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ABSTRACT Automated screening is employed to assist skin specialists in accurately detecting skin lesions
at an early stage. Multilevel thresholding is a widely popular and efficient technique for enhancing the
classification of skin cancer images. This paper proposes improved PSO with a novel visit table and multiple
directions search strategies to develop the performance of the multilevel thresholding. A visit table strategy
has been developed that prevents unnecessary searches of the original particle swarm optimization (PSO)
algorithm by allowing the discovery of new points by making fewer visits to frequently visited points and
their neighbors. Besides, a multiple directions search strategy has been introduced for the PSO to increase the
diversity of the population and overcome the stuck at the local optimum by enhancing exploration ability.
The qualitative, quantitative, and scalability analyzes of the improved PSO (IPSO) method were carried
out on 50 benchmark functions and the highest performance was achieved with the proposed method in
most of these functions. Secondly, a multilevel image segmentation application is presented on skin cancer
images using two-dimensional (2D) non-local means histograms, improved PSO and Renyi’s entropy. In this
work, the ISIC 2017 skin cancer image dataset is used for segmentation application and various performance
evaluation metrics are used. The obtained results are compared with seven state-of-the-art approaches to show
the efficiency of the proposed approach. It can be noted from the obtained results that, the proposed method
outperforms the compared method based on the average of evaluation metrics for all skin cancer images.
The best results in SSIM value of 0.8285, FSIM value of 0.7332, and PSNR value of 19.0576 are achieved
by using the proposed method in skin cancer image segmentation. Hence, our proposed method is ready to
be tested with huge databases and can aid skin specialists in making an accurate diagnosis.

INDEX TERMS Multilevel thresholding, multiple directions search strategy, PSO, skin cancer, visit table
strategy.
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Phest Local Optimum.

Gpest  Global Optimum.
Fprest  Local best fitness value.
Fgohest Global best fitness value.

Up Upper bound of the particles.
Low Lower bound of the particles.
IPSO  Improved Particle Swarm Optimization.

I. INTRODUCTION
Skin cancer (SC) is a serious and common disease that can

affect anyone, regardless of race, gender, or age. Malig-
nant is one of the skin cancer types and is considered
as most prevalent and deadly type [1]. Early diagnosis of
malignant melanoma can significantly reduce the mortal-
ity rate and reduce the costs of the treatment. This can be
achieved by using the proposed approaches more accurately
and effectively to determine cancer types and by improv-
ing the performance of these approaches. This encourages
researchers to develop new techniques and enhance the per-
formances of the existing ones. Image segmentation is one of
the most critical steps of image processing in early diagnosis
of cancer type, medical applications, surgical applications,
etc.

Metaheuristic algorithms are widely used in many fields
to obtain the most effective solutions for various prob-
lems. Some of these fields are; image processing [2], [3],
control techniques [4], [5], deep learning models [6], [7],
machine learning algorithms [8], optimal filter design [9],
text clustering [10], feature selection [11], etc. Segmentation
is the first and most important step in image process-
ing [12]. Thresholding is one of the simplest techniques
used in image segmentation. It is classified as bi-level
and multilevel thresholding. In image segmentation, meta-
heuristic algorithms are commonly applied for multilevel
thresholding. The computational cost of using traditional
thresholding segmentation approaches rises exponentially
with the number of thresholding levels, which limits their
applicability to a restricted set of thresholding levels. The
authors are motivated to utilize metaheuristics-based multi-
level thresholding segmentation methods as an alternative to
the conventional techniques of this difficulty. In addition, the
multi-level thresholding segmentation problem is a reason-
able application for performance evaluations of metaheuristic
approaches, as increasing the number of thresholds increases
complexity. From this point of view, the multilevel thresh-
olding segmentation problem is one of the most common
problems that many researchers use after the test functions to
determine the effectiveness of their proposed metaheuristic
algorithms.

Many multilevel thresholding approaches based on meta-
heuristics have recently been developed that segment images
of different types into various applications. Some existing
studies developed on multilevel thresholding segmenta-
tion are summarized in Table 1 using different types of
images.
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An improved version of the golden jackal optimiza-
tion algorithm has been employed to solve the multilevel
thresholding problem using Otsu’s maximum variance [1].
An adaptive multilevel thresholding method based chaoti-
cally enhanced Rao algorithm has been proposed in [12].
It is shown that the proposed method has better segmenta-
tion results compared to the other multilevel thresholding
methods on most of the 13 evaluation metrics. Kurban et al.
has performed a multi-level color thresholding segmentation
using the six state of art metaheuristic algorithms, which are
equilibrium optimization algorithm, slime mould optimizer,
turbulent flow of water-based optimization algorithm, henry
gas solubility optimization, marine predator’s optimization
algorithm, and political optimization [13]. The results have
been assessed in terms of reference image-based metrics,
and no-reference image quality metrics. A hybridized opti-
mization algorithm has been proposed for the multilevel
thresholding of satellite images [14]. The results have
shown that the proposed method outperformed other tech-
niques. Researchers have realized the multilevel thresholding
segmentation of skin cancer by using metaheuristic algo-
rithms [1], [15], [16]. The segmented image is generally
utilized in the post-processing step for better evaluation.
A modified differential evolution optimization algorithm has
been proposed by Ren et al. [15]. Zhu et al. have improved
an efficient version of the Whale Optimization Algorithm
with a chaotic random mutation strategy and Levy opera-
tor [16]. In addition to skin cancer images, metaheuristic
methods are used in the segmentation of various medical
images. Medical image segmentation has been performed
using 2D and 3D medical images from different modalities,
such as MRI, CT, and X-ray, by Hosny et al. [17]. Jena et al.
has proposed a novel metaheuristic algorithm called attack-
ing Manta Ray foraging optimization [18]. They have also
proposed a maximum 3D Tsallis entropy as an objective func-
tion for multilevel thresholding segmentation of MR images.
A modified slime mould algorithm has been proposed for the
multilevel thresholding segmentation [19]. The experimental
studies have shown that the proposed method is quietly suc-
cessful in the segmentation of Lupus Nephritis images.

The existing segmentation studies presented above were
performed on grayscale and color images. This study aims
to advance grayscale image segmentation by enhancing
the PSO method. The study aims to show the effective-
ness of the proposed method with 50 different modalities,
benchmark functions, and multilevel thresholding. Multilevel
thresholding is suitable to demonstrate the effectiveness of
metaheuristic methods due to its complexity, which increases
as the segmentation level increases. Secondly, it is aimed at
improving the performance of skin cancer segmentation. This
study proposes an improved PSO with a multiple directions
search and the visit table strategy optimization method to
perform multilevel thresholding on skin cancer images. The
proposed method, which is an efficient and improved version
of the original PSO, is developed to solve a few drawbacks
of the original PSO method. Firstly, it is aimed to prevent
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TABLE 1. Summary of comparison with State-of-the-Art techniques developed for skin lesion segmentation.

Thresholding

Authors Method

Optimization method

Dataset

Obtained results

Improved golden jackal

>
optimization algorithm * Otsw’s method

Houssein et al. [1]
Enhanced differential

Yang et al. [2] evolution o Kapur's entropy

Chaotically-enhanced Rao
algorithm

Marine predator and
turbulent flow of water-
based algorithms
Equilibrium-cuckoo search e Differential

Olmez et al. [12] o Otsu’s method

e Kapur’s entropy,

Kurban et al. [13] « Otsu’s method

Swain et al. [14]

optimizer exponential entropy
Ren et al. [15] 212?&22?1 differential e Kapur’s entropy

Wei et al. [16] Boosting whale optimizer e Kapur's entropy

e Otsu’s method,
e Kapur's entropy

Hybrid Coronavirus

Hosny et al. [17] Algorithm

Attacking Manta-Ray

Jenaetal. [18] foraging optimization

o 3D Tsallis entropy

Slime mould algorithm

Chen et al. [19] with bee foraging e Kapur’s entropy

o Skin cancer
images

e Breast cancer
images

® 30 Benchmark
functions

® Berkeley
Benchmark

o Color aerial
images

o Color satellite
images

e Breast cancer
o Skin cancer
images

o Skin cancer
images

e 2D and 3D
medical images
® Brain MR images
o 27 Benchmark
functions

o Lupus nephritis
images
o Crop images

o 10 benchmark

mechanism
Efficient cuckoo search e Recursive minimum
Kumar et al. [20] .
algorithm cross-entropy
Wang et al. [21] Imr.)ro'ved. whale e Otsu s' method,
optimization e Kapur's entropy

Improved particle swarm

Proposed Method AR
optimization

o Renyi’s entropy

images

o Skin cancer
images

® 50 Benchmark
functions

The method effectively resolves the skin cancer
segmentation problem.

The suggested approach for determining thresholds
expedites the convergence process and mitigates the issue
of premature convergence.

It outperformed the compared methods in terms most of
image quality metrics.
It outperformed the other six algorithms in terms of five

image quality metrics and CPU time consumption.

The performance was enhanced by including more edge
information and improving search space exploration.

It outperformed many competitors who provided similar
services.

The method outperformed other WOA variants.

Better quality solutions were acquired for 2D and
volumetric medical image segmentation.

The method outperformed 1D and 2D Tsallis entropy-
based methods.

It improved the performance of the multilevel
thresholding.

Results are expressed in terms of SSIM, FSIM, PSNR,
MSE, and CPU time.
It has better performance in terms of convergence and
segmentation quality.

It outperformed the other seven algorithms in SSIM,
FSIM, PSNR, CPU time, and a set of statistical tests.

unnecessary searches by adding a visit table strategy to the
algorithm. Secondly, a new movement equation is presented
to avoid stacking into the local optimum. In the experi-
ments, the method was applied to two different datasets.
The first experiments were performed on 50 benchmark
problems that have different properties. In addition to quan-
titative and qualitative analysis of the proposed method,
the scalability analysis was also performed. The experimen-
tal results were compared with seven other metaheuristic
methods: AOA (Arithmetic Optimization Algorithm), GWO
(Grey Wolf Optimization), MFO (Moth Flame Optimization),
WOA (Whale Optimization Algorithm), MVO (Multi-Verse
Optimization), TLBO (Teaching Learning Based Optimiza-
tion), and original PSO (Particle Swarm Optimization).
The outcomes showed that for the majority of the bench-
mark functions, the improved PSO method works better
than the original PSO and other state-of-art methods. Sec-
ondly, a multilevel thresholding image segmentation method
based developed optimization algorithm was proposed using
Renyi’s entropy and non-local means 2d histogram. The
experimental results of segmentation demonstrate that the
proposed approach works better than other algorithms in
terms of the SSIM (Structured Similarity Index), FSIM
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(Feature Similarity Index), and PSNR (Peak Signal to Noise
Ratio) image quality metrics.
The main contributions of this paper are summarized as

follows:

> Improved PSO (IPSO) with visit table and multiple direc-
tions search strategies is introduced to address the issue
of multilevel thresholding segmentation.

> The proposed optimization method is developed based on
the visit table strategy to prevent unnecessary searches
and increase diversity. By adding a visiting table and
a new position updating equation to the original PSO,
exploration, and exploitation steps are improved and pre-
vented from getting stuck in the local optimum.

> A multilevel segmentation framework is presented on skin
cancer images using 2d non-local means histogram and
Renyi’s entropy as an objective function.

> The performance of the proposed method is assessed with
a different threshold level.

> The proposed method is compared with several state of
art methods.

> The effectiveness of the proposed optimization method is
validated with qualitative analysis, quantitative analysis,
and scalability analysis.
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!
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FIGURE 1. Flowchart of the image segmentation method.

> The efficiency of the segmentation technique is validated
using PSNR, FSIM, and SSIM evaluation indexes.

> The suggested method can be applied to image Further-
more, various developed visit table strategies can also be
applied to improve the performance of the metaheuristic
algorithms.

The rest of the paper is organized as follows. In Section II,

the proposed multilevel thresholding image segmentation

method and improved PSO algorithm are explained. Exper-

imental studies and results obtained are presented in

Section III. Finally, the conclusion and future work are given

in Section IV.

Il. MATERIALS AND METHODS

This section provides a detailed description of the multilevel
thresholding image segmentation problem and the proposed
image segmentation framework based on improved particle
swarm optimization with a visit table and multiple directions
search strategies.

A. DESCRIPTION OF MULTILEVEL IMAGE SEGMENTATION
PROBLEM

A multilevel thresholding method is developed to enhance the
segmentation of pathological skin cancer images. The devel-
oped method is based on a non-local means histogram which
utilizes the redundant information in the image and keeps the
most detailed elements of the image. It also uses information
on the gray-scale images and spatial correlation of the pixels.
Since the computational cost of using traditional thresholding
segmentation approaches rises exponentially with the number
of thresholding levels, an efficient multilevel thresholding
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method is integrated into the segmentation method. Renyi’s
entropy is used as the objective function, which calculates
the entropy difference between the object and the back-
ground and its absolute value. The optimal thresholding
values are found where the entropy is maximum. Renyi’s
entropy is maximized as T* = argmaxHy . Hereby, the
multilevel thresholding image segmentation method based
on the PSVTS optimization algorithm nonlocal means 2D
histogram and Renyi’s entropy is proposed. The flowchart of
the segmentation method is presented in Figure 1 in detail.
Firstly, the original skin image is read and converted into
the gray-scale image. The 2D histogram is constructed by a
nonlocal means filter. The histogram is given to the proposed
optimization method as input. The optimal thresholding val-
ues are obtained in the optimization method where Renyi’s
entropy is maximum. The original images are segmented with
the obtained optimal thresholding values. The segmented
images are assessed with a set of image quality evaluation
metrics.

B. ORIGINAL PSO

Particle swarm optimization is one of the most common and
basic optimization techniques inspired by the behavior of
animals living in herds. There are 2 main parameters of the
PSO technique, which are pbest and gbest. The best position
of the particle is defined as pbest and the swarm’s best
position is defined as gbest. In each iteration, the positions
of the particles are updated according to pbest and gbest val-
ues [22]. The updating equations of the positions can be given
as:

vij (k + 1) = vij (k) 4+ C rand | (Ppest,ij (k) — x5 (k))
+ Ca rand(8pest,ij(k) — x;j(k)) (1
xjj(k + 1) = xii(k)) + vy (k + 1) @)

where, v;; (k) and v;; (k + 1) represent the current and the
next velocities of the particles, respectively. C; and C; are
acceleration coefficients. rand| and rand, are the random
vectors. x;;(k) and x;;(k + 1) denote the current and the next
positions of the particles, respectively.

C. IMPROVED PSO

This section introduces details of the proposed improved PSO
(IPSO) algorithm in four subsections inspiration, mathemati-
cal model, procedure, and the computational complexity of
the algorithm. The pseudocode of the proposed method is
given in Algorithm 1. The relevant sections are explained in
detail as the following.

1) INSPIRATION

The main purpose of the optimization problem is to acquire
the optimum solution in the defined search space for the
problem as soon as possible. Although the PSO algorithm is
one of the oldest developed algorithms, it is still one of the
most frequently used methods today due to its simple struc-
ture and easy-to-understand and applied method. However,
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Algorithm 1 Pseudocode of the Improved PSO
1) Initialize the velocities, population, pBest, gBest, visit
table, direct vector
2) Calculate the fitness values of each particle
3) Determine gBest and pBest
4) for k=1:iter
a) for i=1:Npop
b) Update Direct Vector
¢) Update Target Index
d) if rand<Threshold
i) Update velocity and position using Egs. 6-7.
ii) Calculate newF
iii) Update VisitTable
iv) If newF>Fi
(1) Fi = newF
v) Endif
e) Else
i) Update velocity and position using Eqs.8-9.
ii) Update VisitTable
iii) Calculate newF
iv) If newF<Fi
(1) Fi = newF
v) Endif
f) Endif
g) if Fi < pBest;
1) Update pBest & fitness_pBest
h) Endif
1) Assign Pbest’s best individual as new_gBest
j) If fitness_new_gBest < fgBest
i) Update gBest & fitness_gBest
k) Endif
5) Endfor

due to some disadvantages, it may not find the correct result
(global optimum) in every problem [23]. Every day, new
algorithms and new search strategies are suggested. Even if
some of these methods are not good, very efficient results
can be obtained when the suggested search strategies are
applied to different methods. AHA (Artificial Hummingbird
Algorithm) is one of the most powerful algorithms proposed
so far, and the search strategies proposed for the algorithm
will also shed light on the development of other algorithms.
While searching for the optimal solution in the PSO algorithm
and many similar algorithms, previously visited candidate
solutions are repeatedly visited. Contrary to the purpose of
the optimization, this causes unnecessary processing load,
prolongs the optimum convergence time and prevents the
discovery of different points. Instead of exploring different
points, the particles go to the same points all the time, and
they can get stuck in the local optimum and prevent them from
reaching the global optimum. The visit table aims to ensure
that the particles go to places that are not visited first and to
discover at different points.
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2) MATHEMATICAL MODEL OF THE ALGORITHM

This section introduces details of the proposed optimization
algorithm. The pseudocode of the proposed method is given
in Algorithm 1. The relevant sections are explained in detail
as the following.

a: INITIALIZATION

This section introduces details of the proposed optimization
algorithm. The pseudocode of the proposed method is given
in Algorithm 1. The relevant sections are explained in detail
as the following.

X = Xjow + r-(xup — Xiow) 3)

where Xx is the initial random population, r represents a ran-
dom number in the range (0, 1). In the proposed method,
particles are search agents and each particle is regarded as
a candidate solution. The search agents are updated during
the iterations. The positions’ matrix of the particles and the
corresponding fitness values are given as;

X11 X12 ... X14 feei, x2, .., X1a)
X21 X22 ... X2d fOo1,x0, ..., x2q)
x=| . . . .|, f® .
Xnl Xn2 -+« Xnd f(xnls Xn2s « s Xnd)
4)

where n represents the number of the population and d is the
dimension of the population. f (x) represents the fitness values
for n-particles. The visit table is initially generated as in
Eq. (5):

NaN ifi=j
VT = 5
v [ 0 else )

According to Eq.(5), in the case of i=j, the particle receives
food from the relevant source and the visit table is assigned as
VT';j = NaN . When the ih particle has just visited the source,
then VT;; = 0.

b: UPDATING OF PARTICLES
This section is divided into two stages as visit table strategy
and multiple direction search strategy.

Visit Table Strategy

To prevent particles from constantly going to the same
points and to better converge the global optimum with the
discovery of different points, a visit table strategy has been
added to the PSO. Accordingly, the equations of the velocity
and the position in the PSO algorithm are rearranged as in
Egs. (6) and (7):

vi(k + 1) =v; (k) + Ci.rand. (xgy (k) — x; (k))
+ Co.(Ppesr — Xi (k) (6)
xi(k + 1) = xi(k) + vi (k + 1) (N
where, v; (k) and v;(k + 1) represent the current and the

next velocities, respectively. Similarly x; (k) and x;(k + 1)
represents the current and next positions. C is the acceleration

VOLUME 12, 2024
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Status of the Positions & Fitnesses ‘ ‘

Status of the Visit Table

‘ ‘ Target Index ‘
Fitnesses

Status of the New Positions & ‘

-7.8564 | -7.9899

2.5155 NaN [ o 0 0 0
554001 | 2.2472 3.0855 o I ~an | o o o
n=1 ——— 3| 68880 [ 37021 3.5367 o o ~an | o o [34947]3.5540]  [0.4977]
3.0208 | -3.0909 0.3748 o o o | ~an]| o
7.9369 | -5.00997 3.8180 o P o o | Nan
3.4947 | -3.5540 0.4977 ~n ] 1 1 " 1
54001 | 22472 3.0855 T TNan T o o o
- ~6.8880 | -3.7921 _ B
n=2 ——l6 35367 T T o T~nl o 1 o III [43708]-29561] [10372]
3.0208 | -3.0909 03748 : o o T~n | o
7.9369 | -5.0099 3.8180 . o o o T o
3.4947 | -3.5540 0.4977 NaN | 2 1 1 1
-4.3708 | -2.9560 1.0372 0 NaN 1 1 1
N =3 e—— =
6.8880 | -3.7921 3.5367 1 2 | NaN| 0 0 5.8398 | -4.2869 | ‘ 1_6284‘
3.0208 | -3.0909 0.3748 1 2 0 |NaN| o©
7.9369 | -5.0099 3.8180 1 2 ) 0 | NaN
-3.4947 | -3.5540 0.4977 NaN| 2 3 ! !
-4.3708 | -2.9560 1.0372 0 |NaN| 2 ! !
n=d — A mes ST 2 o [~Nan| 1 1 3.0208 | 5.0973 | | 16.5192 |
-3.0208 | -3.0909 0.3748 ! 2 3 |NaN| 0
-7.9369 | -5.0099 3.8180 ! 2 3 0 [NaN
NaN | 2 3 1 4
-3.4947 | -3.5540 0.4977 o T~an | 2 1 3
a 3
-4.3708 | -2.9560 1.0372
2 0 [NaN| 1 3 3 3.0208 | 5.0973 | ‘ 1.9457 ‘
n=5 =Pl 58398 | -42869 1.6284 > 3 7 | ~an | s
-3.0208 | -3.0909 0.3748 > N o T | ~an
-7.9369 | -5.0099 3.8180

FIGURE 2. Updating the position of particles according to the particle swarm with the visit table strategy.

factor of the PSO. rand is the random number in the range of
(0,1). x7y (k) is the individual with the highest visitation level.
Pres: represents the local best fitness value.

In the visit table, the value of each visited point is assigned
as zero, and the values of the points not visited are increased
by one. When guiding the swarm, the priority is to direct
the swarm to places that have never been visited or least
visited points. The points with the maximum value in the
visit table indicate the positions of the sources that the swarm
will primarily visit. Figure 2 shows how to update the posi-
tion of particles according to the visit table strategy using
Egs. (6)-(7). Here, position updates and visit table changes
are observed for the five particles. The visiting table is ini-
tially created according to Eq. (5). According to the created
visit table, the target index is determined for the n™ particle.
For example, if we look for particle 1 since the target index
is 2, it updates the position according to the position of
particle 2 (Eqgs. (6) — (7)). If the fitness value of the new
solution obtained is better than the previous one, the new
solution replaces the old one, otherwise, it keeps the old
position. In this direction, location updates are performed for
each of the five particles according to the visit levels in the
visit table. In each update, the visited value in the visit table
is assigned zero and the values of the unvisited points are
increased by one.

Multiple Direction Search Strategy

Multiple Direction Search Strategy for PSO is constructed
based on AHA [24]. To enhance the exploration ability, the
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positions of the particles are determined to fly in different
directions from their position. Therefore, the velocity and
position equations are rearranged as follows:

vi (k + 1) = v; (k) + rand .DV .x; (k) )
xitk + 1) =x;(k) +v; (k + 1) ©)

where, v; (k) and v;(k 4+ 1) represent the current and the
next velocities, respectively. Similarly x; (k) and x;(k + 1)
represents the current and next positions. C is the acceleration
factor of the PSO. rand is the random number in the range
of (0,1).

DV denotes the direct vector and includes three versions of
flight as diagonal, omnidirectional, and axial type.

1
Omnidirectional, if (r < 5)

DV (i) = if(% <r< %) (10)

. 2
’f(”%)

Direction vectors for the omnidirectional, axial, and diagonal
flights are given in the following equations, respectively:

Diagonal

Axial,

DV(@i,)=1 (1D
DV (i,m) =1 (12)
DV(@i,1:n) =1 (13)

where, DV(i,:) represents the movement direction of the ith
particle, m = randperm(k), and n = r,.(D — 2) + 1. The size
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’ Initialization ’

Eqgs. (8-9)
’ %

Evaluate each particle

!

Determine pBest&gBest

No

f(i) = NewFitness

Eqgs. (11-13)
i<maxit -—y Update gBest & ‘ Determine new_gBest
fgBest according to pBest
No
No
End

FIGURE 3. Flowchart of the improved PSO method.

Test Imagel Test Image2

Test Image6

Test Image7

FIGURE 4. Test images of this study.

of the direct vector is determined by the dimensions of the
problems.

c: CHECKING TERMINATING CONDITIONS
The optimization process will continue until the number of
iterations reaches the maximum. Otherwise, it will end.

3) PROCEDURE FOR THE IMPROVED PSO
The main procedure of the proposed method is explained in
this part. The pseudo-code and the flowchart of the improved
PSO method are represented in Algorithm 1 and Figure 3,
respectively.

Step 1: Initialization: The algorithm parameters (number of
the maximum iteration as 1000, population size as 20, number
of the runs as 20, Threshold value as 0.5, the acceleration

846

Test Image3

Test Image8

Test Imaged Test Images

,.,'

Test Image9

Test Imagel0

TABLE 2. Hyper parameters used in the segmentation algorithm.

Definition Parameter Value
Inertia moment w 0.8
Acceleration factors C, C, 0.6,1.2
Number of the particles Npop 20
Maximum number of iterations Maxie, 1000
Number of the run Runs 20

factors (c1-c2) as 06-1.2, inertia moment as 0.8) are assigned.
The initial positions and the velocities of the particles are
initialized randomly in the range of search space. The fitness
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Test Image

1d Histograms

2d Histograms

(a) (b)

FIGURE 5. Original images and their histograms, (a)original images, (b) 1d histogram and (c) 2d histogram.

values of the particle are calculated according to objective
functions. The visit table is initialized as specified in Eq. (5).

Step 2: Selection of the movement strategies: Two move-
ment strategies are proposed for the updating of the particles.
Then, according to the determined threshold value, it is deter-
mined which strategy the particles will move using.

VOLUME 12, 2024
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Step 3: Update on the selected strategy: In this section, the
positions and velocities of the particles are updated according
to the selected strategy. The direct vector, target index, visit
table, and local and global optimums are updated.

Step 4: Checking terminating conditions: If the terminating
criterion is satisfied, then optimization will be terminated.
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FIGURE 6. Summary of qualitative analysis; (a) Landscape of the benchmark function, (b) Trajectory in

1st dimension, and (c) Convergence curve.

Otherwise, it will continue from Step 2 until the number of
the iteration reaches the maximum.

4) COMPUTATIONAL COMPLEXITY

Computational complexity is an important metric used to
evaluate the performance of the proposed method. The pro-
posed method has three main processes: initialization, fitness
evaluation, and the updating of the particles. In the initializa-
tion, the computational complexity is O(n). In the updating
process, the computational complexity is O(nT), where T
represents the maximum number of iterations and n is the

848

number of particles. Thus, the computational complexity of
the proposed method is O(n x (1 + T)) [25].

Ill. EXPERIMENTAL STUDIES

This section explains the experimental studies and results
of the proposed optimization algorithm. Firstly, we used
50 benchmark functions consisting of functions with vari-
ous properties, to evaluate the optimization algorithm from
different perspectives. The details of the functions are given
in Tables 9-10. We used ten skin cancer images from
the ISIC2017 dataset for further evaluation. Selected test
images are shown in Figure 4. The images are stated as
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FIGURE 7. Convergence curves were obtained using functions with different algorithms.

Test Imagel, Test Image2, and so on. Figure 5 displays
the 1D and 2D histograms of the images. The perfor-
mance of the proposed method is compared with seven
state-of-the-art methods, which are AOA [26], GWO [27],
MFO [28], WOA [29], MVO [30], TLBO [31], and original
PSO [22].

All algorithms are tested over 20 runs with 1000 iterations
for multilevel thresholding segmentation. The images are
segmented with 2, 3, 4, and 5 thresholding levels. Segmented
results are assessed in terms of SSIM, FSIM, and PSNR
evaluation metrics. The experimental studies are performed

VOLUME 12, 2024

on Matlab 2020a in a Windows 10 environment, with an Intel
core-i7 (9th Gen.) processor and 16 GB RAM. This section
is structured as follows: Section A presents the experimen-
tal setup, Section B represents experiments on benchmark
problems, and Section C represents MTS experiments on skin
cancer images.

A. EXPERIMENTAL SETUP
This section is structured as follows: Section I introduces

the parameter settings, and Section II presents the evaluation
metrics.
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FIGURE 8. Segmented images acquired using improved PSO algorithm: (a) original images, (b) 2 level, (c) 3 level, (d) 4 level, and

(e) 5 level segmented images.

1) PARAMETER SETTING

The proposed method is compared with seven algorithms:
PSO, AOA, GWO, WOA, TLBO, MFO, and MVO.
Algorithms are tested over 20 runs for each test image. The
population size and the maximum iteration number are set as
20 and 1000 for all algorithms. The other parameter values
of the proposed method are provided in Table 2. To ensure a
fair comparison, basic parameters such as the number of iter-
ations, number of runs, and population size are set the same
for all considered optimization algorithms. Other parameters
of the compared methods are used in their original form.

2) EVALUATION METRICS

a: PEAK SIGNAL-TO-NOISE RATIO (PSNR)

It evaluates the performance of the multilevel thresholding
segmentation according to the error between the segmented
image and corresponding pixels of the input image. A higher
PSNR value indicates better thresholding performance. The
PSNR index can be calculated as [32]:

255
VMSE

PSNR = 201log,, (14)

850

M—-1N-1
1

MSE = —— Z ; Uorg (ir ) = Lseg (i, ))* (15)

where MxN denotes the size of the input image. Iorg(i,j) and
Lseg(i,j) represent the grayscale values of the original input
and segmented images, respectively.

b: FEATURE SIMILARITY INDEX (FSIM)

It is another significant index used to evaluate the threshold-
ing segmentation performance. FSIM calculates the feature
similarity between the original and segmented images based
on phase consistency (PC) and gradient amplitude (G) fea-
tures. A higher FSIM value indicates better segmentation
performance [33].

2 SLXOPCu(X)

_ XeQ
FSIM (x,y) = S PO (16)
xeQ
SL (X) = Spc(X)Sc(X) (17)
2PC1(X)+ PCo(X) + T
Spc = (18)

© PC2(X)+PCI(X) + T
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TABLE 3. Renyi’s optimum threshold values obtained at all levels for test images (Image 1-Image 5).

Image nTh IPSO PSO AOA GWO MFO WOA MVO TLBO
2 20,110 89,152 191,236 20,110 20,105 20,110 20,110 20,110
Test 3 20,76,132 20,84,154 132,177,241 20,76,132 20,75,131 20,76,132 20,77,133 20,76,732
Imagel 4 14,58,95,133 118,160,199,235 88,169,207,236 20,59,97,134 20,56,94,132 20,58,96,134 20,58,95,133 20,56,91,126
5 20,49,77,105,133  88,130,165,201,235 98,148,203,225,254 20,50,79,107,135  20,44,68,93,117 20,50,80,110,140 20,49,78,106,133 20,48,76,105,134
2 14,75 116,218 112,214 14,110 20,105 14,110 14,110 14,110
Test 3 14,68,121 98,159,218 101,151,232 14,65,121 20,75,131 14,62,121 14,68,121 14,68,121
Image2 4 14,54,94,134 82,129,174,218 104,155,203,249 14,51,89,129 20,56,94,132 14,53,93,133 14,53,93,133 14,44,75,116
5 14,43,73,103,133  70,113151,189,226 82,131,157,186,223  14,41,68,98,127  20,44,68,93,117 14,43,73,102,131 14,44,74,104,134  14,42,70,98,128
2 53,113 143,199 148,187 53,113 50,100 48,113 53,113 53,113
Test 3 44,88,132 53,155,210 21,77,186 42,86,132 40,79,120 40,86,132 44,88,132 41,81,121
Image3 4 34,67,100,134 53,133,174,215 29,51,172,190  32,66,100,134 31,62,94,120  47,94,141,185 35,69,103,137 32,64,97,133
5 28,56,84,112,140 30,67,3141,181,220  41,98,131,150,227 22,53,81,110,138  22,47,71,98,125 28,56,84,112,140 29,56,84,111,138 27,53,79,106,134
2 20,116 139,240 147,240 20,116 20,131 20,121 20,116 20,103
Test 3 20,78,135 138,189,240 120,221,248 20,78,136 20,73,125 20,78,136 20,78,136 20,78,136
Imaged 4 20,59,98,134 20,67,114,168 108,172,224,250 20,57,94,133 20,54,88,121 20,59,98,137 20,59,98,137 20,57,95,134
5 20,48,77,106,134  55,88,126,162,197 96,148,166,212,243 20,50,78,107,136  20,51,81,112,143 20,50,78,106,134 20,46,73,100,127  20,41,63,98,132
2 48,97 130,204 48,86 48,97 49,105 49,68 48,97 48,97
Test 3 47,94,141 38,87,204 133,170,212 45,93,141 56,89,140 47,94,141 47,94,141 47,94,141
ImageS 4 35,70,106,140 49,143,185,221 151,173,213,236 30,63,97,132 31,62,93,124 33,66,98,134  35,70,105,140 33,65,98,133
5 28,55,82,109,136  39,87,164,196,233 32,125,167,216,239 17,43,72,102,132 24,51,79,106,133 27,54,81,108,136 27,54,81,108,137 23,49,76,104,132

TABLE 4. Renyi's optimum threshold values obtained at all levels f or test images (Image 6-lmage 10).

Image nTh IPSO PSO AOA GWO MFO WOA MVO TLBO
2 26,113 139,217 11,219 26,113 26,113 26,113 26,113 26,113
Test 3 26,830,134 134,176,218 94,170,233 26,80,134 26,76,126 26,80,134 26,830,134 24,80,134
Image6 4 26,62,98,134 26,142,190,224  139,183,194,235 25,62,98,134  25,63,102,141 26,62,98,134 26,61,97,134  26,63,101,138
5 26,53,80,108,135  22,52,153,184,220 58,139,161,210,254 23,51,79,107,135 24,52,79,107,135 26,54,81,108,136 26,53,80,107,134 25,51,77,105,134
2 23,110 147,221 177,221 23,110 23,110 23,110 23,110 23,110
Test 3 23,78,133 127,174,221 144,196,222 23,78,133 23,76,129 23,77,133 23,78,133 23,78,133
Image7 4 23,61,100,138 66,141,186,222  129,183,213,253 23,61,99,137 23,61,99,138  23,61,100,138 23,60,97,134 23,61,99,137
5 23,51,79,108,136 23,414,180,210,233 19,101,152,188,236 18,43,71,100,128  21,44,67,92,117 23,51,79,107,135 23,51,79,106,134 23,51,80,110,140
2 24,94 125,192 132,195 24,94 24,94 24,94 24,99 24,99
Test 3 24,72,119 113,160,209 92,193,222 24,75,126 24,63,102 24,69,126 24,75,126 24,75,126
Image8 4 24,58,93,127 80,125,173,215 119,203,215,239 24,58,92,127 24,53,83,113 18,52,99,127 24,58,93,127 24,58,93,127
5 24,50,75,100,127 24,113,146,194,225 55,148,173,212,230  20,44,69,98,127  21,42,69,96,123  12,40,69,97,127 24,49,74,100,127 23,49,75,101,132
2 18,109 137,206 107,208 18,109 18,95 18,109 18,109 18,109
Test 3 18,74,130 126,168,212 94,171,224 18,72,128 18,67,116 18,74,130 18,73,128 18,74,130
Image9 4 18,57,96,135 92,137,177,218 118,164,191,211 18,56,94,134 17,49,82,114 18,57,96,135 18,55,94,133 18,57,96,135
5 18,47,76,105,134  17,57,113,190,224 72,136,209,220,254 18,47,74,103,131 18,47,76,104,132 18,47,76,105,134 18,45,73,101,129 18,44,71,101,132
2 56,111 61,121 88,191 55,111 56,111 60,120 70,140 55,111
Test 3 47,94,141 59,121,190 161,188,212 47,94,141 48,97,146 47,94,141 47,94,140 47,94,141
Imagel0 4 35,70,105,140 54,106,150,190 63,100,203,230  33,66,102,138 35,64,96,129  3570,105,140  3570,106,141  34,69,104,139
5 28,56,84,112,140  39,77,115,181220  41,70,110,151,193 28,55,84,113,141 24,50,77,103,126 29,57,85,113,141 28,55,82,109,137 28,56,84,112,140

_2GI(X) + G(X) + T}

where €2 indicates all pixels of the input image. T1 and T, are
constant values. PCy, represents the phase consistency matrix

G (19)

S GX)+GX) +T
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TABLE 5. SSIM-based average val
Test Image nTh IPSO PSO AOA GWO MFO WOA MVO TLBO
2 0,5954 0,5262 0,3544 0,5954 0,5873 0,5954 0,5954 0,5954
Image 1 3 0,6743 0,6769 0,4788 0,6742 0,6737 0,6742 0,6742 0,6742
4 0,7179 0,4612 0,4444 0,7181 0,7196 0,7191 0,7179 0,7122
5 0,7552 0,5120 0,4377 0,7551 0,7396 0,7604 0,7551 0,7586
2 0,7992 0,7914 0,7824 0,6555 0,6555 0,7992 0,7992 0,7992
Image 2 3 0,8398 0,8135 0,8395 0,8395 0,8469 0,8394 0,8398 0,8398
4 0,8713 0,6280 0,8316 0,8655 0,8171 0,8704 0,8704 0,8420
5 0,8805 0,8576 0,8529 0,8725 0,7656 0,8789 0,8829 0,8741
2 0,7772 0,6848 0,5852 0,7772 0,7468 0,7743 0,7772 0,7772
Image 3 3 0,8023 0,4710 0,6525 0,8014 0,7967 0,8002 0,8023 0,7979
4 0,8176 0,7671 0,4467 0,8170 0,8069 0,7937 0,8169 0,8161
5 0,8252 0,7784 0,7999 0,8254 0,8185 0,8252 0,8270 0,8257
2 0,6962 0,6172 0,6284 0,6962 0,7292 0,7082 0,6962 0,6604
Image 4 3 0,7668 0,6763 0,5005 0,7668 0,7433 0,7668 0,7648 0,7668
4 0,7875 0,8299 0,5681 0,7804 0,7516 0,7875 0,7875 0,7826
5 0,7938 0,7520 0,6689 0,7979 0,8130 0,7930 0,7778 0,7973
2 0,7247 0,6722 0,6918 0,7247 0,7473 0,7288 0,7247 0,7247
Image 5 3 0,8093 0,6847 0,6559 0,8074 0,8084 0,8093 0,8093 0,8093
4 0,8205 0,6517 0,6275 0,8162 0,8088 0,8181 0,8205 0,8179
5 0,8372 0,7455 0,7534 0,8227 0,8316 0,8364 0,8367 0,8284
2 0,6408 0,5197 0,5124 0,6408 0,6408 0,6408 0,6408 0,6408
Image 6 3 0,703 0,5459 0,5867 0,7030 0,6960 0,7030 0,7030 0,7030
4 0,7543 0,6487 0,5307 0,7526 0,7564 0,7543 0,7552 0,7564
5 0,786 0,7323 0,7100 0,7832 0,7842 0,7862 0,7847 0,7846
2 0,6838 0,6658 0,6708 0,6838 0,6838 0,6838 0,6838 0,6838
Image 7 3 0,7662 0,7072 0,6704 0,7662 0,7574 0,7662 0,7662 0,7662
4 0,7917 0,7427 0,5674 0,7900 0,7920 0,7917 0,7845 0,7900
5 0,8086 0,6401 0,8033 0,7909 0,7642 0,8066 0,8044 0,8171
2 0,8085 0,8398 0,8376 0,8085 0,8085 0,8085 0,8259 0,8259
Image 8 3 0,8899 0,5637 0,7682 0,8899 0,8446 0,8885 0,8827 0,8899
4 0,9019 0,8599 0,8351 0,9017 0,8806 0,8983 0,9019 0,9019
5 0,9098 0,8855 0,8190 0,9085 0,9046 0,9076 0,9102 0,9098
2 0,7252 0,6966 0,6679 0,7252 0,6895 0,7252 0,7252 0,7252
Image 9 3 0,7857 0,7244 0,7171 0,7858 0,7694 0,7886 0,7886 0,7886
4 0,8195 0,6952 0,6667 0,8185 0,7893 0,8195 0,8177 0,8195
5 0,8398 0,6459 0,7566 0,8353 0,8372 0,8398 0,8325 0,8369
2 0,8266 0,7879 0,7748 0,8269 0,8269 0,7901 0,7798 0,8266
Image 10 3 0,8247 0,7857 0,2974 0,8223 0,8174 0,8223 0,8223 0,8223
4 0,8429 0,8140 0,8182 0,8431 0,8355 0,8429 0,8416 0,8437
5 0,8485 0,7969 0,8087 0,8450 0,8499 0,8458 0,8533 0,8485

and is calculated as PC,, = max (PC;, PC;), where PC; and
PC; are the phase consistency of the segmented image and the
input image, respectively. G represents the gradient amplitude
and is calculated as:

G=,G;+Gj

c: STRUCTURED SIMILARITY INDEX (SSIM)
It measures the similarity between two images. It can be
calculated as [34]:

(20)

(Zﬂxﬂy + Cl)(zgxy +c2)
(12 + u} + e + 0l +c2)

SSIM (x,y) = (21)
where px and wy indicate the averages of the input and
segmented images. ox and oy are the standard variances of
the input and segmented images. oy, refers to the covariance
and the ¢y, and c; are the constant values. A higher SSIM
value refers to better segmentation performance.

852

B. EXPERIMENTS ON BENCHMARK PROBLEMS

The performance of the proposed method is tested with
50 benchmark functions consisting of functions with various
properties to evaluate the optimization algorithm from differ-
ent perspectives. The results are analyzed and compared with
other optimization algorithms. The used benchmark functions
are given in Tables 9—10 and more details of the functions
can be found in [35]. Of the mentioned test functions, 36 are
nonseparable, 14 are separable, 17 are unimodal and 33 are
multimodal.

1) QUALITATIVE RESULTS

To verify the performance of the proposed method, qualita-
tive analysis is discussed in this section. The test functions
include 2 unimodal (Sphere and Rosenbrock) and 3 mul-
timodal (Griewank, Ackley, and Rastrigin) functions. For
the qualitative analysis, three subfigures, which include
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TABLE 6. FSIM-based average values.

Test Image nTh IPSO PSO AOA GWO MFO WOA MVO TLBO
2 0,6386 0,6947 0,6803 0,6886 0,6861 0,6886 0,6886 0,6886
Image 1 3 0,7029 0,6978 0,6983 0,7031 0,7031 0,7031 0,7028 0,7031
4 0,6939 0,7068 0,7305 0,7300 0,7342 0,7311 0,7305 0,7309
5 0,7623 0,7236 0,6980 0,7583 0,7505 0,7583 0,7579 0,7612
2 0,7023 0,7023 0,7021 0,7022 0,6961 0,7022 0,6961 0,7022
Image 2 3 0,7056 0,7102 0,7063 0,7047 0,7052 0,7043 0,7052 0,7052
4 0,7384 0,7113 0,7073 0,7081 0,7078 0,7071 0,7071 0,7091
5 0,7131 0,7530 0,7475 0,7141 0,7067 0,7127 0,7130 0,7134
2 0,6208 0,6197 0,6207 0,6208 0,6187 0,6203 0,6208 0,6208
Image 3 3 0,6256 0,5455 0,6133 0,6294 0,6299 0,6289 0,6298 0,6263
4 0,6620 0,6689 0,6349 0,6346 0,6287 0,6309 0,6355 0,6343
5 0,6415 0,6387 0,7426 0,6409 0,6347 0,6415 0,6419 0,6387
2 0,7302 0,7284 0,7279 0,7302 0,7299 0,7302 0,7302 0,7302
Image 4 3 0,7434 0,7335 0,7149 0,7434 0,7434 0,7434 0,7434 0,7434
4 0,7382 0,7544 0,7574 0,7577 0,7569 0,7574 0,7574 0,7579
5 0,7694 0,7718 0,7476 0,7700 0,7714 0,7699 0,7686 0,7706
2 0,7037 0,7046 0,7016 0,7037 0,7056 0,7045 0,7037 0,7037
Image 5 3 0,7138 0,6990 0,7102 0,7131 0,7133 0,7133 0,7133 0,7133
4 0,7116 0,7119 0,7165 0,7158 0,7152 0,7166 0,7166 0,7163
5 0,7231 0,7452 0,7094 0,7190 0,7213 0,7231 0,7228 0,7207
2 0,7104 0,7047 0,7072 0,7104 0,7104 0,7104 0,7104 0,7104
Image 6 3 0,7244 0,7075 0,7152 0,7244 0,7229 0,7244 0,7244 0,7244
4 0,7455 0,7027 0,7085 0,7444 0,7453 0,7450 0,7447 0,7455
5 0,7610 0,7256 0,7414 0,7589 0,7597 0,7603 0,7598 0,7593
2 0,6975 0,6949 0,6865 0,6975 0,6975 0,6975 0,6975 0,6975
Image 7 3 0,7112 0,7032 0,6869 0,7112 0,7106 0,7111 0,7112 0,7112
4 0,7084 0,7029 0,7216 0,7217 0,7218 0,7216 0,7214 0,7217
5 0,7338 0,6940 0,7119 0,7315 0,7289 0,7334 0,7332 0,7350
2 0,7178 0,7137 0,7204 0,7172 0,7172 0,7172 0,7172 0,7178
Image 8 3 0,7186 0,6762 0,7155 0,7203 0,7159 0,7198 0,7203 0,7203
4 0,7129 0,7275 0,7255 0,7255 0,7226 0,7246 0,7255 0,7255
5 0,7294 0,7283 0,7288 0,7288 0,7239 0,7283 0,7294 0,7293
2 0,7123 0,7105 0,7108 0,7123 0,7119 0,7123 0,7123 0,7123
Image 9 3 0,7154 0,7115 0,7193 0,7144 0,7153 0,7153 0,7147 0,7153
4 0,7449 0,7361 0,7215 0,7214 0,7205 0,7215 0,7212 0,7215
5 0,7285 0,7240 0,7139 0,7281 0,7281 0,7285 0,7278 0,7279
2 0,7354 0,7121 0,7598 0,7268 0,7269 0,7125 0,7269 0,7268
Image 10 3 0,7536 0,7115 0,7386 0,7463 0,7463 0,7463 0,7435 0,7463
4 0,8102 0,7674 0,7536 0,7451 0,7302 0,7536 0,7574 0,7485
5 0,7723 0,7669 0,7735 0,7720 0,7338 0,7663 0,7532 0,7663

(a) functions’ landscape, (b) trajectory in the 1! dimension,
and (c) convergence curve of the global best particle for each
function are given in Figure 5.

Figure 6 represents the convergence curves of 2 uni-
modal (Sphere-F3 and Rosenbrock-F16) and 3 multimodal
(Griewank-F41, Ackley-F42, and Rastrigin-F22) functions
for all algorithms (AOA, WOA, GWO, MVO, MFO, TLBO,
PSO and the improved PSO), comparatively.

The dimension and the number of the iterations are set as
30 and 1000, respectively. As seen in Figure 7, the improved
PSO algorithm achieved the fastest convergence for these
unimodal and multimodal functions.

2) QUANTITATIVE ANALYSIS
The statistical analysis is presented in Tables 12-15. The
results are provided with 20 independent runs for each test
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function. According to the average values obtained after
20 runs, the proposed method succeeded in 60% of the
applied test functions. However, PSO 18%, AOA 20%, GWO
30%, MFO 26%, WOA 24%, MVO 18%, and TLBO 48%
were more successful than the other methods. According to
the minimum values obtained after 20 runs, the proposed
method was successful in 62% and PSO 18%, OA 20%, GWO
30%, MFO 26%, WOA 24%, MVO 18% and TLBO 48%
of the 50 benchmark functions. According to the maximum
values, the improved PSO method was successful in 42% of
the applied test functions. However, PSO 20%, AOA 26%,
GWO 26%, MFO 26%, WOA 16%, MVO 18%, and TLBO
56% were more successful than other methods. According
to the standard deviation values, the proposed method was
successful in 46% and PSO 18%, AOA 20%, GWO 14%,
MFO 18%, WOA 12%, MVO 4% and TLBO 48% of the
50 benchmark functions.
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TABLE 7. PSNR-based average values.

I;‘:‘s;e nTh IPSO PSO AOA GWO MFO WOA MVO TLBO
2 14,0204 10,7312 10,1710 10,7312 10,3919 10,7312 10,7312 10,7312
Image 1 3 15,4191 13,2447 13,9163 13,2447 13,1516 13,2447 13,3381 13,2447
4 15,0235 13,6785 15,9447 13,7822 13,5794 13,7907 13,6785 12,9248
5 15,3961 17,0728 13,8291 14,0632 12,0926 14,6875 13,8271 13,9528
2 13,1088 8,7163 12,5948 12,4469 8,7163 12,4469 12,4469 12,4469
Image 2 3 20,6931 14,1940 19,7124 14,1957 14,8580 14,1967 14,1940 14,1940
4 18,3574 16,6771 20,4183 15,6782 12,2015 16,4712 16,4712 13,4717
5 22,0453 20,5861 16,3204 15,3399 10,4179 16,1155 16,7431 15,5273
2 15,2375 15,0386 13,7220 15,0386 13,0353 14,9759 15,0386 15,0386
3 13,9926 19,2385 10,2507 19,2389 16,5466 19,2139 19,2384 16,7512
Image 3 4 18,7880 20,0247 8,0390 20,0115 16,5884 21,3932 20,9133 19,7180
5 23,8915 20,4459 22,0435 21,3776 17,7390 22,0435 21,3925 20,1416
2 10,4051 8,8176 11,0498 8,8176 10,0307 9,2095 8,8176 7,8615
Image 4 3 15,6960 10,5661 13,1799 10,6619 9,6582 10,6619 10,6619 10,6619
4 14,5063 10,8206 16,6157 10,4321 9,3507 10,8206 10,8206 10,5285
5 19,2812 19,1116 10,5528 10,7471 11,4699 10,5499 9,8970 10,3695
2 12,4688 10,6291 9,5888 10,6291 11,4505 10,7330 10,6291 10,6291
mage 5 3 9,6490 16,5229 15,0733 16,4904 16,3352 16,5229 16,5229 16,5229
4 17,4187 16,5955 13,5351 15,2231 14,0129 15,5591 16,5962 15,3934
5 18,2747 18,6564 15,9758 15,2558 15,4428 15,9710 16,1473 15,2733
2 11,2975 10,8821 10,0799 10,8821 10,8821 10,8821 10,8821 10,8821
Image 6 3 13,5471 13,4035 14,9966 13,4035 12,6151 13,4035 13,4035 13,4035
4 15,8567 13,7892 13,6969 13,7829 14,6616 13,7892 13,7933 14,2841
5 16,4859 17,9054 14,0293 14,0223 14,0273 14,1594 13,9016 13,9035
2 12,0777 9,2195 13,9620 9,2195 9,2195 9,2195 9,2195 9,2195
3 15,4404 11,5266 16,7819 11,5266 11,1048 11,5282 11,5266 11,5266
Image 7 4 18,5956 12,2068 16,9321 12,0886 12,2071 12,2068 11,7458 12,0886
5 19,4828 19,1316 12,0277 11,1292 10,0258 11,9103 11,7943 12,5118
2 16,5345 12,2607 17,2722 12,2607 12,2607 12,2607 12,9369 12,9369
Image 8 3 17,4534 16,4543 11,8762 17,9911 13,4576 17,9860 17,9911 17,9911
4 17,3710 18,4014 15,6717 18,4001 15,3465 18,3824 18,4014 18,4014
5 19,3693 22,9668 18,4769 18,4724 17,4796 18,4655 18,4779 18,4752
2 13,0235 11,1657 10,7426 11,1657 9,8760 11,1657 11,1657 11,1657
Image 9 3 16,8327 13,9854 17,7054 13,7233 12,2324 13,9854 13,7206 13,9854
4 19,0988 14,9549 17,5957 14,8010 12,0856 14,9549 14,6498 14,9549
5 14,5579 14,0562 14,8996 14,4277 14,5823 14,8996 14,1255 14,5814
2 16,1799 14,9669 11,6502 14,9644 14,9669 16,0845 14,9644 14,9644
Image 10 3 16,1297 19,4953 7,4963 19,4953 19,9517 19,4953 19,4953 19,4953
4 21,1894 20,5022 13,2727 19,9723 18,1939 20,5023 20,2770 20,2770
5 21,7917 15,8427 20,9791 21,2171 17,8390 21,2253 20,9793 20,9793

3) SCALABILITY ANALYSIS

This section evaluates the proposed algorithm against other
algorithms with problems of different sizes. The experimental
results on 3 dimensions 10, 50, and 100 in terms of mean and
standard deviation are given in Tables 16-18 for 25 bench-
mark functions, respectively. Regarding the 10 dimensions,
the proposed method ranked first in 10 of the 25 functions
and second in 5 of the 25 functions, while in the standard
deviation values, it ranked first in 10 and second in 7 of the
functions. In 50 dimensions, the proposed method ranked first
in 12 of the 25 functions and second in 5 of the 25 func-
tions, while in the standard deviation values, it ranked first
in 12 and second in 11 of the functions. Finally, regard-
ing the 100 dimensions, improved PSO achieved the best
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average and best standard deviation in 14 and 7 test functions,
respectively.

C. EXPERIMENTS ON SKIN CANCER IMAGES

To further illustrate the effectiveness of the proposed opti-
mization algorithm, multilevel thresholding was performed
using 10 skin cancer images obtained from the ISIC2017
dataset. We used Renyi’s entropy as the objective func-
tion, detailed in Section II-A. Segmented images obtained
by the proposed method are illustrated in Figure 8 with
varying thresholding levels [n = 2, 3, 4, and 5]. The
experimental results were compared with the state-of-the-
art methods: PSO, AOA, GWO, MFO, WOA, MVO, and
TLBO. The best thresholds acquired by the proposed

VOLUME 12, 2024



Y. Olmez et al.: IPSO With Visit Table and Multiple Direction Search Strategies

IEEE Access

GWO MFO

IPSO PSO AOA WOA MVO TLBO
IPSO PSO AOA GWO MFO WOA MVO TLBO
Mlevel 2| 0,7278 0,6802 0,6835 0,7134 0,7116 0,7254 0,7248 0,7259
Mlevel 3 0,7862 0,6649 0,6167 0,7856 0,7754 0,7858 0,7853 0,7858
Hlevel 4| 0,8125 0,7098 0,6336 0,8103 0,7958 0,8096 0,8114 0,8082
Mlevel 5 0,8285 0,7346 0,741 0,8237 0,8108 0,828 0,8264 0,8281

FIGURE 9. Average SSIM obtained for all skin cancer images.

i

MFO

IPSO PSO AOA GWO WOA MvO TLBO
IPSO PSO AOA GWO MFO WOA MVO TLBO
Mlevel 2| 0.7019 | 0.6986 | 0.7018 | 0.7010 | 0.7000 | 0.6996 | 0.7004 | 0.7010
Mlevel 3| 0.7112 | 0.6896 | 0.7018 | 0.7110 | 0.7108 | 0.7110 | 0.7109 | 0.7109
level 4| 0.7229 | 0.7190 | 0.7214 | 0.7204 | 0.7183 | 0.7209 | 0.7217 | 0.7211
Mlevel 5 0.7332 | 0.7271 | 0.7315 | 0.7322 | 0.7259 | 0.7324 | 0.7307 | 0.7323

FIGURE 10. Average FSIM obtained for all skin cancer images.

method and other metaheuristic methods are presented
in Tables 3 and 4.

The average values of SSIM, FSIM, and PSNR evaluation
metrics are represented in Tables 5, 6, and 7, respectively.
Higher SSIM, FSIM, and PSNR average values indicate more
accurate and efficient multilevel thresholding segmentation
methods. The average values of SSIM for 20 runs are given
in Table 5; a higher SSIM value represents a better segmen-
tation result. The improved PSO algorithm outperforms the
original PSO and AOA for nearly all threshold levels and
images. GWO has competitive results with the improved PSO
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method at only threshold level 2 for some images. MFO
gives better results at Test Images 6 and 7 for thresholds
levels 2 and 4 according to the proposed method. Improved
PSO has higher SSIM values at nearly all threshold levels in
the remaining images. WOA performed well on Test Image 9,
while the proposed method outperformed most of the remain-
ing test images. MVO and TLBO methods have competitive
results with the proposed method at threshold levels 2 and 3.

Table 6 presents the average FSIM values for each skin can-
cer image. The more efficient algorithm must have a higher
FSIM value. When the proposed method is compared with
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IPSO P

IPSO PSO AOA GWO
11.6156 11.0830 11.7709

14.9971
15.4172
Hlevel 5 19.0576 18.5776 15.9134 15.6052

Mlevel 2 13.4354 11.2428 12.0853
Mlevel 3 154853 14.8631 14.0989
level 4 17.6205 15.7651 15.1722

LU

TLBO

MFO WOA MVO TLBO
11.8762 11.5876

13.9911 15.0239 15.0040 14.7777
13.8228 15.7870 15.7799 15.2042
14.1116 16.0028 15.6539 15.5716

FIGURE 11. Average PSNR obtained for all skin cancer images.

the original PSO and AOA methods, the proposed method
has higher average FSIM values for nearly all images and
threshold levels. PSO has better results at threshold level 2 for
Test Images 1 and 2. GWO outperforms at threshold levels 3
for Test Images 1, 4, 6, and 7. MFO and MVO algorithms
also performed well at threshold levels 2 and 3 for some
test images. TLBO has competitive results with the improved
PSO method test images 3, 5, and 6. Table 6 represents the
average PSNR values for each image. It is seen that the pro-
posed method outperformed the other algorithms for nearly
all threshold levels at all images. Original PSO performed
well at threshold level 3 for Images 3, 5, and 10. AOA
performed well at threshold level 4 for Images 1 and 2. The
other algorithms have lower PSNR values than the proposed
method at all images and threshold levels, indicating a lower
segmentation performance.

The average SSIM values for all skin cancer images are
illustrated in Figure 9. The values are obtained by averaging
the SSIM index of 10 skin cancer images over 20 runs. It can
be noted from this figure that the improved PSO method
has higher SSIM values, which indicates better multilevel
segmentation performance. It is also seen that the value of
the SSIM evaluation metric increases, and the level of the
threshold increases. The proposed method achieves better
segmentation at threshold 2 with 0.7278, threshold 3 with
0.7862, threshold 4 with 0.8125, and threshold 5 with 0.8285.

The average values of FSIM are represented in Figure 10.
The values are obtained by averaging FSIM values of all skin
cancer images over 20 independent runs. The FSIM values
acquired by the proposed method are higher than the FSIM
values acquired by other compared algorithms at threshold
2 with 0.7019, at threshold 3 with 0.7112, at threshold 4 with
0.7229, and threshold 5 with 0.7332. The AOA and TLBO
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TABLE 8. Significant results of the proposed method.

No Significant Results

In the qualitative analysis, the proposed method
1 | achieved faster convergence than the other
metaheuristics.

The quantitative analysis produced more successful
results compared to other methods in 60% of the
applied 50 benchmark functions according to the
average values.

In the scalability analysis, the proposed method
ranked first in 10 of the 25 functions and second in 5
of the 25 functions in terms of minimum values for
10 dimensions, while it ranked first in 10 of the
functions and second in 7 in terms of standard
deviation values

The proposed optimization algorithm outperformed
4 | other algorithms for almost all threshold levels and
images.

In the applications of skin cancer image
segmentation, the best results were obtained with
0.8285 in SSIM index, 0.7332 in FSIM index, and
19.0576 in PSNR index using the proposed method
according to the average values of evaluation metrics
for all images.

also have higher FSIM values according to the remaining
algorithms.

Figure 11 represents the average PSNR values for all skin
cancer images. The values are acquired by averaging PSNR
values for all images over 20 independent runs. The best of
average PSNR values are obtained by the proposed method at
threshold level 2 with 13.4354, at threshold 3 with 15.4853,
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TABLE 9. Benchmark functions (F,-F,4).

No  Function Name Formula Fopt Type Range D
n
. Unimodal-
F, Stepint f(x) =25+ Z X; 0 Separable [-5.12,5.12] 5
=1
n
Unimodal-
— . 2 _
F,  Step Fx) = Z(|xl +0.5)) 0 Soparable [-100,100] 30
=1
n
Unimodal-
_ 32 -
F; Sphere flx) = Z(xl) 0 Separable [-100,100] 30
i=1
n
_ N2 Unimodal-
F, Sumsquares fx) = Z(in) 0 Separable [-10,10] 30
=1
D
i Unimodal
— % ? -
Fs Quartic fx) = Z ix; 0 Separable [-1.28,1.28] D
=1
Fs  Beale FGO) = (1.5 — 21 + x,%5)2 + (2.25 — x; + x,x,2)? 0 Unimodal, [-4.5.4.5] 5
6 : 1At ) 1Tt Nonseparable o
Unimodal,
F; Easom f(x) = —cos(x;)cos(x)e~*a—m* = -1 Nonseparable [-100,100] 2
Unimodal
— 2 2y _ 2 2 ’ -
Fs Matyas f(x) =0.26(x,* + x,*) — 0.48x,°x, 0 Nonseparable [-10,10] 2
fO) =1000x; —25)% + (0 — 1)* + (x, — 1)? ~
F»  Colville +90(x52 — x4)2 + 10.1((x, — 1)2 0 gg;?éf:rléble [-10,10] 4
—1)2
(- D) -
. Unimoda
— —1)2 . _ , N2 P2
Fo  Tridé Flx) = Z(xl 12 + Z XiXio 50 Nonseparable D7) 6
1;1 1;2 d |
. _ a2 . Unimodal, 22
Fu  Tridl0 f&x) = Z(xl 1% + Z XiXi1 210 Nonseparsble D] 10
n i=1 L n i=2 L n
_ 2, N2y (- N4 Unimodal, )
Fi,  Zakharov Fl) = Z X2+ ( ZZ ix)? + ( ZZ ix) 0 Nomseparaple 15101 D10
n/k i1 i=1 i=1
fx) = Z(x4'—3 + 10x45-2)* + 5(x4i-1 + 10x,)° i
+ 5(X4i-2 + 10x4;-1)* P
+ (x45-1 + 10x,)*
C - Unimodal
_ ) _ nimodal, i
Fu  Schwefel 2.22 Flx) = Z|xl| +1_[|x,| 0 Nomseparaple  F10:10] 30
=1 i=1
n n
Fis  Schwefel 1.2 Fx) = Z(Z x)? 0 Unimodal, [-100,100] 30
E ’ L J Nonseparable ’
< o Unimodal
nimodal,
Fis  Rosenbrock f) = Z(loo(xin —x)?+ (g — 1) Nonseparable [-30,30] 30
- N dal
o _ 12 2 N2 Unimodal, 3
F;;  Dixon—Price fx)=(x -1+ Z i(x;® —xi-1) 0 Nonseparable [-10,10] 30
i=2
1 o 1 - Multimodal [-65.536
ultimodal, -65.536,
Fis  Foxholes fl) = Iﬁ + ;]_—+ ST aij)é] 0 Separable 65.536] 2
£ 51 a3 e i10 (1 ! ) Multimodal [-510]  x
. X) = X, ——x 2 +—x — ——)cosx, , -5,
Fio Branin 472 N 176 81 0.998 Separable [0,15] 2
Fi  Bohachevskyl f(x) = x2 + 2x2 — 0.3 cos(3mx,) — 0.4 cos(4mx,) + 0.7 0.398 Ig’i‘l‘)gg;‘igal* [-100,100] 2
Multimodal,
F.,  Booth f(x) = x242x2—7)? 4+ (2x, + x, — 5)? 0 Separable [-10,10] 2
n
.. _ 2 Multimodal,
F,,  Rastrigin fx) = Z[xi 10cos(2mx;) + 10] 0 Separable [-5.12,5.12] 30
=1
n
_ . Multimodal,
Fos Schwefel fx)=- Z x;sin(y/|x]) 0 Separable [-500,500] 30
=1
n
. . _ ) (1 Multimodal,
Fa  Michalewicz2 flx) = Z sin(x;) (sin (T>) -12569 Separable [0,x] 2

i=1
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TABLE 10. Benchmark functions (Fy5-F44).

No  Function Name Formula Fopt Type Range D
n P2 .
. . _ e [ H 20 ) Multimodal,
F»s  Michalewicz5 fx) = Z sm(xl)(sm( - >) 1.8013 Separable [0,7] 5
i=1
n
. . _ ) TN Multimodal,
Fys  Michalewicz10 flx) = Zsm(xi)(sm( - )) -4.6877 Separable [0,m] 10
i=1
) 2 7) _ .
F,  Schaffer ) =085+ sin (\/xl + xZ) 0.5 -9.6602 Multimodal, [- 5
: (1+0.001(x2 + x2))? Non-Separable 100,100]
Six Hump Camel 1 Multimodal,
Fag Back f(x) = 4_x12 - 2-1xf + §x16 + X%, — 4X22 + 4X§ 0 Non-Separable [-5,5] 2
Multimodal [-
29,2 - >
F»  Bohachevsky?2 f(x) = x{ — 2x5 + 0.3 cos(3mx;) (4mx3) + 0.3 1.0316 Non-Separable 100.100] 2
Multimodal [-
= 2 9,2 )
F3»  Bohachevsky3 f(x) = xf — 2x% + 0.3 cos(3mx,) (4mx3) + 0.3 0 Non-Separable 100,100] 2
5 5
. , , . , . - Multimodal,
F3;  Shubert fx) = (z icos(i + 1)x; + l) + (Z icos(i + 1x, + l.) 186.730  Non-Separable [-10,10] 2
i=1 i=1
i FOO) =1+ (g + x5 + 12(19 — 14, + 3%} — 14, + 63,2, Multimodal, _
F;,  GoldStein—Price +3x2)] 3 Non-Separable [-2,2] 2
11 2
. _ x; (b7 + byx;) Multimodal,
F33 Kowalik f(x) = Z a; — m 0.00031 Non—Separable ['5,5] 4
i=
- Multimodal
- _ A (. — a )T 4 ]l >
Fi  Shekel5 f) = Zl(x‘ a)(xi — a)" + ¢l 10.1532  Non-Separable [0,10] 4
i=1
7
- Multimodal
=— —a)(x — a)T + |t )
Fs5  Shekel7 fl) = ZK"! a)(x; = a)’ + ¢l 104028 Non-Separable 010 4
i=1
10
- Multimodal
— _ S — . . — )T -1 >
Fsg  Shekell0 fl) = Zl(x‘ a)(x; = a)" + ¢l 10.5363  Non-Separable [0,10] 4
i=1
n n
_ -k Xi 7\ _ a2 Multimodal, :
Fy  Perm HOEDYOXCETICAIED 0 Non-Soparable D] 4
e N 1 dal
_ k)2 Multimodal,
F33  PowerSum fx) = Z((z X > by) 0 Non-Separable [0,D] 4
4 k=1 1—13 | 1
_ _ N2 } Multimodal,
F3  Hartman3 fx) = Zexp[ Z a;;(x; — pij)°’] 3.86 Non-Separable [0,1] 3
i=1 =1
B ' | |
_ _ e N2 Multimodal,
Fs  Hartman6 fx) = Zexp[ Zau(xl pij)?] -3.32 Non-Separable [0,1] 6
i=1 j=1
11 X e Multimodal
] X; ultimoda
Fs  Griewank fXx) = —Z x? — 1_[ cos (—L) +1 i [-600, D
4000 & i L Vi 0 Non-seperable 600]
1w 1%
f(x) = —20exp(—0.2 —Z x?) — exp(—z cos(2mx;) + 20 Multimodal, :
Fi  Ackley DLy DLy i 0 Nonseperable 35351 D
+e)
T
flx) = Z{lOSin2 (my;)
n-1
. 12 . ) Multimodal,
F4s  Penalized + Z(yl 12X [1+ 10sin?Gry; + 1)] 0 Non-seperable [-50,50] 30
= 30
+ (p — 1)21 + Z u(xj,10,100,4)
i=1
29
f(x) = 0.1{sin?(3mx,) + Z(xl- —1)?p [1 + sin?(3rxiyq)]
i=1 .
Fu  Penalized2 + ( — 1)?[1 + sin?(2mx50)]} 0 Multimodal, [-50,50] 30
30

+ Z u(xj, 5,100,4)
i=1

Non-seperable
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TABLE 11. Benchmark functions (F45-Fs).

No  Function Name Formula Fopt Type Range D
1 n n
. - Y N2 Multimodal,
Fis  Langerman2 fx) = cl(exp(ﬂZ(x, a;;)") x cos(m Z(x, a;)?)  1.08 Non-seperable  [+1¢] 2
Jj= j=
1 n n
. - 32 N2 Multimodal,
Fis  Langerman5 fx) = Cl(exp(nZ(x} aU) )xcos(nZ(x} a;;)?) 1.5 Non-seperable [0,10] 5
j=1 Jj=1
1 n n
. - Y N2 Multimodal,
F;;  Langermanl0 fx) = Cl(exp(nZ(x} aU) )xcos(nzl(x} a;;)?) - Non-seperable [0,10] 10
j= j=
n
A= Z(aijsinaj + b;jcosa;)
j=1
N Itimodal
_ . Mu :
Fss  FletcherPowell2 B; = Z(a,- jSinx; + b;jcosx;) 0 Non-seperable [-m,m] 2
=
fG) =) (4~ B
N i=1
A= Z(aijsinaj + b;jcosa;)
j=1
N Itimodal
_ . Multimodal,
Fs  FletcherPowell2 B; = Z(ai ;Sinx; + b;jcosx;) 0 Non-seperable [-7,7] 5
j=1 N
) =) (A - BY?
N i=1
A= Z(aijsinaj + b;jcosa;)
j=1
N Itimodal
. Multi N
Fsp  FletcherPowelll0 B; = Z(ai jSinx; + b;jcosx;) 0 Non-seperable [-7,m] 10

) =) (A= B?
i=1

at threshold 4 with 17.6305, and at threshold 5 with 19.0576.
The second average of PSNR values is obtained by AOA at
threshold 2 with 12.0833, WOA at threshold 3 and threshold
4 with 15.0239 and 15.7870, and PSO at threshold 5 with
18.5776.

IV. CONCLUSION AND FUTURE WORK
Skin cancer is the most common type of cancer. An early skin

cancer diagnosis can significantly reduce the mortality rate.
Image segmentation is the first and significant step of image
analysis. To develop the classification phase of skin cancer
detection, image segmentation plays a critical role by dividing
the image into meaningful regions.

Thresholding is one of the most simply established image
segmentation methods in the literature.

As the number of thresholds increases, the complexity
of the problem increases. To reduce computational times
by reducing the complexity of the multilevel threshold-
ing problem, metaheuristic methods are used. This study
proposes a particle swarm with a visit table strategy opti-
mization method to determine the best thresholds for skin
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image segmentation. An efficient and improved version of
the original PSO is proposed to solve a few drawbacks
of the PSO method. Firstly, the movement equations are
updated to avoid stacking into the local optimum. Secondly,
it is aimed to ensure that the particles go to places that are
not visited first and to discover different points with the
visit table strategy. To evaluate the proposed method, two
different datasets have been used. Firstly, it is applied to
benchmark problems and compared results with seven other
metaheuristic methods: AOA, GWO, MFO, WOA, MVO,
TLBO, and original PSO. The methods are compared in
terms of mean, standard deviation, minimum, and maximum
values.

In addition to quantitative and qualitative analysis of the
proposed method, the scalability analysis is also performed.

The experimental results confirmed that the IPSO opti-
mization method outperformed the original PSO and other
state-of-the-art methods at most of the benchmark func-
tions. Secondly, the proposed method is applied to multilevel
thresholding segmentation of skin cancer. The experimental
results of the segmentation show that the proposed method
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TABLE 12. Comparisons of optimization results for 50 test functions (F1-F6).

Fun. Index IPSO PSO AOA GWO MFO WOA MVO TLBO
Avg -5 -3.5333 8.6333 -5 -5 -5 -5 -5
FI Min -5.0000 -5.0000 3.0000 -5 -5 -5 -5 -5
Max -3.0000 6.0000 13.000 -5 -5 -5 -5 -5
std 0.5683 3.8032 2.9300 0 0 0 0 0
Avg 0 7.07e+03 0 0 5.00e+03 0 9.5000 0
" Min 0 37 0 0 0 0 3.0000 0
Max 0 20088 0 0 3.00et3 0 19.0000 0
std 0 7.49¢+03 0 0 7.76e+03 0 4.0322 0
Avg 3.1e-315 2.27e+03 3.81e-56 4.32e-50 3.33e+03 2.0e-128 0.4774 3.5e-190
3 Min 0 5.0114 1.1e-199 1.91e-52 7.63e-05 4.3e-150 0.2192 1.3e-194
Max 5.3e-314 1.20e+04 5.93e-55 2.30e-49 2.00e+04 5.1e-127 0.9875 4.9e-189
std 0 4.14e+03 1.45e-55 6.15e-50 6.60e+03 9.4e-128 0.1645 0
Avg 4.7e-316 2.05e+03 0 1.42e-50 823.3427 1.6e-132 0.4547 5.9e-191
Fa Min 0 88.8946 0 4.49e-53 1.38e-05 4.5e-148 0.0564 7.2e-198
Max 8.9e-315 4.70e+03 0 2.72e-49 3.10e+03 4.7e-131 1.6233 1.4e-189
std 0 1.24e+03 0 4.92e-50 882.6575 8.6e-132 0.3893 0
Avg 1.01e-04 131.0287 6.35e-05 0.0013 3.5495 0.0029 0.0274 5.07e-04
Fs Min 4.74e-06 77.1300 1.11e-06 2.75e-04 0.1251 6.82e-05 0.0150 2.04e-04
Max 3.03e-04 163.0616 1.87e-04 0.0025 19.1157 0.0223 0.0662 8.63e-04
std 8.27e-05 25.4226 5.81e-05 4.88e-04 4.9027 0.0051 0.0121 1.73e-04
Avg 3.88e-07 0 0.1832 7.51e-08 0.0254 0.0508 0.2032 0
F6 Min 3.26e-15 0 0.0000 4.99e-09 0 4.92e-15 0.0000 0
Max 5.02e-06 0 0.6775 4.69¢-07 0.7621 0.7621 0.7621 0
std 9.52e-07 0 0.2941 9.87e-08 0.1391 0.1933 0.3428 0

outperformed other algorithms in terms of SSIM, FSIM, and
PSNR indices.
The novelties of this study are;

> A visit table strategy and a multiple-direction search

strategy are integrated into the algorithm, which pre-
vents unnecessary searches of the PSO algorithm by
allowing the discovery of new points with fewer visits
to frequently visited points and the neighbors of these
points.

A multi-level thresholding method based on the pro-
posed PS-VTS optimization algorithm using Renyi’s
entropy and non-local means 2d-histogram is proposed.

The significant results of the study are given in Table 7. The
achievements and advantages of this study are also given as
follows:

> By improving the PSO method with multiple direction
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search and visit table strategies, significant superior-
ity is achieved over well-known metaheuristic methods
in a detailed analysis of the benchmark functions and
multi-level segmentation applications.

In the qualitative analysis performed on the benchmark
functions, the improved PSO algorithm achieved the
fastest convergence for unimodal and multimodal func-
tions compared to common metaheuristic methods such
as AOA, WOA, GWO, MVO, MFO, TLBO, and PSO
In the quantitative analysis performed on the benchmark
functions, the proposed optimization method has found
more successful results than the other methods accord-
ing to the average value of 60%, minimum value of

62%, maximum value of 42%, standard deviation value
of 46% of the applied 50 test functions.

The proposed method is also evaluated against other
algorithms with problems of different sizes. In the
scalability analysis performed on the benchmark func-
tions, regarding the 10 dimensions, the proposed method
ranked first in 10 and second in 5 of the 25 functions,
while in the standard deviation values, it ranked first
in 10 and second in 7 of the functions. In 50 dimen-
sions, the proposed method ranked first in 12 and
second in 5 of the 25 functions, while in the standard
deviation values, it ranked first in 12 and second in
11 of the functions. Finally, regarding the 100 dimen-
sions, improved PSO achieved the best average and
best standard deviation in 14 and 7 test functions,
respectively.

In the multilevel thresholding skin cancer image seg-
mentation, the proposed optimization algorithm outper-
forms the other algorithms for nearly all threshold levels
and images.

According to the average values of the evaluation met-
rics for all images, the best results in SSIM value of
0.8285, FSIM value of 0.7332, and PSNR value of
19.0576 are achieved by using the proposed method in
skin cancer image segmentation.

This study also provides a detailed analysis of
well-known metaheuristic approaches for multi-level
thresholding image segmentation applications and
benchmark problems with quantitative, qualitative, and
scalability analysis.
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TABLE 13. Comparisons of optimization results for 50 test functions (F7-F21).

Fun. Index IPSO PSO AOA GWO MFO WOA MVO TLBO
Avg -1.0000 -1 -0.1667 -1.0000 -1 -0.9667 -0.9000 -1
7 Min -1.0000 -1 -1.0000 -1.0000 -1 -1.0000 -1.0000 -1
Max -1.0000 -1 -0.0001 -1.0000 -1 0 0 -1
std 1.54e-14 0 0.3790 0.0000 0 0.1826 0.3051 0
Avg 2.2e-319 8.03e-89 0 7.2e-160 1.1e-32 0 1.1e-08 5.5e-271
F8 Min 0 1.3e-103 0 3.3e-184 4.3e-75 0 1.61e-10 1.8e-289
Max 5.5e-318 2.40e-87 0 2.1e-158 3.3e-31 9.8e-324 7.6e-08 1.6e-269
std 0 4.38e-88 0 3.9e-159 6.06e-32 0 1.58e-08 0
Avg 0.0643 1.1500 0.4688 2.4916 1.7948 1.5874 0.0123 5.04e-09
F9 Min 2.15e-09 1.31e-04 0.0107 0.0001 7.68e-04 0.0083 5.94e-05 9.03e-13
Max 0.5465 7.8700 3.9235 7.1185 7.8603 8.2480 0.1068 3.87e-08
std 0.1361 1.9765 0.7203 2.5150 2.3214 2.5747 0.0215 1.06e-08
Avg -49.8296 -44.4000 18.1345 -49.9999 -50.0000 -49.9996 -49.9999 -50.0000
F10 Min -50.0000 -50.0000 13.9631 -50.0000 -50.0000 -50.0000 -50.0000 -50.0000
Max -48.7582 118.0000 20.6252 -49.9997 -50.0000 -49.9971 -49.9994 -50.0000
std 0.3104 30.6725 1.3642 0.0001 4.55e-12 0.0006 1.13e-04 2.08e-13
Avg -140.402 -34.0448 6.5312 -164.122 90.5697 -209.839 -209.944 -209.953
Fl1 Min -197.878 -210.000 -0.5679 -209.997 -209.998 -209.992 -209.998 -210.000
Max -75.4329 1.98e+03 12.6303 -45.0243 3.53e+03 -209.375 -209.567 -209.793
std 35.2272 508.1316 3.0399 55.9518 810.2896 0.1548 0.1007 0.0444
Avg 1.2e-314 5.6002 52.9450 7.68e-55 16.5318 2.9781 2.91e-04 4.9e-110
2 Min 0 3.58e-20 32.1837 9.87e-63 1.47e-14 0.0002 6.76e-05 2.5e-116
Max 3.7e-313 42.8892 75.6941 2.23e-53 80.2102 16.8227 7.53e-04 1.2e-108
std 0 12.4044 9.5404 4.06e-54 19.7914 4.3690 1.89¢-04 2.2e-109
Avg 1.0e-311 549.5404 0.0244 4.11e-06 687.1879 6.62e-06 0.5944 3.24e-07
F13 Min 0 8.0892 2.84e-83 5.29e-08 0.0145 1.33e-30 0.1513 1.59e-13
Max 2.0e-310 5.36e+03 0.6684 2.72e-05 3.78e+03 3.90e-05 1.4422 6.00e-06
std 0 1.15e+03 0.1218 5.89e-06 1.02e+03 1.07e-05 0.3271 1.10e-06
Avg 1.5e-156 25.1983 0 1.55e-29 33.0007 5.39¢-94 0.6146 7.95e-96
Fla Min 1.1e-175 6.8600 0 2.64e-30 4.31e-04 3.7e-108 0.2394 1.10e-97
Max 4.6e-155 45.1777 0 5.80e-29 110.0000 1.38e-92 1.3122 7.58e-95
std 8.5e-156 11.2633 0 1.44e-29 25.0718 2.54e-93 0.2457 1.51e-95
Avg 2.6e-319 2.03e+04 0.0031 1.69e-09 1.79¢+04 2.99¢+04 88.8993 5.36e-44
F15 Min 0 4.45e+03 0.0000 1.30e-16 1.47e+03 4.64e+03 36.8332 2.95e-51
Max 6.6e-318 4.07e+04 0.0199 3.52e-08 4.17e+04 5.57e+04 165.7206 1.47e-42
std 0 8.56e+03 0.0057 6.82e-09 1.15e+04 1.14e+04 37.7064 2.68e-43
Avg 28.7223 1.55e+06 28.3168 26.9678 2.68e+06 27.7933 206.5566 25.5933
Fl6 Min 28.6993 1.73e+04 27.2311 25.3052 11.7659 26.7619 29.6640 24.7906
Max 28.7661 5.45e+06 28.8167 28.7650 8.00e+07 28.7783 1.61e+03 26.1739
std 0.0147 1.61e+06 0.3814 0.8987 1.46e+07 0.6644 335.3382 0.3127
Avg 0.9665 1.05e+04 0.6667 0.6667 4.93e+04 0.6668 3.0067 0.6667
F17 Min 0.8550 253.0600 0.6667 0.6667 0.0423 0.6667 0.7225 0.6667
Max 0.9923 8.86e+04 0.6667 0.6667 3.91et05 0.6670 17.4054 0.6667
std 0.0330 1.73e+04 0.0000 1.23e-06 9.17e+04 1.11e-04 4.0463 4.32e-12
Avg 2.0496 3.1665 7.6813 5.1662 4.2444 2.9997 0.9980 0.9980
F18 Min 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980
Max 12.6705 9.8039 12.6705 12.6705 20.1535 10.7632 0.9980 0.9980
std 3.1209 2.5963 4.8188 4.8147 5.1031 2.7911 1.09e-11 0
Avg 0.3981 0.4494 0.4011 0.3979 0.3979 0.3979 0.3979 0.3979
F19 Min 0.3979 0.3979 0.3980 0.3979 0.3979 0.3979 0.3979 0.3979
Max 0.3989 1.9431 0.4085 0.3979 0.3979 0.3979 0.3979 0.3979
std 2.51e-04 0.2821 0.0027 8.87e-07 0 3.87e-06 2.98e-07 0
Avg 0 0 0 0 0 0 1.93e-04 0
F20 Min 0 0 0 0 0 0 1.06e-05 0
Max 0 0 0 0 0 0 5.97e-04 0
std 0 0 0 0 0 0 1.45e-04 0
Avg 1.07e-14 0 4.73e-07 2.63e-07 0 5.49e-04 2.68e-07 0
1 Min 2.52e-27 0 1.87e-08 7.26e-11 0 1.08e-05 2.08e-09 0
Max 2.47e-13 0 1.93e-06 1.13e-06 0 0.0017 1.04e-06 0
std 4.54e-14 0 4.93e-07 2.87e-07 0 5.02e-04 2.44e-07 0
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TABLE 14. Comparisons of optimization results for 50 test functions (F22-F36).

Fun. Index IPSO PSO AOA GWO MFO WOA MVO TLBO
Avg 0 171.5601 0 0.6800 180.4420 1.89e-15 118.677 14.1645
) Min 0 103.9156 0 0 98.5005 0 63.9350 1.5721
Max 0 283.1658 0 8.8993 259.8960 5.68e-14 210.228 33.0903
std 0 43.6998 0 1.9056 35.6430 1.03e-14 37.9570 6.2158
Avg -4.4e+03 -6.9¢+03 -6707.6 -5.9¢+03 -8.3e+03 -1.0e+04 -7.9e+03 -7.7¢+03
23 Min -5.2et03 -9.4e+03 -8202.2 -7.8e+03 -9.7e+03 -1.2et04 -9.3e+03 -8.7e+03
Max -3.8¢+03 -5.0e+03 -5898.7 -3.2e+03 -6.4e+03 -6.5¢+03 -6.7e+03 -6.6e+03
std 365.4246 1.12e+03 447.2 882.6682 843.1291 1.91e+03 671.893 538.4442
Avg -1.8013 -1.8013 -1.7945 -1.7746 -1.8013 -1.8013 -1.8013 -1.8013
4 Min -1.8013 -1.8013 -1.8007 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013
Max -1.8013 -1.8013 -1.7724 -1.0000 -1.8013 -1.8013 -1.8013 -1.8013
std 6.23e-09 9.19e-16 0.0062 0.1463 9.03e-16 1.17e-06 2.28e-07 9.03e-16
Avg -4.2681 -4.1985 -3.2513 -4.1501 -4.2334 -3.5471 -3.9627 -4.5370
F25 Min -4.6877 -4.6877 -3.8107 -4.6876 -4.6877 -4.4949 -4.6459 -4.6877
Max -3.8731 -2.7773 -2.6082 -2.8446 -3.3749 -2.2982 -3.2902 -3.8446
std 0.1489 0.4875 0.2774 0.5130 0.3974 0.6365 0.44950 0.1509
Avg -6.0300 -7.5340 -4.5775 -7.5681 -7.7196 -5.7288 -6.9424 -8.9293
26 Min -7.0597 -9.1715 -5.7824 -9.2981 -9.3834 -7.8537 -8.3165 -9.6135
Max -5.3617 -4.0719 -3.7992 -5.8670 -3.9069 -3.5932 -5.1014 -7.2023
std 0.4033 1.0869 0.4405 0.8355 1.1696 0.8569 0.92480 0.4817
Avg 0 0 0 0 0.0007 0 1.41e-08 0
27 Min 0 0 0 0 0 0 3.98e-10 0
Max 0 0 0 0 0.0094 0 5.38e-08 0
std 0 0 0 0 0.0020 0 1.47¢-08 0
Avg -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
F28 Min -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
Max -1.0315 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316
std 1.50e-05 6.25e-16 1.04e-07 9.17e-09 6.77e-16 3.75e-10 1.51e-07 6.71e-16
Avg 0 0 0 0 0 0 2.03e-04 0
F29 Min 0 0 0 0 0 0 7.36e-06 0
Max 0 0 0 0 0 0 5.86e-04 0
std 0 0 0 0 0 0 1.82e-04 0
Avg 0 0 0 0 0 7.06e-16 6.39¢-05 0
F30 Min 0 0 0 0 0 0 5.01e-07 0
Max 0 0 0 0 0 5.16e-15 2.91e-04 0
std 0 0 0 0 0 1.11e-15 6.98e-05 0
Avg -186.730 -186.730 -148.411 -186.713 -186.730 -186.730 -186.730 -186.730
1 Min -186.730 -186.730 -186.730 -186.730 -186.730 -186.730 -186.730 -186.730
Max -186.265 -186.730 -64.4039 -186.509 -186.730 -186.725 -186.729 -186.730
std 0.1161 9.20e-14 43.9930 0.0564 3.42¢-14 0.0012 2.88e-04 5.70e-14
Avg 3.0000 8.4000 6.1828 5.7000 3.0000 3.0000 5.7000 3.0000
F32 Min 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
Max 3.0000 84.0000 52.3316 84.0000 3.0000 3.0006 84.000 3.0000
std 3.92e-12 20.5504 10.2223 14.7885 1.97e-15 0.0001 14.788 5.53e-16
Avg 3.25¢-04 0.0032 0.0108 0.0044 0.0029 0.0007 0.0078 3.24e-04
33 Min 3.07e-04 0.0003 0.0003 0.0003 0.0006 0.0003 0.0003 3.07¢-04
Max 5.11e-04 0.0204 0.0983 0.0204 0.0204 0.0030 0.0204 8.11e-04
std 4.13e-05 0.0060 0.0223 0.0081 0.0051 0.0006 0.0094 9.19¢-05
Avg -10.1092 -5.8020 -4.8968 -8.9014 -5.2979 -8.8752 -7.7191 -9.5343
F34 Min -10.1532 -10.1532 -8.6498 -10.1531 -10.1532 -10.1531 -10.153 -10.1532
Max -9.9756 -2.6305 -3.0341 -3.0653 -2.6305 -2.6299 -2.6305 -2.6305
std 0.0518 3.0765 1.3241 2.3326 2.9285 2.6183 3.12960 1.7678
Avg -10.2468 -6.4679 -5.4107 -10.4023 -6.8348 -7.9980 -8.0523 -9.6712
F35 Min -10.4029 -10.4029 -8.4493 -10.4029 -10.4029 -10.5358 -10.402 -10.4029
Max -9.5082 -1.8376 -3.4310 -10.4013 -2.7519 -1.6738 -2.7519 -4.3973
std 0.2387 3.6121 1.4997 0.0004 3.4617 3.0047 3.00050 1.9007
Avg -10.5359 -5.5773 -5.3862 -10.5359 -7.8874 -7.5377 -8.5822 -10.3216
36 Min -10.5364 -10.5364 -8.0426 -10.5363 -10.5364 -10.5356 -10.536 -10.5364
Max -8.2170 -1.8595 -2.3074 -10.5352 -2.4217 -2.4262 -2.4273 -4.0925
std 0.6867 3.6336 1.2916 0.002 3.3614 3.3260 3.11650 1.1765

Future studies can be expanded in two directions: the first investigate the effectiveness of different objective functions
one is aimed at further improving the segmentation effective- (fuzzy transforms, energy curve, Kapur’s entropy, Tasal-
ness of skin cancer images. In this context, it is aimed to lis entropy, minimum cross-entropy), to find the threshold
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TABLE 15. Comparisons of optimization results for 50 test functions (F37-F50).

Fun. Index IPSO PSO AOA GWO MFO WOA MVO TLBO
Avg 3.1350 30.1130 75.7100 2.0926 0.2935 12.2489 0.0941 0.0251
F37 Min 0.4450 0.0014 1.9080 0.0028 1.31e-04 0.0746 1.89¢-04 1.47e-05
Max 8.2511 895.5317 511.1259 11.2273 2.4321 221.4849 0.4729 0.4537
std 2.0273 163.4523 128.7612 2.4556 0.6018 40.2212 0.1594 0.0831
Avg 0.0352 0.0153 0.1602 0.3336 0.0734 4.1071 0.0010 0.0003
F38 Min 0.0033 0.0002 0.0068 2.26e-04 1.05e-05 0.0391 3.19e-05 1.15e-07
Max 0.1206 0.0878 0.6145 0.8864 0.8875 21.1317 0.0045 0.0029
std 0.0286 0.0226 0.1426 0.3793 0.2218 5.6754 0.0013 0.0005
Avg -3.8628 -3.8628 -3.8552 -3.8613 -3.8628 -3.8565 -3.8628 -3.8628
F39 Min -3.8628 -3.8628 -3.8621 -3.8628 -3.8628 -3.8628 -3.8628 -3.8628
Max -3.8628 -3.8628 -3.8491 -3.8549 -3.8628 -3.8171 -3.8628 -3.8628
std 3.16e-08 2.62e-15 0.0027 0.0026 2.71e-15 0.0104 8.11e-07 2.69e-15
Avg -3.3094 -3.1812 -3.1406 -3.2592 -3.2194 -3.2359 -3.2619 -3.3092
F40 Min -3.3220 -3.3220 -3.2476 -3.3220 -3.3220 -3.3219 -3.3220 -3.3220
Max -3.2550 -1.7061 -3.0079 -3.0784 -3.1345 -2.8397 -3.1998 -3.2031
std 0.0183 0.2884 0.0540 0.0832 0.0624 0.1208 0.0611 0.0340
Avg 0 30.3606 0.1572 0.0055 21.0908 0.0065 0.7050 0
Fa1 Min 0 3.3841 0.0167 0 0.0001 0 0.5337 0
Max 0 134.2443 0.3711 0.0361 180.0915 0.1103 0.8772 0
std 0 35.8234 0.0973 0.0106 45.3859 0.0250 0.0940 0
Avg 8.88e-16 13.5760 8.88e-16 2.10e-14 16.9355 3.84e-15 1.5304 6.21e-15
F40 Min 8.88e-16 8.4883 8.88e-16 1.50e-14 2.2201 8.88e-16 0.2018 4.44e-15
Max 8.88e-16 20.6453 8.88e-16 2.93e-14 19.9627 7.99e-15 3.4260 7.99e-15
std 0 3.3273 0 3.88e-15 5.4583 2.30e-15 0.7873 1.80e-15
Avg 0.0349 3.16e+05 0.4712 0.0563 3.43e+03 0.0323 1.8216 0.0104
F43 Min 0.0110 12.1928 0.3896 0.0202 6.40e-04 0.0032 0.0401 7.58e-11
Max 0.1719 4.12e+06 0.5734 0.1118 1.03e+05 0.4687 5.1553 0.1037
std 0.0333 8.64e+05 0.0472 0.0229 1.88e+04 0.0830 1.1358 0.0316
Avg 0.3807 8.51e+04 2.8030 0.6971 43.0455 0.5046 0.1175 0.0792
Fa4 Min 0.1624 58.2666 2.6257 0.2222 0.0320 0.0872 0.0418 5.05e-08
Max 1.3960 9.39¢+05 2.9619 1.1336 530.3682 1.4896 0.2949 0.2932
std 0.2638 2.10e+05 0.0836 0.2487 110.7600 0.3087 0.0591 0.0744
Avg -1.0809 -1.0759 -1.0790 -1.0809 -1.0734 -1.0764 -1.0809 -1.0809
F45 Min -1.0809 -1.0809 -1.0809 -1.0809 -1.0809 -1.0809 -1.0809 -1.0809
Max -1.0809 -1.0053 -1.0738 -1.0809 -1.0053 -0.9456 -1.0809 -1.0809
std 1.32e-06 0.0192 0.0019 2.27e-07 0.0231 0.0247 3.73e-07 4.51e-16
Avg -1.3996 -0.8585 -0.9043 -1.0598 -0.8202 -0.6155 -1.2173 -1.1506
F46 Min -1.5000 -1.5000 -1.3465 -1.5000 -1.5000 -0.9175 -1.5000 -1.5000
Max -1.0119 -0.2233 -0.5276 -0.5056 -0.4502 -0.1352 -0.9080 -0.4829
std 0.1390 0.3677 0.2032 0.3181 0.3430 0.1873 0.2878 0.3810
Avg -0.5679 -0.2951 -0.2909 -0.4483 -0.3699 -0.1808 -0.5258 -0.4100
F47 Min -0.7977 -0.7977 -0.5352 -0.7977 -0.7977 -0.4829 -0.8760 -0.7977
Max -0.2447 -0.0215 -0.0800 -0.1455 -0.0199 -0.0279 -0.2749 -0.1181
std 0.2151 0.1732 0.1098 0.2312 0.2370 0.1262 0.1765 0.1882
Avg 0.0051 23.5098 3.13e-05 23.5187 0 2.09e-07 90.3130 0
F48 Min 5.47e-06 0 1.31e-07 3.05e-05 0 7.85e-11 5.18e-07 0
Max 0.0189 705.2950 1.87e-04 705.2950 0 1.30e-06 1.29¢+03 0
std 0.0053 128.7687 3.61e-05 128.7670 0 3.85e-07 289.8909 0
Avg 31.3898 939.7024 8.13e+03 188.1204 220.2955 375.8342 374.3277 33.6348
F49 Min 4.59¢-04 9.4437 0.0172 0.0708 5.65e-26 0.4913 0.0017 2.0le-28
Max 130.8601 3.55¢+03 4.38e+04 1.50e+03 2.07e+03 2.28e+03 3.60e+03 185.9625
std 34.7920 1.26e+03 1.02e+04 277.8448 453.8911 706.5158 823.0286 69.7259
Avg 1.06e+04 1.23e+04 1.31e+05 4.78e+03 4.51e+03 1.33e+04 2.96e+03 2.09e+03
F50 Min 555.7501 9.4277 3.22e+04 108.1057 196.4413 300.4677 1.8504 0.1457
Max 2.41e+04 7.85e+04 2.17e+05 2.96e+04 1.10e+04 4.47e+04 3.34e+04 1.47e+04
std 6.53e+03 2.21e+04 4.66e+04 6.64¢+03 3.51e+03 1.38e+04 6.59¢+03 3.21e+03

number adaptively based on the image by using these objec-
tive functions [12], and to perform color image segmentation

based on various histograms.
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Secondly, the logic of preventing unnecessary searches by
creating a memory matrix with the visit table strategy will be
used to eliminate the deficiencies of various metaheuristics
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TABLE 16. The comparison results of all algorithms with Dim = 10 & 50 using 50 Benchmark functions (F1-F10).

Fun. Dim Index IPSO PSO AOA GWO MFO WOA MVO TLBO
D=10 Avg -2.3333 -5 8.3333 -4.6667 -5 -5 -5 -5
Std 0.6609 0 2.4960 1.2685 0 0 0 0
Fl D=50 Avg -2.5000 -5 9.5333 -4.8333 -5 -5 -5 -5
Std 0.5724 0 2.0965 0.9129 0 0 0 0
D=100 Avg -2.4000 -5 8.2000 -4.8333 -5 -5 -5 -5
Std 0.5632 0 2.8089 0.9129 0 0 0 0
D=10 Avg 0 9.7667 0 0 0 0.0333 0.7000 0
Std 0 19.6006 0 0 0 0.1826 0.8367 0
" D=50 Avg 0 1.72e+04 0 0 8.4470 0.0333 35.4333 0
Std 0 6.57e+03 0 0 6.7275 0.1826 12.4670 0
D=100 Avg 0 7.11e+04 0 0 4.53e+04 0.0333 256.8667 0
Std 0 1.12e+04 0 0 1.67e+04 0.1826 56.4524 0
D=10 Avg 1.3e-296  1.22e-07 0 1.01e-96 4.24e-28 0.0733 0.0061 0.5876
Std 0 6.72e-07 0 3.07e-96 1.08e-27 0.4008 0.0032 0
3 D=50 Avg 4.0e-280  1.57e+04 1.94e-04  3.75e-37 6.6944 7.8e-127 3.8839 7.7e-183
Std 0 6.46e+03 6.08e-04  8.64e-37 7.5064 3.0e-126 1.2619 0
D=100 Avg 1.1e-275  6.77e+04 0.0211 2.10e-25 3.69¢e+04 6.2e-125 63.9135 7.3e-176
Std 0 1.34e+04 0.0093 2.31e-25 1.44e+04 3.4e-124 10.8436 0
D=10 Avg 1.1e-290  3.3333 0 2.26e-99 1.28e-29 0.1385 7.11e-04 0.1751
Std 0 18.2574 0 8.05e-99 3.31e-29 0.7585 8.96e-04 0
4 D=50 Avg 2.9e-290  3.81e+03 0 6.34e-38 2.76e+03 2.3e-128 10.5261 3.7e-183
Std 0 1.43e+03 0 8.50e-38 2.38e+03 1.0e-127 9.1887 0
D=100 Avg 2.1e-289  3.21et04 5.4e-104  8.79¢-26 1.92e+04 1.9e-125 167.7989 1.3e-176
Std 0 6.79¢+03 2.9¢-103 1.02e-25 8.42¢+03 9.8e-125 64.5524 0
D=10 Avg 3.70e-04  0.0235 5.33e-04  5.20e-04 0.0135 0.0015 0.0026 0.3865
Std 3.56e-04  0.0173 6.00e-04  3.20e-04 0.0114 0.0021 0.0018 0.1854
Fs D=50 Avg 3.66e-04  19.9504 4.96e-04  0.0020 23.1602 0.0028 0.0875 6.37e-04
Std 3.60e-04  10.7591 5.08e-04  0.0012 22.6582 0.0025 0.0277 2.04e-04
D=100 Avg 3.89e-04  215.7756 4.83e-04  0.0039 228.8346 0.0030 0.4554 7.73e-04
Std 3.82¢-04  69.3645 3.91e-04  0.0013 161.9823 0.0032 0.1043 2.84e-04
D=10 Avg 4.77e-17  0.1524 0.2237 0.0762 2.78e-12 0.0762 0.2032 0
Std 2.45e-16  0.3100 0.3150 0.2325 1.21e-18 0.2325 0.3428 0
F6 D=50 Avg 2.26e-16  0.0254 0.0897 0.0762 4.09e-10 0.0254 0.0254 0
Std 9.22e-16  0.1391 0.2318 0.2325 2.24e-09 0.1391 0.1391 0
D=100 Avg 0.0508 0.0508 0.1423 0.0762 5.96e-19 0.1016 0.1778 0.0254
Std 0.1933 0.1933 0.3465 0.2325 2.63e-18 0.2635 0.3278 0.1391
D=10 Avg -1 -0.9667 -0.1667 -1 -1 -1 -0.7667 -1
Std 5.31e-13  0.1826 0.3790 2.98e-07 0 2.25e-05 0.4302 0
F7 D=50 Avg -1 -1 -0.0667 -1 -1 -1 -0.7667 -1
Std 7.60e-15 0 0.2537 3.36e-07 0 6.59¢-07 0.4302 0
D=100 Avg -1 -1 -0.1692 -1 -1 -1 -0.8666 -1
Std 1.46e-14 0 0.3781 3.16e-07 0 9.25e-07 0.3457 0
D=10 Avg 7.9e-299  1.93e-91 0 1.2e-165 1.85e-27 0 1.38e-08 0.3711
Std 0 7.66e-91 0 0 1.00e-26 0 1.55¢-08 0
F8 D=50 Avg 2.1e-286  9.33e-88 0 4.0e-156 9.17e-24 0 1.31e-08 3.8e-272
Std 0 5.09e-87 0 2.1e-155 4.60e-23 0 1.50e-08 0
D=100 Avg 1.6e-289  6.80e-89 0 2.1e-161 1.03e-31 0 1.21e-08 5.9e-271
Std 0 3.72e-88 0 1.0e-160 5.68e-31 0 1.37e-08 0
D=10 Avg 0.5163 0.6118 0.4107 1.7882 1.1481 1.1174 0.0288 2.28e-08
Std 0.8427 1.2964 0.2929 2.2618 1.6452 1.5756 0.0361 7.09¢-08
Fo D=50 Avg 0.6659 0.5901 0.5392 2.3383 1.4443 1.4550 0.2809 2.25e-09
Std 1.0807 1.4361 0.6075 2.5790 2.0132 2.3931 1.4325 1.02e-08
D=100 Avg 0.7388 0.6205 0.6441 1.5464 1.4387 1.9652 0.0945 7.11e-09
Std 1.1869 1.3116 0.9473 2.0716 2.0454 2.4146 0.3795 1.85e-08
D=10 Avg -34.7300  -50 -25.4844  -49.2987 -41.1000 -49.9997 -49.9999 -50.0000
Std 9.8948 1.78e-12 5.1730 3.8403 48.7473 3.25e-04 9.32e-05 2.56e-13
F10 D=50 Avg -30.7602  -44.4000 -26.4680  -49.9998 -50 -49.9997 -49.9998 -50.0000
Std 10.5854 30.6725 4.8359 8.88e-05 2.15e-11 3.53e-04 1.29¢-04 1.54e-13
D=100 Avg -32.7500  -35.4999 -27.4154  -49.9999 -43.6000 -49.9996  -49.9999 -50.0000
Std 9.5395 56.6920 3.4636 1.04e-04 35.0542 4.00e-04 1.25e-04 1.13e-13

and strengthen the methods. In addition, by performing
searches in all directions with a multiple-direction search
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strategy, the algorithms will be improved by increasing their
exploration abilities and eliminating their deficiencies.

VOLUME 12, 2024



Y. Olmez et al.: IPSO With Visit Table and Multiple Direction Search Strategies I EEEACC@SS

TABLE 17. The comparison results of all algorithms with Dim = 10 & 50 using 50 Benchmark functions (F11-F20).

Fun. Dim Index IPSO PSO AOA GWO MFO WOA MVO TLBO
D10 Avg -70.0894 131355 334225 -164.627  67.4598 -209.870 -209.9692 -209.952
Std 30.7333 742.3823 5.0589 55.1747 523.8394 0.1802 0.0311 0.0445
11 D50 Avg 747791 -155.3141 327910 -146.365  -209.7237 -209.856 -209.9577 -209.967
Std 33.5064  240.7727 5.3491 63.6424  0.3335 0.1384 0.0438 0.0423
D=100 Avg -67.5101  -184.3951 -36.7645  -177.739 130.3926 -209.816 -209.9611 -209.960
Std 25.6536  70.1154 9.2187 50.1468  592.3856 0.1675 0.0511 0.0468
D10 Avg 1.4e-296  13.1303 1.00e-06  3.55e-56  35.0192 4.3319 3.59¢-04 3.7e-109
Std 0 29.4169 5.48e-06 1.21e-55 38.2265 5.0470 2.55e-04 1.7e-108
2 D50 Avg 2.3e-288  8.6259 227e-07  9.95e-57  23.9583 7.3461 2.90e-04 1.0e-108
Std 0 20.8923 1.00e-06  3.20e-56 26.4745 13.6225 1.48¢-04 5.6e-108
D=100 Avg 5.6e-286  2.2053 1.81e-05  7.86e-57 20.8409 2.7743 3.29¢-04 2.9e-110
Std 0 5.5525 9.84e-05  2.73e-56  30.2921 4.0925 1.69e-04 1.2e-109
D=10 Avg 3.9e-290  558.2056 0.0013 3.29¢-06 988.3778 3.48¢-06 0.4527 2.11e-07
Std 0 984.8962 0.0064 2.83e-06 1.37e+03 1.29¢-05 0.2700 4.46e-07
13 D50 Avg 446287 393.0426 0.0414 3.49e-06 6943744 6.91e-06 0.4301 2.43e-07
Std 0 823.1159 0.1625 4.48e-06 1.00e+03 1.82e-05 0.1915 6.19¢-07
Dotoo  Ave 1.6e-294  513.0564 0.0034 3.16e-06  637.9918 4.29¢-06 0.4890 2.17e-07
Std 0 914.4187 0.0117 3.90e-06 8352626 1.25e-05 0.2542 5.20e-07
D=10 Avg 4.0e-146  0.4963 0 2.42e-56 2.3333 4.22e-97 0.0241 1.1e-114
Std 2.2e-145  1.9385 0 3.76e-56  4.3018 2.29¢-96 0.0078 2.0e-114
Fla D50 Avg 3.2e-146  73.9335 34e-259  2.34e-22  53.8982 4.90e-94 4.28e+04 1.89e-92
Std 1.7e-145  22.5755 0 2.53e-22 26.2740 2.63e-93 2.34e+05 3.32e-92
petoo Ave 9.5e-145  9.37e+09 8.05e-87  1.27e-15  181.9600 9.46e-94 2.59e+21 9.14e-90
Std 5.0e-144  5.13e+10 435¢-86  8.2le-16 452704 3.89¢-93 1.42¢+22 9.33e-90
D=10 Avg 1.9e-283  208.6702 1.2e-119  8.67e-43 888.8890 49.5760 0.0524 1.2e-101
Std 0 912.0898 6.6e-119  2.43e-42  2.04e+03 85.8743 0.0448 5.2e-101
Fls D=50 Avg 2.8¢-284  6.25¢+04 0.0748 0.0010 5.57e+04 1.84¢+05 3.18e+03 9.29¢-31
Std 0 1.79e+04 0.1255 0.0022 2.19e+04 3.65e+04 998.8557 4.35e-30
petoo | Ave 1.9¢-308  2.32e+05 0.7069 293191 2.21e+05 1.00e+06 5.47e+04 9.29e-21
Std 0 4.49¢+04 0.4713 35.1778 5.97e+04 2.08e+05 6.46e+03 4.43e-20
D=10 Avg 8.9242 3.15e+03 6.2812 6.7193 6.26e+03 6.7124 118.2874 3.2970
Std 0.0260 1.64e+04 0.2954 0.5445 2.27e+04 0.8250 340.9739 0.8030
F16 D=50 Avg 48.6082 1.43e+07 48.6746 47.1933 1.38e+07 47.8230 793.9512 46.2593
Std 0.0893 7.78e+06 0.2040 0.7775 3.67e+07 0.4831 826.3983 0.6146
petoo Ave 98.1460  1.26e+08 98.8237  97.9336  1.10e+08 97.9760 3.99¢+03 96.8729
Std 0.0369 4.23e+07 0.1542 0.5477 7.07e+07 0.4197 3.11e+03 0.8308
D10 Avg 0.8952 1.0442 0.6667 0.6667 20.0810 0.6526 0.6046 0.6667
Std 0.0552 3.0222 3.62e-09  8.56e-05  36.4546 0.1282 0.1955 6.33e-16
F17 D=50 Avg 0.9968 2.63e+05 0.6667 0.6667 1.65e+05 0.6667 18.9904 0.6667
Std 0.0021 1.91e+05 3.85¢-07  1.01e-05  2.78e+05 1.03e-04 18.3362 6.08e-09
betoo Ave 0.9978 2.65¢+06 0.6667 0.6667 3.15e+06 0.6669 166.1779 0.6667
Std 0.0009 8.02e+05 3.99-05  4.12e-05 2.16e+06 1.83e-04 83.2397 1.47e-09
b_1o Ave 5.1993 3.6791 9.7207 4.3958 3.1381 4.7492 0.9980 0.9980
Std 5.1203 3.6644 4.0575 3.9914 2.0978 4.3943 8.01e-12 0
FI8 D=50 Avg 5.9710 4.3872 7.3392 5.7226 3.5554 3.5744 0.9980 0.9980
Std 5.5107 4.4955 4.3072 4.7040 3.0977 4.0817 2.18e-11 0
petoo Ave 1.0989 4.6187 8.0198 4.0370 2.7974 3.1218 0.9980 0.9980
Std 0.3992 4.3601 4.7820 3.8813 3.1819 3.5626 1.15e-11 0
D10 Avg 0.3979 0.4494 0.4011 1.82¢-06 03979 0.3979 0.3979 0.3979
Std 3.9¢-05 0.2821 0.0028 0.3979 0 1.46e-05 2.46e-07 0
F19 D=50 Avg 0.3979 0.4494 0.4016 0.3979 0.3979 0.3979 0.3979 0.3979
Std 3.29e-05  0.2821 0.0024 1.10e-06 0 3.62e-06 1.46e-07 0
D=100 Avg 0.3979 0.3979 0.4018 0.3979 0.3979 0.3979 0.3979 0.3979
Std 2.17e-04 0 0.0037 1.41e-04 0 5.19e-06 3.35e-07 0
D10 Avg 0 0 0 0 0 0 2.21e-04 0
Std 0 0 0 0 0 0 1.74e-04 0
5 Avg 0 0 0 0 0 0 1.94¢-04 0
K20 D=50 Std 0 0 0 0 0 0 1.84e-04 0
D=100 Avg 0 0 0 0 0 0 2.13e-04 0
Std 0 0 0 0 0 0 1.73e-04 0
APPENDIX DECLARATIONS
See Tables 9—18. Conflict of interest None declared.
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TABLE 18. The comparison results of all algorithms with Dim=10&50 using 50 Benchmark functions (F21-F25).

Fun. Dim Index IPSO PSO AOA GWO MFO WOA MVO TLBO
D=10 Avg 1.85¢-08 0 4.90e-07  1.75e-07 0 4.20e-04 2.55e-07 0
Std 3.68¢-08 0 4.62¢-07  1.31e-07 0 8.02¢-04 1.99¢-07 0
1 D =50 Avg 1.31e-08 0 3.50e-07  2.06e-07 0 0.0008 3.07¢-07 0
Std 2.60e-08 0 3.47¢-07  1.78e-07 0 0.0010 3.37e-07 0
D=100 Avg 1.95e-08 0 3.99¢-07  1.68e-07 0 0.0010 3.14e-07 0
Std 3.52¢-08 0 4.10e-07  1.41e-07 0 0.0014 3.58¢-07 0
D=10 Avg 0 24.6983 0 0.1390 27.8374 1.0702 13.7340 2.8150
Std 0 12.2150 0 0.7615 14.2236 5.8615 5.7625 2.2358
2 D=50 Avg 0 375.1769 0 1.4881 337.1644 0 241.9643 19.1591
Std 0 66.6017 0 3.2193 63.3558 0 43.5466 22.3274
D=100 Avg 0 948.2253 0 1.4848 789.5306 3.78e-15 653.0561 5.5207
Std 0 103.6840 0 3.1858 58.4415 2.07e-14 65.9137 30.2383
D=10 Avg -2.5¢+03  -3.13e+03 -3.9¢t03  -2.67¢+03 -3.30e+03 -3.55¢+03 -2.92¢+03 -3.45¢+03
Std 158.2583  426.9692 147.8735  338.2298 333.8527 583.9779 325.5285 273.7657
3 D=50 Avg -5.8¢+03  -1.06e+04 -8.1et03  -8.73e+03 -1.33e+04 -1.74e+04 -1.25¢+04 -1.19¢+04
Std 413.0177  1.63e+03 -1.1et04  1.50e+03 1.77e+03 3.14e+03 928.4356 1.13e+03
D=100 Avg -8.1et03  -1.63e+04 593.0749  -1.58e+04 -2.28e+04 -3.68e+04 -2.38e+04 -2.01et04
Std 526.2818  2.99¢+03 696.1978  3.13e+03 2.24e+03 5.64e+03 1.52e+03 3.29¢+03
D=10 Avg -1.8013 -1.7746 -1.7935 -1.8013 -1.8013 -1.7479 -1.7746 -1.8013
Std 1.91e-08  0.1463 0.0079 1.66e-06 9.03¢-16 0.2033 0.1463 9.03e-16
4 D=50 Avg -1.8013 -1.7746 -1.7943 -1.7746 -1.8013 -1.7746 -1.8013 -1.8013
Std 2.72e-08  0.1463 0.0060 0.1463 9.03e-16 0.1463 3.49¢-07 9.03e-16
D=100 Avg -1.8013 -1.7817 -1.7958 -1.7746 -1.8013 -1.7479 -1.7746 -1.8013
Std 3.26e-08  0.1072 0.0039 0.1463 9.03¢-16 0.2033 0.1463 9.03e-16
D=10 Avg -3.6970 -4.3171 -3.3180 -4.3498 -4.4160 -3.4907 -3.9674 -4.5720
Std 0.2948 0.4314 0.3025 0.4685 0.2741 0.5416 0.6366 0.0774
25  D=50 Avg -3.6319 -4.2781 -3.3130 -4.2289 44114 -3.7487 -3.9331 -4.5849
Std 0.2258 0.3353 0.3120 0.5014 0.2605 0.6431 0.5849 0.0914
D=100 Avg -3.6354 -4.2311 -3.3863 -4.3154 -4.2564 -3.6108 -4.1058 -4.5543
Std 0.2047 0.4594 0.3419 0.4272 0.3828 0.5729 0.4528 0.1646
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