Action Group (JTAG) interface is a means of debugging and 

downloading code to the system. 

 

A USB device interface is provided to connect the unit to any USB host. 

 

The Secure Digital (SD) card interface adds mass storage capabilities. 



166 

 

3V3

Y0
1

Y1
2

Y2
3

Y3
4

Y4
5

Y5
6

Y6
7

Y7
8

PWDN
9

RST
10

SDA
11

FODD
12

SCL
13

HREF
14

AGND
15

VSYN
16

AGND
17

PCLK
18

VDDDO
19

VCC
20

AGND
21

VCC
22

UV0
23

UV1
24

UV2
25

UV3
26

UV4
27

UV5
28

UV6
29

UV7
30

GND
31

VTO
32

IC3

C3188A image sensor

PB9
PB10
PB11
PB12
PB13
PB14
PB15
PB16

PB17
PB18
PB19
PB20
PB21
PB22
PB23
PB24

5V

PB[0..29]

PB28
PB29
PB27
PB26

1
2

JP1

Video Out

PA25
PA26

PB8

Image Sensor

PB7

X1
1

X2
2

VBAT
3

GND
4

SDA
5

SCL
6

SQW OUT
7

VCC
8

IC4

DS1307 RTC

+
1
2 GND

3

IC5

BATTERY

1
2 3

2
.7
6
8
k
H
z

Y3
5V

1
2

JP2

EXT TWI

PB[0..29]

PA25

PA26

PA25

PA26
PA[0..31]

PA[0..31]

 

Figure 87 Image Sensor schematic 

 

The image sensor, based on OV7620 sensor chips from Omnivision, is connected to 

specific peripheral interface pins.  Control of the camera is provided by Two Wire 

Interface (TWI).  This module provides analogue video out signals as a preview of 

the video stream. 

 

Any Image sensor could be used for this device, including newer mega pixel 

embedded cameras similar to those emerging in mobile phones. 

 

A Real Time clock is added to the system with battery backup to provide up to 10 

years of real time functionality.  This unit also contains 50 bytes of data storage for 

serial numbers and other initialisation data. 
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Figure 88 Interface schematic 

 

This unit provides a number of general input and output interfaces, including keypad, 

LCD screen, and a 4 channel Analogue to Digital (ADC) converter. 

 

Facility to use 1.8, 3.3 and 5V voltages on external devices is provided. 

 

A 500kB Dataflash (AT45DB051B) is provided as code storage.  On reset, 

bootloader code is downloaded from the first 24 sectors of this device.  The 

bootloader initialises the hardware and downloads the operating program for various 

other areas in the Dataflash chip. 
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Figure 89 SDRAM schematic 

 

An external 16MB SDRAM memory is attached to the system.  This chip runs at 

100MHz, providing fast volatile data storage. 

Printed circuit board layout 

The circuit board has been designed as a 4 layer board.  Most components are surface 

mount, providing a low profile device.  Most signal and power tracks are run on the 
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top and bottom layers, with the central 2 layers as ground plane for signal shielding 

purposes. 

 

 

Figure 90 PCB Top Layer 

 

 

Figure 91 PCB Mid Layer 1 
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Figure 92 PCB Mid Layer 2 

 

 

Figure 93 PCB Bottom Layer 
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Parts list 

Table 11 ROC Parts List 

Type  Board Designator Footprint 

Qty on 

Board Value 

Capacitor C1/2/3/13/14/15/21 0805 7 100nF 

Capacitor C10 0805 1 4.7nF 

Capacitor C11 0805 1 470pF 

Capacitor C12 smt cap 1 10µF 

Capacitor C16 RB0.1/0.2 1 100µF 

Capacitor C17/18/19 RB0.1/0.2 3 10µF 

Capacitor C20 Rb0.2/0.5 1 1000µF 

Capacitor C23/24/25/26/27 0805 5 1µF 

Capacitor C4/5/6/7 0805 4 10pF 

Capacitor C8 0805 1 5.6nF 

Capacitor C9 0805 1 680pF 

Capacitor Network CN1/2/3/4/5/6/7/8/9 0612 9 100nf 

STPS1L30U shottky 

diode IC1 jedec do-214ac 1  

MAX232CWE IC10 SOIC16 1  

at45db051b IC12 SOIC8  6.2MM 1  

AT91RM9200 IC14 PFQP208 1  

MT48lC8M16A2TG-7E 

memory 128Mb IC2 TSOP86 1  

C3188A image sensor IC3 HDR2X16 1  

DS1307 RTC IC4 SOIC8  6.2MM 1  

CR2032SLF battery IC5 BATTERY 1  

LM1117-5v IC6 T03B 1  

lm1117-3v3 IC7 SOT223 1  

lm1117-1v8 IC8 SOT223 1  

mc34064 IC9 TO226 1  

MMC-SD card socket JP4 2MM9WAY 1  
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Resistor R1/2/3 0805 3 10R 

Resistor R12 0805 1 22K 

Resistor R14 0805 2 27R 

Resistor R4 0805 1 1K27 

Resistor R5 0805 1 1K96 

Resistor R6/7/11 0805 3 1K 

Resistor R9 0805 1 390R 

Resistor network RN1 0804 1 1K 

Crystal 32.768kHz Y1 HC49/4H_SMX 2 32.768khz 

Crystal 18.432MHz Y2 HC49/4H_SMX 1 18.432MHz 
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Appendix D: Animal Identification 

Project Data 

 

The ground truth system is a custom developed application for a user to manually 

identify animals in a video.   

 

 

Figure 94 Example animal species groundtruth tool 

 

 

As an animal passes across the screen, the user selects the animal species and follows 

the animal with the cursor.  The ground truth tool logs the frame number, cursor 

position, and species to a file.  This data can be replayed at any later time for 

verification purposes.   

 

This tool will also apply the animal identification algorithms to a file or directory of 

files, allowing batch processing after any changes to the algorithms.  This data is also 

logged to a comma separated file for comparison purposes. 

 

The results comparison is run on a frame by frame basis.  The ground truthed species 

is compared against the algorithm identified species, and logged to the results file.  

An example of each file is presented below. 
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Ground truth file 

Frame x y Species 

701 137 146 Goat 

702 104 157 Goat 

703 112 157 Goat 

704 115 157 Goat 

705 118 157 Goat 

706 124 157 Goat 

707 127 157 Goat 

708 129 157 Goat 

709 132 157 Goat 

710 136 157 Goat 

711 138 157 Goat 

712 140 157 Goat 

713 146 157 Goat 

714 149 157 Goat 

715 152 157 Goat 

716 159 157 Goat 

717 161 157 Goat 

718 163 157 Goat 

719 167 157 Goat 

720 170 157 Goat 

721 173 157 Goat 

722 176 157 Goat 

723 178 156 Goat 

724 180 156 Goat 

725 181 155 Goat 

726 182 154 Goat 

727 185 154 Goat 

728 189 154 Goat 

729 191 154 Goat 

730 195 154 Goat 

731 198 154 Goat 

732 202 154 Goat 

733 206 154 Goat 

734 207 154 Goat 

735 213 154 Goat 

736 214 153 Goat 

737 216 153 Goat 

738 216 153 Goat 

739 218 153 Goat 

740 220 153 Goat 

741 221 153 Goat 

742 223 153 Goat 

743 225 152 Goat 

744 230 152 Goat 

745 233 152 Goat 

746 235 152 Goat 

747 235 152 Goat 

748 237 152 Goat 

749 238 152 Goat 

750 238 152 Goat 

751 240 152 Goat 

752 241 152 Goat 

753 241 152 Goat 

754 242 152 Goat 

755 245 152 Goat 

756 246 152 Goat 

757 246 152 Goat 

758 248 152 Goat 

759 248 152 Goat 

760 248 152 Goat 

761 250 152 Goat 

762 250 152 Goat 
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763 250 152 Goat 

764 252 152 Goat 

765 257 152 Goat 

766 259 152 Goat 

767 262 152 Goat 

768 262 152 Goat 

769 263 152 Goat 

770 263 152 Goat 

771 263 152 Goat 

772 264 152 Goat 

773 264 152 Goat 

774 264 152 Goat 

775 264 152 Goat 

776 264 152 Goat 

777 264 152 Goat 

778 265 152 Goat 

779 267 152 Goat 

780 267 152 Goat 

781 268 152 Goat 

782 268 152 Goat 

783 270 152 Goat 

784 270 152 Goat 

785 270 152 Goat 

786 270 151 Goat 

787 271 151 Goat 

788 271 151 Goat 

789 272 151 Goat 

790 272 150 Goat 

791 273 150 Goat 

792 274 150 Goat 

793 275 150 Goat 

794 275 150 Goat 

795 275 150 Goat 

796 275 150 Goat 

797 275 150 Goat 

798 275 150 Goat 

799 275 149 Goat 

800 275 149 Goat 

801 275 149 Goat 

802 275 149 Goat 

803 279 149 Goat 

804 286 149 Goat 

805 287 149 Goat 

806 288 149 Goat 

807 296 150 Goat 

808 298 150 Goat 

809 300 150 Goat 

885 300 150 Goat 

886 55 164 Goat 

887 100 167 Goat 

888 125 168 Goat 

889 125 168 Goat 

890 129 168 Goat 

891 140 169 Goat 

892 170 171 Goat 

893 172 171 Goat 

894 182 169 Goat 

895 189 168 Goat 

896 198 164 Goat 

897 205 162 Goat 

898 211 162 Goat 

899 219 162 Goat 

900 230 162 Goat 

901 241 162 Goat 
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902 256 163 Goat 

903 265 163 Goat 

904 275 163 Goat 

905 285 163 Goat 

906 294 164 Goat 

907 303 164 Goat 

908 308 164 Goat 

909 314 164 Goat 

910 319 164 Goat 

915 164 173 Goat 

916 196 177 Goat 

917 201 177 Goat 

918 211 177 Goat 

919 216 177 Goat 

920 225 177 Goat 

921 232 177 Goat 

922 239 177 Goat 

923 243 177 Goat 

924 245 177 Goat 

925 250 177 Goat 

926 253 177 Goat 

927 255 177 Goat 

928 258 177 Goat 

929 262 177 Goat 

930 269 177 Goat 

931 277 177 Goat 

932 285 177 Goat 

933 295 177 Goat 

934 310 175 Goat 

935 316 175 Goat 

936 317 175 Goat 

937 317 175 Goat 

938 318 175 Goat 

939 318 175 Goat 

940 319 175 Goat 

941 320 175 Goat 

 

 

 

Algorithm Identified File 

 

Frame x y Species 

704 94 178 Goat 

705 101 177 Goat 

706 103 178 Goat 

707 106 177 Goat 

708 108 177 Goat 

709 111 177 Goat 

710 116 177 Goat 

711 119 177 Goat 

712 128 177 Goat 

713 124 177 Goat 

714 125 176 Goat 

715 127 177 Goat 

716 131 177 Goat 

717 136 177 Goat 

718 139 177 Goat 

719 140 177 Goat 

720 143 177 Goat 

721 149 176 Goat 

722 149 176 Goat 

723 152 177 Goat 

724 154 177 Goat 

725 157 177 Goat 
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726 165 177 Goat 

727 163 176 Goat 

728 166 176 Goat 

729 175 176 Goat 

730 171 176 Goat 

731 174 175 Goat 

732 182 176 Goat 

733 181 177 Goat 

734 185 177 Goat 

735 184 177 Goat 

736 184 176 Goat 

737 188 178 Goat 

738 193 177 Goat 

739 194 177 Goat 

740 195 178 Goat 

741 195 178 Goat 

742 198 177 Goat 

884 77 185 Goat 

885 88 186 Goat 

886 101 186 Goat 

887 109 188 Goat 

888 118 190 Goat 

889 126 190 Goat 

890 134 190 Goat 

891 145 188 Goat 

892 153 188 Goat 

893 163 188 Goat 

894 174 186 Goat 

895 183 186 Goat 

896 192 186 Goat 

897 202 186 Goat 

905 74 191 Sheep 

906 85 192 Sheep 

907 99 190 Sheep 

908 109 189 Sheep 

909 121 188 Sheep 

910 131 189 Sheep 

911 141 191 Sheep 

912 148 191 Goat 

913 155 192 Goat 

914 164 192 Goat 

915 174 190 Goat 

916 185 191 Goat 

917 191 190 Goat 

919 208 190 Goat 
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Results File 

C:\GT Animals\dec2\2005_12_2_7_39_20_fgt0.csv    

frame start frame fin real species error species correct wrong missed 

701 809 Goat  1 0 0 

885 910 Goat Sheep 1 1 0 

915 941 Goat  1 0 0 

 

In this way, 91 files have been processed, with a total of 1287 single animal events to 

produce the results in Tables 8, 9 and 10. 

 

The log files accumulating this data are on the CD under the folder /Case Study 

Results/Animal Species Identification. 

 

 

 

 




