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Abstract

Three-dimensional (3-D) video has recently emerged to offer an immersive mul-

timedia experience that can not be offered by two-dimensional (2-D) video ap-

plications. Currently, both industry and academia are focused on delivering 3-D

video services to wireless communication systems. Modern video communication

systems currently adopt cooperative communication and orthogonal frequency

division multiplexing (OFDM) as they are an attractive solution to combat fad-

ing in wireless communication systems and achieve high data-rates. However,

this strong motivation to transmit the video signals over wireless systems faces

many challenges. These are mainly channel bandwidth limitations, variations of

signal-to-noise ratio (SNR) in wireless channels, and the impairments in the phys-

ical layer such as time varying phase noise (PHN), and carrier frequency offset

(CFO). In response to these challenges, this thesis seeks to develop efficient 3-D

video transmission methods and signal processing algorithms that can overcome

the effects of error-prone wireless channels and impairments in the physical layer.

In the first part of the thesis, an efficient unequal error protection (UEP)

scheme, called video packet partitioning, and a new 3-D video transceiver struc-

ture are proposed. The proposed video transceiver uses switching operations

between various UEP schemes based on the packet partitioning to achieve a trade-

off between system complexity and performance. Experimental results show that

the proposed system achieves significantly high video quality at different SNRs

with the lowest possible bandwidth and system complexity compared to direct

transmission schemes.

The second part of the thesis proposes a new approach to joint source-channel

coding (JSCC) that simultaneously assigns source code rates, the number of high

and low priority packets, and channel code rates for the application, network, and

physical layers, respectively. The proposed JSCC algorithm takes into account

the rate budget constraint and the available instantaneous SNR of the best relay

selection in cooperative systems. Experimental results show that the proposed
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JSCC algorithm outperforms existing algorithms in terms of peak signal-to-noise

ratio (PSNR).

In the third part of the thesis, a computationally efficient training based

approach for joint channel, CFO, and PHN estimation in OFDM systems is pro-

posed. The proposed estimator is based on an expectation conditional maxi-

mization (ECM) algorithm. To compare the estimation accuracy of the proposed

estimator, the hybrid Cramér-Rao lower bound (HCRB) of hybrid parameters of

interest is derived. Next, to detect the signal in the presence of PHN, an iterative

receiver based on the extended Kalman filter (EKF) for joint data detection and

PHN mitigation is proposed. It is demonstrated by numerical simulations that,

compared to existing algorithms, the performance of the proposed ECM-based

estimator in terms of the mean square error (MSE) is closer to the derived HCRB

and outperforms the existing estimation algorithms at moderate-to-high SNRs.

Finally, this study extends the research on joint channel, PHN, and CFO esti-

mation one step forward from OFDM systems to cooperative OFDM systems.

An iterative algorithm based on the ECM in cooperative OFDM networks in

the presence of unknown channel gains, PHNs and CFOs is applied. Moreover,

the HCRB for the joint estimation problem in both decode-and-forward (DF)

and amplify-and-forward (AF) relay systems is presented. An iterative algorithm

based on the EKF for data detection and tracking the unknown time-varying

PHN throughout the OFDM data packet is also used. For more efficient 3-D

video transmission, the estimation algorithms and UEP schemes based packet

portioning were combined to achieve a more robust video bit stream in the pres-

ence of PHNs. Applying this combination, simulation results demonstrate that

promising bit-error-rate (BER) and PSNR performance can be achieved at the

destination at different SNRs and PHN variance.

The proposed schemes and algorithms offer solutions for existing problems in

the techniques for applications to 3-D video transmission.
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Chapter 1

Introduction

1.1 Background

Three-dimensional (3-D) video applications have recently emerged to offer im-

mersive video content that can not be offered by two-dimensional (2-D) video

services. Although 3-D illusions have captured people’s imagination since the

19th Century, they have only recently become feasible on consumer electronics

platforms due to advances in display technology and the physical layer [1]. Cur-

rently, there is intensive research activity pursuing 3-D video technology over

wireless systems, similar to its applications in 3-D cinema and television [2].

This strong motivation is due to the 3-D video environment’s ability to create a

more realistic experience for the viewers [3]. However, many obstacles in wire-

less systems limit the transmission of 3-D video though wireless video channels.

These obstacles are mainly channel bandwidth limitations, requirement for higher

data-rates, variations of signal-to-noise ratio (SNR) in wireless channels, and the

impact of synchronization between the transmitter and the receiver.

To overcome the channel bandwidth limitations, the source must compress

the original video sequence as much as possible. This allows for the transmission

of high video quality over a smaller bandwidth. However, the video compres-

sion operation usually makes the resulting bitstream very sensitive to the errors

caused by the channel and the noise in the system. Therefore, error-resilient

video methods are essential for providing reliable video communication between

the source and the destination [4].

Generally, high data-rates are required for video transmission, and even higher

rates are required for 3-D video services. Spatial multiplexing techniques such
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as multi-input multi-output (MIMO) have been developed to address this issue.

However, MIMO systems have limitations such as the size and power constraints

with an increased number of antennae. Another approach is through the use of

cooperative diversity [5]. The concept of “cooperative communication” is pre-

sented that each terminal user is sharing its antennae and partnering with other

terminals to format a virtual diversity system. Therefore, each user terminal

can receive its partner signal and share data with its neighboring partners [6].

Hence, cooperative communication systems employ cooperation among nodes in

a wireless network to increase data throughput and robustness to signal fading.

Recently, the combination of MIMO technology with one to three antennae and

cooperative communications has been proposed as means of enhancing the video

transmission over wireless systems [5, 7].

Modern video communication systems currently adopt orthogonal frequency

division multiplexing (OFDM) as it is a powerful multi-carrier modulation tech-

nique for increasing the bandwidth efficiency of wireless communication systems.

By converting a frequency-selective channel into multiple frequency-flat subchan-

nels, OFDM can mitigate the detrimental effects of frequency-selective fading

[8, 9]. Hence, OFDM has been adopted by existing and future wireless local area

network (WLAN) standards such as IEEE 802.11ac and IEEE 802.11ad [10, 11].

However, OFDM systems are much more sensitive to synchronization errors than

single-carrier systems. Therefore, the imperfect synchronization in OFDM sys-

tems can lead to the degradation of video system performance [12, 13].

It is important to note that the advantages of cooperative communications

can only be realized if there is perfect synchronization amongst all the nodes in

the network. Impairments such as channel multipath, time varying phase noise

(PHN), and carrier frequency offset (CFO) result in the loss of synchronization

and diversity performance of cooperative communication systems. Joint estima-

tion of these impairments is necessary to correctly detect the received signal in

cooperative systems.

To realize the goal of 3-D video transmission through wireless channels, this

study focuses on designing efficient 3-D video transmission methods and signal

processing algorithms to overcome the effects of error-prone wireless channels

and imperfect synchronization amongst the nodes in cooperative networks. The

outcome of this project can be further developed to improve the quality of 3-D

video transmission methods and to achieve synchronization within cooperative

networks.
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1.2 Motivation

Video systems generally use compression techniques such as H.264/AVC (ad-

vanced video coding) based on variable-length codes (VLCs) to overcome the

problem of channel bandwidth limitation. The resulting bitstream is usually

very sensitive to bit errors because of high interdependency between the coded

bits. A single-bit error can propagate to many subsequent VLCs. Moreover, error

propagation causes a synchronization loss between the encoder and decoder. In

the worst cases, this can lead to an entire system decoding failure.

The use of error resilience tools in source coding does not completely overcome

error propagation. Thus, many different types of error resilient video and channel

coding techniques, such as unequal error protection (UEP), have been proposed

to improve video transmission over wireless communication systems. UEP parti-

tions the video data into different fractions of visual importance, with the most

important fraction called the high-priority (HP) stream and the remaining frac-

tions called the low-priority (LP) stream. In addition, UEP is mostly combined

with forward error correction (FEC) methods, such as turbo codes or low-density

parity-check (LDPC) codes, to achieve more robust video bit streams.

Many different types of error resilient video and channel coding techniques

have been proposed in the literature. However, they depend on fixed design

without taking into account the priority of protection of video packets inside

the 3-D video views. As a result, their design cannot be adopted to the time-

varying wireless channel. In addition, these designs require high data rates for

transmission to overcome the effects of error propagation in the video bit streams.

Significant improvement in 3-D video systems can be achieved by adopting

new video systems based on a 3-D video transceiver architecture that adopts

various UEP schemes based on a packet partitioning scheme. The switching

operation between the selected UEP schemes can be used to achieve high video

quality with the lowest bandwidth and system complexity. The new video system

is inspired by the advantage of protection of video packets inside the 3-D video

views. In addition, the new video system exploits the channel state information

(CSI) in the slow time-varying wireless channel as feedback to the source and the

destination.

The joint source-channel coding (JSCC) algorithm for video streaming aims to

optimally share the available Rbudget between the source and channel coding rates.

This can be very useful in combatting the combined effects of source quantization

noise and packet losses from the wireless channels.
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The current JSCC studies for 3-D video transmission are based on the fixed

UEP operation. Consequently, the UEP scheme based on packet partitioning

has not been considered. Therefore, a new JSCC algorithm is proposed. This

algorithm changes the UEP operation according to the throughput requirements

and the available instantaneous SNR. Moreover, the proposed algorithm achieves

cross-layer optimization that simultaneously assigns the number of high and low

priority packets for the video packet partitioning in the network layer as well as the

source and channel code rates in the application and physical layer, respectively.

The aim of this approach is to maximize the quality of video at the destination

and minimize the complexity of the system.

Bit errors in the video bitstream may be produced by the noise within the

channel or by the Doppler shift from the wireless channel. The impairments in

the physical layer, such as PHN and CFO, caused by unstable local oscillators

or Doppler shift, respectively, result in a common phase error (CPE) and inter-

carrier interference (ICI) at the receiver. Both of these factors can lead to the

degradation of system performance and error bits on the transmitted video signal

[12, 13].

Given that the received signal is affected by PHN and CFO at the destination,

the challenge of this research is to propose the channel, PHN and CFO estimation

and detection techniques that overcome the CPE and ICI effects. In addition,

the estimation of channel impulse response (CIR) using training symbols in the

presence of CFO and PHN is challenging. Moreover, the proposed estimation

and detection have to be low in computational complexity and suitable for video

applications.

In the context of estimation of synchronization parameters, the Cramér-Rao

lower bound (CRLB) is a lower bound to assess the achievable estimation accu-

racy of any unbiased estimator. However, the hybrid Cramér-Rao lower bound

(HCRB) for joint channel, PHN, and CFO estimation in OFDM systems has not

been studied in the existing literature. Therefore, a new expression for the HCRB

for joint estimation of the channel, PHN and CFO in OFDM systems is derived

in this thesis.

A conventional MIMO system is affected by a single PHN and CFO as the

antenna elements are co-located on a single device. However, a cooperative diver-

sity can be only achieved if these impairments are estimated and removed from

the received signal. A cooperative network consists of multiple distributed nodes,

where each one has its own local oscillator. Thus, this gives rise to multiple phase

noises (PHNs) and multiple carrier frequency offsets (CFOs) that affect the re-
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ceived signal at the receiver. Moreover, accurate estimation of these multiple

impairments, i.e., CIR, CFOs, and time-varying PHNs, is required for coherent

detection of OFDM signals at the receiver.

Most of the existing work in the literature focuses on estimating either CFOs

while assuming perfect estimation of PHNs, or targets the estimation PHN pa-

rameters while assuming perfect CFOs estimation. More importantly, the HCRB

for joint estimation of multiple impairments in cooperative OFDM systems is not

provided. Thus, there is a need for a comprehensive study of these impairments

in cooperative networks.

Given the time-varying nature of PHN, it must be tracked not only during

the training interval but also during the data transmission interval. Hence, fol-

lowing the training period, a receiver structure for joint data detection and PHN

mitigation in the data transmission period is required. In the existing literature,

joint data detection and PHN mitigation has been analyzed [14, 15]. However,

the existing PHN tracking schemes require the application of pilots throughout

an OFDM symbol to compensate the CPE. This adversely affects the bandwidth

efficiency and data detection performance of the overall system.

The existing video work reported in the literature focuses on transmitting

2-D and 3-D video signals while assuming perfect channel, PHN and CFO syn-

chronization. Therefore, this thesis provide new insight into streaming 3-D video

in cooperative relay networks in the presence of PHNs and CFOs. Since UEP

schemes based on packet partitioning, and joint estimation of channels, PHN,

and CFO can be considered solutions of different problems (robustness and ICI

mitigation), it is useful to exploit a combination of these two methods in order

to obtain powerful video transmission schemes.

1.3 Research Problems and Scope

1.3.1 Research Problems

The delivery of 3-D video services over wireless systems such as mobile systems

poses new challenges. This is due to the wireless channel environment, which

negatively affects the video transmission. 3-D video transmission over wireless

channels will face significant hurdles until the problems caused by the oscillators’

fluctuation and the wireless channel are studied and resolved in detail.
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1.3.1.1 Unequal error protection schemes for 3-D video transmission

Many different types of error resilient video and channel coding schemes have been

proposed in the literature to mitigate the effects of the wireless channel on the

3-D video sequence [3, 16–19]. However, the proposed UEP schemes in [3, 16, 19]

basically depend on the direct transmission schemes that give more protection

to the independently-encoded view such as the right (/or colour) view than to

the dependent view, i.e., left view (/or depth). In addition, they depend on fixed

design without taking into account the protection priority of video packets inside

the views. Therefore, they are unable to change their design to adapt to the time-

varying wireless channel. In addition, these designs require high date rates for

transmission to overcome the effects of error propagation in the wireless channel.

The proposed UEP schemes in [17, 18] are based on the slice interleaving

method. However, this method is only used when the SNR in the wireless channel

is high. In this thesis, an efficient UEP scheme and a new video transceiver

structure for 3-D video transmission are proposed. The proposed UEP scheme

can be applied for the modern 3-D video techniques, i.e., multi-view video coding

(MVC) and video plus depth (VpD). The proposed video transceiver takes into

consideration the SNR variations in the wireless channel to enable the 3-D video

system to be adaptive to SNR changes in the channel and achieve a trade-off

between system complexity and system performance.

1.3.1.2 Joint source-channel coding for 3-D video transmission

JSCC algorithms have been proposed for 3-D video transmission [20–22]. How-

ever, the proposed JSCC algorithms in [20–22] adopted for transmission based

on direct schemes, requires high data rates for transmission and has lower per-

formance compared to packet partitioning schemes. In addition, the JSCC al-

gorithms in [20–22] have lower performance compared to packet partitioning

schemes. Moreover, the unequal importance of packets inside the right (/or

colour) and left (/or depth) is not considered in [20–22] in formatting the HP

and LP of the JSCC algorithm. Therefore, in this thesis, a new approach via

the JSCC algorithm based on the video packet partitioning scheme is proposed.

The proposed algorithm simultaneously assigns the number of high and low pri-

ority packets for the video packet partitioning in the network layer as well as

the source and channel code rates in the application and physical layer. The

new algorithm can minimize system complexity and overall video distortion at

the destination. The cooperative system also utilizes the specific properties of
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best relay selection and estimated SNR between the source-destination and the

source-relay-destination to control the proposed JSCC algorithm.

1.3.1.3 Joint channel, phase noise, carrier frequency offset estimation

and data detection in OFDM systems

In data-aided OFDM systems, a training-based transmission scheme is used, in

which the training signals are used to assist joint estimation of the channel pa-

rameters, PHN, and CFO at the destination receiver. In the context of point-to-

point systems, joint channel, PHN, and CFO estimation was proposed in [23–25].

However, the estimation approach in [23] and [24] is based on a small angle ap-

proximation, which adversely affects the performance of the estimation and data

detection algorithms. In addition, the complexity of the estimation approaches

in [23–25] are very high. More importantly, in [23–25], the HCRB for the joint

estimation of channel impulse response (CIR), PHN, and CFO in the OFDM

systems is not derived. For data detection, an efficient receiver structure for joint

data detection and PHN mitigation during the data transmission interval must be

designed. In the existing literature, joint data detection and PHN mitigation are

analyzed in [26, 27]. However, the data detection algorithms in [26, 27] may not

be used in practical implementations due to their high computational complexity

and poor bit-error-rate (BER) performance when using high order modulations.

In this thesis, an efficient new estimator that jointly estimates the channel, PHN,

and CFO for OFDM systems is proposed. An algorithm for joint data detec-

tion and phase noise mitigation to detect OFDM data symbols in the presence

of PHN is proposed. As shown in this thesis, both the proposed estimator and

data detection algorithms outperform existing algorithms in terms of the MSE

and BER. In addition, it is shown that the proposed receiver structure has lower

computational complexity and could be suitable for video applications.

1.3.1.4 Synchronization of cooperative communication systems and

its effects on 3-D video applications

The transmitted packet from the source to relays to destination consists of train-

ing and data signals. During the training signal, the destination has to estimate

multiple channel parameters, PHNs, and CFOs. Then, during the data detection

and PHN mitigation, the estimated values of the impairments are used to compen-

sate the effect of the channel parameters, PHNs, and CFOs. Various algorithms

have been proposed (in the literature) for joint estimation of multiple channel
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parameters, PHNs, and CFOs in cooperative communication systems [14, 28–30].

However, most of this work focuses on estimating either CFOs, while assuming

perfect PHN estimation [28–30], or PHNs while assuming perfect CFO estimation

[14]. In addition, the HCRB for joint estimation of channel parameters, PHNs

and CFOs is not addressed in the existing studies. In this thesis, a computa-

tionally efficient training based approach for joint channel gain, PHN, and CFO

estimation in OFDM-based decode-and-forward (DF) and amplify-and-forward

(AF) relay systems is proposed. The HCRB for the joint estimation problem is

derived. In order to detect the data symbols at the destination in the presence of

time-varying PHN, an iterative algorithm for data detection and PHN mitigation

at the destination is proposed. As shown in this thesis, both proposed estimator

and data detection algorithm can significantly improve the average BER perfor-

mance of relay systems compared to existing algorithms.

The delivery of 3-D video services over cooperative systems was proposed in

[31–35]. However, the video transmission approaches in [31–35] are based on

perfect estimation of channel gains, PHNs, and CFOs. Therefore, the effects of

channel gains, PHNs, and CFOs on the performance of video transmission systems

are not take into account. Moreover, the study of the impact of channel estimation

in the presence of PHN and CFO on the system performance and complexity

for 3-D video transmission has not been addressed in the literature, to date.

In this thesis, an efficient combination of UEP schemes based on video packet

partitioning and estimation algorithms of channel parameters in the presence

PHNs and CFOs is proposed. A computationally efficient training based approach

for joint channel, CFOs, and PHNs estimation in OFDM-based relay systems is

proposed. The performance of 3-D video transmission under the effects of PHN

and CFO in OFDM-based AF relay network is investigated. Finally, in order to

detect the data symbols in the presence of time-varying PHNs, an iterative data

detection algorithm is proposed.

1.3.2 Research Scope

The scope of the thesis is to provide efficient solutions for the problems caused

by the oscillators’ fluctuation and the wireless channel on 3-D video signals. This

can be achieved by adopting efficient communication and signal processing tech-

niques to transmit 3-D video signals over wireless communication systems. It is

nearly impossible to cover all approaches that can be used to improve the video

transmission over the wireless channel. As a result, this thesis will focus primarily
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on five important approaches. These are UEP, JSCC, cooperative diversity, joint

channel, PHN and CFO estimation, and data detection in the presence of PHN

and CFO. The proposed systems are applied for the modern 3-D video techniques,

i.e., MVC and VpD. The H.264/AVC reference software in [36] and MVC codec

based on H.264/AVC in [21, 37] are used for encoding the 3-D video sequences

throughout this thesis.

1.4 Original Contributions

This thesis makes four original contributions to the knowledge of science:

• A New Unequal Error Protection Scheme for 3-D Video Transmis-

sion: A comparison between 3-D video representations (i.e., VpD, mixed-

resolution stereo coding (MRSC), simulcast coding (SC), and MVC) is in-

vestigated to study the noise effect on each format and determine the repre-

sentation that is most suitable for video transmission over the wireless chan-

nel. Simulation results demonstrate that VpD is most suitable for wireless

video communication. Next, a new UEP scheme, called video packet parti-

tioning is proposed for 3-D video transmission. A new 3-D video transceiver

structure is also proposed. It adopts various UEP schemes based on the

packet partitioning. The UEP schemes are tested over cooperative MIMO-

OFDM systems. Switching operations between the proposed schemes are

proposed to achieve a trade-off between the system complexity and per-

formance. Experimental results show that the proposed schemes achieve

significantly high video quality at different SNRs over the wireless channel

with the lowest possible bandwidth and system complexity compared to

the direct transmission schemes. The proposed schemes are published in

[32–35].

• Joint Source-Channel Coding Algorithm for 3-D Video Transmis-

sion: The rate budget constraint and the available instantaneous SNR of

the best relay selection in cooperative systems can dramatically impact

system performance and complexity of video applications, since they deter-

mine the video distortion. By taking these constraining factors into account,

the signal model and formulate the system optimization problem are out-

lined first. Next, a new approach to cross-layer optimization for 3-D video

transmission over a cooperative relay systems is proposed. Procedures for

estimation of the end-to-end instantaneous SNR using an estimate of the
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available instantaneous SNRs between the source-destination, and source-

relay-destination are proposed. These estimation procedures are performed

before beginning to send the video signal to the best relay and destina-

tion. A novel approach using Lagrange multipliers is developed to solve

the optimum bit allocation problem. Based on the rate budget constraint

and the estimated end-to-end instantaneous SNR, the proposed JSCC al-

gorithm simultaneously assigns source code rates for the application layer,

the number of high and low priority packets for the network layer, and

channel code rates for the physical layer based on criteria that maximize

the quality of video, whilst minimizing the complexity of the system. Fi-

nally, the impact of the estimated end-to-end instantaneous SNR on video

system performance and complexity is investigated. Experimental results

show that the proposed JSCC algorithm outperforms existing algorithms in

terms of peak signal-to-noise ratio (PSNR). Moreover, the proposed JSCC

algorithm is found to be computationally more efficient as it can minimize

the overall video distortion in a few iterations. The proposed JSCC algo-

rithm is published in [38].

• Joint Channel, Phase Noise and Frequency Offset Estimation and

Data Detection in OFDM Systems: An expectation conditional maxi-

mization (ECM) based algorithm for joint estimation of channel, PHN, and

CFO in OFDM systems is proposed. The signal model for the estimation

problem is presented and the hybrid Cramér-Rao lower bound (HCRB) for

the joint estimation problem is derived. Next, an iterative receiver based on

the extended Kalman filter for joint data detection and PHN tracking is pro-

posed. Numerical results show that, compared to existing algorithms, the

performance of the proposed ECM-based estimator is closer to the derived

HCRB and outperforms the existing estimation algorithms at moderate-to-

high SNRs. In addition, the combined estimation algorithm and iterative

receiver are more computationally efficient than existing algorithms and

result in improved average uncoded and coded BER performance. The pro-

posed ECM estimator and the iterative algorithm for joint data detection

and phase noise mitigation is published in [39, 40].

• Synchronization of Cooperative Communication Systems and Its

Effects on 3-D Video Applications: An iterative pilot-aided algorithm

is proposed based on the ECM approach that jointly estimate of multi-

ple channels, Wiener PHNs, and CFOs in DF and AF based cooperative
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OFDM systems. Next, an iterative receiver is proposed based on an ex-

tended Kalman filter for joint data detection and PHN tracking. The effects

of PHNs and CFOs on the performance of OFDM-based AF relay networks

for 3-D video applications is also investigated. Numerical results show that

the proposed estimator achieves mean square error performance close to

the derived HCRB at moderate-to-high SNR for different PHN variances.

In addition, the combined estimation algorithm and iterative receiver can

significantly improve average BER performance compared to the existing

algorithms and non-cooperative systems. In addition, experimental results

show that the accurate estimation of channel parameters, PHNs and CFOs

directly affects the performance and complexity of cooperative systems for

video applications. In addition, the proposed system of the combination of

the estimation algorithms and UEP schemes based packet portioning can

achieve high performance in terms of PSNR over a wide range of SNRs.

Part of the proposed system was published in [41].
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Figure 1.1: Block diagram of dissertation outline and coverage.



12 Introduction

Figure 1.1 shows the overall scope and the coverage of the thesis. Chapter 2

is dedicated to the basic concepts of 3-D video transmission and a review of the

existing literature related to this thesis. Chapter 3-6 present the specific technical

contributions of the thesis. Each chapter summary is given as follows:

• Chapter 2: This chapter reviews the basic concepts of 3-D video represen-

tation and coding standards. In addition, error-resilient source and channel

coding tools that could be used to improve 3-D video transmission are dis-

cussed. The effects of imperfect synchronization and impairments on the

physical layer of OFDM systems is also covered.

• Chapter 3: A comparison between different 3-D video representations is

investigated in this chapter. A new UEP scheme based on video packet

partitioning for 3-D video transmission over wireless channels is proposed.

A new 3-D video transceiver structure that adopts switching operations

between the proposed UEP schemes is also proposed.

• Chapter 4: In this chapter, a new approach to the JSCC algorithm for 3-D

video transmission over cooperative relay systems is proposed. The estima-

tion procedures of the instantaneous SNRs between the source-destination,

and source-relay-destination are proposed to control the proposed 3-D video

transceiver. A novel optimization method using the Lagrange multiplier

approach is derived to solve the system optimization problem. Finally, the

impact of the instantaneous signal-to-noise ratio estimation on the video

system performance and complexity is investigated.

• Chapter 5: A new ECM algorithm for joint estimation of channel, PHN,

and CFO in OFDM systems is proposed. The signal model for the estima-

tion problem is outlined in detail and the HCRB for the joint estimation

of channel, PHN, and CFO in OFDM systems is derived. An iterative al-

gorithm for joint data detection and phase noise mitigation is proposed for

OFDM data symbols.

• Chapter 6: A new ECM algorithm for joint estimation of multiple chan-

nels, Wiener PHNs, and CFOs in DF and AF based cooperative OFDM

systems is proposed. The signal model for the estimation problem is out-

lined in detail and the HCRB for the joint estimation problem is derived.

An iterative algorithm for joint data detection and phase noise mitigation

is proposed for OFDM data symbols at the destination. An investigation



1.5 Organization 13

of the performance of the proposed system in the presence of PHNs and

CFOs for 3-D video applications at different SNRs is carried out.

• Chapter 7: This chapter summarizes the thesis and outlines future re-

search directions.



Chapter 2

Background
This chapter provides an overview of 3-D video transmission and its applica-

tions in cooperative relay systems. Error-resilient techniques that are applicable

to 3-D video transmission are also included, and the effect of imperfect synchro-

nization on the performance of OFDM systems is presented.

Section 2.1 presents an overview of 3-D video representation and coding stan-

dards. Section 2.2 presents error-resilient source and channel coding tools that

could be used to improve 3-D video transmission. Section 2.3 reviews the coop-

erative system and its transmission protocols adopted in the relay nodes. Section

2.4 discusses the synchronization in communication systems and the effects of

PHN and CFO on their performance. Section 2.5 reviews the Cramér-Rao Lower

bound. Finally, Section 2.6 concludes the chapter.

2.1 Three-Dimensional (3-D) Video Coding

Source 3-D video coding generally uses compression techniques to overcome the

problem of channel bandwidth limitation. Although there are many different

methods of source coding, this thesis will focus on 3-D video coding.

The input of the 3-D video signal is captured by two cameras. These two

captured signals or views represent the left and right views. Several video repre-

sentations for 3-D video signals have been proposed. As a consequence, various

3-D video compression and coding approaches are designed to process 3-D signals

with different methods.
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2.1.1 3-D Video Representations

The literature explores various approaches for processing the 3-D video signal.

In this thesis, VpD and MVC are considered due to their suitability for low-rate

applications such as mobile services. VpD and MVC are also evaluated compared

to conventional stereo video (CSV) and MRSC representations. Figure 2.1 shows

different representations and formats of 3-D video signal.

The MRSC method encodes the left and right views separately. As shown in

Figure 2.1-(b), MRSC is implemented by down-sampling one of the views and

up sampling back to the original resolution at the decoder. This operation yields

different views with unequal resolution and the overall 3-D video quality is almost

retained. This method is similar to the CSV method, as shown in Figure 2.1-(a),

which encodes the left and right views separately without down-sampling [42].

The VpD method, as shown in Figure 2.1-(c), encodes one of the views (such

as the right view) with auxiliary depth information. At the decoder, the left view

can be reconstructed using the depth-image-based rendering (DIBR) technique

[43].

MVC exploits the correlation between two close views in CSV format to in-

crease compression efficiency. This correlation between the left and right views

yields redundancies between views, which can be exploited by inter-view predic-

tion scheme. Therefore, a coding method can exploit this feature to achieve high

compression gain [44].

It can be concluded that, the relationship between the colour video and depth

data in VpD, and the correlation between the left and right view in MVC, im-

proves the compression efficiency for the 3-D video signal compared to CSV and

MRSC representations.

Many studies have been proposed to examine and evaluate MRSC, VpD and

MVC techniques for mobile 3-DTV applications. Brust et. al. [42] evaluated the

MRSC scheme for different video sequences, and Gotchev et. al. [2] demonstrated

that VpD and MVC are the preferable coding techniques for mobile applications.

2.1.2 3-D Video Coding Standards

The literature proposes many different coding standards to encode the 3-D video

representations. In this thesis, the H.264/AVC is adopted because it is the

most widely used international video coding standard [45]. Furthermore, the

H.264/AVC codec provides almost twice the compression efficiency with the same

quality compared to the previous standards [45]. Therefore, state-of-the-art video
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a. CSV 

b. MRSC

c. VpD

Left view Right view

Left view Right view

Color video Depth data

Far Near

Figure 2.1: Different representations of 3-D video signals.

codec uses the H.264/AVC technique to compress the 3-D video sequence.

In general, two coding methods, called simulcast coding (SC) and multi-view
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video coding (MVC) are used to encode the 3-D video sequences, as shown Figure

2.2, where GoP is the group of pictures. Simulcast coding, as shown in Figure 2.2-

(a), encodes the left and right view separately using two 2-D video codec based

on H.264/AVC. In simulcast coding, inter prediction is performed in each view

individually. Multi-view video coding, as shown in Figure 2.2-(b), exploits the

inherent redundancies in a multi-view scene by introducing predictions between

views. The inter-view prediction can be used by AVC/MVC codec to achieve

high compression gain.

I P P P P I P PLeft view

GoPL1

GoPR1

GoPL2

GoPR2

Right view I P P P P I P P

I P P P P I P P

P PP P P P P P

Left view

GoPL1

GoPR1

GoPL2

GoPR2

Right view

(a) Simulcast coding

(b) Multi-view video coding

Figure 2.2: Simulcast and multi-view video coding.

A new 3-D video coding standard is referred to as the high-efficiency video

coding (HEVC) extension. It is based on H.265 and expected to be used in the

near future. The HEVC extension is developed to support the coding of multiple

views and associated depth data. In addition, it achieves the same video quality

as H.264 standard and improves the bit rate by 50% on average [46]. However,

the improvements in HEVC extension comes at the cost of higher encoding and

decoding complexity [47].
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2.1.3 3-D Video Signal Transmission

In H.264/AVC encoding, the video encoder produces H.264/AVC bit stream as

shown in Figure 2.3. As shown in this figure, the bit stream consists of a series of

network abstraction layer (NAL) units or packets. The first two packet sequence

parameter sets (SPS) and picture parameter sets (PPS) are used as common

control parameters to the video decoder. The subsequent packets contain header

information and an integer number of macroblocks (MBs), which contain coded

video data [44].
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Figure 2.3: Different representations of 3-D video signals.
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Figure 2.4: Simulcast and multi-view video coding.

The transmission of 3-D video bit streams is determined according to the

adopted 3-D video representation. As shown in Figure 2.4, two H.264/AVC en-
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coders and decoders are usually used to encode and decode the right and left/or

depth sequence in the CSV, MRSC, and VpD formats. Meanwhile, a single

H.264/MVC encoder and decoder are used for the MVC format. Therefore, the

complexity of encoding and decoding operations for the VpD format is higher

than the MVC format.

The output bit streams after a 3-D video encoder, as shown in Figure 2.4,

are rearranged to a single output at the multiplexer. Subsequently, the output

from the multiplexer is transmitted over the wireless channel. At the receiver, the

received data stream is separated back to two data streams before being decoded

by the H.264/AVC decoders. Meanwhile, the multiplexer is not needed for MVC

transmission. When VpD is adopted for transmission, the DIBR technique is

used at the receiver to reconstruct the left view from the right view (colour) and

depth map.

2.2 Error-Resilient Source and Channel Coding

Tools for 3-D Video Transmission

The H.264/AVC video standard is supported by many error resilience tools. The

main tools are: data partitioning, slice interleaving and flexible macroblock or-

dering (FMO) [48]. Some of these tools are unsuitable for real time video appli-

cations. For example, the FMO technique typically produces a simple improve-

ment in the system performance in spite of its implementation complexity [49].

Therefore, H.264/MVC is expected to use some error resilient tools such as data

partitioning and slice interleaving in its reference software. Nevertheless, none of

these tools are applied to H.264/MVC reference software [18].

A slice interleaving method was proposed to split video frames into several

slices. In the decoder side, each slice is decoded independently. With this method,

the errors in each slice are seriously restricted, thereby preventing error propa-

gation to other slices. As a result, the increase in the number of slices per frame

improves the quality of reconstructed video sequences, while reducing the effi-

ciency of the video compression.

Many 3-D video studies have been interested to evaluate the slice interleaving

method. Tech et al. [18] implemented and integrated joint multiview video cod-

ing (JMVC) reference software version 5.0.5 using the slice interleaving method.

Micallef and Debono [17] also applied the slice interleaving method with different

slice sizes to JMVC reference software version 8.0. It can be concluded that,
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although this method is useful for minimizing and isolating the effects of error

propagation, it is only suitable when the SNR value is high in the wireless chan-

nel. Moreover, the increase in the number of slices per frame leads to a reduction

in the video compression efficiency.

In source coding, the use of error resilience tools does not completely over-

come error propagation. Therefore, error-resilient channel coding techniques are

necessary. A variety of error-resilient video and channel coding tools have been

proposed to improve video transmission over wireless communication systems.

The main schemes are UEP with aid of FEC methods, and JSCC.

2.2.1 Unequal Error Protection (UEP)

The channel coding (also known as FEC) is required to enable the error detection

and/or correction method. To enable error detection and correction, the channel

coding technique adds redundant bits to the video bit stream. As a result, bit

streams may be different sizes and, thus, is represented to as the UEP scheme

[4].

UEP involves on partitioning the video data (which comes from the source

coding stage) into different fractions of visual importance. The most important

fraction is called the HP-streams while the remaining fractions are called the LP-

streams. HP-streams can be decoded to reconstruct the video with acceptable

quality, while LP-streams are utilized to improve the video quality. Therefore,

by partitioning the video data and applying better error protection to the video

streams, a more robust video bit stream can be achieved [50].

The UEP technique for 3-D video transmission will be discussed in more detail

in Chapter 3.

2.2.2 Joint Source-Channel Coding (JSCC)

The main goal of the JSCC algorithm is to make the video system adaptive to

changes in the wireless channels. In this case, if the CSI is perfectly available at

the transmitter, maximization of the channel capacity can be achieved to transmit

video data through reliable channels. In order to achieve this scheme, the receiver

needs to periodically feedback the CSI to the transmitter.

The JSCC algorithm is designed to maximize compression efficiency with min-

imal distortion. The increase of source rates leads to an improvement of video

performance with low distortion. At the same time, the rise of channel coding



2.3 Cooperative Systems 21

rates leads to a high bit error rate with low system performance. Therefore, to

achieve a high data rate with low distortion, source rates must be increased and

channel coding rates must be decreased under available channel capacity [51].

In wireless systems, there is a fixed rate budget (Rbudget) related to the system

parameters such as the target rate for each video frame according to its energy

and type, channel coding rate, and the modulation scheme [4, 44]. The target

rate for each video frame refers to the source coding rate (Rs), which is varied

by quantization parameters in the video encoder. The channel coding rate (Rc)

is determined by the forward error correction algorithm employed. Joint source-

channel coding (JSCC) optimization for video streaming aims to optimally share

the available Rbudget between the source and channel coding rates. This can be

very useful to combat the combined effects of source quantization noise and packet

losses from the wireless channel [52].

The JSCC technique for 3-D video transmission will be covered in Chapter

4, where JSCC will take into account the Rbudget and the available instantaneous

SNR in cooperative channels to improve 3-D video performance.

2.3 Cooperative Systems

The main goal of the communication system is to transfer a maximum amount

of information from the source to the destination through reliable wireless chan-

nels. Diversity techniques using MIMO systems have been proposed to achieve

this goal using multiple antennas at the transmitter and/or receiver to provide

multiple independent replicas of the same information to the receiver [5, 53, 54].

Moreover, space-time coding techniques have been used in MIMO systems to

increase diversity gain [55, 56].

Due to size, power, and/or hardware limitations caused by an increase in

the number of antennas in MIMO-mobile devices, cooperative diversity has been

proposed as a very promising techniques for solving the limitations of MIMO

systems [57, 58]. In other words, cooperative relay systems provide diversity

by forming a virtual MIMO system that promises significant performance gains

in terms of link reliability, spectral efficiency, system capacity, and transmission

range [5]. More recently, the MIMO system with two to three antennas has

been proposed for use in combination with cooperative diversity to improve the

diversity of cooperative systems for video applications [7, 32–35].

The cooperative MIMO architecture with video applications is shown in Fig-

ure 2.5. It consists of three types of nodes: source (S ), relay (R) and destination
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Figure 2.5: A cooperative MIMO system with video applications.

(D). Each node is equipped with two to three antennas to increase the diversity

gain at the destination. The source node represents the video sequence with the

least number of possible bits, without losing the video quality, using a compres-

sion method such as the H.264/AVC standard.

In cooperative systems, there are usually three types of links called direct,

relay, and cooperative links. The direct link represents the signal path between

source and destination, and the relay link is the signal path between source,relay,

and destination. Furthermore, the cooperative link combines the signals of both

the direct and relay links at the destination node. Since the channels in the direct

and relay links are independent, each relay node can assist the source node to

communicate with the destination node to achieve special diversity.

Usually, a half-duplex mode is adopted for all nodes in cooperative systems,

i.e., a node cannot transmit and receive simultaneously, but on different time/

frequency slots. In this setup, in the first hop, the source node broadcasts its

message to both relay and destination simultaneously. In the second hop, the

relay processes the received signal and then forwards it to the destination. In

general, the transmission using a half-duplex mode is performed over K + 1 time

slots, where K is the number of relays. It is clear that there is no collision between

the received signals during the two consecutive hops at the destination. However,

a half-duplex mode maintains orthogonality throughout the cooperative system

at the expense of loss in spectral efficiency [58].

Two most commonly applied protocols are recorded in the literature. The
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first protocol is called the decode-and-forward (DF), and the second is called

the amplify-and-forward (AF) protocol. Usually, one or a hybrid combination of

these two protocols is adopted to provide copies of transmitted signals via the

relay link to the distinction node.

2.3.1 Relay Protocols

In the DF approach, the relay decodes the received signal, and then re-encodes

the decoded data before forwarding it to the destination. Thus, the DF approach

is known as a regenerative transmission protocol. Figure 2.6 shows the relay block

PHN and CFO Estimation 

and compensation 
Channel Estimation 

and Equalization
Decoding Encoding Retransmission

Estimation operation

Signal from 

source

Signal to 

destination

Figure 2.6: Relay block diagram using DF protocol.

diagram using the DF protocol. As shown in this figure, the DF relay estimates

first the source to relay channel, PHN, and CFO between the source and relay.

The compensation of PHN and CFO and channel equalization are performed

depending on the estimated channel and offsets. Next, source information is

decoded, encoded, and retransmitted to the destination node. Usually, when the

channel between the source and the relay is good, the DF protocol is used and

achieves superior performance in error correction compared to the AF protocol.

However, the performance of the DF protocol is limited when the relay link suffers

from deep fading. In this case, the error will propagate to the destination [5].

The second relay protocol is AF. Figure 2.7 shows the relay block diagram

using the AF protocol. As shown in this figure, a relay using the AF protocol

simply multiplies the received signal by the gain factor and forwards the resultant

signal to the destination.

Unlike the DF relaying, AF relaying does not estimate the PHN, CFO, and

the channel parameters between the source and the relay and does not perform

PHN and CFO compensation and channel equalization. Thus, the source data

signal is not decoded and directly retransmitted to the destination node.
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Figure 2.7: Relay block diagram using DF protocol.

2.3.2 Comparison between DF and AF Protocols for Video

Applications

In cooperative systems, one or a hybrid version of the DF and AF protocols

are usually adopted according to the system application. For example, FEC

techniques are usually used and require a decoding method that is performed in

an iterative manner such as the sum-product algorithm (SPA) of the LDPC codes

[59]. Therefore, the DF protocol may not be suitable for use in relay networks

for video applications because it results in both a high computational complexity

and time delay. The increase in complexity may also lead to an increase in power

consumption [60]. On the other hand, the AF protocol amplifies the received

signal, including noise, and forwards it to the destination. However, the AF

protocol has a lower complexity and hence processing time [60]. Therefore, in

this thesis, the AF protocol is considered through the adoption of the best relay

selection for video applications to reduce the system complexity.

The concept of the best relay selection has previously been proposed in the

literature to efficiently implement the AF protocol in relay systems [61–65]. The

best relay selection depends on selecting a single relay out of the set of available

relays which has maximum instantaneous signal-to-noise ratio (γSRD) between the

source-relay-destination. In addition, the selection procedures are automatically

repeated every time the channel gains vary [62]. This concept is adopted in this

thesis.

Both AF and the best relay selection schemes for video applications will be

addressed in more detail in Chapter 4, where the accuracy estimation of instan-

taneous SNRs through the channels on the performance of the 3-D video system

and complexity will be discussed in detail.
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2.4 Synchronization in OFDM Communication

Systems

Recently, OFDM has been widely adopted in many wired and wireless commu-

nication applications and standards because it achieves high spectral efficiency

and robustness to multi-path fading distortions. Moreover, an OFDM receiver is

relatively simple compared to signal carrier based systems because the detection

of transmitted symbols can be performed via a one-tap channel equalizer [66, 67].

However, OFDM systems are very sensitive to synchronization imperfections be-

tween the source and the destination compared to signal carrier based systems

[68]. The PHN and CFO are two of the common impairments in OFDM wireless

communication systems. In this context:

• CFO is a deterministic parameter that is caused by the frequency difference

between the source and the destination nodes, or by Doppler shift,

• PHN is a random process caused by instable local oscillators of the source

and the destination.

In general, the frequency deviations at the oscillator output is related to the ac-

curacy design of the local oscillators. Usually, oscillators are implemented with

low-cost. Thus, it is difficult to develop a low cost oscillator with sufficient fre-

quency stability [69]. Therefore, the effects of CFO and PHN can not be avoided

and have to be considered in the design of wireless communications systems.

The effect of PHN maybe more noticeable at higher carrier frequencies, e.g., V-

band/60 GHz and E-band/70–80 GHz [70].

2.4.1 Phase Noise Modeling

Phase noise θ(t) is generated at the source and destination oscillators when the

signals are translated between baseband and radio frequency (RF) band. It can

be described as a phase disturbances that is accumulated over time and can be

modeled by a random Wiener process given by

θ(t) =

∫ t

0

u(t)dt, (2.1)
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where u(t) is a white Gaussian process with a power spectral density Su(f) and

the oscillator power spectrum is a Lorentzian in shape [71]

L(f) =
1

πβ
(
1 + ( f

β
)2
) . (2.2)

Here, β denotes the 3dB bandwidth. The discrete-time Wiener process is sampled

every Ts seconds, i.e., the sampling time period. Then, the discrete time phase

noise is given by

θn = θn−1 + δn, ∀n, (2.3)

where δn ∼ N (0, σ2
δ ) is the PHN innovation and σ2

δ , 2πβTs is the variance of

the innovation process [71, 72].

2.4.2 Basics of Phase Noise and Carrier Frequency Offset

PHN and CFO produce a shift of the received OFDM symbols in the frequency

domain and result in the loss of orthogonality between the subcarriers. This leads

to significant performance degradation since it results in time varying channels

and rotation of the signal constellation from symbol to symbol. The CFO and

PHN basics can be illustrated in a simple model as shown in Figure 2.8 [73].
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Figure 2.8: A simple model of RF conversion at the source and the destination

nodes
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The transmitted OFDM signal is given by

XRF =
(
Re{XBB} cos(2πfct)− Im{XBB} sin(2πfct)

)
ejθs(t),

=
1

2

(
XBBe

j2πfct + X∗BBe
−j2πfct

)
ejθs(t), (2.4)

where θs(t) is the phase noise at the source, XBB is a complex baseband signal

after inverse discrete Fourier transform (IDFT), XRF is the RF generated version

of XBB and fc is the carrier frequency.

At the destination node, the received RF signal, XRF, is down converted and

passed through a low-pass filter (LPF) with gain of 2. The carrier frequency at

the destination node is assumed to be fc ± fo, where fo represents the frequency

offset of the carrier. The received baseband signal, X̂BB, after LPF is given by

X̂BB = LPF

[
1

2
ej2π(fc±fo)tejθd(t)

(
ej2πfct + X∗BBe

−j2πfct
)
ejθs(t)

]
,

= XBBe
±j2πfotejθs(t)ejθd(t). (2.5)

where θd(t) is the phase noise at the destination. It is clear that the received

baseband signal in (2.5) is modulated by three complex sinusoid signals, one

signal is produced from CFO (fo) which is frequency difference between carrier

frequencies between the source and destination nodes, and two signals from the

phase noises θs(t) and θd(t) at the source and destination, respectively.

2.4.3 Effects of Phase Noise and Carrier Frequency Offset

on OFDM Systems

The CFO and PHN destroy the orthogonality of the symbols at the DFT output

and lead to interferences amongst the OFDM subcarriers, i.e., a CPE and ICI.

Substantially, the CPE and ICI affect the performance of the detector at the

destination. This causes drastic performance degradation [12, 13, 68]. Moreover,

PHN and CFO may affect the performance of other estimation processes. In fact,

the estimation of CIR is impossible in the presence of CFO and PHN [23]. To

better illustrate this concept, a simple OFDM system is considered as shown in

Figure 2.9.

The baseband OFDM signal (s) can be obtained as follows. A set of modulated

data d = [d0, d1, · · · , dN−1] ∈ C1×N after M -PSK or M -QAM modulation is

normalized by IDFT, at the transmitter, as
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Figure 2.9: Block diagram of an OFDM system with CFO and oscillator instabili-

ties.

sn =
1√
N

N−1∑
k=0

dke
j2πkn
N n = 0, 1, . . . , N − 1, (2.6)

where k denotes the kth sample of the OFDM symbol and N is the number of

subcarriers. At the receiver, after removing the cyclic prefix (CP), the complex

baseband received signal of an OFDM symbol at rate N /T , where T is the

symbol period, is given by

rn =
1√
N
ej(θn+2πnε/N)

N−1∑
k=0

hkdke
j2πkn/N + zn (2.7)

where ε = 4fT is the normalized CFO; {θn}N−1
n=0 is the discrete-time PHN se-

quence; {hk}N−1
k=0 is the channel frequency response at subcarriers 0 to N -1; and

{zn}N−1
n=0 is complex additive white Gaussian noise (AWGN) with variance σ2 per

dimension.

To illustrate the effects of the CFO and PHN on the received signal as follows.

After FFT, the received signal corresponding to the kth subcarrier, yk, is given
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by

yk = FFT{rn}

=
1√
N

N−1∑
n=0

rne
−j2πkn/N

=
N−1∑
n=0

[
1

N
ej(θn+2πnε/N)

N−1∑
m=0

hmdme
j2πmn/N + zn

]
e−j2πkn/N

=
1

N

N−1∑
n=0

ej(θn+2πnε/N)

N−1∑
m=0

hmdme
j2πmn/Ne−j2πkn/N +

N−1∑
n=0

zne
−j2πkn/N

=
1

N

N−1∑
n=0

N−1∑
m=0

hmdme
j(θn+2πnε/N+2π(m−k)n/N) + Zk (2.8)

= hkdk
1

N

N−1∑
n=0

ej(θn+2πnε/N)

︸ ︷︷ ︸
CPE

+
1

N

N−1∑
m=0
m 6=k

hmdm

N−1∑
n=0

ee
j(θn+2πnε/N+2π(m−k)n/N)

︸ ︷︷ ︸
ICI

+Zl[k]

Therefore, the CPE term is denoted by 1
N

N−1∑
n=0

ej(θn+2πnε/N) and the ICI term is

given by 1
N

N−1∑
m=0
m 6=k

hmdm
N−1∑
n=0

ee
j(θn+2πnε/N+2π(m−k)n/N)

.

The CPE term represents the amplitude and phase distortion of the kth sub-

carrier frequency component due to CFO and PHN. Meanwhile, the ICI term

represents the ICI from other sub-carriers into the kth subcarrier frequency com-

ponent, which implies that the orthogonality among subcarrier frequency com-

ponents is not maintained any longer due to the CFO and PHN.

There has been much interest in investigating the effects of PHN and CFO in

OFDM systems. In [68], Pollet et al. showed that PHN and CFO more signifi-

cantly deteriorate the performance of OFDM systems compared to single carrier

systems. The PHN and CFO in OFDM systems cause a number of impairments

such as attenuation and rotation of each of the subcarriers and ICI between sub-

carriers [68]. Tomba in [74] derived the error probability of an OFDM system in

the presence of PHN for different modulation schemes. The study in [74] showed

that the degradation of BER performance is worst when increasing the PHN

variance and the modulation order. Wu and Ness in [75] exhibited the effects

of PHN on the performance of OFDM systems in terms of signal-to-noise-plus-

interference ratio (SINR). The study in [75] illustrated that SINR is worst in the
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Figure 2.10: The CFO effects on the subcarriers orthogonality.

increasing of PHN bandwidth (β) and as the number of subcarrier increases.

The effect of CFO on OFDM signals is illustrated in Figure 2.10, where the

dotted lines with circle markers denote the signal at the DFT output. It is clear

from Figure 2.10-(b) that at ε = 0.2, there is interference from the neighboring

subcarriers on the corresponding subcarrier.

The effect of PHN and CFO on a 16-QAM constellation is shown in Figure

2.11. From Figure 2.11-(b), it is obvious that the PHN and CFO rotate the

desired signal into a wrong decision area, and deteriorate the BER performance

accordingly.

In conclusion, accurate estimation of these imperfections (i.e., channel, CFO,

and PHN) is required before the DFT operation to mitigate the resulting CPE

and ICI and perform data detection [76, 77].

The effects of PHN and CFO on channel estimation and OFDM system per-

formance will be covered in Chapter 5, where new algorithms for joint estimation

and data detection are used to mitigate the PHN and CFO effects and improve

system performance.
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Figure 2.11: 16-QAM constellation rotated by PHN and CFO.

2.5 Cramér-Rao Lower Bound (CRLB)

The CRLB is the lower bound to evaluate an unbiased estimator’s performance

in terms of MSE of estimated parameter λ̂, i.e., MSE(λ̂) � CRLB(λ). For ap-

plications of signal processing in communication systems, the CRLB has been

widely applied to examine the performance of estimators [78]. This bound is

adopted when the estimated parameter is deterministic such as the CFO, while

the Bayesian Cramér-Rao lower bound (BCRB) is utilized for random parameters

such as PHN [79]. Therefore, such bounds are very important tools as they can

be used as performance benchmarks for unbiased estimators.

Recently, the HCRB has been adopted to provide an accurate lower bound

for evaluating the performance of estimators in the presence of deterministic and

random parameters [80]. For instance, in the joint estimation of PHN and CFO

parameters, the HCRB is a lower bound on the joint estimation of random, e.g.,

PHN, and deterministic, e.g., CFO parameters. Let λ = [θT ε]T be the vector of

hybrid parameters of interest, where θ is a vector of random PHN parameters and

the CFO, ε, is modeled as a deterministic parameter. The accuracy of estimating

λ is lower bounded by the HCRB, Ω, as [79, pp. 1-85]

Er,θ|ε

[
(λ̂(r)− λ)(λ̂(r)− λ)T

]
� Ω, (2.9)
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where Ω is given by the inverse of the hybrid information matrix (HIM), B, i.e.,

Ω = B−1. Here, B can be written as [79, pp. 1-85]

B = ΞD + ΞP , (2.10)

where ΞD , Eθ [Ψ(θ, ε)], Ψ(θ, ε) denotes the Fisher’s information matrix (FIM)

and ΞP is the prior information matrix for PHN.

The HCRB for joint channel, PHN and CFO estimation will be addressed in

Chapter 5, where a new HCRB derivation is presented to evaluate the proposed

estimator.

2.6 Conclusion

This chapter provided an overview of error-resilient source and channel tools for

3-D video transmission over wireless cooperative relay networks. Several types of

3-D video representation for low-rate video applications such as mobile services

were reviewed. The efficient 3-D video coding standards in the literature were

discussed. The cooperative system with its relay protocols and a comparison

between the relay protocols for video applications were addressed. This chapter

also discussed the synchronization tasks and effects of PHN and CFO synchro-

nization imperfections on the system performance. The chapter concluded that

the transmission of 3-D video signals over wireless communication systems can be

achieved by adopting UEP, JSCC, and cooperative diversity, which enhances the

system to be adapting to the time-varying wireless channel and provide high date

rates for transmission to overcome the effects of error propagation in the wire-

less channels. Furthermore, it is indicated that PHN and CFO estimator with

low computational complexity is required for video applications to overcome the

effects of Doppler shift and the impairments in the physical layer. These com-

munication and signal processing techniques can enhance the cooperative relay

systems to provide reliable 3-D video communication over error-prone wireless

channels.



Chapter 3

A New Unequal Error Protection
Scheme for 3-D Video
Transmission

3.1 Introduction

Unequal error protection (UEP) of the video bitstream is one of the most effec-

tive strategies for improving system video performance caused by an error-prone

environment. Usually, a compressed video bitstream can be represented with

different partitions according to their sensitivity to bit error in the wireless chan-

nel. Therefore, the degradation of video quality at the destination occurs when

bit error propagates throughout the important partitions. Thus, the important

partitions should have higher protection than other partitions.

In this chapter, a 3-D video transceiver based on a new UEP scheme, called

video packet partitioning is proposed to achieve high video quality at different

SNRs in the wireless channel with the lowest possible bandwidth and system

complexity. Note that the delay and jitter are ones of the typical parameters in

evaluating the quality of service (QoS) over communications networks. However,

the delay does not affect the video streaming services compared to the packet

loss if it can tolerate a delay of five seconds [81, 82]. In this case, the packet loss

impacts more on the video streaming services [81, 82].

The advantages of exploiting diversity and multiplexing gains of multi-antenna

systems promotes the application of MIMO technology in wireless video commu-

nications systems. Wu et al. [83] investigated the system performance of a
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MPEG coding scheme with joint convolutional coding and MIMO-based space-

time block codes (STBC) techniques over Rayleigh fading channels. The feedback

information from the performance control unit (PCU) was employed to control

the assigned rates to the MPEG source code and convolutional coding stages.

Although this study demonstrated that BER can be improved using STBC and

convolutional coding systems, it did not propose any techniques to mitigate error

propagation in video signals at the video decoder. Song and Chen [84] pro-

posed a MIMO system based on the adaptive channel selection (ACS) method.

The suggested scheme was to load more important video layers to the MIMO

sub-channel which has a high SNR. Song and Chen [85] also proposed another

method to increase the transmission throughput by reallocating the excess power

of certain sub-channel to other sub-channels. Zheng et al. [86] proposed a hybrid

space-time coding structure to achieve the UEP scheme for multiple description

coding (MDC) over a MIMO-OFDM system. Besides, several hybrid MIMO sys-

tems were proposed in [87, 88]. Although these works have suggested different

methods to improve video transmission over wireless channels, they depend on

the direct transmission of video signals. Therefore, they require high data rates

for transmission and have lower PSNR performance than the packet partitioning

proposed in this chapter.

Most of the existing work for 3-D video delivery over wireless communica-

tion channels focus on fixed designs such as the one proposed by Hewage et al.

[16] which was based on VpD. In their paper, a UEP method based on unequal

power allocation (UPA) was proposed to transmit 3-D video signals over WiMAX

communication channels. The VpD map was coded with backward compatibility

using scalable video coding (SVC) architecture. Akar et al. [89] utilized the previ-

ous method to transmit 3-D video signals over the Internet. Furthermore, Hewage

et al. [90, 91] demonstrated that the depth map information is less important

than the colour data in terms of perceived video quality. For this reason, the

proposed UEP scheme in [90, 91] allocates more protection for the colour image

than the depth map. It was also determined based on UPA method. Aksay et al.

[3] studied the digital video broadcasting-handheld (DVB-H) system at different

coding rates for transmitting left and right views. The study recommended that

more protection be given to the independently-encoded view, i.e., the left view

than the dependent view, i.e., the right view. Tech et al. [18] implemented and

integrated the JMVC reference software version 5.0.5 using the slice interleaving

method. Micallef and Debono [17] applied the same idea of the slice interleav-

ing method with different slice sizes to the JMVC reference software version 8.0.
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Recently, Hellge et al. [19] proposed a layer-aware FEC method to improve the

MVC video performance over the DVB-H system. It can be concluded that the

slice interleaving method is useful only when the SNR in the wireless channel is

high. Furthermore, the slice interleaving method requires a high data rate for

transmission due to the increase in the number of slices per frame.

3.2 Contributions

In this chapter, the issues raised above are addressed by contributing the follow-

ing:

1. A comparison of 3-D video representations, i.e., VpD, MVC, MRSC and SC.

The comparison is useful for studying noise effect on each representation

and provide the format most suitable for video transmission over wireless

video communication systems;

2. The proposal of a new 3-D video transceiver architecture that adopts var-

ious UEP schemes for transmission. The proposed schemes are based on

video packet partitioning which classifies the video packets based upon the

GoP for the MVC and VpD into sub-groups. Each sub-group is classified

according to the HP or LP streams according to the position of the sub-

group between the GoP packets. The classification method depends on

isolating the HP and LP streams inside each view of MVC. The proposed

schemes also applied for VpD to classify the video packets inside the colour

and depth sequences;

3. A new transmission protocol is also proposed. The protocol selects the

best UEP schemes between the proposed schemes and adopts a switching

operation between the selected schemes to achieve high video quality with

the lowest bandwidth and system complexity;

4. The combination of two error-resilient video methods to overcome the effects

of noisy channels. The first method depends on resynchronization patterns

and the second uses the channel state information (CSI) signal to control

the LDPC encoders to allocate equal or unequal protection to the HP and

LP streams;

5. An efficient algorithm called the approximate lower triangular form (ALTF)

in [92] for the LDPC with different coding rates is adopted and integrated
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into the 3-D video system. The adopted LDPC code is adaptive to the

channel state according to the proposed JSCC algorithm; and

6. Several experiments are conducted with typical 3-D video sequences to in-

vestigate the performance of the proposed UEP schemes and transceiver

over cooperative MIMO-OFDM systems. Experimental results show that

the proposed UEP schemes achieve significantly high video quality at dif-

ferent SNRs in the wireless channel with the lowest possible bandwidth and

system complexity compared to the direct transmission schemes.

The remainder of this chapter is organized as follows. Section 3.3 describes

the proposed system model. Section 3.4 introduces proposed UEP schemes and

problem formulation. Section 3.5 provides experiential results and discussion.

Finally, Section 3.6 concludes this chapter.

3.3 System Model

Figure 3.1 illustrates the proposed cooperative MIMO-OFDM system for 3-D

video transmission. The following sub-sections describe each major component

of the proposed system.

3.3.1 3-D Video Encoder

The 3-D video input is generally captured by two cameras representing the left

and right views. After that, the stereoscopic views are represented by the MVC

or VpD representation [93]. The use of these methods is determined by the

underlying 3-D video application and display techniques. In this thesis, MVC

and VpD representations are used and tested because they are appropriate for

low-rate applications such as mobile video services [93].

3.3.2 Rate-Distortion Analysis for 3-D Video Compres-

sion

The distortion of a video signal generally consists of source distortion (Ds) and

channel distortion (Dc). Ds is due to the compression process in the video en-

coder, and Dc is caused by video packet losses introduced by the wireless channel.

Hence, the total distortion of the left (DL) and right (DR) views can be formed
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as:

DL = DsL +DcL (3.1)

and

DR = DsR +DcR (3.2)

where source distortion (DsL and DsR) can be calculated by measuring the MSE

between the decoded video sequences from the uncorrupted bit-stream at the

source and the original ones, while the channel distortion (DcL and DcR) can be

calculated by measuring the MSE between the decoded video sequences after the

video decoder and the original ones. Therefore, the overall video distortion at

the end of the receiver can be defined as the MSE between the decoded video

sequences after the video decoder and the original ones. The average distortion

of the 3-D video signal (DT ) can be described as [3, 32]

DT =
DL +DR

2
(3.3)

To minimize DT , two methods are followed. The first method uses a rate-

distortion (R-D) model to estimate the source encoding rate that minimizes the

DsL and DsR . The second method reduces the DcL and DcR by choosing suitable

code rates of the LDPC encoders.

In the first method, the DsL and DsR can be modeled as [94]

DsL =
θL

RL −R0L

+D0L (3.4)

DsR =
θR

RR −R0R

+D0R (3.5)

where RL and RR are source encoding rates in bit per second (bps) of the left and

right views, respectively. In addition, θL, R0L and D0L represent the sequence-

dependent parameters of the R-D model of the left view encoder, and θR, R0R

and D0R for the right view [94]. The source distortion of depth DsD can also be

calculated

DsD =
θD

RD −R0D

+D0D (3.6)

where RD in bps is the encoding rate of the depth encoder.

Using some non-linear curve fitting tools, the relevant R-D curves of left, right

and depth sequences for ‘Car’, ‘Hands’, ‘Horse’ videos in [95] are plotted in Figure

3.2. Hence, the distortion parameters in (3.4), (3.5) and (3.6) can be calculated
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Table 3.1: Encoder rate-distortion curve parameters for ‘Car’ Video.

R-D parameters

Left view θL R0L D0L

5.48× 103 6.39 -1.755

Right view θR R0R D0R

2.14× 103 10.85 -1.38

Depth sequence θD R0D D0D

842.69 23.09 -0.11

for each video sequence. For example, for the adopted ‘Car’ video, the distortion

parameters can be calculated as shown in Table 3.1.

As can be seen from Figure 3.2-(a),(b), the variation in MSE becomes very

small when RL and RR is greater than 1.2 Mbps. Therefore, the encoding rate

RL=RR=1.206 Mbps is used to encode the right and left (colour) sequences.

Similarly, as can be seen in Figure 3.2-(c), the variation in MSE becomes very

small when RD is greater than 350 kbps. In addition, the distortion effect on the

depth sequence is less than on the colour sequence. Therefore, RD=0.378 Mbps

is utilized for encoding the depth sequence in VpD format. Thus, these selected

rates achieve a good balance between video quality and bandwidth.

3.3.3 Video Packet Partitioning

In H.264/AVC coding, a number of coding profiles are defined according to the

codec capabilities. In this thesis, the baseline profile is chosen due to its suitability

for low rate video applications [44]. Figure 3.3 illustrates the video packets and

their types after the H.264/AVC video encoder. As shown in Figure 3.3, P1 and

P2 represent the sequence parameter set (SPS) and picture parameter set (PPS)

packets. These packets contain common control parameters to the decoder which

are used to identify the entire video sequence. The packets P1 and P2 are followed

by I-frame packets (PI3, . . . , PIn) and P-frames packets (PP3, . . . , PPm),

From the error protection point of view, the SPS, PPS and I-frame packets

can be classified to HP packets, while the rest P-frame packets can be classified as

LP packets. This due to the fact that any error in the SPS and PPS packets may

lead to an entire system decoding failure. Furthermore, any error in the I-frame

packets will propagate to the P-frames packets. However, as shown in Figure

3.3, it is possible to enhance the video transmission and reduce the data rates
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Table 3.2: The video system performance at different loss of groups

Tested sequence Group PSNR Distortion

g1 27.45 116.713

Car g2 31.94 41.59

g3 35.9 16.7

g4 39.57 7.17

g1 25.08 201.47

Hands g2 30.14 62.91

g3 35.07 20.19

g4 39.7 6.95

g1 31.24 48.85

Horse g2 34.07 25.45

g3 36.62 14.148

g4 38.6 8.96

for transmission by dividing the video packets per GoP into a number of packet

groups (GP) (g1,g2,. . .,gNg). These groups can be classified according to their loss

effects on the total video quality when they are lost in the video decoder.

To illustrate the loss effects of each group on the quality of reconstructed

video sequence, each GoP is divided into several video sequences such as ‘Car’,

‘Hands’ and ‘Horse’ videos in [95], with 30 frames per second (fps) of 432×240

pixels and a GoP of 10 frames, into four groups (Ng = 4) g1, g2,g3, g4. Each

sequence is tested by discarding each group of packets individually. In the first

test, the g1 only is discarded, while g2,g3 and g4 are reconstructed perfectly. This

usually happens when the video decoder loses the g1 packets because there is still

bit error left in g1 packets even after LDPC decoding. In the second, third and

fourth tests, the same procedure is performed on g2, g3 and g4, respectively. In

addition, the video system performance for each test is measured in terms of the

peak signal-to-noise ratio (PSNR) and video distortion.

Table 3.2 reveals the video system performance for each test sequence. As

shown in this table, the worst PSNR occurs when the g1 packets are lost, while

the distortion is minimal when error propagation takes place within the packets

in g4. In conclusion, the priority order of the GP from high to low is g1, g2,. . .,

gNg. Therefore, the video packet partitioning operation classifies the packets to

HP and LP streams according to their position in the GoP packets.
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In this chapter, two methods of video transmission are proposed as shown

in Figure 3.1. The first method is based on the packet partitioning scheme. In

this method, the video packets are classified to HP and LP packets and the HP

packets have higher protection than LP packets. The second method uses the

direct transmission. In this method, the independent view, i.e., colour and left

view for VpD and MVC, respectively, and the dependent view, i.e., depth and

right view for VpD and MVC, respectively, are sent directly without applying

packet partitioning. In the direct transmission, the colour and left view for VpD

and MVC, respectively, have higher protection for transmission because the left

and right view for VpD and MVC, respectively, are reconstructed depending on

the relationship between the colour and depth for VpD, and the left view and

residual from the right view for MVC. Therefore, any error in the colour or left

view for VpD or MVC will spread to the reconstructed view.

3.3.4 Source and Destination Control Units

As shown in Figure 3.1, the proposed system utilizes two control units at the

network layer of the source and destination. The control unit in the transmitter

is proposed to control the coding rates for 3-D video and LDPC encoders, and

allocate a number of packets for HP and LP streams according to the CSI which

is fed by the destination. In addition, the control units are responsible for:

1. Switch the switch circuits to the partitioning path (PP) or the direct path

(DP) according to the scheme to be used for the transmission. This is can

be achieved by switching switch circuits, called Switch-1, Switch-2, Switch-

3 and Switch-4, to the PP or the DP path according to the control signals

SWT and SWR. For example, if the partitioning schemes are adopted for

transmission, the switch circuits connect the input to the PP path;

2. Control the partitioner and de-partitioner circuits, i.e., the Partitioner-1

and Partitioner-2 at the source by the CST signal and the Departitioner-

1 and Departitioner-2 at the destination by the CSR signal, to select the

number of packets to send the HP and LP streams depending on the current

SNR in the channel;

3. Count the number of transmitted frames and check the CSI per video frame.

When the number of transmitted video frames reaches the allocated GoP,

the control units select the scheme and change the SWT , SWR, CST and

CSR signals for that purpose.
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3.3.5 Error Protection

Two LDPC codes with variable channel coding rates are employed to protect

the HP and LP streams. Usually, the channel distortion, DcL , DcR and DcD ,

can be minimized with an appropriate design of LDPC codec. Moreover, the

operations of LDPC encoding and decoding must be efficient and simple. Hence,

an encoding algorithm of the approximate lower triangular form (ALTF) and a

decoding method of sum-product algorithm (SPA) are utilized to achieve this

goal [92, 96].

The ALTF algorithm is based on row and column permutations only. This

operation performs as many transformations as possible in order to reduce the

gap (g) in the ALTF matrix, where the encoding complexity is proportional to

the gap size.

The SPA algorithm is a soft decision algorithm that calculates the a priori

probabilities of the received code bits and uses a posteriori probabilities for de-

coding operation. These probabilities are known as log-likelihood ratios.

3.3.6 Error Resilient Methods

In the proposed system in Figure 3.1, two error-resilient video methods are com-

bined to overcome the effects of noisy channels.

The first method depends on resynchronization patterns. In this method,

special information in the video packet header is exploited by the video decoder

to isolate the effect of error propagation. The length of header information is

around 20 bytes and in a hexadecimal form 00 00 FF FF FF FF 80, which exists

in most packets, e.g., SPS, PPS, I and even P frame packets. This pattern is

utilized to maintain the synchronization with the video encoder by restarting

the decoding operation when the error occurs in the video packet. The error

propagation could be detected easily by a cyclic redundancy check (CRC) at the

decoder side. In this procedure, the decoder depends on the CRC to determine

the corrupt packets and discard them. Thus, restarting the video decoder is

necessary to minimize the error effect and isolate the error propagation between

the video packets.

The second method uses the CSI signal to control the LDPC encoders to

achieve adaptive video transmission. In this approach, the 3-D video transmitter

allocates different code rates to the LDPC encoders corresponding to the UEP

schemes or the same code rates for the EEP scheme.
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3.3.7 Cooperative MIMO-OFDM Systems

A wireless network with M+2 nodes is considered, where M is the number of

relays between the source and destination. In particular, there is one source node

which communicates with one destination node. In the cooperative scenario, the

destination can share its information with the partner which is operating as a relay

(R). The relay node among M nodes, is willing to assist this communication by

amplifying and forwarding (AF) the received signal to the destination without any

further signal processing. Every node is equipped with two antennae and adopts

a full diversity using Alamouti’s scheme [55]. All nodes are assumed to adopt a

half-duplex mode such that a node cannot transmit and receive simultaneously,

but on different time slots.

As shown in Figure 3.1, the HP and LP bits after LDPC encoders are mapped

into a sequence of symbols belonging to a constant modulus constellation such

as M -ary phase shift keying. In the first hop, the symbols are encoded by

space-time block encoder and sent simultaneously over the channel in multiple

consecutive OFDM symbol intervals to the destination and the relay (R). Let

d , [d[0], d[1], · · · , d[N − 1]]T denote the symbol vector. In the first hop, the

OFDM symbol is sent to the destination and the relay. For the direct link be-

tween the source and destination, the j th element of the received signal vector

rSDj at the destination is given by [5, 7]

rSDj =

(
NTX∑
i=1

HSD
j,i di

)
+ nSDj , j = 1, 2, ..., NRX (3.7)

where HSD
j,i is the channel frequency response between the j th receive antenna

at the destination and the ith transmit antenna at the source, di is the sample

of the OFDM symbol at the ith transmit antenna (with i = 1, 2, · · · , NTX),

NTX denotes the number of antennae at the source, nSDj ∼ CN (0, σ2
SD) for

j = 1, 2, · · · , NRX is AWGN and its elements are independent and identically

distributed (i.i.d.), and NRX denotes the number of antennae at the destination.

The received signal at the relay rSR at kth relay antenna is given by:

rSRk =

(
NTX∑
i=1

HSR
k,i di

)
+ nSRk , k = 1, 2, ..., NR (3.8)

where HSR
k,i is the channel frequency response between the ith transmit antenna

at the source and the kth relay antenna at the relay, and is modeled as quasi-

static Rayleigh fading channels and remain constant over the period of a transmit
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OFDM symbol, nSRk ∼ CN
(
0, σ2

SR

)
for k = 1, 2, . . . , NR, and NR denotes the

number of antennas at the relay.

In the second hop, the relay performs the AF operation on the received signals

(rSR), where the relay first normalizes the received signals to yield normalized

signal rSRk with E[|rSRbestk |2] = 1 and multiplies the received signal rSRk by the

following gain factor [5, 7]:

Gk =
1√(

NTX∑
i=1

|HSR
k,i |2

)
+ σ2

SR

, k = 1, 2, . . . , NR (3.9)

Then, the relay forwards the signal to the destination. The j th element of the

received signals rrd at the destination is given by

rRDj =

NR∑
k=1

HRbestD
j,k Gkr

SR
k + nRDj

=


NR∑
k=1

HRD
j,k

(
NTX∑
i=1

HSR
k,i di

)
√(

NTX∑
i=1

|HSR
k,i |2

)
+ σ2

SR



+


NR∑
k=1

HRD
j,k n

SR
k√(

NTX∑
i=1

|HSR
k,i |2

)
+ σ2

SR

+ nRDj


j = 1, 2, . . . , NRX (3.10)

where nRDj ∼ CN
(
0, σ2

RD

)
for j = 1, 2, . . . , NRX .

The received signals rSDj in (3.7) and rRDj in (3.10) are applied to the DFT

operation. Maximal ratio combining (MRC) is utilized in the destination to

obtain cooperative diversity gains by adding the decoding samples of the direct

and relay links coherently.

3.4 Proposed UEP Schemes and Problem For-

mulation

Significant UEP schemes are proposed to solve three problems design for the 3-D

video system.
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3.4.1 Proposed UEP Schemes

The UEP Schemes are proposed to enhance the video transmission and reduce

the data rates for transmission. These schemes classify the packets inside the

each view of MVC. In addition, they classify the packets inside the colour and

depth for the VpD. For MVC, the summary of each scheme is follows.

1. The first scheme, called partitioning-multi-view coding (P-MVC), employs

packet partitioning, where SPS, PPS and I-frame packets in the first and

second layer sequences are classified as HP packets while P-frame packets

are considered as LP packets;

2. The second scheme, called P-MVC-1/4, considers the g1 and I-frame packets

in the first and second layers as the HP packets;

3. The third method, called P-MVC-1/2, considers g1, g2 and I-frame packets

in both layers as the HP packets.

For VpD, the same classifications of packets are applied. Therefore, three

UEP schemes, P-VpD, P-VpD-1/4 and P-VpD-1/2 are considered.

Note that for direct schemes, the D-MVC and D-VpD respectively denote

direct-multi-view coding and direct-view plus schemes.

3.4.2 Problem Formulation and Solution

The proposed UEP schemes solve three problems which are:

3.4.2.1 The complexity of channel encoding and decoding

The LDPC performance in terms of the BER is shown in Figure 3.4 for the

set of code length 2048 and fifty maximum iterations with variable coding rates

R = 8/16, 9/16, . . . , 13/16 under BPSK modulation.

The gap values are determined for each coding rate as shown in Table 3.3.

As can be observed from Figure 3.4, decreasing the code rates reduces the

BER. On the other hand, it also increases the size of the gap as shown in Table

3.3. This leads to increased computational complexity for channel encoding and

decoding. Therefore, the best method to solve this problem is to adopt the low

code rates at low SNRs, and the moderate and high code rates at moderate and

high SNRs, respectively. In this approach, high video quality is maintained at

different SNRs and reduced the complexity of the system with improve of SNR
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Table 3.3: Gap values at various code rates

Coding rates Column weight(j ) Row weight (k) Gap (g)

13/16 3 16 6

12/16 3 12 12

11/16 3 10 13

10/16 3 8 21

9/16 3 7 29

8/16 3 6 38

in the wireless channel. Therefore, a switching operation between the proposed

UEP schemes is proposed to overcome this problem. This depends on increasing

the code rate with an improvement of SNR in the wireless channel.

3.4.2.2 Direct transmission requires high bandwidth for transmission

In general, the direct schemes require more bandwidth for transmission compared

to packets partitioning schemes. To overcome this problem, a packets partition-

ing method is proposed which significantly reduces the required bandwidth for

transmission compared to the direct schemes.

To illustrate this point, the required data rate is measured to transmit MVC

and VpD under different schemes. Table 3.4 shows the required data rates in

Mbps for different MVC and VpD schemes, where the total date rate RT =
RHP
rHP

+ RLP
rLP

in bps, RHP and RLP are the bit rates for the HP and LP streams,

respectively, rHP and rLP respectively are channel code rates for the HP-LDPC

and LP-LDPC encoders as shown in Figure 3.1.

As shown in Table 3.4, it can be concluded that the packet partitioning

schemes either for MVC or VpD significantly reduce the required data rates for

transmission compared to the direct schemes. For example, the P-MVC-1/2

scheme at rHP=4/16 requires less 0.7115 Mpbs than the D-MVC-1/2 scheme at

rHP=4/16 for the ‘Car’ sequence, 1.1894 and 0.48 Mpbs for the ‘Hands’ and

‘Horse’ sequences, respectively.

3.4.2.3 The different performance of direct and packets partitioning

The packets partitioning schemes are more reliable than direct schemes. However,

the direct schemes are simpler than the partitioning schemes. Therefore, the best



46 A New UEP Scheme for 3-D Video Transmission

Table 3.4: Comparison results of bitrate allocation for the proposed transmission

schemes

Sequence Scheme rHP rLP RT (MVC) RT (VpD)

4/16 7.01 6.91

D-MVC 8/16 13/16 3.76 3.844

13/16 2.51 2.66

P-MVC 3.029 3.027

Car P-MVC-1/4 8/16 13/16 3.29 3.37

P-MVC-1/2 3.56 3.7

P-MVC 4.368 3.97

P-MVC-1/4 4/16 13/16 5.332 5.21

P-MVC-1/2 6.306 6.39

4/16 9.4384 8.27

D-MVC 8/16 13/16 5.0932 4.28

13/16 3.422 2.75

P-MVC 3.963 3.44

Hands P-MVC-1/4 8/16 13/16 4.368 3.71

P-MVC-1/2 4.762 3.97

P-MVC 5.369 5.25

P-MVC-1/4 4/16 13/16 6.829 6.21

P-MVC-1/2 8.249 7.13

4/16 7.948 10.95

D-MVC 8/16 13/16 4.466 6.13

13/16 3.1266 4.288

P-MVC 4.29 4.69

Horse P-MVC-1/4 8/16 13/16 4.481 5.25

P-MVC-1/2 4.675 5.82

P-MVC 7.336 5.76

P-MVC-1/4 4/16 13/16 7.23 7.78

P-MVC-1/2 7.8 9.81
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solution for this problem is to strike a trade-off between the complexity of the

partitioning schemes and the simplicity of the direct schemes. This is achieved

by adopting the partitioning schemes at low and moderate SNRs, and the direct

schemes at high SNRs. In this approach, high video quality is maintained at low

and moderate SNRs and reduced the complexity of the system at high SNRs.

This point will be explained in more details in subsequent sections.

3.5 Experimental Results and Discussion

To evaluate the performance of the proposed system and schemes, several ex-

periments are conducted with typical 3-D video sequences of ‘Car’, ‘Hands’ and

‘Horse’ in [95], with 30 frames per second (fps) of 432 × 240 pixels and a GoP

of 10. Each GoP is divided into four groups (Ng = 4) g1, g2,g3, g4. In this

chapter, the MVC codec based on H.264 in [21, 37] is adopted for encoding the

left and right views, while the H.264 reference software JM version (13.2) in [36]

is used for encoding the right (colour) and depth sequences. The cooperative

MIMO-OFDM system is designed according to its model in Section 3.3.7. Note

that, in this chapter, the proposed schemes are evaluated under the assumption

of the perfect knowledge of channel variations in terms of amplitude, phase and

frequency variations. However, in Chapter 6, the channel variations is taken

into account and the proposed schemes are evaluated over time-varying fading

channels against the channel variations in terms of time varying phase noise and

carrier frequency offset. Table 3.5 shows the simulation configurations.

To simulate the cooperative MIMO system with LDPC codes and OFDM

technique, the following steps are taken: 1) The model of the cooperative MIMO

system in (3.7)-(3.10) is simulated without LDPC codes and OFDM technique;

2) The simulation model is compared with the analytical model in ([97], Equation

(33)) as shown in Figure 3.5 in terms of BER; 3) The LDPC codes and OFDM

technique are added to the simulation model. As shown in Figure 3.5, there is

strong agreement between the simulation results and the theoretical curve.

3.5.1 VpD Transmission Performance Compared to MRSC

and SC Schemes

VpD is more sensitive to error propagation, since error bits in colour information

propagate to the reconstructed left view. However, noise effects are not substan-

tially noticed on the reconstructed 3-D video sequence when the right (colour)
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Table 3.5: The simulation configurations

System parameters Value

Source coding H.264/AVC [36], H.264/MVC [21, 37]

Tested sequence ‘Car’, ‘Hands’ and ‘Horse’ [95]

Video sequence dimensions (432x240) pixels

Down sampling factor 2:1

GoP 10

Channel Quasi-static Rayleigh fading

Noise AWGN

Relay protocol AF

No. of antennae for source 2

No. of antennae for relay 2

No. of antennae for destination 2

CRC 16

Coding rates 4/16, 8/16 and 13/16 for UEP

13/16 for EEP

Diversity technique Alamouti scheme

Guard period ratio 1/4

OFDM sub-channels 1024
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view is perfectly reconstructed. For example, Figure 3.6 shows the performance

of VpD compared to SC and MRSC formats at different percentage of corrupted

packets and assumptions that the colour view is perfectly reconstructed and noise

only affects the depth sequence. As shown in Figure 3.6, VpD is less affected by

noise than other 3-D video coding techniques because of the depth sequence is

only gray scales ranging from 0 to 255.

For video transmission over wireless channels, the required data rate to trans-

mit SC, MRSC and VpD formats under different UEP and EEP schemes is firstly

measured. Table 3.6 shows the required data rates for VpD using direct and

packet partitioning schemes compared to SC and MRSC transmission, where the

code rates RHP = 8/16 and RLP = 13/16 are adopted in this table.

Table 3.6: Required data rates for VpD transmission using direct and packet par-

titioning schemes compared to SC and MRSC transmission

Scheme RT for UEP RT for EEP

D-SC 4.027 3.047

D-MRSC 3.342 2.362

D-VpD 2.987 2.062

P-VpD 2.364 2.062

P-VpD-1/4 2.625 2.062

P-VpD-1/2 2.876 2.062

As illustrated in Table 3.6, the D-VpD scheme possesses better data rates

than the D-SC and D-MRSC schemes. In addition, packet partitioning schemes

for VpD have lower data rates compared to D-VpD.

Figure 3.7 compares the PSNR performance of D-VpD scheme with the D-SC

and D-MRSC schemes. The results show that the performance of the D-VpD

using UEP schemes is better than the D-SC and D-MRSC schemes because the

depth sequence is not deeply affected by noise. Hence, it can be concluded that

if the right (colour) view is reconstructed perfectly, the left view could be recon-

structed acceptably even if the noise effects have spread in the depth sequence.

This fact is clearly observed when the colour receives more error protection than

the depth using the UEP technique. Moreover, decreasing the data rates reduces

the video signal protection, which makes the video signal more sensitive to error

propagation. This fact can be clearly seen in the VpD, SC and MRSC using EEP

scheme;



50 A New UEP Scheme for 3-D Video Transmission

It is clear from the results in Figure 3.7 that the VpD has better PSNR

performance compared to SC and MRSC formats and is more suitable for 3-D

video transmission.

3.5.2 Performance Comparison between Partitioning and

Direct Schemes using VpD and MVC Schemes

Figures 3.8 and 3.9 plot the average decoded 3-D video quality in terms of PSNR

with different direct and packets partitioning schemes for MVC and VpD for ‘Car’,

‘Hands’ and ‘Horse’ sequences, respectively. The results lead to the following

observations:

1. In Figure 3.8, the performance of the packets partitioning schemes (P-MVC,

P-MVC-1/4,. . . , etc.) either for rHP=4/16 or rHP=8/16 significantly im-

prove the system performance compared to the direct schemes at different

SNRs (-9 (minus 9) to -2 dB). For example, the P-MVC-1/2 (rHP=4/16)

and P-MVC-1/4 (rHP=4/16) schemes in Figure 3.8-(a) improve the PSNR

with 7.8 and 2.94 dB compared to D-MVC-1/2(rHP=4/16) at SNR=-7 dB;

2. In Figure 3.9, the performance of the packets partitioning schemes (P-VpD,

P-VpD-1/4,. . . , etc.) compared to direct schemes (D-VpD) is very close

and improves the PSNR at different SNRs. For example, in Figure 3.9-(a),

the difference PSNR between the P-VpD-1/2 and D-VpD-1/2 at rHP=4/16

is 0.3 dB at SNR=-8 dB, while their performance is very close with the

increasing of SNRs. In addition, if the P-VpD-1/4(rHP=4/16) is compared

with D-VpD(rHP=8/16) at SNR=-8 dB, the improvement of PSNR=4.13

dB;

3. The packets partitioning schemes maintain the system to provide high

PSNR although the SNRs are changed in the wireless channel. For ex-

ample, in Figure 3.8-(a), the P-MVC-1/2(rHP=4/16) scheme enhances the

system to achieve PSNR between 32.51 to 38.45 dB over SNRs from -9 to

-2 dB. In addition, in Figure 3.9-(c), the P-MVC-1/2 (rHP=4/16) scheme

maintains the system with PSNR=34.41 to 37.96 dB at different SNRs.

This regards to the isolation method of HP packets inside the right (colour)

view and left/depth sequence. In this case, the noise only affects the LP

packets which do not affect on the overall reconstructed video quality; and
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4. The decreasing in the data rate reduces video signal protection, which makes

the video signal more sensitive to error propagation. This fact can be seen

clearly seen in the D-MVC and D-VpD schemes at rHP=13/16. There-

fore, the system has to resort to UEP schemes for enhancing the system

at different SNRs. However, the UEP schemes make the channel encoding

and decoding operations more complicated, and require high data rates for

transmission. Therefore, with suitable allocation of the channel code rates

based on the channel’s SNR, the high system performance with a lower com-

putational complexity of encoding and decoding operations, and data rates

can be achieved. Therefore, the Switch-1, Switch-2, Switch-3 and Switch-4

circuits are proposed as shown in Figure 3.1 that switch to the packets parti-

tioning schemes (P-MVC, P-MVC-1/2,. . . , P-VpD, P-VpD-1/2,. . . ,etc.) at

low and moderate SNRs, while they switch to direct schemes at high SNRs.

Thus, this adaptive technique achieves a trade-off between the display the

3-D video signal with high video quality at low and moderate SNRs and

reducing the complexity of the encoding and decoding operations as well as

the required data rates at high SNRs.

3.5.3 The 3-D Video Protocol

In Figures 3.8 and 3.9, the performance of P-MVC-1/2 (rHP=4/16) or P-VpD-1/2

(rHP=4/16) scheme is better than other schemes at low SNRs between -9 to -5

dB, while their performances are close and match with other schemes at moderate

and high SNRs (-5 to -3 dB), respectively. Based on this observation, it can be

considered the SNR=-5 and -3 dB as SNR thresholds which can be exploited to

make the control unit switch the system from a scheme to another to keep high

video quality with reducing the data rates and system complexity according to

the improvement of SNRs. Therefore, the control unit controls the system to

adopt the following 3-D video protocol to achieve high video quality at different

channel states with the lowest bandwidth and system complexity. This protocol

is: the P-MVC-1/2 (rHP=4/16) or P-VpD-1/2 (rHP=4/16) scheme is adopted for

transmission between SNR=-9 and less than -5 dB, the P-MVC-1/4(rHP=8/16)

or P-VpD-1/4(rHP=8/16) is used between SNR=-5 and less than -3 dB, and the

D-MVC (rHP=13/16) or D-VpD (rHP=13/16) scheme is utilized when SNR is

greater than or equal to -3 dB.

For comparative purposes, Figure 3.10 shows the reconstructed left and right

pictures for the ‘Car’ video sequence at frame 19 under different transmission
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schemes in the protocol at different SNRs. According to the proposed protocol

and Figure 3.10, the proposed system is highly flexible in adapting to the quality

of the underlying wireless channel.

3.5.4 Performance Comparison between VpD and MVC

Schemes

If Figure 3.8 is compared with Figure 3.9 at different video sequences and schemes,

it is seen that VpD schemes either using direct or packet partitioning are better

than MVC schemes at low SNRs (-9 to -5 dB), while their performance are close

at moderate and high SNRs (-5 to -2 dB). For example, in Figures 3.8-(b) and

3.9-(b), the P-VpD-1/2 (rHP=4/16) scheme achieves PSNR=30.02 dB at SNR=-

9 dB, while P-MVC-1/2 (rHP=4/16) achieves PSNR=26.31 dB. This fact is due

to the depth structure which is less affected by noise. Therefore, the VpD is

more appropriate for 3-D video transmission at low SNRs. These SNRs values

(-5 and -3 dB) are called as SNR thresholds that make the system switch from

one scheme to another.

3.5.5 Threshold SNR Selection

The SNR thresholds are determined by the design of the wireless system such as

the cooperative MIMO-OFDM system in this chapter. To apply this threshold

approach in more general cases, the control unit can be made to respond to the

number of packets which are lost at the video decoder and the positions of these

packets in the GoP. This is easily achieved using CRC. For example, if the D-MVC

scheme is adopted and the decoder loses the g1 and g2 packets in a certain GoP.

This means the SNR in the channel is low. Therefore, the control unit will switch

the transmitter to adopt the P-MVC-1/2 scheme for transmission in the next

GoP to overcome the low SNR problem until the SNR improves, then the control

unit will switch the transmitter to adopt the D-MVC scheme again.

3.6 Conclusion

This chapter put forward a novel UEP scheme, called video packet partition-

ing, to transmit 3-D video sequences. Various UEP schemes depending on this

scheme were proposed to isolate the important packets inside the right/or colour

and left/or depth sequences. A new 3-D video transceiver was proposed. In par-
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ticular, the video transceiver adopts various UEP schemes with two error resilient

methods to overcome the effects of error propagation in the 3-D video streams.

The proposed video transceiver and UEP schemes were tasted over the coopera-

tive MIMO-OFDM system. A new 3-D video protocol was proposed that adopts

the best UEP schemes to achieve high video quality at different SNRs with the

lowest bandwidth and system complexity. A unique efficient control units in

the transmitter and receiver were suggested to perform the many tasks needed

to achieve a high video quality. Simulation results on standard video sequences

showed that the system is less complex and always provides high PSNR at every

SNR compared to the direct schemes. Therefore, the proposed system provides

a high level of flexibility and efficiency to adapt to the conditions of the wireless

communication channel.
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Figure 3.1: Block diagram of the proposed cooperative MIMO-OFDM system for

3-D video transmission.
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Figure 3.2: Rate-distortion curves for the left view, the right view and the depth

sequence.
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Figure 3.5: Comparison between the simulation model of the cooperative MIMO

system and the model in [97].
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Figure 3.8: Comparison of the packet partitioning and direct schemes in terms of

PSNR for MVC at different video sequences.
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Figure 3.9: Comparison of the packet partitioning and direct schemes in terms of

PSNR for VpD at different video sequences.
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(a) Left view (b) Right view

(c) Left view (d) Right view

(e) Left view (f) Right view

Figure 3.10: The reconstructed left and right pictures for the ‘Car’ video sequence

at frame 19 under different transmission schemes in the protocol at different SNRs;

(a,b) include P-MVC-1/2 (rHP=4/16) or P-VpD-1/2 (rHP=4/16) at SNR = -8

dB; (c,d) include P-MVC-1/4(rHP=8/16) or P-VpD-1/4(rHP=8/16), at SNR = -4

dB; (c,d) include D-MVC (rHP=13/16) or D-VpD (rHP=13/16) when SNR greater

than -3 dB.



Chapter 4

Joint Source-Channel Coding for
3-D Video Transmission over
Cooperative Relay Systems

4.1 Introduction

Increasing the number of relays leads to increased time slots required to transmit

the signal from the source to the destination, and also leads to a decreased system

throughput. To overcome this problem, best relay selection can be adopted.

Moreover, in cooperative relay systems, the AF protocol may be more preferable

to use than the DF protocol at the relay because it requires lower computational

complexity and time delay. This due to the AF protocol which does not require

the channel encoding and decoding operations at the relay [60]. Therefore, in

this chapter, the AF protocol is considered through the adoption of the best

relay selection for video applications.

In the scenario of best relay selection, only a single relay out of the set of

available relays is selected based on maximum instantaneous SNR between the

source-relay-destination (γSRD). At each time of relay selection, the γSRD value is

varied as well as the variation of the γSD value in the source-destination channel.

Hence, the end-to-end instantaneous SNR (γcoop) must be communicated to the

source and destination, where γcoop , γSD + γSRD. The feedback of γcoop can be

used to adapt the structure design of the source and destination to the variations

of the channels before starting to transmit the video signal. Therefore, the design

complexity of the transmitter and receiver, as well as the system performance,
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are completely determined by the accuracy of the estimation of the overall SNR

(γcoop). This accuracy estimation of γcoop dramatically impacts on the overall

performance and complexity of the system. Errors in the estimation of γcoop
degrade the overall performance and increase the complexity of the system.

The feedback scenario utilized in [7], is proposed for 2-D video transmission to

adapt the system to variations in the channels. However, in [7], the adaptation

scheme is based on the assumption that γcoop is perfectly known at the source

and destination. The study of the impact of feedback estimation (γcoop) on the

system performance for 3-D video transmission over cooperative systems has not

been addressed in the literature to date.

The existing JSCC algorithms focus on sharing Rbudget between the source and

channel coding operations based only on fixed UEP operations [20, 21]. Here, an

end-to-end rate-distortion (R-D) model is proposed for MVC to achieve the op-

timal encoder bit rates and channel code rates. Moreover, the UEP is performed

on a fixed structure of three MVC layers, called layer 0, layer 1 and layer 2, with

a fixed number of frames in each layer. However, this restricted model makes

the video system unable to be adapted to the variations in wireless channels.

In [22], the JSCC algorithm is proposed for the VpD transmission over WiMax

systems. However, the UEP scheme adopted for transmission based on direct

schemes, which requires high data rates for transmission and has lower perfor-

mance compared to packet partitioning schemes. Moreover, the JSCC algorithm

in [22] depends on certain values of source and channel code rates. In addition,

the proposed system in [22] used a single antenna and did not utilize any type of

diversity techniques to improve the system performance. More importantly, UEP

based on packet partitioning schemes for 3-D video transmission has not been

considered in the proposed JSCC algorithms in [20–22]. Moreover, the unequal

importance of packets inside the right (colour) and left/depth is not considered

in [20–22] in formatting the HP and LP streams of JSCC algorithms.

In the existing literature such as [98, 99], the problem of cross-layer design

of joint video encoding rate control, power control, relay selection and channel

assignment for cognitive ad hoc networks and cooperative relays is addressed.

Moreover, the problem of joint optimization of power and cache control to support

real-time video streaming is addressed in [100]. However, the proposed algorithms

in [98–100] are only applicable for 2-D video applications. More importantly, UEP

schemes based on packet partitioning are not considered in [98–100].

To the best of author’s knowledge, the framework of the estimation procedures

of the end-to-end instantaneous SNR for cooperative systems based on the best
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relay selection, and efficient JSCC algorithms for cross-layer optimization based

on packet partitioning schemes, is not addressed in the literature. In addition,

the simulation results show that JSCC approaches reported in the literature are

significantly outperformed by the JSCC algorithm proposed in this chapter.

It is worth mentioning that this chapter does not exploit any advanced esti-

mation techniques for γcoop, since channel estimation techniques are beyond the

scope of this chapter. However, some examples of estimation error in γcoop are

provided to show that there is an additional factor related to the accuracy of esti-

mation of γcoop that directly affects the performance of cooperative video systems

and has to be considered in the design of multimedia cooperative communication

systems with feedback.

4.2 Contributions

The contributions of this chapter are four-fold:

1. A novel JSCC optimization algorithm is proposed based on Lagrange mul-

tipliers, which is controlled by the Rbudget and the estimated γcoop.

2. The proposed algorithm simultaneously optimizes the application layer pa-

rameter, quantization parameters (Qp), and the network layer parameters,

these are the number of packets of HP and LP streams and other physical

layer parameters, these are the channel code rates.

3. Several experiments are carried out with different typical 3-D video se-

quences to investigate the performance of the proposed JSCC algorithm at

different Rbudget and γcoop values.

4. The impact of γcoop estimation on the video system performance and com-

plexity is investigated. Experimental results show that the performance

and complexity of wireless video systems are very sensitive to accurate es-

timation of γcoop.

The remainder of this chapter is organized as follows. Section 4.3 describes the

system model. Section 4.4 presents problem formulation and solution. Section

4.5 provides experiential results and discussion. Section 4.6 shows the impact of

γcoop estimation on video system performance. Finally, Section 4.7 concludes this

chapter.
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4.3 System Model

A cooperative system with M + 2 nodes, which consists of one source node com-

municating with one destination node and M relays, as illustrated Figure 4.1 is

considered. The best relay node with maximum γSRD, namely Rbest among M

relay nodes, is willing to assist this communication by the AF protocol.
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Figure 4.1: Wireless cooperative MIMO relay network.

The description of the system model is similar to that detailed in Chapter 3,

and is not presented here to avoid repetition. In the following sub-sections, some

parts of the system proposed in Chapter 3 are explained in greater detail from

the point-of-view of the proposed JSCC algorithm.

4.3.1 Video Packet Partitioning

As mentioned in Chapter 3 and shown in Figure 4.2, the packets in GOP can be

classified to HP packets (NHP ) and LP packets (NLP ) according to their effect

on the total video quality at the video decoder. As explained in Chapter 3 and

shown in Figure 4.2, the GOP packets include I and P slice packets as well as the

packets of SPS and PPS. According to the tests in Chapter 3, the priority order

of the GoP packets for error protection from high to low is P1, P2, PI3 ,. . ., PPm .

In this chapter, the proposed JSCC algorithm is designed to allocate as much

as possible of the prior packets of a GOP (NHP ) to the HP stream when the

available γcoop is low. At high γcoop, the JSCC algorithm is designed to use

the direct schemes, which depend on transmitting whole video packets without
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Figure 4.2: Produced video packets and their types after the video encoder.

using packet partitioning, to reduce the complexity associated with the packet

partitioning operation.

4.3.2 Error Protection

As explained in Chapter 3, decreasing the code rates reduces the BER. On the

other hand, it also increases the computational complexity of the channel encod-

ing and decoding operations. Therefore, the JSCC algorithm proposed in this

chapter is designed to use high code rates whilst maintaining high video quality

in order to reduce the complexity.

4.3.3 Control Units

As explained in Chapter 3, the proposed system utilizes two control units at the

network layer of the source and destination.

Note that in this chapter, a block-fading channel model is used, where the

channel is invariant for several time slots. This channel model can be exploited

by the proposed control units to maximize the system performance, while mini-

mizing the complexity. However, if the channel varies quickly (as may occur in

mobile applications), the system will resort to using one of UEP schemes based

on the packet partitioning in Chapter 3. The UEP schemes in Chapter 3 can

achieve high PSNR at different SNRs. However, they require a high data rate

and computational complexity in the channel encoding and decoding operations.

As can be observed from the simulation results in Chapter 3, the system can

adopt the P-VpD-1/2 or P-MVC-1/2 scheme for the transmission and neglect to

use feedback, with a corresponding increase in the data rate and system complex-

ity.
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4.3.4 Cooperative MIMO-OFDM Systems

In this chapter, a time division multiplexing (TDM) protocol is adopted for trans-

mission between the source, relays and destination. Therefore, each node is al-

lowed to transmit the signals in one time slot. Moreover, a frame of several time

slots is required to transmit the training symbols for estimating the γcoop through-

out the system and sending the video data through the relays to the destination.

Figure 4.3 shows the organization of time slots for the proposed framework of

the estimation procedures of γcoop and the transmission of video bitstreams. As

shown in Figure 4.3, each frame is composed of five time slots, denoted by t1, t2,

t3, t4 and t5. The first three time slots in each frame, i.e., t1, t2 and t3 are used

to estimate γcoop. The fourth and fifth time slots, i.e., t4, t5 are used to transmit

the video bitstreams to the best relay and destination.
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Figure 4.3: Organization of time slots of the proposed framework.

The estimation procedures of γcoop will be explained in detail in Section 4.4.1,

while the video transmission scenario during the fourth and fifth time slots, t4
and t5, is presented in Chapter 3 (Section 3.3.7) and is not presented here to

avoid repetition.

In this chapter, the following set of assumptions are adopted: A1) All nodes

adopt a half-duplex mode such that a node cannot transmit and receive simul-

taneously, but on different time slots; A2) The link channel is modeled as a slow

fading frequency-selective channel. That is the channel is assumed to be quasi-

static block fading and is constant during the time slots (t1, t2, t3, t4 and t5, as

shown in Figure 4.3) of the frame, and changes from frame to frame following a

complex Gaussian distribution; A3) The best relay node with maximum γSRD,

namely Rbest among M relay nodes, is willing to assist this communication by

amplifying and forwarding (AF) the received signal to the destination without



4.4 Problem Formulation and Solution 69

any further signal processing; A4) Every node is equipped with two antennae and

adopts a full diversity approach using Alamouti’s scheme [55].

Note that assumptions A1 and A2 are in line with previous studies in [7, 101–

104] and applicable for mobile terminals moving at walking speed. Furthermore,

assumptions A3 and A4 are adopted in [7, 32, 33, 61–65].

4.4 Problem Formulation and Solution

The two main problems which have to be considered in the design of a cooperative

system for 3-D video applications are as follows:

4.4.1 Procedures to Estimate γcoop

As explained in Chapter 3, the video source and destination nodes have to feed

the estimated γcoop to the control units before beginning to send the video signal.

In this chapter, procedures to estimate γcoop is proposed based on estimating

the instantaneous SNRs for the channels of the source-destination (γSD), and

source-relay-destination (γSRD). As mentioned earlier and shown in Figure 4.3,

the estimation procedures require three time slots, t1, t2 and t3, for estimation

by sending the training symbols throughout the cooperative system.

The procedures to estimate γcoop for video applications are illustrated in Figure

4.4, as follows:

1. In the first time slot, as shown in Figure 4.4-(a), the source sends train-

ing symbols to all the relays and the destination, where the relays and

destination are in listening mode. The training symbols are known for all

the nodes in the system. Each relay can estimate the channel coefficients

(HSRm ,m = 1, . . . ,M) of the source-relay channel, while the destination

can estimate the channel coefficients (HSD) of the source-destination chan-

nel. In this time slot, the destination will have good knowledge of the link

quality between the source and destination;

2. In the second time slot, as shown in Figure 4.4-(b), the destination sends

training symbols to the all the relays and the source. In this time slot, the

relays and the source are in listening mode. Therefore, each relay can esti-

mate the channel coefficients (HRmD,m = 1, . . . ,M) of the channel between

the destination and the relay (Rm). Meanwhile, the source can estimate the

coefficients (HSD) of the source-destination channel. Therefore, the source
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Figure 4.4: (a)-(c) Show procedures to estimate the γcoop for video applications,

while (d) and (e) show the required time slots for the transmission.

will have good knowledge of the link quality between the source and desti-

nation;

3. In the third time slot, as shown in Figure 4.4-(c), each relay depends on the

estimated channel coefficients in the first and second time slots to calculate

the instantaneous SNR value between the source and relay (γSRm), and the

instantaneous SNR values between the destination and relay (γDRm). These

two values are used to calculate the total instantaneous SNR between the

source-relay-destination (γSRmD) as in [5]

γSRmD =
γSRmγRmD

γSRm + γRmD + 1
, (4.1)

As explained in ([61], Section II), each relay utilizes a timer, which is set

to be inversely proportional to the γSRmD. The best relay, which has a

maximum γSRmD, will expire first and send a short duration flag packet to

inform the source and destination that is ready to communicate the source

with the destination, while the remaining relays will be backed-off. The

flag packet can also be exploited to inform the source and destination of
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the instantaneous SNR (γSRbestD) of the source-best relay (Rbest)-destination

channel; and

4. In the fourth time slot, the source and destination calculate the end-to-end

instantaneous SNR as

γcoop = γSD + max
m∈M

[ γSRmγRmD
γSRm + γRmD + 1

]
,

= γSD +
γSRbestγRbestD

γSRbest + γRbestD + 1
(4.2)

where M is the number of users, γSRbest is the instantaneous SNR between

the source and the best relay (Rbest), and γRbestD is the instantaneous SNR

between the Rbest and the destination.

The source and destination feed the estimated γcoop to the control units.

Then, in the fourth time slot as shown in Figure 4.4-(d), the source will

start to broadcast the 3-D video signal to the best relay and destination

simultaneously. In the fifth time slot as shown in Figure 4.4-(e), the best

relay will start to broadcast the amplified video signal to the destination.

To calculate γcoop in (4.2), the γSD and γSRmD have to be estimated. As

shown in Figure 4.4, the source, each relay and the destination can estimate

the instantaneous SNR of the source-destination (γSD), source-relay (γSRm)

and relay-destination (γRmD) during the first, second and third time slots.

According to these time slots, the system model for each slot is similar to

traditional MIMO-OFDM systems. Therefore, the instantaneous SNR for

the MIMO-OFDM system can be estimated by adopting one of the proposed

methods in the literature such as the estimation methods in [105–107].

Finally, the framework of estimation procedures of γcoop and the scenario of

video transmission over the cooperative system is summarized in Figure 4.5.

It is worth mentioning that: 1) The procedures as shown in Figure 4.4 are

repeated automatically after broadcasting the GOPs of the 3-D video signal. The

broadcasting of the video signal is performed in the fourth and fifth time slots,

i.e., t4 and t5, as illustrated in Figure 4.3, after estimating γcoop in the first three

time slots of the frame (t1, t2, t3). Therefore, the best relay selection is performed

automatically at the start of each frame and the best relay is updated from frame

to frame. Hence, the control units can change the design of the source and the

destination to track the variations of the wireless channels from frame to frame;

2) The length of training symbols is usually 256 subcarriers, and each of which is
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Figure 4.5: Summarization of γcoop estimation for video applications and γcoop
estimation is updated after broadcasting GOPs of 3-D video signal per second.

modulated by QPSK modulation [105]. The number of data symbols is normally

greater than the number of training symbols. For example, if the number of

training symbols is 256 and the length of the source data vector is set to 2560

symbols during the data packet, the resulting overhead is 9 %; 3) It is observed

in [105–107] that the performance of SNR estimators can achieve a MSE between
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10−2 to 10−3, where MSE , (γ̂ − γ)2, γ̂ and γ are the estimated and actual

instantaneous SNR, respectively. Therefore, γcoop will be directly affected by the

accuracy of SNR estimator. To illustrate the impact of estimated γcoop on the

video system performance, examples of the estimation error for γcoop are given in

Section 4.6.

4.4.2 Practical Scenarios of using Relays for Video Trans-

mission

Best relay selection can be considered as the best method for prioritizing the

relays in cooperative networks. However, this method poses some obstacles in-

cluding extra overhead and scheduling in distributing feedback [108]. To reduce

the overhead, two transmission approaches can be followed. The first approach,

which is adopted by the 802.11 standard, includes each relay sending a back off

signal in randomly selected periods of time, which are uniformly distributed in

a range, called the contention window. The second approach is adopted in [108]

and depends on assigning high priority relays a smaller contention window than

lower priority relays. Thus, the high priority relays are more likely to transmit

packets first.

4.4.3 Rate-Distortion Analysis for 3-D Video System

As explained in Chapter 3, the total end-to-end distortion (DT ) can be minimized

by adopting suitable source and channel code rates for the video and LDPC en-

coders that minimize video distortion of the source and channel in the recon-

structed left and right views. In addition, the video packet partitioning reduces

the total data rates for transmission and improves the video system performance.

4.4.3.1 Source and channel rates for the proposed system

As shown in the proposed system in Chapter 3, two LDPC codes, i.e., HP-LDPC

and LP-LDPC encoders, are utilized to protect the HP and LP streams with

different or equal code rates. The total bit rate (RT ) in bps is given by

RT =
RHP

r1

+
RLP

r2

(4.3)

where RHP and RLP are the bit rates for the HP and LP streams, respectively,

r1 and r2 are channel code rates for the HP-LDPC and LP-LDPC encoders,

respectively.
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As explained in Chapter 3, the RHP and RLP are determined according to

the transmission scheme adopted, i.e., direct or packet partitioning schemes,

which are usually adopted according to the end-to-end instantaneous SNR (γcoop).

Therefore, the RHP and RLP can be calculated as:

RHP =

{
RH1 +RH2 γcoop < γth

RR γcoop ≥ γth
(4.4)

RLP =

{
RL1 +RL2 γcoop < γth

RL(MVC) or RD(VpD) γcoop ≥ γth
(4.5)

where RR, RL and RD are the bit rates of the right, left and depth sequences,

respectively. After Partitioner-1, RH1 and RL1 are the bit rates of the HP and LP

streams, respectively. In addition, after Partitioner-2, the RH2 and RL2 are the

bit rates of HP and LP streams, respectively, and γth represents a certain value

of γcoop that is exploited by the control units to switch the system from direct to

packet partitioning schemes or vice versa.

If it is assumed that the system change the number of HP packets (NHP ) and

LP packets (NLP ) for each time of relay selection, then the (4.4) and (4.5) can

be rewritten as

RHP =


Nf
Lg

[∑i=NHP
i=1 LRpi +

∑i=NHP
i=1 LL,Dpi

]
γcoop < γth

Nf
Lg

∑Np
i=1 L

R
pi

γcoop ≥ γth

(4.6)

RLP =


Nf
Lg

[∑i=NLP
i=1 LRpi +

∑i=NLP
i=1 LL,Dpi

]
γcoop < γth

Nf
Lg

∑Np
i=1 L

L,D
pi

γcoop ≥ γth

(4.7)

where Nf is the total number of video frames per second, Lg is the length of

GoP, Np is the total number of video packets per GoP, NHP is the number of HP

packets per GoP, NLP = Np−NHP is the number of LP packets per GoP, LRpi and

LL,Dpi are the length of ith packet of the right and left (or depth) view packets in

bits, respectively.

4.4.3.2 Video distortion for the proposed system

As explained in Chapter 3, video distortion generally consists of source distortion

(Ds) and channel distortion (Dc). Ds is due to the compression process in the
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video encoder. It is related to the value of QP in the video encoder, and is reduced

with a lower of QP value. Dc is caused by video packet losses introduced by the

wireless channel. It is related to the code rates used in the LDPC encoders, and

reduced with a reduction in the channel code rates. Hence, the total distortion

of the right (DR) and left (DL) views can be formed as:

DR = DsR +DcR (4.8)

and

DL = DsL +DcL (4.9)

where DsR and DsL respectively denote the MSE at the source encoder output for

the right and left views. Meanwhile, DcR and DcL are the right and left sequences

distortion induced by the wireless channel, respectively.

The average distortion of the 3-D video signal (DT ) can be calculated as [3, 32]

DT =
DR +DL

2
(4.10)

where DR and DL can be measured by computing the MSE between the original

video sequence and decoded video sequence after the right and left video decoders,

respectively [22, 32].

It can be concluded from Sections 4.4.3.1 and 4.4.3.2 that the use of an optimal

value of source rate, number packets for packet partitioning, and channel code

rates for the video and LDPC encoders can minimize the DsR ,DsL , DcR and

DcL . The choice of the optimal values is performed by JSCC algorithm which is

constrained by Rbudget and available γcoop in the wireless channel.

4.4.4 Problem Formulation and Lagrangian Multiplier for

Optimum Solution

A method which attempts to solve the packet partitioning optimization problem

is now introduced. Given an overall rate of Rbudget at certain value of γcoop in the

wireless channels, it is wanted to optimally allocate bits between the source and

channel with optimal allocation for HP and LP packets to minimize the overall



76 JSCC for 3-D Video Transmission

distortion DT . That is,

min
(RHP ,RLP ,r1,r2)

DR +DL

2︸ ︷︷ ︸
DT

(4.11a)

subject to
RHP

r1

+
RLP

r2︸ ︷︷ ︸
RT

≤ Rbudget, (4.11b)

where the design variables, RHP , RLP , r1 and r2, follow the conditions

0 < RHP < RHPmax ,

0 < RLP < RLPmax ,

0 < r1 < 1,

0 < r2 < 1, (4.12)

and RHPmax and RLPmax are the upper bounds of bit rates for the HP and LP

streams, respectively.

The solution of the optimum problem in (4.11) is a point in the design space

that satisfies the constraints form in (4.11) and the conditions in (4.12). Since the

solution of the optimum problem is not an easy task, an iterative algorithm which

results in a suboptimal solution is proposed. By starting from an initial point

in the design space, the algorithm updates the design variables at each iteration

and gradually moves towards the optimum point. It cannot be guaranteed that

it will always converge to the global optimum [109]. Moreover, if the algorithm

is initialized in a region suitably close to the global minimization, then sequence

of the design variables converges monotonically to the global solution.

Simulation results in Section 4.5 demonstrate that the JSCC algorithm mono-

tonically decreases total video distortion at every iteration. Figure 4.6 shows the

performance of the JSCC algorithm at different γcoop for 3-D video sequences us-

ing VpD and MVC. The results demonstrate the validity of our JSCC algorithm

since it optimizes the video system after a small number of iterations.

To solve the system optimum problem, the iterative Lagrange multiplier algo-

rithm proposed in [110] is adopted and developed for the problem at hand. The

new algorithm jointly optimizes the Qp, the number of packets of HP and LP

streams, and the channel code rates. The proposed algorithm simultaneously as-

signs source and channel coding rates, and number of HP and LP packets, based

on maximizing the quality of video at the receiver, whilst minimizing the com-

plexity of the channel encoding and decoding operations, subject to constraints
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Figure 4.6: Total video distortion versus number of iterations in the proposed

JSCC algorithm at different γcoop and video sequences using VpD and MVC.
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of Rbudget and available γcoop. Following [110], the iterative Lagrange multiplier

algorithm is used in the following form:

L = DT − λRHP gRHP − λRLP gRLP − λr1gr1 − λr2gr2 (4.13)

where

• DT is the total end-to-end video distortion and is implicitly determined by

the available γcoop in the wireless channel as well as Rbudget;

• λRHP , λRLP , λr1 and λr2 are Lagrangian parameters; and

• gRHP , gRLP , gr1 and gr2 are constraints of RHP , RLP , r1 and r2, respectively

which follow the constraints form

g =
RHP

r1

+
RLP

r2︸ ︷︷ ︸
RT

−Rbudget, (4.14)

To obtain an optimum solution, we take the derivative of (4.13) with respect

to RHP , RLP , r1 and r2, and equate the results to zero, yielding

∂DT

∂RHP

− λRHP
∂gRHP
∂RHP

− λRLP
∂gRLP
∂RHP

− λr1
∂gr1
∂RHP

− λr2
∂gr2
∂RHP

= 0 (4.15)

∂DT

∂RLP

− λRHP
∂gRHP
∂RLP

− λRLP
∂gRLP
∂RLP

− λr1
∂gr1
∂RLP

− λr2
∂gr2
∂RLP

= 0 (4.16)

∂DT

∂r1

− λRHP
∂gRHP
∂r1

− λRLP
∂gRLP
∂r1

− λr1
∂gr1
∂r1

− λr2
∂gr2
∂r1

= 0 (4.17)

∂DT

∂r2

− λRHP
∂gRHP
∂r2

− λRLP
∂gRLP
∂r2

− λr1
∂gr1
∂r2

− λr2
∂gr2
∂r2

= 0 (4.18)

Following [110] and rearranging (4.15), (4.16), (4.17) and (4.18), and multi-

plying (4.15) by (RHP )n1 , (4.16) by (RLP )n2 , (4.17) by (r1)n3 and (4.18) by (r2)n4 ,

and then taking the roots, the RHP , RLP , r1 and r2 at the [k+1]th iteration is

given by:

R
[k+1]
HP = R

[k]
HP

[
λRHP

∂gRHP
∂RHP

+ λRLP
∂gRLP
∂RHP

+ λr1
∂gr1
∂RHP

+ λr2
∂gr2
∂RHP

∂DT
∂RHP

] 1
n1

(4.19)
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R
[k+1]
LP = R

[k]
LP

[
λRHP

∂gRHP
∂RLP

+ λRLP
∂gRLP
∂RLP

+ λr1
∂gr1
∂RLP

+ λr2
∂gr2
∂RLP

∂DT
∂RLP

] 1
n2

(4.20)

r
[k+1]
1 = r

[k]
1

[
λRHP

∂gRHP
∂r1

+ λRLP
∂gRLP
∂r1

+ λr1
∂gr1
∂r1

+ λr2
∂gr2
∂r1

∂DT
∂r1

] 1
n3

(4.21)

r
[k+1]
2 = r

[k]
2

[
λRHP

∂gRHP
∂r2

+ λRLP
∂gRLP
∂r2

+ λr1
∂gr1
∂r2

+ λr2
∂gr2
∂r2

∂DT
∂r2

] 1
n4

(4.22)

where the items in (4.19), (4.20), (4.21) and (4.22) as ∂gRHP /∂RHP , ∂gRLP /∂RHP ,

∂gr1/∂RHP , ∂gr2/∂RHP , ∂gRHP /∂RLP , ∂gRLP /∂RLP , ∂gr1/∂RLP , ∂gr2/∂RLP ,

∂gRHP /∂r1, ∂gRLP /∂r1, ∂gr1/∂r1, ∂gr2/∂r1, ∂gRHP /∂r2, ∂gRLP /∂r2, ∂gr1/∂r2 and

∂gr2/∂r2 are obtained from the constraints form in (4.14). For example, to obtain

the third item in (4.19), i.e., ∂gr1/∂RHP , we have to compute the variations of

r1, i.e., ∂r1, with respect to the variations of RHP between R
(i+1)
HP and R

(i)
HP in

the constraints form, g, in (4.14). Here, ∂gr1 denotes the variations of r1 in the

constraints form, g, in (4.14), while other variables in (4.14) remain as

∂gr1
∂RHP

=
∂RHP

∂r1

+
R

[k]
LP

r
[k]
2

−Rbudget = 0, (4.23)

Rearranging (4.23) gives

∂r1 =
∂RHP[

Rbudget − R
[k]
LP

r
[k]
2

] ,
=

R
(i+1)
HP −R

(i)
HP[

Rbudget − R
[k]
LP

r
[k]
2

] , (4.24)

After computing ∂r1 in (4.24), the result represents the variations of r1 within

the constraint, g, in (4.14), i.e., ∂gr1 ≡ ∂r1. Then ∂gr1/∂RHP using

∂gr1
∂RHP

=
∂gr1

R
(i+1)
HP −R

(i)
HP

. (4.25)

Following similar steps as in (4.23)-(4.25), we can find the remaining items in

(4.19), (4.20), (4.21) and (4.22). R
[k]
HP , R

[k]
LP , r

[k]
1 and r

[k]
2 are obtained from the

previous [k ]th iteration, n1, n2, n3 and n4 are known as the step sizes and their
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values are selected prior to initiating the JSCC algorithm, k is the number of

iterations.

Next, the Lagrange multipliers, λRHP , λRLP , λr1 and λr2 are:

λ
[k+1]
RHP

= λ
[k]
RHP

[
R

[k]
HP

RHPmax

] 1
m

, (4.26)

λ
[k+1]
RLP

= λ
[k]
RLP

[
R

[k]
LP

RLPmax

] 1
m

, (4.27)

λ[k+1]
r1

= λ[k]
r1

[
r

[k]
1

r1max

] 1
m

, (4.28)

λ[k+1]
r2

= λ[k]
r2

[
r

[k]
2

r2max

] 1
m

, (4.29)

where m is a constant and its value is selected prior to initiating the JSCC

algorithm, and RHPmax , RLPmax , r1max and r2max are the upper bounds.

The gradients, ∂DT/∂RHP , ∂DT/∂RLP , ∂DT/∂r1 and ∂DT/∂r2 can be rep-

resented as

∂DT/∂RHP =
D

(i+1)
T −D(i)

T

R
(i+1)
HP −R

(i)
HP

, (4.30)

∂DT/∂RLP =
D

(i+1)
T −D(i)

T

R
(i+1)
LP −R(i)

LP

, (4.31)

∂DT/∂r1 =
D

(i+1)
T −D(i)

T

r
(i+1)
1 − r(i)

1

, (4.32)

∂DT/∂r2 =
D

(i+1)
T −D(i)

T

r
(i+1)
2 − r(i)

2

, (4.33)

where R
(i,i+1)
HP = R

[k]
HP ∓ 4RHP , R

(i,i+1)
LP = R

[k]
LP ∓ 4RLP , r

(i,i+1)
1 = r

[k]
1 ∓ 4r1

and r
(i,i+1)
2 = r

[k]
2 ∓ 4r2, and 4RHP , 4RLP , 4r1 and 4r2 are the step sizes

and their values are selected prior to initiating the JSCC algorithm. ∂DT/∂RHP ,

∂DT/∂RLP , ∂DT/∂r1 and ∂DT/∂r2 in (4.30)-(4.33) are obtained by measuring

the difference between the total video distortion DT at two different values of the

RHP , RLP , r1 and r1, respectively. For example, D
(i+1)
T in (4.30) is measured at

the kth iteration when the RHP is the only variable, i.e., R
(i+1)
HP = R

[k]
HP +4RHP

and other design variables RLP , r1 and r2 are based on their latest updated values

obtained from the previous iteration.

The overall proposed JSCC algorithm is summarized in algorithm 1.
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Algorithm 1 Joint optimization of source rates, number of packets based on

packet partitioning schemes and channel code rates

Initialization

R
[k]
HP , R

[k]
LP ,NHP , Qp, r

[k]
1 , r

[k]
2 , n1, n2, n3, n4, λ

[k]
RHP

, λ
[k]
RLP

, λ
[k]
r1 , λ

[k]
r2 , 4RHP ,

4RLP , 4r1 and 4r2,

while
R

[k]
HP

r
[k]
1

+
R

[k]
LP

r
[k]
2

< Rbudget do

calculate Qp, NHP and NLP to satisfy R
[k]
HP and R

[k]
LP

∂DT
∂RHP

=
D

(i+1)
T −D(i)

T

R
(i+1)
HP −R

(i)
HP

∂DT
∂RLP

=
D

(i+1)
T −D(i)

T

R
(i+1)
LP −R(i)

LP

∂DT
∂r1

=
D

(i+1)
T −D(i)

T

r
(i+1)
1 −r(i)1

∂DT
∂r2

=
D

(i+1)
T −D(i)

T

r
(i+1)
2 −r(i)2

∂gRHP /∂RHP , ∂gRLP /∂RHP , ∂gr1/∂RHP , ∂gr2/∂RHP , ∂gRHP /∂RLP ,

∂gRLP /∂RLP , ∂gr1/∂RLP , ∂gr2/∂RLP , ∂gRHP /∂r1, ∂gRLP /∂r1, ∂gr1/∂r1,

∂gr2/∂r1, ∂gRHP /∂r2, ∂gRLP /∂r2, ∂gr1/∂r2 and ∂gr2/∂r2 are obtained from

(4.14) similar to steps as in (4.23)-(4.25),

R
[k+1]
HP = R

[k]
HP

[
λRHP

∂gRHP
∂RHP

+λRLP
∂gRLP
∂RHP

+λr1
∂gr1
∂RHP

+λr2
∂gr2
∂RHP

∂DT
∂RHP

] 1
n1

R
[k+1]
LP = R

[k]
LP

[
λRHP

∂gRHP
∂RLP

+λRLP
∂gRLP
∂RLP

+λr1
∂gr1
∂RLP

+λr2
∂gr2
∂RLP

∂DT
∂RLP

] 1
n2

r
[k+1]
1 = r

[k]
1

[
λRHP

∂gRHP
∂r1

+λRLP
∂gRLP
∂r1

+λr1
∂gr1
∂r1

+λr2
∂gr2
∂r1

∂DT
∂r1

] 1
n3

r
[k+1]
2 = r

[k]
2

[
λRHP

∂gRHP
∂r2

+λRLP
∂gRLP
∂r2

+λr1
∂gr1
∂r2

+λr2
∂gr2
∂r2

∂DT
∂r2

] 1
n4

λ
[k+1]
RHP

= λ
[k]
RHP

[
R

[k]
HP

RHPmax

] 1
m

λ
[k+1]
RLP

= λ
[k]
RLP

[
R

[k]
LP

RLPmax

] 1
m

λ
[k+1]
r1 = λ

[k]
r1

[
r
[k]
1

r1max

] 1
m

λ
[k+1]
r2 = λ

[k]
r2

[
r
[k]
2

r2max

] 1
m

end while



82 JSCC for 3-D Video Transmission

4.5 Experimental results and Discussion

In this section, the performance of the proposed system and JSCC algorithm are

evaluated at different video sequences, available SNR γcoop, and Rbudget. The im-

pact of γcoop on video system performance is also investigated. For the cooperative

MIMO-OFDM system, the simulation configurations in Chapter 3 are employed

and is not presented here to avoid repetition.

4.5.1 Experimental Settings

4.5.1.1 Video encoder setting

Several experiments are conducted using standard 3-D video sequences ‘Car’,

‘Hands’ and ‘Horse’ in [95], with 30 frames per second (fps) of 432 × 240 pixels

and a GOP of 10. The packets number per GOP is fixed to 140 packets. The

MVC codec based on H.264 in [21] and [37] is adopted for encoding the left and

right views, while the H.264 reference software JM version (13.2) in [36] is used

for encoding the right (colour) and depth sequences.

4.5.1.2 Choice of initial values for JSCC algorithm

Before starting the recursion of the JSCC algorithm, the initial values should be

initialized with appropriate values to optimize the system in as few iterations as

possible so as to achieve the UEP between the HP and LP streams and reduce

the complexity of the channel encoding and decoding operations. The RHP and

RLP are firstly measured at different quantization and packets partitioning values

which are allocated to HP and LP streams. Figures. 4.7 and 4.8 show the

comparison between the variations of RHP and RLP at different values of Qp and

NHP for different VpD and MVC sequences. In Figures 4.7 and 4.8, the following

can be observed:

1. There is no effect from increasing or decreasing NHP on RHP and RLP

values, when the values of Qp are high, i.e., Qp > 40, because the system

video performance, at Qp > 40, is limited by the source distortion rather

than the channel distortion. Therefore, the JSCC algorithm has to keep

the system operating at Qp < 40, and the algorithm can easily control RHP

and RLP by changing the packet allocation for the HP and LP streams;

2. The step sizes 4RHP , 4RLP , 1/n1 and 1/n2 have to be greater than the

step sizes 4r1, 4r2, 1/n3 and 1/n4. This is useful to keep the JSCC
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Figure 4.7: Comparison of the variation of RHP and RLP at different values of Qp
and NHP for different VpD sequences.
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(c) RHP versus Qp and NHP (Hands)
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(d) RLP versus Qp and NHP (Hands)
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(e) RHP versus Qp and NHP (Horse)
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(f) RLP versus Qp and NHP (Horse)

Figure 4.8: Comparison of the variation of RHP and RLP at different values of Qp
and NHP for different MVC sequences.
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algorithm allocating a high NHP to the HP stream instead of resorting to

reduce r1 and r2 values to minimize the total video distortion. Therefore,

the algorithm can reduce the complexity of channel encoding and decoding

by increasing the NHP with a slight decrease in the 4r1 and 4r2 steps;

3. To achieve the UEP between the HP and LP streams, the JSCC algorithm

has to be initialized with r1
[0] < r2

[0].

As shown in Figures. 4.7 and 4.8 and explained above, the JSCC algo-

rithm can be initialized with the following values: R
[0]
HP=0.4 Mbps, R

[0]
LP=0.2

Mbps, r
[0]
1 =0.8125, r

[0]
2 =0.875, 1/n1=0.04, 1/n2=0.04, 1/n3=-0.01, 1/n4=-0.01,

λ
[0]
RHP

=10, λ
[0]
RLP

=10, λ
[0]
r1 =10, λ

[0]
r2 =10, 4RHP = 0.125 R

[0]
HP , 4RLP = 0.125 R

[0]
LP ,

4r1=0.0625 and 4r2=0.0625.

The selection of initial values achieve the above conditions. For example, the

initial value, R
[0]
HP = 0.4 Mbps is selected to start the proposed JSCC algorithm

with a moderate value of Qp, i.e., Qp < 40 and its value is gradually reduced

in each iteration of the JSCC algorithm. Thus, the algorithm can allocate more

video packets in the HP stream corresponding to the reduction of Qp in each

iteration. This assumption is consistent with the above first condition. Moreover,

the initial value, r
[0]
1 , is selected to be lower than the initial value, r

[0]
2 to achieve

the UEP between the HP and LP video streams and the selection of initial values

of r1 and r2 is consistent with the above third condition. The simulation results

in Figure 4.6 show that the proposed JSCC algorithm is computationally efficient

since it achieves the terminal condition, i.e., R
[k]
HP/r

[k]
1 + R

[k]
LP/r

[k]
2 ≈ Rbudget, and

optimizes the system within five iterations. For example, at γcoop = −6 dB, the

JSCC algorithm stops after three iterations only, while it stops after two iterations

only at γcoop = −4 dB.

4.5.2 Experimental results

4.5.2.1 Evaluation of JSCC algorithm

The proposed JSCC algorithm is evaluated to obtain the optimal number of

packets for the HP stream (NHP ) and LP stream (NLP ), Qp, and channel code

rates r1 and r2 for the HP-LDPC and LP-LDPC encoders, respectively, subject

to constraints on the Rbudget and the available γcoop of the wireless channels.

Several experiments are conducted for MVC and VpD for ‘Car’, ‘Hands’ and

‘Horse’ sequences, respectively, when Rbudget ∈ {1, 2, 4(Mbps)} at different γcoop
values which are varied from low γcoop, medium γcoop to high γcoop, i.e., γcoop ∈
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{−8 (minus 8),−6,−4 (dB)}. Tables 4.1 and 4.2 present the optimal values of

NHP , NLP , Qp, r1 and r2 at different γcoop and Rbudget.

The results lead to the following observations:

1) The available γcoop, which is determined by the available relay in the wireless

network, plays a significant role in determining the system complexity as follows:

a) An increase of γcoop leads to an increase of the code rates r1 and r2 and a

reduction of the complexity of channel encoding and decoding. For example, in

the ‘Car’ sequence at 4.1, the system adopts the UEP scheme with low code rates

r1 = 0.2339 and r2 = 0.3463 at γcoop=-8 dB, while it adopts medium code rates

r1 = 0.4797 and r2 = 0.586 and high code rates r1 = 0.691 and r2 = 0.714 at

γcoop=-6 and -4 dB, respectively. Therefore, as long as the system achieves a

high γcoop by the selecting the best relay in the network, the system complexity is

reduced in the proportional to the increase of LDPC code rates; b) An increase in

γcoop from low to high values leads to switching of the system to the direct scheme,

which is of lower complexity compared to the partitioning schemes. For example,

as shown in Tables 4.1 and 4.2, the system adopts the direct transmission when

γcoop is high, i.e., γcoop=-4 dB, while the system resorts to the packet partitioning

operation and increase the complexity of the system at low γcoop, i.e., γcoop=-8 dB,

in order to overcome the low γcoop, which is instantaneously available in the

wireless channel. Therefore, the system does not use the packet partitioning

operation when γcoop is high;

2) The available γcoop plays a significant factor in determining the system

performance in terms of PSNR. The solid lines in Figure 4.9 show the impact of

the available γcoop on video system performance when Rbudget= 4 Mbps at different

video sequences using either the VpD or MVC technique. As shown in Figure

4.9 (the solid lines), the system can achieve high PSNR as long as the system

can select a relay with high instantaneous SNR. For example, as shown in Figure

4.9-(a) at the ‘Car’ sequence, the PSNR is improved with 3.2 dB when γcoop value

changes from -8 to -4 dB, respectively;

In Figure 4.9, the solid lines compared to the dashed lines show a performance

comparison of the proposed JSCC algorithm and the algorithms in [22] and [21].

As can be seen from Figure 4.9, the proposed JSCC algorithm significantly out-

performs existing algorithms in terms of PSNR performance at different video

sequences and γcoop. For example, as shown in Figure 4.9 at the ‘Car’ sequence

and γcoop= -6 dB, the proposed algorithm outperforms the algorithms in [22] and

[21] by 5 dB and 7 dB, respectively.

Figure 4.10 shows a comparison of the reconstructed frame 19 of the proposed



4.5 Experimental results and Discussion 87

Table 4.1: The optimal values of the encoder rates, packets number for packet par-

titioning and channel encoder rates at different γcoop, Rbudget and video sequences

using VpD.

Sequence Adopted γcoop NHP NLP r1 r2 Qp Rbudget RT PSNR

scheme (dB) (Mbps) (Mbps) (dB)

26 4 3.87 38.07

-8 130 150 0.2339 0.3463 30 2 1.86 36.8

Packet 43 1 0.97 30.5

partitioning 20 4 3.97 40.58

Car -6 132 148 0.4797 0.586 26 2 1.89 38.07

32 1 0.99 35.17

18 4 3.99 41.28

Direct -4 140 140 0.691 0.714 26 2 1.78 38.98

29 1 0.97 36.7

32 4 3.99 31.51

-8 140 140 0.2147 0.355 39 2 1.94 29.15

Packet 48 1 0.99 25.76

partitioning 26 4 3.95 33.26

Hands -6 92 188 0.4554 0.5192 33 2 1.95 31.26

40 1 0.92 28.77

23 4 3.98 34.07

Direct -4 140 140 0.6422 0.6566 30 2 1.99 32.14

37 1 0.97 29.95

24 4 3.92 34.65

-8 136 144 0.2748 0.4397 31 2 1.97 31.62

Packet 40 1 0.99 27.52

partitioning 22 4 3.99 36.4

Horse -6 118 162 0.4546 0.515 27 2 1.84 33.73

34 1 0.98 30.11

19 4 3.92 37.3

Direct -4 140 140 0.6448 0.6709 24 2 1.88 35.06

30 1 0.98 32.16
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Table 4.2: The optimal values of the encoder rates, packets number for packet par-

titioning and channel encoder rates at different γcoop, Rbudget and video sequences

using MVC.

Sequence Adopted γcoop NHP NLP r1 r2 Qp Rbudget RT PSNR

scheme (dB) (Mbps) (Mbps) (dB)

25 4 3.98 34.47

-8 140 140 0.26 0.361 32 2 1.89 28.96

Packet 40 1 0.99 24.1

partitioning 21 4 3.84 37.56

Car -6 82 198 0.4269 0.52 27 2 1.92 32.67

34 1 0.99 27.74

18 4 3.8 39.9

Direct -4 140 140 0.7 0.7 24 2 1.8 34.94

30 1 0.93 29.95

28 4 3.68 26.26

-8 80 200 0.27 0.32 35 2 1.8 21.33

Packet 44 1 0.98 17.05

partitioning 22 4 3.88 31.5

Hands -6 12 268 0.509 0.5839 28 2 1.94 26.26

35 1 0.91 21.33

20 4 3.82 34.4

Direct -4 140 140 0.7 0.7 25 2 1.97 28.85

32 1 0.97 23.08

32 4 3.81 29.04

-8 122 158 0.24 0.33 38 2 1.98 24.67

Packet 46 1 0.99 19.9

partitioning 25 4 3.97 34.09

Horse -6 62 218 0.43 0.4609 34 2 1.85 27.73

41 1 0.94 22.59

21 4 3.83 37.29

Direct -4 140 140 0.67 0.67 29 2 1.94 31.26

37 1 0.93 25.54
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Figure 4.9: The solid lines, labeled “Proposed”, show the impact of γcoop on the

proposed system performance in terms of PSNR values for different video sequences

at Rbudget= 4 Mbps. The dashed lines compared to the solid lines, show a per-

formance comparison of proposed JSCC algorithm and the algorithms in [22] and

[21], where the code rates of color sequence rc=4/16, 8/16, and rd=13/16 for depth

sequence are adopted in [22], while the code rates 4/16, 8/16 and 13/16 are respec-

tively adopted for the layer 0, layer 1 and layer 2 in [21].



90 JSCC for 3-D Video Transmission

algorithm at SNR= -8 dB with the existing algorithms in [22] and [21]. The results

in Figures 4.9 and 4.10 show that the proposed JSCC algorithm significantly

improves the overall system performance compared to that of [22] and [21];

3) The available γcoop causes the JSCC algorithm to assign the Rbudget between

the source and channel rates. As shown in Tables 4.1 and 4.2 for different cases,

the most Rbudget is assigned to the channel rates, i.e., r1 and r1 when the available

γcoop is low. In contrast, higher source codes rates are assigned, i.e., Qp values

are reduced, when the available γcoop is high;

4) The system tends to change the protection level in terms of the number

of prior packets of GoP (NHP ) according to the available γcoop. For example, as

shown in the ‘Hands’ sequence at Table 4.1, the system is adopted to protect half

of the GoP packets NHP=140, i.e., 70 packets per GoP from the right view and

70 packets from depth sequence, with high protection and the second NLP=140

with low protection at low γcoop=-8 dB. Meanwhile, it reduces the number of

NHP to 92 at medium γcoop=-6 dB. Therefore, this adaptive method ensures the

achievement of high video quality when γcoop is low, and reduce the complexity

of the system when γcoop is higher;

5) The system resorts to the use of UEP schemes at low and medium γcoop
values. However, the UEP schemes make the channel encoding and decoding

operations more complicated. Therefore, the system has to switch the equal error

protection (EEP) scheme at high γcoop to overcome this problem. For example, as

shown in Tables 4.1 and 4.2 at different video sequences, the channel code rates

r1 = r2 ≈ 0.7 are used at high γcoop=-4 dB;

6) The channel code rates r1 and r2 are still restricted by the available γcoop
for different data budgets. This fact can be clearly seen when Rbudget is varied

from 1 to 4 Mbps. This is anticipated since the channel distortion (Dc), which

is caused by video packet losses in the wireless channel can be minimized by

adopting suitable code rates at the channel LDPC encoders. Therefore, if the

JSCC algorithm allocates the optimal channel code rates at a certain value of

γcoop and achieves minimal channel distortion, the improvement in rate budgets

can be used to allocate more rate to the source to mitigate the source distortion

(Ds), since the allocated channel code rates are already enough to minimize the

Dc. For example, in the ‘Car’ sequence at Table 4.1, the Rbudget varied from 1 to 4

Mbps at γcoop=-8 dB, while r1 and r2 remained at 0.2339 and 0.3463, respectively.

Thus, it can be concluded that r1 and r2 are restricted by the available γcoop to

resist the channel degradations;

7) The system performance in terms of PSNR improves with the gradual
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Left view Right view
a. Proposed  

Left view Right view
b. [21] 

c. [22] 
Left view Right view

Figure 4.10: Comparison of reconstructed frame 19 of ‘Car’ sequence at SNR= -8

dB using proposed JSCC algorithm and the algorithms in [21] and [22], where the

code rates 4/16, 8/16 and 13/16 are respectively adopted for the layer 0, layer 1

and layer 2 in [21], while the code rates of colour sequence rc=4/16, and rd=13/16

for depth sequence are adopted in [22].
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(b) PSNR versus Rbudget using MVC.

Figure 4.11: PSNR performances of the proposed system under different rate bud-

get constraints at γcoop= -4 dB.

relaxation of Rbudget. Figure 4.11 shows the PSNRs of the proposed system under

different Rbudget and video sequences using either VpD or MVC technique at

γcoop= -4 dB. As shown in Figure 4.11, all the PSNR-rate curves keep rising, which

demonstrates the adaptation of the proposed JSCC algorithm to the gradual

relaxation of the rate budget constraint.

4.6 Impact of γcoop Estimation on Video System

Performance

In this section, some examples of the estimation error in γcoop at different MSEs

are presented to show that there is an additional factor related to the accurate

estimation of γcoop. The accuracy estimation of γcoop is shown to directly af-

fect the performance and complexity of cooperative video systems and has to be

considered in the design of multimedia cooperative communication systems with

feedback.

The channel code rates, i.e., r1 and r2, are increased or decreased with the

variation of γcoop in wireless channels. Therefore, the complexity of channel en-

coding and decoding operations are determined according to the accuracy of γcoop
estimation. Meanwhile, the variations of r1 and r2 lead to a reduction in the pro-

tection of video packets against the packets loss in the channel. This case directly

affects the PSNR values. To illustrate this point, some examples of estimation
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error in γcoop are given at different MSEs. The goal is to show the effects of SNR

estimator performance on the video system performance and complexity.

For the simulation setting, the ‘Car’ sequence with VpD and MVC coding is

adopted, and the simulation parameters are set on γcoop=-6 dB, Rbudget=4 Mbps

and MSE=10−2, 10−3.

Figure 4.12 shows a comparison performance of the video system at different

MSEs with VpD and MVC coding. The following observations can be made from

0 0.002 0.004 0.006 0.008 0.01
32

33

34

35

36

37

38

39

40

41

Normalized MSE

P
S

N
R

 (
dB

)

 

 
VpD
MVC

Figure 4.12: The video system performance in terms of PSNR at γcoop=-6 dB and

different MSEs with VpD and MVC coding.

Figure 4.12:

1) Even when the performance of the SNR estimator is moderate (of the order

of 10−3), there is still some reduction in PSNR. For example, at VpD, the PSNR

is reduced from 40.58 to 40.28 dB. The simulation results indicate that there is

also an increase in system complexity with a reduction in channel code rates r1

and r2 from the actual values 0.4797 and 0.586 to the new values 0.5341 and

0.516, respectively. This due to the JSCC algorithm which adopts wrong γcoop
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instead of actual γcoop=-6 dB in the wireless channel;

2) At MSE=10−2, the system performance is worse than with MSE=10−3,

since the performance of the SNR estimator is poor. This affects the JSCC

algorithm, which assigns the wrong code rates for source and channel. This

impairs the ability of the system to achieve high PSNR. For example, at MVC, it

is clear that the PSNR is reduced from 37.56 to 32.88 dB, i.e., the performance

loss is 4.68 dB. In addition, the simulation results show that the JSCC algorithm

assigns the channel code rates r1 = 0.6256 and r2 = 0.651 to the LDPC encoders.

These values are greater than the actual values, i.e., r1 = 0.4269 and r2 = 0.52.

In this case, the video packets are lost through the channel because the HP and

LP streams are protected with LDPC codes higher than the actual values.

3) MVC is more sensitive to the accuracy of γcoop estimation than VpD. This

case is clearly seen at MSE=10−2. In this case, the PSNRs for VpD and MVC

are respectively reduced from 40.58 to 38.3 dB, and from 37.56 to 32.88 dB, i.e.,

the PSNRs are reduced for VpD and MVC by 2.28 and 4.68 dB, respectively.

This result is anticipated, since the left view in MVC is reconstructed depending

on the relationship between the right and left views. Thus, any error in the right

view is spread to the reconstructed left view, while the depth structure in VpD

is less affected by noise. Therefore, the VpD is more appropriate for 3-D video

transmission when the performance of the SNR estimator is low.

Figures. 4.13-4.16 show the original and reconstructed left and right frames

of the ‘Car’ sequence for frame 10 using VpD and MVC at different MSEs. As

illustrated in Figs. 4.13-4.16, video distortion appears at high MSE, i.e., 10−2,

while it is trivial at medium MSE value, i.e., 10−3..

Finally, it can be concluded that the accuracy of estimation of γcoop can be

considered a significant factor in in the determination of performance and com-

plexity of cooperative video systems.

4.7 Conclusion

In this chapter, a new joint source-channel coding algorithm is proposed, which

depends on the end-to-end video distortion, available instantaneous SNR (γcoop)

and the allocated rate budget (Rbudget) to jointly optimize the application, net-

work and physical layer parameters. The parameters which are optimized are

the quantization parameters, number of packets of high-priority and low-priority

streams and channel code rates. The algorithm is based on the Lagrange mul-

tiplier algorithm, and it maximized the video quality at the destination whilst
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(a) Left view (b) Right view

Figure 4.13: Original left and right frames of ‘Car’ sequence for frame 10.

(a) Left view (b) Right view

Figure 4.14: Reconstructed left and right frames of ‘Car’ sequence for frame 10

using VpD and MVC at MSE=0 and 10−3.

(a) Left view (b) Right view

Figure 4.15: Reconstructed left and right frames of ‘Car’ sequence for frame 10 at

MSE=10−2 using VpD coding.

(a) Left view (b) Right view

Figure 4.16: Reconstructed left and right frames of ‘Car’ sequence for frame 10 at

MSE=10−2 using MVC coding.
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minimizing the complexity of the channel encoding and decoding operations. In

addition, the proposed algorithm is effective into covering a wide range of γcoop
and Rbudget values. New procedures to estimate γcoop were proposed. The impact

of γcoop estimation on the performance of video system was investigated. Simu-

lation results demonstrate the video system performance, in terms of PSNR and

system complexity, is very sensitive to the accuracy of instantaneous signal-to-

noise ratio estimation. The results also show that instantaneous SNR and rate

budget represent the main factors in determining the complexity of the system

with respect to channel code rates.



Chapter 5

Joint Channel, Phase Noise and
Frequency Offset Estimation and
Data Detection in OFDM Systems

5.1 Introduction

In this chapter, a computationally efficient training based approach for joint

channel, CFO, and PHN estimation in OFDM systems is presented. An iterative

receiver is proposed for the detection of data symbols in the presence of time-

varying PHN and CFO.

In practice, OFDM systems require timing offset estimation, CFO estima-

tion, PHN tracking as well as channel estimation. Timing synchronization for

OFDM systems has been well investigated over the past two decades [111, 112].

Compared to timing offsets, OFDM is very sensitive to CFO and PHN, which

arise due to instabilities and the thermal noise in the local oscillator, respectively

[113]. CFO and time varying PHN result in a CPE and ICI at the receiver,

degrading the performance of OFDM systems [12, 13, 23, 76, 77, 114]. In par-

ticular, the impact of PHN in systems operating at higher carrier frequencies,

e.g., V-band/60 GHz and E-band/70–80 GHz, can be even more profound [70].

Thus, as wireless communication systems and standards, e.g., IEEE 802.11ad,

migrate to millimeter-wave frequencies to take advantage of the large bandwidth

in this band and adopt higher order modulations and closely spaced sub-carriers

to achieve higher spectral efficiencies, it is increasingly important to develop effi-

cient and accurate estimation and detection algorithms that compensate for the
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effect of CFO and PHN in OFDM systems.

To jointly estimate channel, CFO, and time varying PHN, training signals are

used in OFDM systems. In the context of point-to-point systems, joint channel

and CFO estimation based on the expectation-maximization (EM) approach was

proposed in [115]. However, in [115], the authors do not take the effect of PHN

into account. In [23] and [24], a MAP estimator was used for joint estimation

of channel, CFO, and PHN. However, the estimation approach in [23] and [24]

is based on a small angle approximation (single-order Taylor series expansion of

PHN), that adversely affects the performance of the estimation and data detection

algorithms, especially for higher order modulations. In addition, as shown in

this chapter, the approach in [23] and [24] can be computationally very complex.

Recently, the authors in [25] proposed a joint channel, CFO, and PHN estimation

algorithm based on the sequential Monte Carlo and EM approaches. However,

as explained in [116], the estimation complexity of Monte Carlo based method

in [25] is very high. More importantly, in [23–25], the hybrid Cramér-Rao lower

bound (HCRB) for the joint estimation of channel impulse response (CIR), PHN,

and CFO in OFDM systems is not derived and the performances of the proposed

estimators are not benchmarked against their respective estimation performance

bounds. Recently, the problem of joint estimation of channel, CFO, and PHN

was considered in the context of OFDM relay networks in [15]. However, the

approach in [15] is also based on the maximum a posteriori (MAP) criterion,

which is computationally very complex.

Given the time-varying nature of PHN, it needs to be tracked, not only during

the training interval, but also during the data transmission interval. Hence, fol-

lowing the training period, a receiver structure for joint data detection and PHN

mitigation in the data transmission period is required. In the existing litera-

ture, joint data detection and PHN mitigation was analyzed in [26, 27, 114, 117].

However, the algorithms proposed in [114] and [27] are based on the assump-

tion of perfect knowledge of channel and CFO. Moreover, the PHN tracking and

data detection approach presented in [26] is computationally complex and suffers

from performance degradation for higher order modulations. The PHN tracking

in [117] requires the application of pilots throughout an OFDM symbol, which

adversely affects the bandwidth efficiency of the system. In addition, our simu-

lations show that the approach in [117] is outperformed by the receiver structure

proposed in this chapter.



5.2 Contributions 99

5.2 Contributions

The major contributions of this chapter can be summarized as follows:

1. The proposal of an ECM based estimator for jointly obtaining the channel,

CFO, and PHN parameters in OFDM systems. The ECM based estimation

is carried out in two steps. In the expectation or E-step, an extended Kalman

filter (EKF) based estimator is utilized to accurately track the PHN over the

training OFDM symbol. During the maximization or M-step, the channel

and CFO parameters are estimated by minimizing the derived negative log

likelihood function (cf. (5.7)).

2. The derivation of an expression for the HCRB for the joint estimation of

the channel, CFO and PHN in OFDM systems. Simulation results show

that, compared to the existing algorithms in the literature, the MSE of

the proposed algorithm is closer to the HCRB and the proposed algorithm

outperforms the existing estimation algorithms at moderate-to-high SNR.

3. The proposal of a new iterative algorithm based on the EKF for data detec-

tion and tracking the unknown time-varying PHN throughout the OFDM

data packet.

4. Demonstration that the proposed estimation and detection algorithms are

computationally efficient, compared to existing algorithms in the literature.

In addition, the proposed estimation and detection algorithms outperform

existing algorithms in terms of both the uncoded and the coded BER per-

formance.

The remainder of this chapter is organized as follows. Section 5.3 describes

the system model and the assumptions used in this work. Section 5.4 derives the

HCRB for the joint channel, CFO and PHN estimation in OFDM systems. Sec-

tion 5.5 describes the proposed ECM based estimator while Section 5.6 presents

the proposed receiver for joint data detection and PHN tracking. Section 5.6 an-

alyzes the complexity of the proposed estimation and data detection algorithms

and compares it with the existing schemes. Section 5.8 provides numerical and

simulation results. Finally, Section 5.9 concludes this chapter.
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OFDM data  

symbol 1

OFDM Packet

OFDM data  

symbol M
OFDM training 

symbol 

Figure 5.1: Timing diagram for transmission of training and data symbols within

an OFDM packet.

5.3 System model

An OFDM packet of (M + 1) symbols, which consists of one training symbol and

M data symbols, is considered as illustrated in Figure 5.1. In this chapter, the

following set of assumptions are adopted:

A1. The channel is modeled as a slow fading frequency-selective channel, i.e., the

channel is assumed to be quasi-static, which is constant and unknown over

the OFDM packet duration and changes from packet to packet following a

complex Gaussian distribution.

A2. The time-varying PHN changes from symbol to symbol and is modeled as a

Wiener process, i.e., θn = θn−1 + δn, ∀ n, where θn is the PHN at the nth

instant, δn ∼ N (0, σ2
δ ) is the PHN innovation and σ2

δ is the variance of the

innovation process [71, 72].

A3. The CFO is modeled as a deterministic unknown parameter over a packet

and is assumed to change from packet to packet.

A4. The training symbol is assumed to be known at the receiver.

A5. The timing offset is assumed to be perfectly estimated. Hence, it is not

considered in this chapter.

Note that assumptions A1, A2, A3, and A5 are in line with the previous channel,

CFO and PHN estimation algorithms in [12, 13, 23, 25, 26, 72, 117]. In addition,

Assumption A5 can be safely assumed since the timing offset in practical systems

is commonly estimated using autocorrelation based metrics [23, 26, 111, 112],

which are not effected by disturbances of PHN and CFO. Assumption A2 is also

reasonable in many practical scenarios to describe the behavior of practical oscil-

lators [23, 71]. Furthermore, assumption A4 is adopted in the IEEE 802.11ac/ad

standards to estimate channel and CFO in [10, 11, 23, 114, 117–119].
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The complex baseband OFDM signal is given by

xn =
1√
N

N−1∑
k=0

dke
j2πkn/N n = 0, 1, . . . , N − 1, (5.1)

where dk, for k = 1, . . . , N , is the modulated training symbol, xn is the nth

sample of the transmitted OFDM symbol, N is the number of subcarriers, and

k denotes the subcarrier index. At the receiver, after removing the cyclic prefix,

the complex baseband received signal, rn, is given by

rn = ej(θ̄n+2πnε/N)s̄n + ηn (5.2a)

= ej(θn+2πnε/N)sn + ηn, (5.2b)

where s̄n , h̄n⊗xn is the received OFDM training symbol, {θ̄n}N−1
n=0 is the discrete-

time PHN sequence, ε is the normalized CFO, {h̄l}L−1
l=0 is the channel impulse

response, L is the channel length, and h̄l ∼ CN (µhl , σ
2
hl

). Note that (5.2b) is an

equivalent system model representation of (5.2a), where sn , hn⊗xn, hn , ejθ̄0h̄n
and θn , θ̄n− θ̄0. This equivalent system model helps to distinguish between the

phase disturbance caused by PHN and the channel phase for the first sample,

which in turn resolves the phase ambiguity in the joint estimation problem as

indicated in Section 5.5. In addition, {ηn}N−1
n=0 is the complex AWGN with zero-

mean and known variance σ2
w. The received signal, r , [r0, r1, . . . , rN−1]T , in

vector form is given by

r = EPFHDWh + η, (5.3)

where

• E , diag([1, e(j2πε/N), . . . , e(j2πε/N)×(N−1)]T ) is the N ×N CFO matrix,

• P , diag([ejθ0 , ejθ1 , . . . , ejθN−1 ]T ) is the N ×N PHN matrix,

• F is an N × N discrete Fourier transform (DFT) matrix, i.e., [F]l,n ,
(1/
√
N)e−j(2πnl/N) for n, l = 0, 1, · · · , N − 1,

• D , diag(d),d , [d0, d1, · · · , dN−1]T is the modulated training vector,

• W is an N × L DFT matrix, i.e., W , F(1 : N, 1 : L),

• L denotes the number of channel taps,

• h , [h0, h1, . . . , hL−1]T is the channel impulse response (CIR), and

• η , [η0, η1, · · · , ηN−1]T is the noise vector.
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5.4 Derivation of the Hybrid Cramér-Rao Bound

In this section, the HCRB for the joint estimation of the CIR, PHN, and CFO

parameters in OFDM systems is derived. The HCRB is a lower bound on the

joint estimation of random, e.g., PHN, and deterministic, e.g., CIR and CFO

parameters. Let λ = [θT <{h}T ={h}T ε]T be the vector of hybrid parameters

of interest, where θ , [θ1, . . . , θN−1]T is a vector of random PHN parameters and

the channel vector, h, and the CFO, ε, are modeled as deterministic parameters.

Note that it is clear from (5.2b) that there is no need to estimate θ0. The accuracy

of estimating λ is lower bounded by the HCRB, Ω, as [79, pp. 1-85]

Er,θ|ε

[
(λ̂(r)− λ)(λ̂(r)− λ)T

]
� Ω. (5.4)

Let us define Ω , B−1. Here, B is an (N + 2L)× (N + 2L) hybrid information

matrix (HIM), which is determined according to the following theorem.

Theorem 5.1: The closed-form HIM for joint estimation of CIR, PHN, and

CFO is given by

B =
2

σ2
w

<




B11 B12 B13 b14

B21 B22 B23 b24

B31 B32 B33 b34

b41 b42 b43 b44


 , (5.5)

where

• B11 , Q̄H
1 Q̄1 + Λ is the (N − 1) × (N − 1) HIM for the estimation of θ,

Q1 = diag(FHDWh), and Q̄1 = Q1(2 : N, 2 : N),

• Λ is an (N − 1)× (N − 1) tridiagonal matrix with diagonal elements given

by σ2
w

2σ2
δ
[1, 2, . . . , 2, 1] and off-diagonal elements given by −σ

2
w

2σ2
δ

[1, . . . , 1],

• B22 , QH
2 Q2 is an L×L information matrix for the estimation of real part

of h, and Q2 = FHDW,

• B33 , QH
2 Q2 is an L×L information matrix for the estimation of imaginary

part of h,

• b44 , qH5 q5 is a scalar representing the information for the estimation of

CFO, ε, q5 =
√

MFHDWh, and M , diag
([

(2π 0
N

)2, . . . , (2πN−1
N

)2
]T)

,

• B12 = BH
21 , −jQ̄H

1 Q̄2, Q̄2 = Q2(2 : N, 1 : L),
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• B13 = BH
31 , Q̄H

1 Q̄2,

• b14 = bH41 , Q̄H
4 q̄3, Q4 = diag(

√
MFHDWh), Q̄4 = Q4(2 : N, 2 : N),

q3 = FHDWh, and q̄3 = q3(2 : N),

• B23 = BH
32 , jQH

2 Q2,

• b24 = bH42 , jQH
2 q5, and

• b34 = bH43 , QH
2 q5.

Proof: The proof is given in Appendix (A.1).

Finally, the HCRB, Ω, is given by the inverse of the HIM. i.e., Ω = B−1.

Note that the HCRB of the channel, h, is obtained by adding the HCRB for real

and imaginary parts of channels.

Remark 1: It is difficult to find the closed-form HCRB due to the complicated

structure of the BIM. However, to obtain analytical insights, we consider a simple

case, N = 2, L = 1, and derive the closed-form HCRB for the joint estimation

of CIR, PHN, and CFO. Due to space limitation, the details are omitted and the

final results for the closed-form HCRB of the CIR and the CFO estimation are

given below

HCRBCIR|N=2 =
(2γ + α)N2σ2

w

2(α + γ)γ
, (5.6a)

HCRBCFO|N=2 =
N2 ((α + γ)N2σ2

w + 2γα|h|2σ2
δ )

8αγ|h|2π2
, (5.6b)

where α , |d1 + d2e
j 2π
N |2 and γ , |d1 + d2|2. It can be observed from (5.6a) that

the HCRB for CIR estimation is independent of the PHN variance, σ2
δ . Moreover,

according to (5.6b), HCRB for CFO estimation is determined by PHN variance,

σ2
δ , at high SNR. This interesting insight is also reflected through simulations

results in Figure 5.4 and Figure 5.5, respectively, in Section 5.8.

5.5 Proposed ECM based Estimator

In this section, an ECM based algorithm that utilizes the OFDM training symbol

to jointly estimate the CIR, CFO and PHN at the receiver is derived. Joint data

detection and PHN tracking during data transmission interval is analyzed in

Section 5.6.
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ĥ θ
[i]
n
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Training

Data

Data Bits

yr

Figure 5.2: Proposed estimator based on an ECM algorithm and data detection.

Figure 5.2 depicts the block diagram of the overall system employing the pro-

posed ECM based estimator and the joint data detection and PHN mitigation

algorithm. As illustrated in Figure 5.2, the proposed ECM based estimator ap-

plies the training OFDM symbol at the beginning of each packet to estimate the

CIR and CFO in the presence of PHN. Next, the data detection is performed

by: 1) mitigating the impact of CFO over the length of the packet by multiplying

the received packet with the complex conjugate of the estimated CFO coefficients

determined using the proposed ECM estimator; 2) tracking the PHN parameters

using an iterative algorithm that utilizes an EKF; 3) mitigating the effect of PHN

over the received packet; and 4) detecting data symbols using the estimated CIR

and hard decision decoding.

As shown in Figure 5.2, the ECM algorithm iterates between the expectation

step (E-step) and the maximization step (M-step). In the E-step, an EKF is used

to update the PHN vector at the (i + 1)th iteration, θ[i+1], using the CIR and

CFO estimates, ĥ[i] and ε̂[i], respectively, obtained from the previous iteration,

i.e., ith iteration. Next, in the M-step, the estimates of the CIR and CFO at the

i+ 1th iteration, ĥ[i+1] and ε̂[i+1], respectively are obtained.

For the given problem, the incomplete data set is given by the N × 1 vector
s , FHDWh = [s0, s1, . . . , sN−1]T and the received data, r in (5.3). Following
[120], the hidden variable is chosen to be θ. Thus, the complete data set is
defined as z , [rT θT ]T . Moreover, the negative log likelihood function (LLF) of
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the complete data, log p(z; ε,h), is given by

log p(z; ε,h) = C +
1

σ2
w

N−1∑
n=0

‖ rn − ej2πεn/Nejθnsn ‖2 + log p(θ0) +
N−1∑
n=0

log p(θn|θn−1),

(5.7)

where C is a constant. Note that sn (defined below (5.2b)) in (5.7) includes the

CIR. The E and M-steps for estimating the CIR, CFO, and PHN in the training

interval are detailed in the following subsections.

5.5.1 E-step

In this step, the received signal rn is first multiplied by e−j2πε̂
[i]n/N . Subsequently,

the signal yn , e−j2πnε
[i]/Nrn is used to estimate the PHN vector, where ε̂[i] is

the latest CFO estimate obtained from the previous iteration. An EKF during

the E-step is proposed to estimate the PHN samples θ. The intuition behind

choosing the EKF will be explained shortly after (5.9).

The signal yn can be written as

yn = e−j2πnε
[i]/Nrn = ej2πn∆ε̂/Nejθns[i]

n + w̃n, (5.8)

where s
[i]
n is the nth symbol of the vector s[i] , FHDWĥ[i], ∆ε̂ , ε − ε̂[i], and

w̃n , wne
−j2πnε̂[i]/N . The state and observation equations at time n are given by

θn =θn−1 + δn, (5.9)

yn =zn + wn = ejθnsn + w̃n, (5.10)

respectively. Since the observation equation in (5.10) is a non-linear function

of the unknown state vector θ, the EKF is used instead of the simple Kalman

filtering. The EKF uses the Taylor series expansion to linearize the non-linear

observation equation in (5.10) about the current estimates [78]. Thus, the Jaco-

bian of zn, żn, is evaluated by computing the first order partial derivative of zn
with respect to θn as

żn =
∂z(θn)

∂θn
|θn=θ̂n|n−1

=jz(θ̂n|n−1)

=jejθ̂
[i]
n|n−1 ŝn. (5.11)
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The first and second moments of the state vector at the ith iteration denoted by

θ̂
[i]
n|n−1 and M

[i]
n|n−1, respectively, are given by

θ̂
[i]
n|n−1 =θ̂

[i]
n−1|n−1, (5.12)

M
[i]
n|n−1 =M

[i]
n−1|n−1 + σ2

δ . (5.13)

Given the observation yn, the Kalman gain Kn, posteriori state estimate θ̂
[i]
n|n, and

the filtering error covariance, M
[i]
n|n are given by

Kn =M
[i]
n|n−1ż

∗(θn|n−1)
(
ż(θn|n−1)M

[i]
n−1|n−1ż

∗(θn|n−1) + σ2
w

)−1
, (5.14)

θ̂
[i]
n|n =θ̂

[i]
n|n−1 + <

{
Kn

(
yn − ejθ̂

[i]
n|n−1 ŝ[i]

n

)}
, (5.15)

M
[i]
n|n =<

{
M

[i]
n|n−1 −Knż(θn|n−1)M

[i]
n|n−1

}
, (5.16)

respectively. Before starting the EKF recursion (5.11)−(5.16), θ̂
[0]
1|0 and M

[0]
1|0 are

initialized to θ̂
[0]
1|0 = 0 and M

[0]
1|0 = σ2

δ . The initialization choice for the PHN follows

from the assumption that the complex channel parameter takes into account the

PHN corresponding to the first symbol.

5.5.2 M-step

In this step, the CIR and CFO are estimated by minimizing the LLF in (5.7). In

order to further reduce the complexity associated with the M -step, the minimiza-

tion in (5.7) is carried out with respect to one of the parameters while keeping the

remaining parameters at their most recently updated values [121, 122]. First, by

using the channel estimate at the ith iteration, ĥ[i], and the PHN vector estimate

from the E-step, θ̂
[i+1]

, the LLF in (5.7) is minimized with respect to ε to obtain

the CFO estimate for the (i+ 1)th iteration, ε̂[i+1], as

ε̂[i+1] = arg min
ε

N−1∑
n=0

‖ rn − ej2πεn/Nejθnsn ‖2
∣∣
θn=θ̂

[i]
n ,h=ĥ[i] . (5.17)

After simplifying (5.17), we have

ε̂[i+1] = arg max
ε

N−1∑
n=0

<{(rn)∗Ŝ[i]
n e

j2πεn/N}, (5.18)
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where Ŝ
[i]
n = ejθ̂

[i]
n ŝn. In order to resolve the nonlinearity in (5.18), we can ap-

proximate the term ej2πεn/N using a second order Taylor series expansion around

the pervious CFO estimate, ε̂[i], as

ej2πεn/N =ej2πε̂
[i]n/N + (ε− ε̂[i])(j 2π

N
n)ej2πε̂

[i]n/N +
1

2
(ε− ε̂[i])2(j

2π

N
n)2ej2πε̂

[i]n/N .

(5.19)

Substituting (5.19) into (5.18), ε̂[i+1] is given by

ε̂[i+1] = arg max
ε

{N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n e

j2πε̂[i]n/N

+ (ε− ε̂[i])
N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n (j

2π

N
n)ej2πε̂

[i]n/N
}

+
1

2
(ε− ε̂[i])2

N−1∑
n=0

<
{

(rn)∗Ŝ[i]
n (j

2π

N
n)2ej2πε̂

[i]n/N
}}

. (5.20)

Taking the derivative of (5.20) with respect to ε and equating the result to zero,

the estimate of ε at the (i+ 1)th iteration is given by

ε̂[i+1] = ε̂[i] +
N

2π

∑N−1
n=0 n=

{
(rn)∗Ŝ

[i]
n ej2πε̂

[i]n/N
}∑N−1

n=0 n
2<
{

(rn)∗Ŝ
[i]
n ej2πε̂

[i]n/N
} . (5.21)

Next, by setting θ and ε to their latest updated values, the updated value of

ĥ at the (i+ 1)th iteration, ĥ[i+1], is determined as outlined below.

Based on the vector form of the received signal in (5.3), the negative LLF, in

(5.7), can be written as

log p(z; ε) = C1+ ‖ r− EPΓh ‖2 + log p(θ). (5.22)

where Γ , FHDW and C1 is a constant. Taking the derivative of (5.22) with

respect to h and equating the result to zero, the estimate of h at the (i + 1)th

iteration is given by

ĥ[i+1] = (ΓHΓ)−1ΓHP̂HÊHr, (5.23)

where Ê , diag([e(j2πε̂[i+1]/N)×0, e(j2πε̂[i+1]/N), . . . , e(j2πε̂[i+1]/N)×(N−1)]T ) and P̂ ,

diag([ejθ̂
[i]
0 , ejθ̂

[i]
1 , . . . , ejθ̂

[i]
N−1 ]T ). Note that ε̂[i+1] and θ̂

[i]
, [θ̂

[i]
1 , . . . , θ̂

[i]
N−1]T are de-

termined as in (5.21) and (5.15), respectively.
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Using (5.15), (5.21), and (5.23), the proposed algorithm iteratively updates

the PHN, CFO, and CIR estimates, respectively. The algorithm is terminated

when the difference between the likelihood functions of two iterations is smaller

than a threshold ζ, i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥rn − ej2πε̂[i+1]n/Nejθ̂
[i+1]
n s[i+1]

n

∥∥∥2

−
N−1∑
n=0

∥∥∥rn − ej2πε̂[i]n/Nejθ̂[i]n s[i]
n

∥∥∥2

∣∣∣∣∣ ≤ ζ.

(5.24)

5.5.3 Initialization and Convergence

The appropriate initialization of CFO and CIR, i.e., ε̂[0] and ĥ[0], respectively, is

essential to ensure the global convergence of the proposed estimator [123]. The

initialization process can be summarized as follows:

• The initial CFO estimate is obtained by applying an exhaustive search for

the value of ε that minimizes the cost function,
∑N−1

n=0 ‖ rn − ej2πε̂n/N ŝn ‖2.

Here, ŝn is the nth symbol of the vector ŝ , FHDWĥ with ĥ , (ΓHΓ)−1ΓH

ÊHr. Note that this exhaustive search needs to be only carried out at the

system start up to initialize the estimation process. Simulations in Section

5.8 indicate that an exhaustive search with a coarse step size of 10−2 is

sufficient for the initialization of the proposed estimator.

• Using ε̂[0], the initial channel estimate, ĥ[0], is obtained by applying the

relationship, ĥ[0] = (ΓHΓ)−1ΓH(Ê[0])Hr. Here, Ê[0] = Ê|ε̂=ε̂[0] .

Note that, based on the equivalent system model in (5.2b) and the simulation

results in Section 5.8, it can be concluded that the proposed ECM algorithm

converges globally when the PHN vector θ̂ is initialized as θ̂
[0]

= 0N−1×1.

Simulation results in Section 5.8 show that at SNR of 20 dB or higher the

proposed ECM-based estimator always converges to the true estimates in only 2

iterations.

5.6 Joint Data Detection and PHN Mitigation

In this section, an iterative detector that utilizes an EKF to the track the PHN

parameters during the data transmission interval is proposed.

At first, using the estimated CFO value, the effect of CFO on the received

data symbol, r, in (5.3) is compensated. As shown Figure 5.2, the resulting
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signal, y , [y1, . . . , yn], where yn is defined in (5.10), passes through an iterative

data detection and PHN estimation block. An EKF is proposed for tracking the

PHN samples, θ, over the data symbols. The PHN estimation is similar to that

in (5.11)-(5.16) and is not presented here to avoid repetition. However, instead

of training-based PHN tracking, the PHN estimation is followed in a decision-

directed fashion for the received data symbols. In other words, the estimate of

the data symbol in the previous iteration, d̂[i−1], is used to update the symbol’s

PHN estimate at the current iteration θ̂
[i]

. Particularly, s[i] in (5.10), is calculated

as s[i] = FHD̂[i−1]Wĥ, where ĥ is the CIR vector estimate obtained from the ECM

estimator during the training interval, and D̂[i−1] , diag(d̂[i−1]). Next, the data

vector estimate is updated for the ith iteration. Following [26] and based on the

received signal in (5.3), the negative LLF for the CFO compensated signal, y,

can be written as

log p(y, d̂, θ̂) = C +
1

2σ2
w

‖ y − P̂FHΥ̂d̂ ‖2 +
1

2ξd
‖ d̂ ‖2 + log p(θ), (5.25)

where C is a constant and

• Υ̂ , diag(Wĥ) is the estimated channel frequency response,

• d̂ , [d̂0, d̂1, · · · , d̂N−1]T is the estimate of the modulated data vector, and

• ξd is the average transmitted symbol power and normalized to 1,

Taking the derivative of (5.25) with respect to d and equating the result to zero,

the estimate of d at the ith iteration, d̂[i] is given by

d̂[i] = (Υ̂
H

Υ̂ +
σ2
w

ξd
IN)−1Υ̂

H
FP̂Hy, (5.26)

where P̂ , diag([ejθ0 , ejθ̂
[i]
1 , . . . , ejθ̂

[i]
N−1 ]T ) and θ̂

[i]
, [θ̂

[i]
1 , . . . , θ̂

[i]
N−1]T are obtained

via the EKF based estimator.

Using the EKF set of equations (5.11)−(5.16) and (5.26), the proposed algo-

rithm iteratively updates the PHN and data estimates, respectively, and stops

when the difference between likelihood functions of two iterations is smaller than

a threshold ζ, i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥yn − ejθ̂[i+1]
n ŝ[i+1]

n

∥∥∥2

−
N−1∑
n=0

∥∥∥yn − ejθ̂[i]n ŝ[i]
n

∥∥∥2

∣∣∣∣∣ ≤ ζ. (5.27)
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Let d̂[0] denote the initial estimate of the transmitted data vector. Appropriate

initialization of d̂[0] results in the proposed iterative detector to converge quickly.

In our algorithm, the initial data estimate is obtained using d̂[0] = (Υ̂
H

Υ̂ +
σ2
w

ξd
IN)−1Υ̂

H
FP̂H

[m−1]y, where P̂[m−1] is the PHN matrix estimate obtained from

the previous OFDM symbol. Simulation results in Section 5.8 indicate that at

SNR= 20 dB the proposed detector, on average, converges after 2 iterations. The

overall estimation and detection algorithm is summarized in Algorithm 2 on the

next page.

5.7 Complexity Analysis

In this section, the computational complexity of the proposed estimator and

detector is compared with that of [23] and [26]. Throughout this section, compu-

tational complexity is defined as the number of complex additions and multipli-

cations [124].

Let us denote the computational complexity of the proposed estimator by

CEST = C
[M ]
EST + C

[A]
EST, where C

[M ]
EST and C

[A]
EST denote the number of complex

multiplications and additions used by the estimator, respectively. C
[M ]
EST and C

[A]
EST

are determined as

C
[M ]
EST =

[
N︸︷︷︸

(5.11)

+ 5N︸︷︷︸
(5.14)

+ 2N︸︷︷︸
(5.15)

+ 2N︸︷︷︸
(5.16)

+ 7N︸︷︷︸
(5.21)

+LN(2N + 1)︸ ︷︷ ︸
(5.23)

+N(N2 + L(N + 1))︸ ︷︷ ︸
snin(5.15)

]
tECM +

[
3N︸︷︷︸∑N−1

n=0 ‖rn−ej2πε̂n/N ŝn‖2

+LN(2N + 1)︸ ︷︷ ︸
ĥ,ξd

−1ΓHÊHr

+N(N2 + L(N + 1))︸ ︷︷ ︸
ŝ,FHDWĥ

]
tinitialize

+N2(N + L)︸ ︷︷ ︸
Γin(5.23)

, (5.28)

C
[A]
EST =

[
N︸︷︷︸

(5.13)

+ N︸︷︷︸
(5.14)

+ 2N︸︷︷︸
(5.15)

+ N︸︷︷︸
(5.16)

+ 2N + 1︸ ︷︷ ︸
(5.21)

+L(N − 1)(2N + 1)︸ ︷︷ ︸
(5.23)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
snin(5.15)

]
tECM

+
[

2N︸︷︷︸∑N−1
n=0 ‖rn−ej2πε̂n/N ŝn‖2

+L(N − 1)(2N + 1)︸ ︷︷ ︸
ĥ,ξd

−1ΓHÊHr

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
ŝ,FHDWĥ

]
tinitialize +N(N − 1)(N + L)︸ ︷︷ ︸

Γin(5.23)

, (5.29)
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Algorithm 2 PROPOSED ECM ESTIMATOR AND DATA DETECTION AL-

GORITHM
ECM ESTIMATOR

Initialization

θ̂
[0]
1|0 = 0 and M

[0]
1|0 = σ2

δ and obtain ε̂[0] and ĥ[0] using an exhaustive search and

(5.23) with coarse step size i.e., 10−2

while

∣∣∣∣∣∑N−1
n=0

∥∥∥rn − ej2πε̂[i+1]n/Nejθ̂
[i+1]
n s

[i+1]
n

∥∥∥2

−

∑N−1
n=0

∥∥∥rn − ej2πε̂[i]n/Nejθ̂[i]n s[i]
n

∥∥∥2

∣∣∣∣∣ > ζ. do

for n = 0, 1, . . . , N − 1 do

(5.11)−(5.16)

end for

for n = 0, 1, . . . , N − 1 do

ε̂[i+1] = ε̂[i] + N
2π

∑N−1
n=0 n=

{
(rn)∗Ŝ[i]

n e
j2πε̂[i]n/N

}
∑N−1
n=0 n

2<
{

(rn)∗Ŝ[i]
n ej2πε̂

[i]n/N
}

end for

ĥ[i+1] = (ΓHΓ)−1ΓHP̂HÊHr

ĥ[i] = ĥ[i+1], θ̂
[i]

= θ̂
[i+1]

, ε̂[i] = ε̂[i+1]

end while

DATA DETECTION

for m = 1, . . . ,M do

Initialization

Obtain d̂[0] = (Υ̂
H

Υ̂ + σ2
w

ξd
IN)−1Υ̂

H
FP̂H

[m−1]y

Replace d̂[0] by its hard decision.

while

∣∣∣∣∣∑N−1
n=0

∥∥∥yn − ejθ̂[i+1]
n ŝ

[i+1]
n

∥∥∥2

−∑N−1
n=0

∥∥∥yn − ejθ̂[i]n ŝ[i]
n

∥∥∥2

∣∣∣∣∣ > ζ do

Using the EKF set of equation in Section 5.5.1 to estimate the PHN pa-

rameters,

d̂[i] = (Υ̂
H

Υ̂ + σ2
w

ξd
IN)−1Υ̂

H
FP̂Hy.

Replace d̂[i] by its hard decision.

d̂[i] = d̂[i+1]

end while

end for
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where tECM is the number of iterations in the ECM estimator and tinitialize is the

number of iterations required to initialize the ECM algorithm. The latter depends

on the step size of the exhaustive search used to initialize the CFO estimates.

Similarly, the computational complexity of the proposed detector is denoted

by C
[M ]
DATA DET and C

[A]
DATA DET, where C

[M ]
DATA DET and C

[A]
DATA DET denote the num-

ber of complex multiplications and additions used by the detector, respectively.

C
[M ]
DATA DET and C

[A]
DATA DET are determined as

C
[M ]
DATA DET =

[
N︸︷︷︸

(5.11)

+ 5N︸︷︷︸
(5.14)

+ 2N︸︷︷︸
(5.15)

+ 2N︸︷︷︸
(5.16)

+N(N2 + L(N + 1))︸ ︷︷ ︸
snin(5.15)

+N2(5N + 1)︸ ︷︷ ︸
(5.26)

]
tDATA DET + N2(5N + 1)︸ ︷︷ ︸

d̂[0]=(Υ̂
H

Υ̂+
σ2w
ξd

IN )−1Υ̂
H

FPH
[m−1]

y

+ NL︸︷︷︸
Υ̂in(5.26)

, (5.30)

C
[A]
DATA DET =

[
N︸︷︷︸

(5.13)

+ N︸︷︷︸
(5.14)

+ 2N︸︷︷︸
(5.15)

+ N︸︷︷︸
(5.16)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
snin(5.15)

+N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸
(5.26)

]
tDATA DET

+N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸
d̂[0]=(Υ̂

H
Υ̂+

σ2w
ξd

IN )−1Υ̂
H

FPH
[m−1]

y

+N(L− 1)︸ ︷︷ ︸
Υ̂in(5.26)

, (5.31)

where tDATA DET is the number of iterations required by the detector in (5.27).

Following similar steps as in (5.28)-(5.31), we can find the computational

complexity of the estimator in [23] as

C
[M ]
[23,EST] =

[
N2(11N + 7) + 2N

]
t[8] +N2(9N + 4L+ 1) + LN (5.32)

C
[A]
[23,EST] =

[
2N3 + (N − 1)(9N2 + 7N + 2) + 1

]
t[8] + 2N3

+ (N − 1)(N(7N + 4L+ 1) + L) (5.33)

where t[23] is the number of iterations required for estimating the CFO via an

exhaustive search in [23]. Moreover, the notations C
[M ]
[23,EST] and C

[A]
[23,EST] are

used to denote the number of complex multiplications and additions used by the

estimator in [23], respectively.

The computational complexity of the detector in [26] is given by

C
[M ]
[26, DATA DET] =

[
N2(11N + 6)

]
t[26] +N2(6N + 1) (5.34)
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Figure 5.3: Comparison of the computational complexity of the proposed algo-

rithms and the algorithms in [23] and [26] for PHN variance, σ2
δ = [10−3, 10−4] rad2.

C
[A]
[26, DATA DET] =

[
N(N − 1)(9N + 6) +N2(2N + 1)

]
t[26] +N2(6N − 5)

+N(N − 1) (5.35)

where t[26] is the number of iterations used by the detector in [26]. Note that

since the estimation approach of [23] and [24] are similar, the computational

complexity of the estimation algorithm in [24] can be calculated using (5.32) and

(5.33). Note that the computational complexity of the algorithm in [117] is not

presented since the approach in [117] only considers channel and PHN estimation

while assuming that no CFO is present.

Figure 5.3 compares the computational complexity of the proposed algorithm

((27)-(30)) and the existing algorithms in [23] and [26] ((31)-(34)) for PHN vari-

ance, σ2
δ = [10−3, 10−4] rad2. Note that the combined algorithm, [23] & [26], is

used because the authors (Lin et. al.) have proposed the estimation algorithm

in [23] and the data detection algorithm in [26]. For the comparison, the num-

ber of iterations, tECM, tDATA DET and tinitialize for the proposed algorithm and

t[23] and t[26] for the existing algorithms are determined as follows. For the pro-

posed algorithm, simulations indicate that (i) at low SNR, i.e., SNR < 10 dB,
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on average, the proposed estimator and detector converge after tECM = 3 and

tDATA DET = 5 iterations, respectively, (ii) the number of iterations decreases to

tECM = tDATA DET = 2 at SNR ≥ 20 dB for σ2
δ = 10−4 rad2 and SNR ≥ 30 dB

for σ2
δ = 10−3 rad2, and (iii) the proposed ECM algorithm converges to the true

estimates when the CFO estimates are initialized with a step size of 10−2, i.e.,

tinitialize = 102. For the existing algorithms, the results in Section 5.8 indicate that

in order to reach an appropriate estimation accuracy and system performance,

the algorithm in [23] requires the step size for the exhaustive search to be set

to 10−3, i.e., t[23]=103. In addition, the data detector in [26] requires t[26] = 4

iterations to converge for the PHN variance of σ2
δ = [10−3, 10−4] rad2. Using

these values for the number of iterations, the results shown in Figure 5.3 can be

obtained. It can be seen that the proposed estimation and data detection algo-

rithms are computationally more efficient compared to the combined algorithms

in [23] and [26], e.g., by a factor of 23.8 for SNR = 20 dB, σ2
δ = 10−4 rad2, L = 4

and N = 64. Moreover, the total number of real multiplications and additions in

our proposed algorithms is 3.97× 107 and 3.43× 108, respectively, while they are

2.92 × 109 and 2.89 × 109, respectively, for the combined algorithms in [23] and

[26].

5.8 Simulation Results and Discussions

In this section, simulation results are presented to evaluate the performance of the

proposed estimation and data detection algorithms. An OFDM packet consisting

of m = 6 OFDM symbols is considered, comprising an OFDM training symbol

followed by 5 data symbols. The data symbols are drawn from normalized 64, 128,

or 256 quadrature amplitude modulation (QAM). In the simulations, the symbol

SNR is defined as ξd/σ
2
w = 1/σ2

w. The sampling rate of the OFDM signal is 20

MHz, corresponding to the OFDM sampling duration of Ts = 50 nanoseconds.

The channel impluse response (CIR) is assumed to be a Rayleigh fading multipath

channel with a delay of L = 4 taps and an exponentially decreasing power delay

profile with the average channel power = [−1.52− 6.75− 11.91− 17.08] dB. The

Wiener PHN is generated with PHN variances of σ2
δ = [10−3, 10−4] rad2. The

unknown normalized CFO is assumed to be uniformly distributed over the range

ε ∈ (−0.5, 0.5) for each simulation. Unless specified otherwise, an OFDM training

symbol size of N = 64 subcarriers is used with each subcarrier modulated in

quadrature phase-shift keying (QPSK) with subcarrier spacing = 312.5 kHz. The

simulation results are averaged over 1×105 Monte Carlo simulation runs. Finally,
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the MSE performance of the proposed estimator and the BER performance of the

overall OFDM system are investigated in the following subsections.

5.8.1 Estimation Performance

In this subsection, the performance of the proposed ECM estimator is compared

with the HCRB in Theorem 5.1 and the MAP estimator in [23]. Figures 5.4, 5.5,

and 5.6 plot the HCRB and the MSE for estimating the CIR, PHN, and CFO,

respectively. The HCRB in (5.7) is numerically evaluated for two different PHN

variance, e.g., σ2
δ = [10−3, 10−4] rad2. The following observations can be made

from the figures:

1. The HCRB for PHN and CFO estimation and the estimator’s MSE are

dependent on the variance of the PHN process. Note that, σ2
δ = 10−3 rad2,

corresponds to the presence of a very strong PHN [125].

2. Figure 5.4 shows that the HCRB for the channel estimation does not suffer

from an error floor, which is inline with Remark 1 in Section 5.4. However,

Figures 5.5 and 5.6 show that the HCRB for CFO and PHN suffer from

SNR (dB)
0 5 10 15 20 25 30 35 40

C
ha

nn
el

 E
st

. M
S

E
 (

dB
)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

HCRB σ2
δ
=10-3

[23] σ2
δ
=10-3

Proposed σ2
δ
=10-3

HCRB σ2
δ
=10-4

[23] σ2
δ
=10-4

Proposed σ2
δ
=10-4

Figure 5.4: Channel estimation MSE for the proposed and MAP estimators for

PHN variance, σ2
δ = [10−3, 10−4] rad2.



116
Joint Channel, PHN and CFO Estimation and Data Detection in

OFDM Systems

SNR (dB)
0 5 10 15 20 25 30 35 40

P
ha

se
 N

oi
se

 E
st

. M
S

E
 (

dB
)

-30

-25

-20

-15

-10

-5

0

HCRB σ2
δ
=10-3

[23] σ2
δ
=10-3

Proposed σ2
δ
=10-3

HCRB σ2
δ
=10-4

[23] σ2
δ
=10-4

Proposed σ2
δ
=10-4

Figure 5.5: PHN estimation MSE for the proposed and MAP estimators for PHN

variance, σ2
δ = [10−3, 10−4] rad2.

SNR (dB)
0 5 10 15 20 25 30 35 40

F
re

qu
en

cy
 O

ffs
et

 E
st

. M
S

E
 (

dB
)

-40

-35

-30

-25

-20

-15

-10

-5

0

HCRB σ2
δ
=10-3

[23] σ2
δ
=10-3

Proposed σ2
δ
=10-3

HCRB σ2
δ
=10-4

[23] σ2
δ
=10-4

Proposed σ2
δ
=10-4

Figure 5.6: CFO estimation MSE for the proposed and MAP estimators for PHN

variance, σ2
δ = [10−3, 10−4] rad2.



5.8 Simulation Results and Discussions 117

an error floor, which is directly related to the variance of the PHN process.

This is due to the fact that at low SNR the performance of the system is

dominated by AWGN, while at high SNR the performance of the proposed

estimator is limited by PHN and the resulting ICI.

3. Figures 5.4, 5.5, and 5.6 show that at low SNR, i.e., SNR < 15 dB, the pro-

posed estimator is outperformed by the estimation algorithm in [23]. This

outcome can be attributed to the different linearization approaches that are

applied in this thesis. In [23], a first order Taylor series approximation is

applied to linearize the signal model with respect to the PHN parameters

over the whole OFDM symbol. However, the proposed algorithm uses an

EKF algorithm that linearizes the observation sequence sample by sam-

ple, i.e., the estimate of the previous sample’s PHN is used to linearize the

current sample’s PHN within the OFDM symbol. Thus, the proposed al-

gorithm is less severely impacted by the residual error introduced by the

first order Taylor series approximation. This results in significantly better

estimation performance at high SNRs, where the estimator’s performance

is mainly impacted by PHN and not the AWGN. However, the estimator in

[23] is based on the maximum a posterior (MAP) criterion that utilizes an

exhaustive search to obtain the PHN parameters after applying the first or-

der Taylor series approximation. Although this estimator is very complex,

it is well-known that a MAP estimator is an optimal estimator for tracking

random parameters and outperforms an EKF [126]. Hence, at low SNR,

where the performance of the estimator is dictated by the AWGN noise,

the MAP estimator in [23] is capable of more accurately tracking the PHN

parameters compared to the EKF based estimator in this chapter.

It is important to note that, compared to [23], the comparatively poor

performance of the proposed estimator at low SNR does not result in sig-

nificant degradation in the overall BER performance of an OFDM system

(see Figures 5.7-5.10). This can be attributed to the fact that at low SNR

the overall BER of the system is not dictated by the PHN estimation error

but is bounded by the AWGN. However, at high SNR, where the overall

performance of an OFDM system is PHN limited, the proposed algorithm

demonstrates a significantly better BER performance due to the lower error

associated with the estimation of PHN parameters compared to [23].

4. Figures 5.4, 5.5, and 5.6 show that the proposed estimator outperforms the

estimation algorithm in [23] at moderate-to-high SNR. The biggest gain is
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achieved in the MSE of PHN estimation, followed by the MSE of CFO and

channel estimation. For example, for σ2
δ = 10−4 rad2 and at high SNR, the

proposed estimator results in a 2–3 dB performance gain compared to that

of [23] while estimating PHN or CFO. This performance gain is in addition

to the lower complexity of the proposed estimator as shown in Section 5.7.

Note that in Figure 5.5, the PHN estimation MSE of the proposed estimator

and the estimator in [26] are lower than the HCRB at low SNR. This is due

to the fact that the HCRB cannot be derived in closed-form while taking into

account the prior knowledge of the range of CFO values, i.e., (−0.5, 0.5). However,

the proposed estimator and the estimator in [26] take into account this prior

information while estimating the PHN, CFO, and the channel paraments.

5.8.2 Comparison with Existing Work

In the following, the combined estimation and data detection performance is

examined in terms of the uncoded BER of the OFDM system. The following

system setups are considered for comparison:

(i) The proposed estimation and data detection algorithm (labelled as “Proposed

Est. and Data Det.”).

(ii) The estimation and data detection algorithm in [23] and [26], respectively

(labelled as “[23] & [26]”).

(iii) The data detection in [117] combined with the proposed estimation algorithm

(labelled as “[Proposed estimation, 114] ”).

(iv) The estimation algorithm in [23] combined with the proposed data detection

algorithm (labelled as “[23, Proposed data detection] ”).

(v) As a reference, a system that applies the proposed estimation algorithm but

utilizes no PHN tracking during OFDM data symbols (labelled as “No CFO

cancel. and PHN track.”).

(vi) As a lower-bound on the BER performance, a system assuming perfect chan-

nel, PHN, and CFO estimation (labelled as “Perf. CIR, PHN & CFO est.”).

Figure 5.7 depicts the uncoded BER performance of the OFDM systems listed

above. The following observations can be made from Figure 5.7:

1. The results demonstrate that without phase tracking and CFO cancella-

tion throughout the packet, the OFDM system performance deteriorates

significantly. On the other hand, by combining the proposed estimation

and data detection algorithms, the BER performance of an OFDM system
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Figure 5.7: Comparison of uncoded BER of the proposed algorithms for PHN

variance, σ2
δ = [10−3, 10−4] rad2 and 64-QAM modulation with the algorithms in

[23] & [26] and [114].

is shown to improve considerably even in the presence of very strong PHN,

e.g., σ2
δ = 10−3 rad2.

2. Compared to existing algorithms, the BER performance of an OFDM sys-

tem using the proposed algorithms is closer to the ideal case of perfect CIR,

PHN, and CFO estimation (a performance gap of 10 dB at SNR = 20 dB).

3. It can be clearly observed that the proposed receiver structure outperforms

the algorithms in [23] and [26]. This performance improvement can be at-

tributed to the fact that instead of single order Taylor series approximation

applied directly to the whole OFDM symbol [23], the proposed estimation

and detection algorithms apply EKF to linearize the PHN, which uses the

most recent estimated PHN values to obtain an updated PHN estimate

sample by sample. This linearization using EKF helps in achieving better

system performance at high SNR.

4. It is clear that the performance of the proposed data detection algorithm

outperforms the algorithm in [117]. This result is anticipated, since at high
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PHN variance, the approximation of PHN parameters using linear interpo-

lation in [117] highly deviates from the true PHN parameters. Therefore,

the linear interpolation approach in [117] may not be used in the presence

of very strong PHN, e.g., σ2
δ = 10−3 rad2.

5. It can be seen that the performance of the proposed estimator outperforms

that of [23] even when the latter is combined with the proposed data detec-

tion algorithm. This is because the estimation based on EKF outperforms

the estimation in [23] at high SNR. Thus, at high SNR, where the sys-

tem performance is determined by the PHN estimation performance, the

proposed estimation and detection algorithms achieve better BER results.

6. Finally, Figure 5.7 shows that in the presence of PHN, the overall BER

performance of an OFDM system suffers from an error floor at high SNR,

since at high SNR the performance of an OFDM system is dominated by

PHN, which cannot be completely eliminated.
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5.8.3 Effect of Modulation and OFDM System Parameter

Figure 5.8 illustrates the uncoded BER performance of an OFDM system for

higher order modulations, i.e., 256-quadrature amplitude modulation (256-QAM).

The results in Figure 5.8 shows that even for a denser constellation, the proposed

estimation and data detection algorithms significantly improve the overall system

performance compared to that of [23, Proposed data detection], [26] and [117].

For example, to achieve a BER of 3×10−2 with a PHN variance of 10−4 rad2, the

proposed algorithm outperforms the algorithms in [23, Proposed data detection]

and [26] by a margin of 6 dB and 7 dB, respectively. In addition, the proposed

algorithm outperforms the algorithm in [117] by a margin of 3 dB at a BER of

10−2 with a PHN variance of 10−4 rad2. In addition, this gap widens at higher

SNR values.

Figure 5.9 illustrates the uncoded BER performance of an OFDM system

for different number of subcarriers, e.g., N = 128, 256, 512 and 1024, within

an OFDM symbol. Based on the results in Figure 5.9, it can be concluded

that the proposed algorithm is not sensitive to the subcarrier spacing at low-to-

medium SNRs while at high SNRs, the BER degrades as one moves to N = 1024
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Figure 5.10: Comparison of coded BER of the proposed algorithms with the

algorithms in [23] & [26] and [23, Proposed data detection] for PHN variance,

σ2
δ = 10−4 rad2 and 64-QAM modulation.

subcarriers. This is because increasing the number of subcarriers results in more

ICI that is caused by the residual PHN and CFO. More importantly, the BER

performance of an OFDM system using the proposed algorithms outperforms that

of [23] and [26] for any value of N . For instance, at BER = 10−2 and N = 128, the

SNR gain for the proposed algorithms is almost 8 dB compared to the algorithms

in [23] and [26].

Finally, the coded BER performance is shown in Figure 5.10. A low-density

parity-check (LDPC) code is employed with a channel coding rate of 1/2 and

codeword length of 1296 bits. The algorithm in [92] is used for encoding. The

soft-decision iterative decoding algorithm, based on a sum-product algorithm in

[96] is utilized for decoding the estimated data vector in (5.26). The results in

Figure 5.10 show that, the proposed estimation and data detection algorithms

improve the overall system performance compared to the existing algorithms in

[23] and [26]. For example, to achieve a BER of 10−4 with a PHN variance of

10−4 rad2, the proposed algorithm outperforms the algorithms in “[23, Proposed

data detection]” and “[23] & [26]” by a margin of 5 dB and 10 dB, respectively.



5.9 Conclusion 123

In addition, compared to existing algorithms, the coded BER performance of an

OFDM system using the proposed algorithm is closer to that of the ideal case of

perfect CIR, PHN, and CFO estimation (a performance gap of 2 dB at BER of

10−4).

5.9 Conclusion

In this chapter, an ECM based algorithm has been proposed for joint estimation

of channel, PHN, and CFO in OFDM systems. The signal model for the esti-

mation problem is outlined in detail and the HCRB for the joint estimation of

channel, PHN, and CFO in OFDM systems is derived. Simulation results indi-

cate that the estimation MSE of the proposed algorithm is closer to the derived

HCRB and outperforms the existing estimation algorithms at moderate-to-high

SNR. Next, an iterative algorithm for joint data detection and PHN mitigation

is proposed for the OFDM data symbols. The proposed algorithm employs an

EKF based approach to track the time-varying PHN parameters throughout the

OFDM data symbols. The performance of the proposed estimation and detection

algorithms has been evaluated for different PHN variances σ2
δ = [10−3, 10−4]rad2,

different number of subcarriers N = [64, 128, 256, 512, 1024], and different mod-

ulation schemes, 64, 128, 256-QAM. Numerical results show that the proposed

ECM based estimator and the iterative data detection algorithm are not only

computationally efficient compared to the existing algorithms but also outper-

form existing algorithms in terms of both the uncoded and the coded BER per-

formance. For example, the uncoded BER for the proposed algorithms has an

SNR gain of almost 8 dB compared to the existing algorithms at an BER of 10−2

with N = 128. In addition, the coded BER performance using the proposed algo-

rithms is closer to the ideal case of perfect CIR, PHN, and CFO estimation with a

performance gap of only 2 dB at BER of 10−4 and PHN variance, σ2
δ = 10−4 rad2.



Chapter 6

Synchronization of Cooperative
OFDM Communication Systems
and Its Effects on 3-D Video
Applications

6.1 Introduction

In the last chapter, an ECM based algorithm for joint estimation of channel,

PHN, and CFO was proposed. In addition, the HCRB for the joint estimation

problem was presented. An iterative receiver based on an EKF for joint data

detection and PHN tracking was also proposed. In this chapter, an iterative

pilot-aided algorithm based on ECM for joint estimation of multipath channels,

Wiener PHNs, and CFOs, the HCRB and the data detection in DF and AF based

cooperative OFDM systems will be investigated, as well the effects of synchro-

nization impairments on 3-D video applications.

Relay based cooperative communication schemes using single-antenna transce-

ivers provide spatial diversity by forming virtual MIMO systems [58, 60]. In

contrast to conventional MIMO systems, which resulting single PHN and CFO

since the antenna elements are co-located on a single device, the cooperative

networks have multiple distributed nodes and each one has its own local oscillator.

Thus, this gives rise to multiple PHNs and multiple CFOs. In addition, such

diversity gains are only possible if synchronization, e.g., accurate estimation of

channel, phase noises (PHNs), and carrier frequency offsets (CFOs) exists among

all communication nodes [127]. Moreover, It is shown that a small phase shift at
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the output of the local oscillator in each node can significantly reduce the overall

cooperative system performance [14].

OFDM systems, which are employed to enhance bandwidth efficiency and

mitigate the effect of frequency-selective fading, are more severely impacted by

PHN. Moreover, CFOs and PHNs result in a CPE and ICI at the destination

[13]. In addition, the estimation of the CIR for each link becomes challenging in

the presence of CFOs and PHNs [23]. Furthermore, the accurate estimation of

these multiple impairments, i.e., CIR, CFOs, and time-varying PHNs, is required

for coherent detection of OFDM signals at the destination.

Most of the existing work in the literature focuses on estimating either CFOs

while assuming perfect estimation of PHNs [28–30] or targeting the estimation

PHN parameters while assuming perfect CFOs estimation [14]. More specifically,

in [28], the channel estimation in the presence of CFOs is analyzed in DF and AF

cooperative systems. However, the authors in [28] do not take the effect of PHN

into account. In [29] and [30], the CFOs estimation is investigated for DF and

AF cooperative systems, respectively. However, the proposed algorithms in [29]

and [30] are based on the assumption of perfect knowledge of channels. Moreover,

in [30], a minimum mean square error (MMSE) equalizer is used to equalize the

ICI, which is computationally very complex. In [14], the channel estimation in

the presence of PHN are investigated. However, the CFOs effects are not take

into account. More importantly, [14, 28–30] do not provide the HCRB for joint

estimation of multiple impairments in cooperative OFDM systems, which would

provide essential information about the absolute performance of the estimation

scheme. The problem of joint channel, CFO, and PHN estimation is considered

in the context of OFDM relay networks in [15]. However, the relaying approach

and system model are totally different from the one in this chapter. Moreover,

the estimation approach in [15] is based on the maximum a posteriori (MAP)

criterion, which is computationally very complex.

Given the time-varying nature of PHN, we need to track it not only during

the training interval but also during the data transmission interval. Hence, fol-

lowing the training period, a receiver structure for joint data detection and PHN

mitigation in the data transmission period is required. In the existing literature,

joint data detection and PHN mitigation is analyzed in [14] and [15]. However,

the PHN tracking in [14] and [15] requires the application of pilots throughout an

OFDM symbol to compensate the CPE. This adversely affects the bandwidth ef-

ficiency and data detection performance. Furthermore, our simulations show that

the approach in [14] and [15] is outperformed by the receiver structure proposed
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in this chapter.

In the context of 3-D video transmission, this chapter shows that the perfor-

mance of cooperative communication systems for video applications is adversely

impacted by synchronization impairments such as imperfect channel estimation,

PHNs and CFOs, as they can result in ICI and rotation of the video signal con-

stellation.

Most of the existing work on video transmission is based on the assumption

that channels, PHNs and CFOs are accurately known at the video transceiver.

In [7, 31–35], the proposed video transceiver is based on the assumption that the

channels are perfectly known at the source and destination. Moreover, in [7, 31–

35], the study of the impact of imperfect channel, PHN and CFO estimation on

the system performance for video transmission, has not been addressed.

6.1.1 Contributions

The major contributions of this chapter can be summarized as follows:

• The proposal of an iterative pilot-aided algorithm based on the ECM in

both DF and AF cooperative OFDM networks in the presence of unknown

channel gains, PHNs and CFOs. In the E-step, an extended Kalman filter

(EKF) estimator that is shown to accurately track the time varying PHN

over the transmission packet is proposed. In the M-step, a closed form

estimator is derived to estimate the CFO and channel parameters. Through

simulations, it has been found that the proposed ECM based estimator

only requires a few iterations to track the multiple impairments over the

transmission packet.

• Addressing of the effects of PHNs and CFOs on an OFDM-based AF and

DF relay network. Through simulations, it has been found that PHNs and

CFOs significantly degrade the overall BER performance in the AF relay

network compared to the DF relay network and non-cooperative systems.

• The presentation of an expression for the HCRB for the joint estimation

of the channel, CFO and PHN in OFDM cooperative systems for both DF

and AF. Simulation results show that the MSE of the proposed algorithm

is closer to the HCRB at moderate-to-high SNR.

• The proposal of a new iterative algorithm based on the EKF for data detec-

tion and tracking the unknown time-varying PHN throughout the OFDM

data packet.
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• The investigation of the performance of the proposed estimator and the

detector through simulations. These simulation results demonstrate that,

at different values of SNRs, the combined estimation algorithm and iter-

ative receiver can significantly improve average bit-error rate performance

compared to the existing algorithms, the conventional cooperative1 and

non-cooperative systems, i.e., the single-hop link (direct link) S → D.

• The investigation of the effects of PHNs and CFOs on 3-D video appli-

cations over an OFDM-based AF relay network. Through simulations, it

has been found that proposed estimator and detector significantly improve

the PSNR performance with a variety of PHN variances. In addition, sim-

ulation results show that the the conventional approaches, which ignore

PHNs and CFOs in data detection, for video transmission are significantly

outperformed by the system proposed in this chapter.

The rest of this chapter is organized as follows: Section 6.2 describes the

system model, the scenario under consideration, and the assumptions in this

work, Section 6.3.1.1 presents problem formulation, Section 6.4 derives HCRB.

Section 6.5 derives the proposed estimator, Section 6.6 presents the joint data

detection and PHN mitigation, Section 6.7 illustrates the complexity analysis of

the proposed system while Section 6.8 provides simulation results that investigate

the performance of the proposed estimator and detector. Finally, Section 6.9

concludes the chapter and summarizes its key findings.

6.2 Signal Model

A cooperative system with M + 2 nodes is considered. It consists of one source

node which communicates with one destination node and M relays. The time

division multiple access (TDMA)-based relay protocol is considered, where during

the first time slot, the source node broadcasts the information to the mth relay

and destination node, while during the second time slot, the mth relay node

decodes and re-encodes or amplifies and forwards the source information to the

destination node. In order to guarantee the advantages of cooperative diversity,

there is a need to estimate the channel gains, time varying PHNs, and CFOs

for the received signal at the destination node during both time slots. In this

chapter, the following set of assumptions are adopted:

1This means ignoring PHN and CFO in channel estimation and detection as in [14].
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Figure 6.1: System block diagram of a cooperative system with M + 2 nodes
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A1. All nodes adopt a half-duplex mode such that a node cannot transmit and

receive simultaneously, but on different time slots. This means the source

node broadcasts the signal to the relay and the destination in the first hop

(i.e., first transmission time slot). In the second hop, the relay applies

either the AF or DF protocol on the received signal and forwards it to the

destination while the source is silent as shown in Figure 6.1. Since there is

no collision between the received signals during the two consecutive hops at

the destination, this transmission protocol maintains orthogonality at the

expense of a loss in spectral efficiency.

A2. The channels are modeled as a slow fading frequency-selective channel, i.e.,

the channels are assumed to be quasi-static Rayleigh fading and they are

constant and unknown over the OFDM packet duration and change from

packet to packet following a complex Gaussian distribution;

A3. Carrier frequency offsets (CFOs) are modeled as unknown deterministic pa-

rameters over a packet, and change from packet to packet.

A4. The time-varying PHN changes from symbol to symbol and is modeled as

a Wiener process, i.e., θn = θn−1 + δn, ∀ n, where θn is the PHN at the

nth instant, δn ∼ N (0, σ2
δ ) is PHN innovation and σ2

δ is the variance of the

innovation process [71, 72].

A5. The training symbol is assumed to be known at the destination.

A6. The timing offsets are assumed to be perfectly estimated, hence it is not

considered.

Note that assumptions A1, A2, A3, A4 and A6 are in line with previous studies

and channel, CFO and PHN estimation algorithms in [14, 23, 25, 26, 28–30, 72,

117]. Assumption A4 is also reasonable in many practical scenarios to describe

the behaviour of practical oscillators [23, 71]. In addition, assumption A5 is

adopted in the IEEE 802.11ac/ad standards to estimate channel and CFO in

[10, 11, 23, 114, 117–119].

The time-invariant composite CIR between any pair of nodes a and b is mod-

eled as h̄a,b(τ) =
∑L−1

l=0 h̄a,b(l)δ(τ−lTs), where h̄a,b(l) is the channel gain for the lth

tap, and δ(x) is the unit impulse function. L is the channel order, and Ts = 1/B,

where B represents the total bandwidth. The channel order L is the same for

any pair of nodes. For brevity, we define h̄a,b , [h̄a,b(0), h̄a,b(1), . . . , h̄a,b(L −
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1)]T and the channel gains h̄a,b(l) are modeled as complex Gaussian zero-mean

random variables. The frequency-domain channel coefficient matrix is Ha,b =

diag{Ha,b[0], Ha,b[1], . . . , Ha,b[N − 1]}, where Ha,b[n] =
∑L−1

d=0 h̄a,b(d)e−(j2πnd/N) is

the channel frequency response on the nth subcarrier and N is the number of

subcarriers.

The input data bits are first mapped to the complex symbols drawn from a

signal constellation such as phase-shift keying (PSK) or quadrature amplitude

modulation (QAM). Next, the source node S transmits the modulated training

symbol vector dS = [dS(0), dS(1), . . . , dS(N − 1)]T . Note that, because the joint

channel, PHN and CFO estimation algorithm is similar performed for each relay,

the relay index m is omitted in this section.

6.2.1 First Time Slot

The received samples at the destination D and the relay R in time domain are

given by

yD,1(n) = ej(θ̄S,D(n)+2πnεS,D/N)(h̄S,D(n)⊗ x(n)) + wD,1(n) (6.1a)

= ej(θS,D(n)+2πnεS,D/N)(hS,D(n)⊗ x(n)) + wD,1(n), (6.1b)

yR,1(n) =
√
gS,Re

j(θ̄S,R1
(n)+2πnεS,R/N)(h̄S,R(n)⊗ x(n)) + wR(n) (6.2a)

=
√
gS,Re

j(θS,R1
(n)+2πnεS,R/N)(hS,R(n)⊗ x(n)) + wR(n), (6.2b)

where

• x(n) = 1√
N

N−1∑
k=0

dS(k)ej2πkn/N is the complex baseband OFDM signal at nth

sample of the transmitted OFDM symbol for n = 0, 1, . . . , N − 1, and k

denotes the subcarrier index,

• {h̄S,D(l)}L−1
l=0 and {h̄S,R(l)}L−1

l=0 are the channel impulse response from S →
D and S → R, respectively. Note that (6.1b) and (6.2b) are an equivalent

system model representation of (6.1a) and (6.2a), respectively, hS,D(n) ,
ejθ̄S,D(0)h̄S,D(n), hS,R(n) , ejθ̄S,R(0)h̄S,R(n), θS,D(n) , θ̄S,D(n)− θ̄S,D(0), and

θS,R1(n) , θ̄S,R1(n) − θ̄S,R1(0). This equivalent system model helps to dis-

tinguish between the phase disturbance caused by PHN and the channel

phase for the first sample, which in turn resolves the phase ambiguity in

the joint estimation problem as indicated in Section 6.5,
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• gS,R=(dS,D/dS,R)γ is the large-scale fading gain, where we assume that the

distance between the source and the relay is smaller than the distance be-

tween the source and the destination (see Figure 6.1). dS,D and dS,R are the

physical distances from S → D and S → R, respectively, γ is the large-scale

fading exponent,

• θS,D(n) = θS(n) + θD(n) and θS,R1(n) = θS(n) + θR1(n) are the PHN pro-

cesses between S and D and S and R, respectively, during the first time

slot, θk(n) for k ∈ {S,R,D}, is generated using a Wiener process, i.e.,

θ(n) = θ(n− 1) + δ(n), ∀ n, where δ(n) ∼ N (0, σ2
δ ) is the PHN innovation

and σ2
δ is the variance of the innovation process [71],

• εS,R and εR,D denote the normalized CFOs between the S and R and R and

D nodes, respectively,

• wD,1(n) and wR(n) are the additive white Gaussian noise (AWGN) samples

with {wD,1(n),

wR(n)} ∼ N (0, σ2
w).

Using (6.1) and (6.2) the received signals at D and R, yD,1 = [yD,1(0), yD,1(1),

. . . , yD,1(N − 1)]T and yR,1 = [yR,1(0), yR,1(1), . . . , yR,1(N − 1)]T , respectively, in

vectorial form are given by

yD,1 = ES,DPS,DFHDSFLhS,D + wD,1, (6.3)

yR,1 =
√
gS,RES,RPS,R1F

HDSFLhS,R + wR, (6.4)

where

• PS,D , diag([ejθS,D(0), ejθS,D(1), . . . , ejθS,D(N−1)]T ) and PS,R1 , diag([ejθS,R1
(0),

ejθS,R1
(1), . . . , ejθS,R1

(N−1)]T ) are N × N PHN matrices from S → D and

S → R, respectively,

• ES,D and ES,R are N×N CFO matrices from S → D, and from S → R, re-

spectively, i.e., Ea,b , diag([e(j2πεab/N)×0, e(j2πεab/N), . . . , e(j2πεab/N)×(N−1)]T ),

a, b ∈ {S,R,D},

• F is an N × N DFT matrix, i.e., [F]l,m , (1/
√
N)e−j(2πml/N) for m, l =

0, 1, · · · , N − 1,

• DS , diag(dS[n]),
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• FL is an N × L DFT matrix, i.e., FL , F(1 : N, 1 : L),

• wD,1 = [wD,1(0), wD,1(1), . . . , wD,1(N − 1)]T and wR = [wR(0), wR(1), . . . ,

wR(N − 1)]T are AWGN vectors.

6.2.2 Second Time Slot

In this time slot, the relay applies either AF or DF protocol on the received signal

and forwards it to the destination while the source is silent.

6.2.2.1 AF-relaying protocol

In this protocol, the relay simply amplifies and forwards the received signal to the

destination. By adopting the low phase noise variance assumption, as explained

in [14], the approximated received signal at D is given by

yD,2=

√
gR,D

E[|dS|2]

E[|yR,1|2]
ER,DPR2,DFHHR,DFyR,1 + wD,2

=

√
gR,DgS,RξD

gS,RξDσ2
h + σ2

w

ER,DES,RPR2,DPS,R1F
HHS,RHR,DdS

+

√
gR,DξD

gS,RξDσ2
h + σ2

w

ER,DPR2,DFHHR,DFwR + wD,2 (6.5)

Equation (6.5) can further be simplified as

yD,2 = q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D + q2ER,DPR2,DFHHR,DFwR + wD,2

(6.6)

where

• q1 ,
√

gR,DgS,RξD
gS,RξDσ

2
h+σ2

w
and q2 ,

√
gR,DξD

gS,RξDσ
2
h+σ2

w
,

• σ2
h=E[|hS,R|2] is the variance of CIR vector,

• gR,D=(dS,D/dR,D)γ is the large-scale fading gain and dR,D is the distance

from R→ D,

• wD,2 is the AWGN vector at the destination,

• ES,R,D=ER,DES,R is the effective CFO matrix during the first and the sec-

ond hops from S → R→ D,
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• PR2,D , diag([ejθR2,D
(0), . . . , ejθR2,D

(N−1)]T ), θR2,D(n) , θ̄R2,D(n) − θ̄R2,D(0)

is N ×N PHN matrix during the second hop from R→ D,

• PS,R,D , diag([ejθS,R,D(0), . . . , ejθS,R,D(N−1)]T ), θS,R,D=θS + θR,1 + θR,2 + θD
is the effective PHN matrix during the first and the second hops from S →
R→ D,

• gR,D=(dS,D/dR,D)γ, dR,D is the distance from R→ D,

• F(2L−1) is an N×(2L−1) DFT matrix, i.e., F(2L−1) , F(1 : N, 1 : (2L−1)),

L is the channel length,

• hR,D(n) , ejθ̄R,D(0)h̄R,D(n) and h̄R,D is CIR between the relay and destina-

tion,

• hS,R,D , hS,R ? hR,D is a 2L− 1× 1 vector,

• HR,D , diag (FLhR,D), and HS,D , diag (FLhS,D).

The received signal vector at D, yD,2 in (6.6), is a circularly symmetric complex

Gaussian random variable, i.e., yD,2 ∼ CN (µyD,2
,ΣyD,2), with mean µyD,2

=

q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D and covariance matrix ΣyD,2 = (q2
2σ

2
wσ

2
h +

σ2
w)IN , where µyD,2

and ΣyD,2 are derived in (A.2).

6.2.2.2 DF-relaying protocol

In the DF protocol, each relay firstly receives the signal in (6.4) and performs

the joint estimation of the channel gains, PHN and CFO during the training

interval and compensated the impairments. Next, the relay decodes the received

data packet by the joint data detection and PHN mitigation. Then, the decoded

signal is forwarded to the destination. The received signal in the destination can

be defined as

yD,2 =
√
gR,DER,DPR2,DFHD̄SFLhR,D + wD,2 (6.7)

where D̄S , diag(d̄S[n]) and d̄S is the decoded and then remodulated training

symbol vector from the relay. In this chapter, the relay can use the ECM estimator

for joint estimation of channel, PHN and CFO. Moreover, the iterative data

detection algorithm based on EKF can be used to detect the data and track the

PHN throughout the OFDM packet.
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6.3 Problem Formulation

6.3.1 AF and DF Relaying for Cooperative Networks

6.3.1.1 AF relaying

In order to gain the advantages of cooperative diversity, the destination receiver

needs to decode the received signals, yD,1 in (6.3), and yD,2 in (6.6), during first

and second time slots, respectively. This in turn requires the estimation of θS,D ,
[θS,D(1), . . . , θS,D(N − 1)]T , hS,D , [hS,D(0), . . . , hS,D(L − 1)]T and εS,D during

the first time slot and the estimation of θS,R,D , [θS,R,D(1), . . . , θS,R,D(N − 1)]T ,

hS,R,D , [hS,R,D(0), . . . , hS,R,D(2L− 1)]T and εS,R,D during second time slot.

6.3.1.2 DF relaying

Similarly, the relay and destination receivers need to decode the received signals,

yD,1 in (6.3), yR,1 in (6.4), and yD,2 in (6.7), during the first and second time slots,

respectively. This in turn requires the estimation of θS,D , [θS,D(1), . . . , θS,D(N−
1)]T , hS,D , [hS,D(0), . . . , hS,D(L− 1)]T and εS,D, and θS,R1 , [θS,R1(1), . . . ,

θS,R1(N − 1)]T , hS,R , [hS,R(0), . . . , hS,R(L− 1)]T and εS,R during first time slot

and θR2,D , [θR2,D(1), . . . , θR2,D(N − 1)]T , hR,D , [hR,D(0), . . . , hR,D(L − 1)]T

and εR,D during second time slot.

Note that it is clear from (6.1b) and (6.2b) that there is no need to estimate

θS,D(0) and θS,R,D(0) in AF protocol or θS,R1(0) and θR2,D(0) in DF protocol.

6.3.2 Performance of the Estimation and Detection Algo-

rithms

The estimation and detection algorithms have to be of low computational com-

plexity and suitable for video applications. As shown in Chapter 5, both the

proposed ECM estimator and data detection algorithm based on EKF outper-

form existing algorithms in terms of the MSE and the BER. In addition, they

have lower computational complexity and are suitable for video application.

6.3.3 Relaying Protocol for Video Applications

Usually, the AF protocol is preferred in relay for video applications as it requires

lower complexity and time processing in processing the received signal [60]. More-

over, the channel encoding and decoding operations at the relay are not required
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in the AF protocol [5]. However, AF relaying networks in the presence of PHNs

and CFOs achieve lower performance than the DF relaying networks as the chan-

nel estimation is performed at the destination and is affected by the PHN and

additive noise from channels which are amplified and forwarded to the desti-

nation [14]. Therefore, efficient estimation and data detection techniques for

channel estimation in the presence of PHNs and CFOs are required to enhance

the application of AF relaying protocol for video applications.

6.4 Hybrid Cramér-Rao Bound

In this section, the HCRB for joint estimation of channel gains, PHNs, and CFOs

for DF and AF-relaying cooperative networks are presented.

6.4.1 HCRB for AF Relaying

In the case of AF relaying, only the overall channel gains, hS,R,D, PHNs, θS,R,D,

and CFOs, εS,R,D, need to be estimated. As a result, the parameter vector of in-

terest for AF relaying, λ, is given by λ = [θTS,R,D <{hS,R,D}T ={hS,R,D}T εS,R,D]T .

Note that the λ comprises both random and deterministic parameters, e.g., PHN,

θS,R,D , [θS,R,D(1), . . . , θS,R,D(N − 1)]T , is random while CIR, hS,R,D, and CFO,

εS,R,D, are deterministic parameters. Thus, HCRB instead of standard CRB must

be derived. The accuracy of estimating λ is lower bounded by the HCRB (Ω) as

[79, pp. 1-85]

Eu,θS,R,D |hS,R,D,εS,R,D

[
(λ̂(u)− λ)(λ̂(u)− λ)T

]
� Ω. (6.8)

Let us define Ω = B−1 and B is an (N + 2(2L − 1)) × (N + 2(2L − 1)) hybrid

information matrix (HIM), which is given in the following theorem.

Theorem 6.1: The HIM for joint estimation of CIR, PHN and CFO is given by

B =
2

σ2
w

<



B11 B12 B13 b14

B21 B22 B23 b24

B31 B32 B33 b34

b41 b42 b43 b44


 , (6.9)

where

• B11 , q2
1Q̄

H
1 Q̄1 + Λ is the (N − 1) × (N − 1) HIM for the estimation of

θS,R,D, Q1 = diag(FHDSF(2L−1)

hS,R,D), and Q̄1 = Q1(2 : N, 2 : N),
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• Λ is an (N − 1)× (N − 1) tridiagonal matrix with diagonal elements given

by σ̃2
w

2σ2
δS,R,D

[1, 2, . . . , 2, 1] and off-diagonal elements given by −σ̃2
w

2σ2
δS,R,D

[1, . . . , 1],

and σ2
δS,R,D

, σ2
δS

+ σ2
δR1

+ σ2
δR2

+ σ2
δD

is the total PHN variance of the

innovation process from S → R→ D,

• B22 , q2
1Q

H
2 Q2 is an (2L − 1) × (2L − 1) information matrix for the esti-

mation of real part of hS,R,D, and Q2 = FHDSF(2L−1),

• B33 , q2
1Q

H
2 Q2 is an (2L − 1) × (2L − 1) information matrix for the esti-

mation of imaginary part of hS,R,D,

• b44 , q2
1q

H
5 q5 is a scalar representing the information for the estimation of

CFO, ε, q5 =
√

MFHDSF(2L−1)

hS,R,D, and M , diag
([

(2π 0
N

)2, (2π 1
N

)2, . . . , (2πN−1
N

)2
]T)

,

• B12 = BH
21 , −jq2

1Q̄
H
1 Q̄2, Q̄2 = Q2(2 : N, 1 : L)

• B13 = BH
31 , q2

1Q̄
H
1 Q̄2,

• b14 = bH41 , q2
1Q̄

H
4 q̄3, Q4 = diag(

√
MFHDSF(2L−1)hS,R,D), Q̄4 = Q4(2 :

N, 2 : N), q3 = FHDSF(2L−1)hS,R,D, and q̄3 = q3(2 : N),

• B23 = BH
32 , jq2

1Q
H
2 Q2,

• b24 = bH42 , jq2
1Q

H
2 q5, and

• b34 = bH43 , q2
1Q

H
2 q5.

Finally, the HCRB, Ω, is given by the inverse of the HIM. i.e., Ω = B−1.

Note that the detailed derivation can be pursued by using similar steps given in

Appendix (A.1).

6.4.2 HCRB for DF Relaying

Similar to the case of AF relaying, the received signal vector in general between

any pair of transmitted node a and received node b, yb ∼ CN (µyb
,Σyb), with

mean µyb
= Ea,bPa,bF

HDSFLha,b and covariance matrix Σyb = σ2
wIN , where

a, b ∈ {S,R,D}. The parameter vector of interest between any pair of trans-

mitted node a and received node b, is given by λ = [θTa,b hTa,b εa,b]
T . The accuracy

of estimating λ is lower bounded by the HCRB (Ω) as [79]

Ey,θa,b|ha,b,εa,b

[
(λ̂(y)− λ)(λ̂(y)− λ)T

]
� Ω. (6.10)
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Let us define Ω = B−1 and B is an (N +L)× (N +L) hybrid information matrix

(HIM) and can be calculated similar to the AF case of equation (6.9). However, in

(6.9) FL is used instead of F(2L−1) and q2
1 is removed. Thus, the HCRB in (6.10)

can be used for the parameter vector of interest between S → D in (6.3), S → R

in (6.4), and R → D in (6.7), i.e., λ = [θTS,D hTS,D εS,D]T , λ = [θTS,R1
hTS,R εS,R]T ,

and λ = [θTR2,D
hTR,D εR,D]T , respectively.

6.5 Joint Parameter Estimation

In this section, the ECM based estimator is proposed for the joint estimation

of channel parameters, PHNs and CFOs for DF-and AF-relay networks, and its

computational complexity is analyzed.

6.5.1 Proposed ECM based Estimator for AF Coopera-

tive Networks

The ECM algorithm at the destination receiver iterates between the expectation

step (E-step) and the maximization step (M-step). In E-step, EKF is proposed

to update the PHN vector at (i + 1)th iteration, θ
[i+1]
S,R,D, using the CIR and

CFO estimates, ĥ
[i]
S,R,D and ε̂

[i]
S,R,D, respectively, obtained from the previous (ith)

iteration, while in M-step, closed-form estimators are derived to update the CIR

and CFO estimates, ĥ
[i+1]
S,R,D and ε̂

[i+1]
S,R,D, respectively. The proposed ECM algorithm

at the ith iteration is given as follows.

For the given problem, the data set is given by s , q1F
HDSF(2L−1)hS,R,D =

[s(0), . . . , s(N − 1)]T and is N × 1 vector and re-write yD,2 in (6.6) as follows

u = ES,R,DPS,R,Ds + v; (6.11)

where the overall noise vector v , [v(0), . . . , v(N−1)]T = q2ER,DPR2,DFHHR,DF

wR + wD,2 is distributed as v ∼ CN (0, σ̃2
wIN) and σ̃2

w , q2
2σ

2
wσ

2
h + σ2

w. Following

[120], the complete data is defined as z , [uT θTS,R,D]T and the negative log

likelihood function of the complete data, log p(z; εS,R,D), is given by

log p(z; εS,R,D) = C1 +
1

σ̃2
w

N−1∑
n=0

‖ u(n)− ej2πεS,R,Dn/N × ejθS,R,D(n)s(n) ‖2

+ log p(θS,R,D(0)) +
N−1∑
n=0

log p(θS,R,D(n)|θS,R,D(n− 1)), (6.12)
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where C1 is a constant. The detailed E-step and M-step for estimating the CIR,

PHN, and CFO are as follows:

E-step: In this step, the received signal u(n) is first multiplied by e−j2πε̂
[i]
S,R,Dn/N .

Next, the signal r(n) , e−j2πnε
[i]
S,R,D/Nu(n) is used to estimate the PHN vector,

where ε̂
[i]
S,R,D is the latest CFO estimate obtained from the previous iteration.

First, we propose to use EKF during E-step to estimate the PHN samples θS,R,D.

The signal r(n) can be written as

r(n) = e−j2πnε
[i]
S,R,D/Nu(n) = ej2πn∆ε̂S,R,D/NejθS,R,D(n)s[i](n) + ṽ(n), (6.13)

where s[i](n) is nth symbol of the vector s[i] , q1F
HDSF(2L−1)h

[i]
S,R,D, ∆ε̂S,R,D ,

εS,R,D−ε̂[i]S,R,D, and ṽ(n) , v(n)e−j2πnε̂
[i]
S,R,D/N . The state and observation equations

at time n are given by

θS,R,D(n) = θS,R,D(n− 1) + δS,R,D(n), (6.14)

r(n) = z(n) + ṽ(n) = ejθS,R,D(n)s(n) + ṽ(n). (6.15)

Since the observation equation in (6.15) is a non-linear function of the unknown

state vector θS,R,D, the EKF is used instead of simple Kalman filtering. The EKF

uses Taylor series expansion to linearize the non-linear observation equation in

(6.15) about the current estimates [78]. Thus, the Jacobian of z(n) is evaluated

by computing the first order partial derivative of z(n) with respect to θS,R,D(n)

as

ż(n) =
∂z(θS,R,D(n))

∂θS,R,D(n)

∣∣∣∣
θS,R,D(n)=θ̂S,R,D(n|n−1)

= jz(θ̂S,R,D(n|n− 1))

= jejθ̂
[i]
S,R,D(n|n−1)ŝ(n), (6.16)

where ż denotes the Jacobian of z evaluated at θS,R,D(n). The first and second

moments of the state vector at the (i+ 1)th iteration denoted by θ̂
[i+1]
S,R,D(n|n− 1)

and M [i+1](n|n− 1), respectively, are given by

θ̂
[i+1]
S,R,D(n|n− 1) = θ̂

[i+1]
S,R,D(n− 1|n− 1), (6.17)

M [i+1](n|n− 1) = M [i+1](n− 1|n− 1) + σ2
δS,R,D

, (6.18)

Given the observation x(n), the Kalman gain K(n), posteriori state estimate
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θ̂
[i+1]
S,R,D(n|n), and the filtering error covariance, M [i+1](n|n) are given by

K(n) = M [i+1](n|n− 1)ż∗(θS,R,D(n|n− 1))

×
(
ż(θS,R,D(n|n− 1))×M [i+1](n− 1|n− 1)

× ż∗(θS,R,D(n|n− 1)) + σ̃2
w

)−1

, (6.19)

θ̂
[i+1]
S,R,D(n|n) = θ̂

[i+1]
S,R,D(n|n− 1) + <

{
Kn

(
r(n)− ejθ̂

[i+1]
S,R,D(n|n−1)ŝ[i](n)

)}
, (6.20)

M [i+1](n|n) = <
{
M [i+1](n|n− 1)−K(n)ż(θS,R,D(n|n− 1))×M [i+1](n|n− 1)

}
,

(6.21)

where ŝ[i](n) is nth symbol of the vector ŝ[i] , q1F
HDSF(2L−1)ĥ

[i]

S,R,D. Before

starting the EKF recursion (6.16)-(6.21), θ̂
[1]
S,R,D(1|0) and M [1](1|0) are initialized

by θ̂
[1]
S,R,D(1|0) = 0 and M [1](1|0) = σ2

δS,R,D
.

M-step: In this step, the CIR and CFO from S → R→ D are estimated by

minimizing the log likelihood function in (6.12). In order to further reduce the

complexity associated with the M -step, the minimization in (6.12) is done with

respect to one of the estimation parameter while keeping the other parameter

at its most recently updated value [122]. We first minimize the log likelihood

function in (6.12) with respect to εS,R,D to update the CFO estimate for (i+ 1)th

iteration, ε̂
[i+1]
S,R,D, while channel is kept constant at its ith iteration value, ĥ

[i]
S,R,D

and updated PHN vector, θ̂
[i+1]

S,R,D, is obtained from the E-step. Thus, the CFO

estimate update, ε̂
[i+1]
S,R,D, is given by

ε̂
[i+1]
S,R,D = arg min

εS,R,D

N−1∑
n=0

‖ u(n)− ej2πεS,R,Dn/NejθS,R,D(n)s(n) ‖2
∣∣
θS,R,D(n)=θ̂

[i+1]
S,R,D(n)

hS,R,D=ĥ
[i]
S,R,D

,

(6.22)

After simplifying (6.22), we have

ε̂
[i+1]
S,R,D = arg max

εS,R,D

N−1∑
n=0

<{(u(n))∗Ŝ[i](n)ej2πεS,R,Dn/N} (6.23)

where Ŝ[i](n) = ejθ̂
[i+1]
S,R,D(n)ŝ[i](n). In order to handle the nonlinearity of (6.23), the

term ej2πεS,R,Dn/N can be approximated using Taylor series expansion around the
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pervious CFO estimate, ε̂
[i]
S,R,D, up to the second order term as

ej2πεS,R,Dn/N = ej2πε̂
[i]
S,R,Dn/N + (εS,R,D − ε̂[i]S,R,D)

(
j

2π

N
n

)
× ej2πε̂

[i]
S,R,Dn/N

+
1

2
(εS,R,D − ε̂[i]S,R,D)2

(
j

2π

N
n

)2

× ej2πε̂
[i]
S,R,Dn/N

(6.24)

Substituting (6.24) into (6.23), ε̂
[i+1]
S,R,D is given by

ε̂
[i+1]
S,R,D = arg max

εS,R,D

{N−1∑
n=0

<
{

(u(n))∗Ŝ[i+1](n)ej2πε̂
[i]
S,R,Dn/N

+ (εS,R,D − ε̂[i]S,R,D)
N−1∑
n=0

<
{

(u(n))∗Ŝ[i+1](n)

(
j

2π

N
n

)
ej2πε̂

[i]
S,R,Dn/N

}
+

1

2
(εS,R,D − ε̂[i]S,R,D)2

N−1∑
n=0

<
{

(u(n))∗Ŝ[i+1](n)

(
j

2π

N
n

)2

ej2πε̂
[i]
S,R,Dn/N

}}
(6.25)

Taking the derivative of (6.25) with respect to εS,R,D and equating the result to

zero, the estimate of εS,R,D at the (i+ 1)th iteration is given by:

ε̂
[i+1]
S,R,D = ε̂

[i]
S,R,D +

N

2π

∑N−1
n=0 n=

{
(u(n))∗Ŝ[i+1](n)ej2πε̂

[i]
S,R,Dn/N

}∑N−1
n=0 n

2<
{

(u(n))∗Ŝ[i+1](n)ej2πε̂
[i]
S,R,Dn/N

} , (6.26)

Next, by setting θS,R,D and εS,R,D to their latest updated values, the updated

value of ĥS,R,D at the (i + 1)th iteration, ĥ
[i+1]
S,R,D, is calculated. Based on the

vectorial form of received signal in (6.11), the negative log likelihood function, in

(6.12), can be written as

log p(z; εS,R,D) = C1+ ‖ u− q1ES,R,DPS,R,DΓhS,R,D ‖2 + log p(θS,R,D), (6.27)

where Γ , q1F
HDSF(2L−1). Taking the derivative of (6.27) with respect to hS,R,D

and equating the result to zero, the estimate of hS,R,D at the (i + 1)th iteration

is given by:

ĥ
[i+1]
S,R,D = (ΓHΓ)−1ΓHP̂H

S,R,DÊH
S,R,Du, (6.28)
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where ÊS,R,D , diag([e(j2πε̂
[i+1]
S,R,D/N)×0, e(j2πε̂

[i+1]
S,R,D/N), . . . , e(j2πε̂

[i+1]
S,R,D/N)×(N−1)]T ), and

ε̂
[i+1]
S,R,D is obtained from (6.26), P̂S,R,D , diag([ejθ̂

[i+1]
S,R,D(0), ejθ̂

[i+1]
S,R,D(1), . . . , ejθ̂

[i+1]
S,R,D(N−1)]T ),

and θ̂
[i+1]

S,R,D , [θ̂
[i+1]
S,R,D(0), θ̂

[i+1]
S,R,D(1), . . . , θ̂

[i+1]
S,R,D(N − 1)]T is obtained from (6.20).

Using (6.20), (6.26) and (6.28), the proposed algorithm iteratively updates

the PHN and CFO and CIR paramors in E-step and M-step of the algorithm,

respectively, and stops when the difference between likelihood functions of two

iterations is smaller than a threshold ζ, i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥u(n)− ej2πε̂
[i+1]
S,R,Dn/Nejθ̂

[i+1]
S,R,D(n)s[i+1](n)

∥∥∥2

−
N−1∑
n=0

∥∥∥u(n)− ej2πε̂
[i]
S,R,Dn/Nejθ̂

[i]
S,R,D(n)s[i](n)

∥∥∥2

∣∣∣∣∣ ≤ ζ. (6.29)

The appropriate initialization of CFO and CIR, i.e., ε̂
[0]
S,R,D and ĥ

[0]
S,R,D, re-

spectively, can help the proposed estimator to estimate the CIR, CFO, and PHN

parameters in a few iterations. The initial CFO estimate is obtained by ap-

plying a linear search for the value of εS,R,D that minimizes the cost function,∑N−1
n=0 ‖ u(n) − ej2πε̂S,R,Dn/N ŝ(n) ‖2, where ŝ(n) is nth symbol of the vector

ŝ , q1F
HDSF(2L−1)ĥS,R,D, ĥS,R,D , (ΓHΓ)−1ΓHÊH

S,R,Du and linear search is

made with a coarse step size of 10−2. Next, using the initial CFO estimate

ε̂
[0]
S,R,D, initial channel estimate, ĥ

[0]
S,R,D, is obtained by applying the equation,

ĥ
[0]
S,R,D , (ΓHΓ)−1ΓH(Ê

[0]
S,R,D)Hu, where Ê

[0]
S,R,D = ÊS,R,D|ε̂S,R,D=ε̂

[0]
S,R,D

. The sim-

ulation results show that the proposed estimator always converges to true esti-

mates, e.g., at SNR = 20 dB and with threshold ζ = 10−3, on average, the

estimator converges after 2 iterations only.

6.5.2 Proposed ECM based Estimator for DF Coopera-

tive Networks

Similar to the case of AF relaying, bth node receiver between any pair of transmit-

ted node a and received node b has to jointly estimate the CIR, PHN and CFO

between a → b. The ECM algorithm at bth node receiver iterates between the

expectation step (E-step) and the maximization step (M-step). The ECM algo-

rithm is not presented here to avoid repetition. Therefore, using (6.20), (6.26) and

(6.28), the proposed algorithm iteratively updates the parameters of PHN, θ
[i+1]
a,b ,

CFO, ε̂
[i+1]
a,b , and CIR, ĥ

[i+1]
a,b and stops when the difference between likelihood func-
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tions of two iterations is smaller than a threshold ζ as in (6.29). Thus, (6.20),

(6.26) and (6.28) can be used to estimate the parameters, θS,D,hS,D, εS,D between

S → D in (6.3), θS,R1 ,hS,R, εS,R between S → R in (6.4), and θR2,D,hR,D, εR,D
between R→ D in (6.7), respectively.

6.6 Joint Data Detection and PHN Mitigation

In order to decode the received signal at the destination and relay in the presence

of PHNs and CFOs, an iterative detector based EKF for both DF and AF relay

cooperative systems is proposed.

6.6.1 Decoding in AF-Relaying Networks

In this section, an iterative detector that utilizes an EKF is proposed to track

the PHN parameters during the data transmission interval.

At first, using the estimated CFO value, the effect of CFO on the received data

symbol, u, in (6.11) is compensated. The resulting signal, r , [r1, . . . , rn], where

rn is defined in (6.15), passes through an iterative algorithm of data detection

and PHN mitigation. An EKF is used to track the PHN samples, θS,R,D, over

the data symbols. The PHN estimation is similar to that in (6.16)-(6.21) and

is not presented here to avoid repetition. However, instead of training-based

PHN tracking, the PHN estimation is followed in a decision-directed fashion for

the received data symbols. In other words, the estimate of the data symbol

in the previous iteration, d̂
[i−1]
S , is used to update the symbol’s PHN estimate

at the current iteration θ̂
[i]

. Particularly, s[i] in (6.11), is calculated as s =

FHDSF(2L−1)ĥS,R,D, where ĥS,R,D is the overall CIR vector estimate obtained

from the ECM estimator during the training interval, and D̂
[i−1]
S , diag(d̂

[i−1]
S ).

Next, the data vector estimate is updated for the ith iteration. Following [26] and

based on the received signal in (6.15), the negative LLF for the CFO compensated

signal, r, can be written as

log p(r, d̂S, θ̂S,R,D) = C +
1

2σ̃2
w

‖ r− q1P̂S,R,DFHΥ̂d̂S ‖2

+
1

2ξdS
‖ d̂S ‖2 + log p(θS,R,D), (6.30)

where

• Υ̂ , diag(F(2L−1)ĥS,R,D) is the estimated channel frequency response,



6.6 Joint Data Detection and PHN Mitigation 143

• d̂S , [d̂S(0), d̂S(1), · · · , d̂S(N − 1)]T is the estimate of the modulated data

vector, and

• ξdS is the average transmitted symbol power and normalized to 1,

Taking the derivative of (6.30) with respect to dS and equating the result to zero,

the estimate of dS at the ith iteration, d̂[i] is given by

d̂
[i]
S = q1(q2

1Υ̂
H

Υ̂ +
σ̃2
w

ξdS
IN)−1Υ̂

H
FP̂H

S,R,Dr, (6.31)

where P̂S,R,D , diag([ejθ̂
[i]
S,R,D(0), ejθ̂

[i]
S,R,D(1), . . . , ejθ̂

[i]
S,R,D(N−1)]T ) and θ̂

[i]

S,R,D , [θ̂
[i]
S,R,D

(0), θ̂
[i]
S,R,D(1), . . . , θ̂

[i]
S,R,D(N − 1)]T are obtained via the EKF based estimator.

Using the EKF set of equations (6.16)-(6.21) and (6.31), the proposed algo-

rithm iteratively updates the PHN and data estimates, respectively, and stops

when the difference between the likelihood functions of two iterations is smaller

than a threshold ζ, i.e.,∣∣∣∣∣
N−1∑
n=0

∥∥∥r(n)− ejθ̂
[i+1]
S,R,D(n)ŝ[i+1](n)

∥∥∥2

−
N−1∑
n=0

∥∥∥r(n)− ejθ̂
[i]
S,R,D(n)ŝ[i](n)

∥∥∥2

∣∣∣∣∣ ≤ ζ. (6.32)

Let d̂
[0]
S denote the initial estimate of the transmitted data vector. Appropriate

initialization of d̂
[0]
S results in the proposed iterative detector to converge quickly.

In our algorithm, the initial data estimate is obtained using d̂
[0]
S = q1(q2

1Υ̂
H

Υ̂ +
σ̃2
w

ξdS
IN)−1Υ̂

H
FP̂

H[m−1]
S,R,D r, where P̂

[m−1]
S,R,D is the PHN matrix estimate obtained from

the previous OFDM symbol. Simulation results in Section 6.8 indicate that at

SNR= 20 dB the proposed detector, on average, converges after 2 iterations.

6.6.2 Decoding in DF-Relaying Networks

Similar to the AF case, the bth node receiver between any pair of transmitted

node a and received node b can use the estimated CFO value to compensate the

effect of CFO on the received data symbol. Then, the resulting signal passes

through an iterative algorithm of data detection and PHN mitigation similar the

EKF set of equations (6.16)-(6.21) and (6.31). Therefore, the same approach can

be used to decode the data at the destination and the relay from the received

signal in (6.3) and (6.4), respectively.
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6.7 Complexity analysis

In this subsection, the computational complexity of the proposed ECM, iteration

algorithm for data detection in both DF-and AF-relaying multi-relay coopera-

tive systems are analyzed. Throughout this section, computational complexity is

defined as the number of complex additions plus number of multiplications [124].

6.7.1 AF Relaying

Let the computational complexity of AF link, i.e., from S → R→ D, of the ECM

algorithm is denoted by CAF
EST = C

AF,[M ]
EST + C

AF,[A]
EST . The notations C

AF,[M ]
EST and

C
AF,[A]
EST are used to denote the number of complex multiplications and additions,

respectively, used by the ECM estimator and are determined as

C
AF,[M ]
EST =

[
N︸︷︷︸

(6.16)

+ 5N︸︷︷︸
(6.19)

+ 2N︸︷︷︸
(6.20)

+ 2N︸︷︷︸
(6.21)

+ 7N︸︷︷︸
(6.26)

+N(2L− 1)(2N + 1)︸ ︷︷ ︸
(6.28)

+N(N2 + (2L− 1)(N + 1))︸ ︷︷ ︸
snin(6.20)

]
tECM +

[
3N︸︷︷︸∑N−1

n=0 ‖u(n)−ej2πε̂S,R,Dn/N ŝ(n)‖2

+N(2L− 1)(2N + 1)︸ ︷︷ ︸
ĥS,R,D,ξd

−1ΓHÊHS,R,Du

+N(N2 + (2L− 1)(N + 1))︸ ︷︷ ︸
ŝ,q1FHDSF(2L−1)ĥS,R,D

]
tinitialize

+N2(N + (2L− 1))︸ ︷︷ ︸
Γin(6.28)

(6.33)

C
AF,[A]
EST =

[
N︸︷︷︸

(6.18)

+ N︸︷︷︸
(6.19)

+ 2N︸︷︷︸
(6.20)

+ N︸︷︷︸
(6.21)

+ 2N + 1︸ ︷︷ ︸
(6.26)

+ (N − 1)(2L− 1)(2N + 1)︸ ︷︷ ︸
(6.28)

+N(N − 1)((2L− 1) + 1) +N((2L− 1)− 1)︸ ︷︷ ︸
snin(6.20)

]
tECM

+
[

2N︸︷︷︸∑N−1
n=0 ‖u(n)−ej2πε̂S,R,Dn/N ŝ(n)‖2

+ (2L− 1)(N − 1)(2N + 1)︸ ︷︷ ︸
ĥS,R,D,ξd

−1ΓHÊHS,R,Du

+N(N − 1)((2L− 1) + 1) +N((2L− 1)− 1)︸ ︷︷ ︸
ŝ,q1FHDSF(2L−1)ĥS,R,D

]
tinitialize

+N(N − 1)(N + (2L− 1))︸ ︷︷ ︸
Γin(6.28)

(6.34)

where tECM is the number of iterations in ECM algorithm and tinitialize is the

number of iterations in coarse estimation to obtain the initial estimate of CFO.
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Similarly, the computational complexity of the proposed data detection algo-

rithm based on EKF is denoted by C
AF,[M ]
DATA DET and C

AF,[A]
DATA DET, where C

AF,[M ]
DATA DET

and C
AF,[A]
DATA DET denote the number of complex multiplications and additions used

by the detector. C
AF,[M ]
DATA DET and C

AF,[A]
DATA DET are determined as

C
AF,[M ]
DATA DET=

[
N︸︷︷︸

(6.16)

+ 5N︸︷︷︸
(6.19)

+ 2N︸︷︷︸
(6.20)

+ 2N︸︷︷︸
(6.21)

+N(N2 + (2L− 1)(N + 1))︸ ︷︷ ︸
snin(6.20)

+N2(5N + 1)︸ ︷︷ ︸
(6.31)

]
tDATA DET + N2(5N + 1)︸ ︷︷ ︸

d̂
[0]
S =q1(q2

1Υ̂
H

Υ̂+
σ̃2w
ξdS

IN )−1Υ̂
H

FP
H[m−1]
S,R,D r

+N(2L− 1)︸ ︷︷ ︸
Υ̂in(6.31)

(6.35)

C
AF,[A]
DATA DET=

[
N︸︷︷︸

(6.18)

+ N︸︷︷︸
(6.19)

+ 2N︸︷︷︸
(6.20)

+ N︸︷︷︸
(6.21)

+N(N − 1)((2L− 1) + 1) +N((2L− 1)− 1)︸ ︷︷ ︸
snin(6.20)

+N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸
(6.31)

]
tDATA DET

+ N(N2 +N(N − 1)(4N + 1))︸ ︷︷ ︸
d̂
[0]
S =q1(q2

1Υ̂
H

Υ̂+
σ̃2w
ξdS

IN )−1Υ̂
H

FP
H[m−1]
S,R,D r

+N((2L− 1)− 1)︸ ︷︷ ︸
Υ̂in(6.31)

(6.36)

6.7.2 DF Relaying

Similar to the AF case of equations (6.33), (6.34), (6.35) and (6.36), the compu-

tational complexity between any pair of transmitted node a and received node b,

i.e., from a → b, can be calculated. Therefore, the computational complexity of

the proposed ECM algorithm and the data detection algorithm based on EKF are

denoted by Cab
EST = C

ab,[M ]
EST + C

ab,[A]
EST and Cab

DATA DET = C
ab,[M ]
DATA DET + C

ab,[A]
DATA DET,

respectively. The notations C
ab,[M ]
EST and C

ab,[M ]
DATA DET, and C

ab,[A]
EST and C

ab,[A]
DATA DET are

used to denote the number of complex multiplications and additions, respectively,

used by the ECM estimator and the data detection algorithm based on EKF and

are determined similar to equations (6.33), (6.34), (6.35) and (6.36). However, L

is used instead of (2L− 1) in (6.33), (6.34), (6.35) and (6.36).

Figure 6.2 shows the average number of iterations, i.e., tECM and tDATA DET

required by the proposed algorithms in both AF and DF relaying networks and
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Figure 6.2: Average number of iterations for the proposed ECM algorithm and the

data detection algorithm based on EKF in DF and AF cooperative networks for

phase noise variance σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation.

PHN variance, σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation. For the compar-

ison in Figure 6.2, the number of iterations of AF link, i.e., from S → R → D,

are donated by tAFECM, tAFDATA DET, while the number of iterations of DF link be-

tween any pair of transmitted node a and received node b, are donated by tabECM,

tabDATA DET. It can be observed from the results in Figure 6.2 that (i) at low SNR,

i.e., SNR < 20 dB, on average, the proposed detector converges after tDATA DET

more than 2 iterations, (ii) the proposed detector in AF relaying networks re-

quires more number of iterations at low SNR, i.e., SNR < 20 dB. This due to

the irreducible error of channel, PHN and CFO estimation from source to relays

and the noise at the relays which is amplified and forwarded to the destination,

(iii) the number of iterations decreases to tECM = tDATA DET = 2 at SNR ≥ 20

dB, and (iv) the proposed ECM algorithm converges to the true estimates when

the CFO estimates are initialized with a step size of 10−2, i.e., tinitialize = 102.

Using these values for the number of iterations, we get the computational com-

plexity of the proposed algorithms for both DF and AF multi-relay cooperative

networks with M = 4 relays as shown in Figure 6.3. The results in Figure 6.3

show that (i) at low SNR, i.e., SNR < 20 dB, the computational complexity of
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Figure 6.3: Comparison of the computational complexity of the proposed al-

gorithms in DF over AF cooperative networks for phase noise variance σ2
δ =

[10−4, 10−5] rad2, 16-QAM modulation, L = 4 and M = 4 relays.

the proposed algorithms in DF and AF cooperative networks are dependent on

the variance of the PHN process, since at low SNR the performance of the pro-

posed estimator and detector is dominated by AWGN and PHN variance, while

at moderate-to-high SNR, i.e., SNR > 20 dB the performance of the system is

limited by residual PHN and CFO, (ii) at moderate-to-high SNR compared to low

SNR, the proposed estimation and data detection algorithms are computation-

ally more efficient. These results are anticipated, since the proposed estimation

and data detection algorithms require few iterations at moderate-to-high SNR as

shown in Figure 6.2.

6.8 Simulation Results and Discussions

In this section, simulation results are presented to evaluate the performance of

the proposed estimation and data detection algorithms for both DF and AF

relay systems. In addition, an investigation is carried out to investigate the

effects of PHNs and CFOs on 3-D video transmission. A multipath Rayleigh

fading channel with a delay of L = 4 taps and an exponentially decaying power
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delay profile is assumed between each pair of nodes. A training symbol size

of N = 64 subcarriers is used, where each subcarrier is modulated using the

QPSK scheme. The Wiener PHN is generated with different PHN variances, e.g.

σ2
δ = [10−4, 10−5]rad2, where σ2

δS
= σ2

δD
= σ2

δRm,1
= σ2

δRm,2
= σ2

δ . Note that,

σ2
δ = 10−4 rad2, corresponds to a high phase noise variance [125]. Since carrier

frequency offsets from source to relays, εS,Rm , are carried over to the destination,

εS,Rm and εRm,D have the range (-0.25,0.25) in order to limit the total frequency

offset from source to destination, εS,D to the range (-0.5, 0.5). Similar to the

parameter setting adopted in [14], the large-scale channel fading parametrization

is set as γ=2, dS,D=1, dS,Rm=0.5, dRm,D=0.72, gS,Rm=4 and gRm,D=1.9. The data

symbols are drawn from normalized 16 or 64 QAM. The MSE performance of

ECM estimator and the BER performance of the overall multi-relay cooperative

network compared to the single-hop link, S → D, is detailed in the following

subsections. To evaluate the PSNR performance of the proposed system, several

experiments are conducted with typical 3-D video “Car” sequence in [95], with

432× 240 pixels and a GoP of 8. Each GoP is divided into four groups (Ng = 4)

g1, g2,g3, g4. In this chapter, the H.264 reference software JM version (13.2) in

[36] is used for encoding the colour and depth sequences. The adopted LDPC

is set of a code length of 1296 and 50 maximum iterations with variable coding

rates = 13/16, 8/16 and 4/16. The simulation results are averaged over 1× 105

Monte Carlo simulation runs.

6.8.1 Estimation Performance

In this subsection, the performance of the proposed ECM estimator is compared

with the HCRB in Theorem 6.1. Figures. 6.4, 6.5 and 6.6 plot the HCRB and

MSE for estimating the CIR, PHN, and CFO, respectively, using the proposed

algorithm. Note that, in Figures 6.4, 6.5 and 6.6, the label, S → D, represents

the performance of the estimator of each link in the DF system, while the the

label, S → R → D, represents the performance of the estimator of each link in

the AF system.

The results lead to the following observations:

1) The HCRB and the proposed estimators MSE are dependent on the variance

of the PHN process and are lower for a lower PHN variance;

2) Figures 6.4, 6.5 and 6.6 show that CIR, CFO and PHN estimation performances

suffer from an error floor, which is directly related to the variance of the PHN

process. This occurs as, at low SNR, the performance of the system is dominated
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Figure 6.4: MSE of channel estimation for the proposed estimator compared to

HCRB for phase noise variance σ2
δ = [10−4, 10−5] rad2.
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to HCRB for phase noise variance σ2
δ = [10−4, 10−5] rad2.
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Figure 6.6: MSE of frequency offset estimation for the proposed estimator com-

pared to HCRB for phase noise variance σ2
δ = [10−4, 10−5] rad2.

by AWGN, while at high SNR the performance of the proposed estimator is

limited by PHN and the resulting ICI;

3) The estimation performance and HCRB for the single-hop link (direct link),

S → D, are better than those of the relay link, i.e., S → R → D. This is due

to the noise at the relays which is amplified and forwarded to the destination.

The difference of estimator performance in terms of MSE between the S → D

and S → R→ D adversely affects the performance of data detection algorithms.

Therefore, the DF cooperative systems have better BER performance than the

AF cooperative systems (see Figures 6.7-6.12);

4) It is shown that the MSEs of the proposed estimator for both direct and relay

links are close to their HCRLBs at moderate-to-high SNRs;

5) In Figure 6.5, the MSE of the proposed estimator is lower than the HCRB at

lower SNR. This is due to the fact that the HCRB cannot be derived in closed-

form while taking into account the range of CFO values, i.e., (-0.25. 0.25), while

the estimator takes the advantage of this known prior estimation range. Thus,

the HCRB is higher than the MSE of the proposed estimator at lower SNR.
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6.8.2 Impact of PHN on Cooperative Performance

After mitigating the PHN and CFO and compensating the channel on the received

signals from the direct and relay links, maximal ratio combining (MRC) is utilized

in the destination to obtain a cooperative diversity gain by adding the decoding

samples of the direct and relay links coherently.

In the following, the combined estimation and data detection performance is

examined in terms of the BER of both DF and AF. The following system setups

are considered for comparison:

(i) Cooperative systems apply the proposed estimation and data detection algo-

rithms (labelled as “Proposed MRC”).

(ii) Cooperative systems apply the data detection in [14] combined with the pro-

posed estimation algorithm (labelled “[[14], data detection]”). Note that the

estimation performance of the algorithm in [14] is not presented since the ap-

proach in [14] only considers channel and PHN estimation while assuming that

no CFO is present. In addition, the estimation performance of the algorithm in

[15] is not presented since the relaying approach in [15] is totally different than

the relaying approach and system model in this chapter.

(iii) Non-cooperative systems that apply the proposed estimation and data de-

tection algorithm (labelled as “Single-hop”).

(iv) As a reference, cooperative systems that apply the proposed estimation and

data detection algorithms but utilize no CFO cancelation and PHN tracking

during OFDM data symbols (labelled “Conventional MRC”).

(v) As a lower-bound on the BER performance, cooperative systems assuming

perfect channel, PHN, and CFO estimation (labelled “MRC, Perf. CIR, PHN &

CFO est.”).

Figures 6.7 and 6.8 show the BER performance with 4 relays for DF and

AF cooperative networks for PHN variance, σ2
δ = [10−4, 10−5] rad2 and 16-QAM

modulation.

The following observations can be made from Figures 6.7 and 6.8:

1) The results of conventional MRC demonstrate that without phase tracking

and CFO cancelation throughout the packet, the OFDM cooperative system per-

formance for both DF and AF deteriorates significantly. On the other hand, by

combining the proposed estimation and data detection algorithms, the BER per-

formance of an OFDM cooperative system is shown to improve immensely even

in the presence of strong PHN, e.g., σ2
δ = 10−4 rad2.

2) Compared to existing algorithms, the BER performance of both DF and AF
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Figure 6.7: BER performance for a DF cooperative system for PHN variance,

σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation with M=4.
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Figure 6.8: BER performance for an AF cooperative system for PHN variance,

σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation with M=4.
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relaying cooperative network using the proposed algorithms is close to the ideal

case of perfect CIR, PHN and CFO estimation when σ2
δ = 10−5 rad2. However,

at high PHN variance, i.e., σ2
δ = 10−4 rad2, the BER performance of both DF and

AF suffer from an error floor at high SNR. This result is anticipated, since at high

PHN variance, the performance of a cooperative OFDM system is dominated by

PHN, which cannot be completely eliminated.

3) It is clear that the performance of DF relaying cooperative network in Figures

6.7 outperforms the performance of AF in Figure 6.8 at different PHN variance

and SNRs. This result is anticipated, since the received signal in the destination

using AF suffers from PHN produce from four oscillators, i.e., two oscillators in

the source and destination and two oscillators in the relay. However, the received

signal between any pair of transmitted node a and received node b using DF

suffers only from PHN signals from two oscillators.

4) Finally, the results in Figures 6.8 and 6.7 show that the proposed ECM based

estimator and the iterative data detection algorithm outperform existing algo-

rithms in terms of the BER performance. For example, in Figure 6.8, the BER

for the proposed algorithms has an SNR gain of almost 12 dB compared to

the existing algorithms in [14] at an BER of 10−4 and high PHN variance, i.e.,

σ2
δ = 10−4 rad2.

6.8.3 Impact of Increase of Relays on Cooperative Perfor-

mance

In this subsection, the performance of both DF and AF is examined compared to

non-cooperative systems (single-hop) with the increase in diversity gain through

increasing the number of relays in the cooperative network.

Figures 6.9 and 6.10 show the BER performance for DF and AF coopera-

tive networks at different numbers of relays, M = [1, 2, 4] for PHN variance,

σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation. The following observations can

be made from Figures 6.9 and 6.10 that the cooperative system should use more

relays with proportional to increase of PHN variance to achieve better BER per-

formance compared to non-cooperative systems (single-hop). Figures 6.9 and

6.10 clearly show that the DF and AF cooperative system that an the number

of relays increases, BER performance improves. In the presence of PHN, the

cooperative system can achieve better BER performance by combining the pro-

posed estimation and data detection algorithms and using more than one relay.

However, this approach maintains higher performance at the expense of loss in
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Figure 6.9: BER performance for a DF cooperative system at different number

of relays, M = [1, 2, 4] for PHN variance, σ2
δ = [10−4, 10−5] rad2 and 16-QAM

modulation.
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Figure 6.10: BER performance for an AF cooperative system at different number

of relays, M = [1, 2, 4] for PHN variance, σ2
δ = [10−4, 10−5] rad2 and 16-QAM

modulation.
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spectral efficiency.

6.8.4 Impact of Modulation on Cooperative Performance

Figures 6.11 and 6.12 evaluate the BER performances of an OFDM cooperative

system for both DF and AF at higher order modulations, i.e., 64-QAM.

The following observations can be made from Figures 6.11 and 6.12:

1) Even for a denser constellation, the proposed estimation and data detection

algorithms significantly improve the overall system performance for both DF and

AF compared to the non-cooperative system (direct transmission). For example,

to achieve a BER of 10−2 with a PHN variance of 10−5 rad2 using DF, the perfor-

mance of cooperative system outperforms the non-cooperative system a margin

of 5 dB. More importantly, this gap widens at high SNR values.

2) The BER performance of an OFDM cooperative system using the proposed

algorithms is closer to the ideal case of perfect CIR, PHN, and CFO estimation

for PHN variance, σ2
δ = 10−5 rad2 (a performance gap of 0.6 dB in Figure 6.11

and 1 dB in Figure 6.12 at SNR = 20 dB).

3) It is clearly seen in Figure 6.12 that the performance of the proposed data

detection algorithm outperforms the algorithm in [14] for 64-QAM modulation

since the overall system performance is less or equal to the single-hop (direct

transmission). Therefore, the pilots approach in [14] may not be used for higher

order modulations, i.e., 64-QAM.

4) The results in Figures 6.11 and 6.12 shows that, even for a denser constellation,

the proposed estimation and data detection algorithms significantly improve the

overall system performance compared to that of [[14], data detection]. For exam-

ple, to achieve a BER of 10−3 with a PHN variance of 10−5 rad2 and 64-QAM,

the proposed algorithm outperforms the algorithms in [[14], data detection] by a

margin of 2 dB and 5 dB, in DF and AF relay networks, respectively.
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Figure 6.11: BER performance for a DF cooperative system for 64-QAM modula-

tion with M=4 at PHN variance, σ2
δ = 10−5 rad2.
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6.8.5 Impact of PHN on the PSNR Performance

In this subsection, the effects of PHNs and CFOs on the performance of the AF

relay network for 3-D video applications are investigated.

6.8.5.1 Impact of PHN

Figure 6.13 shows the PSNR performance for the proposed system using the

UEP scheme, P-VpD-1/2, at code rates of rHP = 8/16 and rLP = 13/16, for

PHN variance of σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation with M = 4

relays.
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Figure 6.13: PSNR performance for the proposed cooperative system at coding

rates, rHP = 8/16 and rLP = 13/16, for PHN variance, σ2
δ = [10−4, 10−5] rad2 and

16-QAM modulation with M=4.

The following observations can be made from Figure 6.13:

1) The results of conventional MRC demonstrate that, without phase tracking and

CFO cancellation at the receiver, the cooperative system performance deteriorates

significantly. On the other hand, by combining the proposed estimation and data

detection algorithms, the PSNR performance of the cooperative system is shown

to improve immensely even in the presence of strong PHN, e.g., σ2
δ = 10−4 rad2.

2) The results in Figure 6.13 show that the PSNR performance of the proposed
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algorithms is close to that of the ideal case of “MRC, Perf. CIR, PHN & CFO

est.” with σ2
δ = 10−5 rad2.

3) Simulation results in Figure 6.13 show that, at high SNRs and PHN variance

σ2
δ = 10−4 rad2, the system has lower a PSNR performance compared to its

performance with a PHN variance σ2
δ = 10−5 rad2. This result is anticipated,

since, with high PHN variance, the performance of the cooperative system is

dominated by the PHN, which cannot be completely eliminated. For instance, as

shown in Figure 6.13, at SNR = 28 dB and PHN variance σ2
δ = 10−5 rad2, the

PSNR gain for the proposed system is almost 5.2 dB compared to the proposed

system at PHN variance, σ2
δ = 10−4 rad2.

4) Finally, at the low SNR regime, i.e. SNR < 20 dB, there are still some

reductions in PSNR even the PHN variance is moderate, i.e., σ2
δ = 10−5 rad2.

This is because the performance of the ECM estimator is limited by the PHN

and AWGN at low SNRs. For example, as shown in Figure 6.13, at SNR = 12

dB and PHN variance, σ2
δ = 10−5 rad2, the PSNR is reduced from 28 dB to 16.14

dB, i.e. the performance loss is 11.86 dB.

6.8.5.2 Impact of modulation

Figure 6.14 plots the PSNRs of the proposed system using the UEP scheme,

P-VpD-1/2, at higher order modulations, i.e. 64-QAM.

The following observations can be made from Fig 6.14:

i) Even with perfect CIR, PHN, and CFO estimation, the system using 64-QAM

performs worse than using 16-QAM at low-to-moderate SNRs. This result is

expected since 64-QAM is less robust to channel noise,

ii) At moderate-to-high SNRs, the PSNR performance using the proposed al-

gorithms is closer to the ideal case of perfect CIR, PHN, and CFO estimation

(a performance gap of 0.4 dB and 1 dB at SNR = 20 dB using 16-QAM and

64-QAM, respectively),

iii) It is clear from the results in Fig 6.14 that the PHN and the order of modu-

lation play a significant factor in determining the PSNR performance. As shown

in Figure 6.14, the system can achieve high PSNR by using lower orders of mod-

ulation, e.g. 16-QAM.

6.8.5.3 Impact of channel code rates

In this subsection, the performance of the proposed system with different UEP

schemes and channel code rates is presented. Figure 6.15 shows the PSNR perfor-
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Figure 6.14: PSNR performance for the cooperative system at coding rates, rHP =

8/16 and rLP = 13/16, for 64-QAM modulation and PHN variance, σ2
δ = 10−5 rad2

with M=4.

mance for the proposed cooperative system with different UEP schemes, P-VpD,

P-VpD-1/4 and P-VpD-1/2, and channel code rates, rHP = [4/16, 8/16, 13/16]

and rLP = 13/16 for the PHN variance, σ2
δ = 10−5 rad2 and 16-QAM modulation

with M = 4.

The following observations can be made from Figure 6.15:

1) The system can improve the PSNR performance by reducing the code rate. For

instance, at SNR = 16 dB and P-VpD-1/2, rHP = 4/16, the PSNR gain is almost

5.4 dB compared to P-VpD-1/2 with rHP = 8/16. However, this improvement in

PSNR is at expense of increased complexity of channel coding.

2) The PSNR performance is enhanced by allocating as much as possible of the

prior packets of a GOP to the HP stream. This is clearly shown in low SNRs, i.e.,

SNR < 20 dB. For instance, at SNR = 12 dB and rHP = 4/16, the PSNR gain is

almost 2 dB if the P-VpD-1/2 scheme is adopted for transmission instead of the

P-VpD-1/4 scheme. However, this enhancement in PSNR increases the required

data rates for transmission which is limited for many practical communication

applications.

3) The results in Figure 6.15 show that the performance of P-MVC-1/2 scheme
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Figure 6.15: PSNR performance for the cooperative system at different cod-

ing rates, rHP = [4/16, 8/16, 13/16] and rLP = 13/16 for PHN variance, σ2
δ =

10−5 rad2 and 16-QAM modulation with M=4.

with rHP=4/16 is better than other schemes at low SNRs, i.e., SNR < 20 dB,

while its performance is close with other schemes, e.g., P-VpD-1/4 scheme with

rHP=8/16 and D-VpD scheme with rHP=13/16 at moderate and high SNRs,

i.e., SNR > 20 dB and SNR < 28 dB, respectively. Based on this observation,

the SNR = 20 and 28 dB could be considered as SNR thresholds which can be

exploited by the control units to switch the system from an UEP scheme to an-

other. This approach maintains high video quality with the reduction of required

data rates for transmission and the system complexity corresponding to the im-

provement of SNRs. Therefore, the control unit controls the system to adopt the

following 3-D video protocol in order to achieve high video quality at different

SNRs and achieve the lowest bandwidth and system complexity. This protocol is:

the P-VpD-1/2 scheme, at channel coding rate, rHP = 4/16 is adopted for trans-

mission at low SNR, i.e., SNR < 20 dB, and the P-VpD-1/4 scheme at channel

coding, rHP=8/16 and the D-VpD scheme, at channel coding rate, rHP=13/16

are adopted at moderate SNR, i.e., SNR > 20 dB and high SNR, i.e., SNR > 28

dB, respectively.

4) As shown Figure 6.15, by taking advantage of both estimation algorithms and
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the UEP schemes based on packet partitioning and balancing the trade-off be-

tween complexity and performance, the proposed system can track different chan-

nel conditions, e.g., high and low SNRs and phase noise variances and Doppler

rates, to achieve a specific system performance.

6.9 Conclusion

In this chapter, the joint estimation of channel parameters, PHNs, and CFOs in

cooperative OFDM systems is addressed. The effects of PHNs and CFOs on the

performance of relay networks for 3-D video application is also investigated. A

new iterative estimator, that jointly estimates the unknown channel gains, PHNs,

and CFOs, for both DF-and AF-relaying cooperative OFDM systems has been

proposed. The proposed estimator is found to be computationally efficient since

it estimates the desired parameters in a few iterations. Simulation results show

that the performance of the proposed estimator is close to the derived HCRB at

moderate-to-high SNRs. Next, an iterative algorithm for joint data detection and

PHN mitigation is proposed for the OFDM data symbols. The proposed algo-

rithm employs an EKF based approach to track the time-varying PHN parameters

throughout the OFDM data symbols. Numerical results show that the proposed

ECM based estimator and the iterative data detection algorithm enhance cooper-

ative systems to outperform the existing algorithms and non-cooperative systems

in terms of BER performance. Simulation results also demonstrate that the video

system performance, in terms of PSNR, is very sensitive to the accuracy estima-

tion of channel, PHNs and CFOs. In addition, PHNs and CFOs represent the

main factors in determining the the system performance in terms of PSNR.



Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis focuses on designing efficient three-dimensional (3-D) video transmis-

sion methods and signal processing algorithms to overcome the effects of error-

prone wireless channels and impairments in the physical layer. These are unequal

error protection (UEP), joint source-channel coding (JSCC), cooperative diver-

sity technique, joint channel, phase noise (PHN) and carrier frequency offset

(CFO) estimation, and data detection in the presence of PHN and CFO. An effi-

cient UEP scheme based on video packet partitioning is presented in Chapter 3.

A new JSCC algorithm for cross-layer optimization of the application, network,

and physical layer is proposed in Chapter 4. Signal processing estimation and de-

tection algorithms based on an expectation conditional maximization (ECM) and

the extended Kalman filter (EKF) are proposed for orthogonal frequency division

multiplexing (OFDM) systems (Chapter 5) and cooperative systems (Chapter 6).

This chapter summaries the major contributions drawn from this thesis and

presents future research directions arising from this work.

7.2 Conclusions

In this thesis, the major contributions are presented and investigated in different

chapters.

In Chapter 3, different representations of 3-D video sequences employed by

source coding were investigated. The objective was to examine the representa-
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tion that is most suitable for video transmission over a wireless channel. Next,

an efficient UEP scheme based on video packet partitioning is proposed. The

proposed UEP scheme is inspired by the advantage of the protection of video

packets inside the 3-D video sequences. In addition, a new 3-D video transceiver

is proposed. The proposed transceiver adopts various UEP schemes based on

packet partitioning and achieves a trade-off between system complexity and per-

formance using switching operations between the proposed UEP schemes. Two

error-resilient video methods were combined to overcome the effects of noisy chan-

nels. These methods include resynchronization patterns and the use of the signal

of channel state information (CSI) to control the control units in the source and

the destination. Experimental results indicate that colour plus depth (VpD) is

most suitable for video communication over error-prone channels. In addition,

the proposed UEP schemes achieve significantly high peak signal-to-noise ratio

(PSNR) at different signal-to-noise ratios (SNRs) over the wireless channel with

the lowest possible bandwidth and system complexity. Simulation results also

demonstrate that the conventional UEP scheme based on direct transmission of

3-D video sequences is outperformed by the proposed UEP scheme in terms of

the quality of the received 3-D video sequences and the data rate required for the

video transmission.

In Chapter 4, an algorithm to cross-layer optimization for 3-D video transmis-

sion over a cooperative relay systems was proposed. Procedures to estimate the

end-to-end instantaneous SNR between the source-destination, and source-relay-

destination were proposed. Next, the algorithm was proposed based on Lagrange

multipliers. The proposed algorithm exploits the rate budget constraint and the

estimated end-to-end instantaneous SNR to simultaneously assign the source code

rates for the application layer, the number of high and low priority packets for the

network layer, and channel code rates for the physical layer. Simulation results

show that the existing algorithms are outperformed by the proposed JSCC algo-

rithm in terms of PSNR. In addition, the proposed JSCC algorithm is found to

be computationally more efficient as it can minimize the overall video distortion

in a few iterations. Simulation results also show that the accurate estimation of

an end-to-end instantaneous SNR can achieve a high PSNR performance of coop-

erative systems and has to be considered in the design of multimedia cooperative

communication systems with feedback.

Bit errors in the data and video bitstreams may occur from noise within

the channel or by impairments in the physical layer such as phase noise (PHN)

and carrier frequency offset (CFO). These factors can degrade the bit-error-rate
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(BER) and PSNR performance of the wireless system.

In Chapter 5, signal processing techniques were employed to mitigate the

effects of PHN and CFO in OFDM systems. A computationally efficient expec-

tation conditional maximization (ECM) based algorithm for joint estimation of

channel, PHN, and CFO in OFDM systems was proposed. The hybrid Cramér-

Rao lower bound (HCRB) was derived to evaluate the performance of the pro-

posed estimator in terms of mean square error (MSE). Next, an iterative al-

gorithm based on an extended Kalman filter (EKF) for joint data detection and

PHN mitigation was proposed. Numerical results based on MSE and HCRB show

that the proposed estimation algorithm outperforms the existing estimation algo-

rithms at moderate-to-high SNRs for different PHN variances. The combination

of the proposed estimation and detection algorithms is computationally more ef-

ficient compared to the existing algorithms and significantly improve the average

uncoded and coded BER performance. The proposed estimation and data detec-

tion algorithms are also shown to coverage quickly, typically in 2-5 iterations.

The performance of cooperative communication systems is adversely impacted

by synchronization impairments such as imperfect channel estimation, PHN and

CFO. Therefore, reliable data and video applications are only possible if per-

fect synchronization, i.e., perfect estimation of channel, PHNs, and CFOs exists

among the nodes of source, relays and destination. Since the ECM estimator,

the iterative algorithm based on an EKF, and the UEP scheme based on video

packet partitioning target the solutions to different problems (inter-carrier inter-

ference (ICI) mitigation and robustness), it is useful to exploit a combination

of these methods to achieve robust 3-D video communications in asynchronous

cooperative relaying network.

Chapter 6 advances the work in Chapter 5 by efficiently combining the ECM

estimator and the iterative data detection algorithm based on an EKF with coop-

erative OFDM systems. The signal model for the estimation problem was outlined

in detail and the ECM algorithm for the joint estimation of channel, PHNs, and

CFOs in OFDM cooperative systems was also proposed. The HCRB expressions

for cooperative OFDM systems were presented. Next, an iterative algorithm

based on an EKF for joint data detection and PHN tracking was proposed. The

impact of PHNs and CFOs on the performance of OFDM relay networks for

3-D video applications was also investigated. Simulation results show that the

proposed estimator achieves MSE performance close to the derived HCRB at

moderate-to-high SNR for different PHN variances. In addition, compared to the

existing algorithms and non-cooperative systems, a significant improvement in
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BER performance was achieved by the combination of the estimation and detec-

tion algorithms. Simulation results also demonstrate that the proposed combina-

tion of the estimation algorithms and UEP schemes based packet portioning can

achieve high PSNR performance over a wide range of SNRs and different PHN

variances. Furthermore, the accurate estimation of channel parameters, PHNs

and CFOs is shown to have a dramatic impact on the performance and complex-

ity of cooperative systems for video applications. Thus, these impairment factors

must be considered in the design of multimedia cooperative communication sys-

tems.

Finally, the work in this thesis moves the research on cooperative systems based

signal processing techniques a step forward. Efficient design of video transmission

methods and signal processing algorithms that overcome the effects of error-prone

wireless channels and the impairments in the physical layer for 3-D video applica-

tions is proposed. In this thesis, five different approaches were examined namely:

UEP, JSCC, cooperative diversity, joint channel, PHN and CFO estimation, and

data detection in the presence of PHN and CFO. The work in this thesis provides

new insights into streaming 3-D video and is helpful for further study of channel

estimation and the improvement of system complexity and PSNR for 3-D video

delivery in the presence of PHNs and CFOs in future wireless networks such as

5G networks.

7.3 Future Work

Many future research directions or investigations in the area of cooperative sys-

tems based signal processing techniques for 3-D video transmission arise from the

topics presented in this thesis.

• UEP schemes based on video packet partitioning for H.265/HEVC

standards: Currently, there is intensive research activity pursuing 3-D

video transmission using H.265/HEVC standards over wireless cooperative

systems. The proposed UEP schemes based on video packet partitioning

in this thesis are more efficient for use in error-prone channels. Thus, the

principles and methodologies proposed in Chapter 3 can be used to develop

H.265 standards. Similar to H.264 standards, the corrupted units of the

network abstraction layer (NAL) in the video streams can be discarded and

the remaining units can be decoded independently.
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• Error probability analysis of OFDM systems in the presence of

channel, PHN and CFO estimation: In Chapters 5 and 6, the same

approach was followed as adopted in previous papers in the literature, which

compared the BER performance of the proposed estimation and detection

algorithms against the BER performance with perfect estimation of channel,

PHN and CFO. This can be considered as a theoretical benchmark for the

BER performance of the system. Following the works in Chapters 5 and 6,

there is a need to obtain theoretical closed-form expressions for the BER of

the system in the presence of channel, PHN, and CFO estimation.

• Phase noise and carrier frequency offset synchronization with

channel estimation in cooperative MIMO-OFDM networks and

its application to 3-D video streaming: The estimation and detection

algorithms presented in this thesis only analyse to cooperative networks

with a single antenna. The proposed estimation and detection algorithms

in Chapters 5 and 6 can be modified for application in multi-input multi-

output-orthogonal frequency division multiplexing (MIMO-OFDM) coop-

erative systems, since similar to single-input-single-output (SISO) systems,

MIMO-OFDM cooperative systems are also affected by a multiplicative

phase noise factor and CFOs. The proposed JSCC algorithm in Chapter 4

can be combined with the cooperative MIMO-OFDM networks to estimate

the overall instantaneous SNR over the cooperative network. This combi-

nation is expected to achieve high PSNRs performance at different SNRs

and PHN variances.
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Appendix A

Proofs

A.1 Derivation of the HCRB

The hybrid information matrix B can be written as [79, pp. 1-85]

B = ΞD + ΞP , (A.1)

where ΞD , Eθ [Ψ(θ,<{h},={h}, ε)] with Ψ(θ,<{h},={h}, ε) , Er|θ,<{h},={h},ε
[
−

∆λ
λ log p(r|θ,<{h}, ={h}, ε)|,<{h},={h}, ε

]
denoting the Fisher’s information

matrix (FIM) and ΞP , Eθ|,<{h},={h},ε
[
− ∆λ

λ log p(θ|,<{h},={h}, ε)|, ε
]

is the

prior information matrix with p(θ|h, ε) denoting the prior distribution of PHN

vector given the CIR and CFO. Thus, expressions for matrices ΞD and ΞP can

be obtained.

A.1.1 Computation of ΞD , Eθ [Ψ(θ,<{h},={h}, ε)]
To compute FIM, first, the likelihood function p(r|θ,<{h}, ={h}, ε) is given by

p(r|θ,<{h},={h}, ε) = C exp

[−1

σ2
w

(r− µ)H(r− µ)

]
, (A.2)

where C , (πσ2
w)−N . Given θ, <{h}, ={h}, and ε, r is a complex Gaussian

vector with mean vector µ = EPFHDWh and covariance matrix σ2
wIN . The

FIM, Ψ(θ,<{h},={h}, ε), will be (N+2L)×(N+2L) matrix for joint estimation

of (N − 1) PHN parameters θ, 2L channel parameters <{h} and ={h} and one

CFO parameter ε. Using (A.2), the (i, j)th entry of Ψ can be written as [78]

[Ψ]i,j =
2

σ2
w

<
{
∂µH

∂λi

∂µ

∂λj

}
, (A.3)
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where

∂µH

∂λi
=


diag(EFHDWHh)ai, i = 1, . . . , N − 1 (λi = θi)

EPFHDWHei−(N−1), i = N, . . . , N + L− 1 (λi = <{hi−N})
jEPFHDWHei−(N+L−1), i = N + L, . . . , N + 2L− 1 (λi = ={hi−(N+L)})
j
√

MEPFHDWHh, i = N + 2L (λi = ε)

(A.4)

ai = [0, 01×i−1, je
jθi , 01×N−i]

T for i = 1, . . . , N − 1, el = [01×l−1, 1, 01×L−1]T for

l = 1, . . . , L, and M , diag
([

(2π 0
N

)2, (2π 1
N

)2, . . . , (2πN−1
N

)2
]T )

.

Substituting (A.4) into (A.5), the matrix ΞD is obtained as

ΞD =
2

σ2
w

<




Q̄H
1 Q̄1 −jQ̄H

1 Q̄2 Q̄H
1 Q̄2 Q̄H

4 q̄3

jQ̄H
2 Q̄1 QH

2 Q2 jQH
2 Q2 jQH

2 q5

Q̄H
2 Q̄1 −jQH

2 Q2 QH
2 Q2 QH

2 q5

q̄H3 Q̄4 −jq̄H5 Q2 qH5 Q2 qH5 q5


 ,

(A.5)

where Q1 = diag(FHDWh), Q̄1 = Q1(2 : N, 2 : N), Q2 = FHDW, Q̄2 = Q2(2 :

N, 1 : L), Q4 = diag(
√

MFHDWh), Q̄4 = Q4(2 : N, 2 : N), q3 = FHDWh, and

q̄3 = q3(2 : N), and q5 =
√

MFHDWh. Note that the elements of θ get canceled

by their conjugates, hence, there is no need to calculate the explicit expectation

of Ψ over θ.

A.1.2 Computation of ΞP , Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|h, ε
]

The second factor in HIM, defined in (A.1), can be written as:

ΞP = Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|ε
]
,


ΞP11 ΞP12 ΞP13 ξP14

ΞP21 ΞP22 ΞP23 ξP24

ΞP31 ΞP32 ΞP33 ξP34

ξP41
ξP42

ξP43
ξP44

 =


Eθ
[
−∆θ

θ log p(θ)
]

Eθ
[
−∆

<{h}
θ log p(θ)

]
Eθ
[
−∆

={h}
θ log p(θ)

]
Eθ [−∆ε

θ log p(θ)]

Eθ
[
−∆θ

<{h} log p(θ)
]

Eθ
[
−∆

<{h}
<{h} log p(θ)

]
Eθ
[
−∆

={h}
<{h} log p(θ)

]
Eθ
[
−∆ε

<{h} log p(θ)
]

Eθ
[
−∆θ

={h} log p(θ)
]

Eθ
[
−∆

<{h}
={h} log p(θ)

]
Eθ
[
−∆

={h}
={h} log p(θ)

]
Eθ
[
−∆ε

={h} log p(θ)
]

Eθ
[
−∆θ

ε log p(θ)
]

Eθ
[
−∆

<{h}
ε log p(θ)

]
Eθ
[
−∆

={h}
ε log p(θ)

]
Eθ [−∆ε

ε log p(θ)]

 ,
(A.6)
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where 4x
y represents the second-order partial derivative operator and p(θ) is the

prior distribution of θ.

1) Computation of ΞP11 , Eθ
[
−∆θ

θ log p(θ)
]
: From [128, eq.(19)], the (N − 1)×

(N − 1) matrix Eθ
[
−∆θ

θ log p(θ)
]

can be obtained as

ΞP11 =
−1

σ2
δ



−1 1 0 · · · 0

1 −2 1 0
...

0
. . . . . . . . . 0

... 0 1 −2 1

0 · · · 0 1 −1


. (A.7)

2) Computation of remaining terms in (A.6): Since CFO is a deterministic pa-

rameter and no prior knowledge of h is assumed, thus

ΞP12 = ΞT
P21

= 0(N−1)×L, (A.8)

ΞP13 = ΞT
P31

= 0(N−1)×L, (A.9)

ΞP22 = ΞP33 = ΞP23 = ΞP32 = 0L×L, (A.10)

ξP14
= ξTP14

= 0(N−1)×1, (A.11)

ξP23
= ξTP32

= 0L×1, (A.12)

ξP24
= ξTP42

= ξP34
= ξTP43

= 0L×1, (A.13)

ξP44 = 0. (A.14)

Using the above results, the HIM in (6.9) can be evaluated, since B11 = ΞD11 +

ΞP11 , B22 = ΞD22 + ΞP22 = ΞD22 , B33 = ΞD33 + ΞP33 = ΞD33 , b44 = ξD44 + ξP44 =

ξD33 , B12 = BH
21 = ΞD12 + ΞP12 = ΞD12 , B13 = BH

31 = ΞD13 + ΞP13 = ΞD13 ,

B23 = BH
32 = ΞD23 + ΞP23 = ΞD23 , b14 = bH41 = ξD14

+ ξP14
= ξD14

, b24 = bH24 =

ξD24
+ ξP24

= ξD24
, and b34 = bH43 = ξD34

+ ξP34
= ξD34

.
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A.2 Derivation of the mean and covariance ma-

trix in (6.6)

Given E{wR} = 0N×1 and E{wD,2} = 0N×1, the mean of the received signal in

(6.6), µyD,2
, is calculated as

µyD,2
= E

{
q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D

+q2ER,DPR2,DFHHR,DFwR + wD,2

}
= q1ES,R,DPS,R,DFHDSF(2L−1)hS,R,D. (A.15)

The covariance matrix, ΣyD,2 , as

ΣyD,2 = E
{

(yD,2 − µyD,2
)(yD,2 − µyD,2

)H}
= q2

2ER,DPR2,DFHHR,DF E{wRwH
R} FHHH

R,DFPH
R2,D

EH
R,D

+ E{wD,2w
H
D,2}

= q2
2σ

2
wER,DPR2,DFHHR,DHH

R,DFPH
R2,D

EH
R,D + σ2

wIN

= (q2
2σ

2
wσ

2
h + σ2

w)IN , (A.16)

where E{HR,DHH
R,D} = σ2

hIN , FHF = IN , PR2,DPH
R2,D

= IN and ER2,DEH
R2,D

=

IN .
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