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Abstract: As part of the field of DNA methylation identification, this study tackles the challenge of
enhancing recognition performance by introducing a specialized deep learning framework called
DeepPGD. DNA methylation, a crucial biological modification, plays a vital role in gene expression
analyses, cellular differentiation, and the study of disease progression. However, accurately and effi-
ciently identifying DNA methylation sites remains a pivotal concern in the field of bioinformatics. The
issue addressed in this paper is the presence of methylation in DNA, which is a binary classification
problem. To address this, our research aimed to develop a deep learning algorithm capable of more
precisely identifying these sites. The DeepPGD framework combined a dual residual structure involv-
ing Temporal convolutional networks (TCNs) and bidirectional long short-term memory (BiLSTM)
networks to effectively extract intricate DNA structural and sequence features. Additionally, to meet
the practical requirements of DNA methylation identification, extensive experiments were conducted
across a variety of biological species. The experimental results highlighted DeepPGD’s exceptional
performance across multiple evaluation metrics, including accuracy, Matthews’ correlation coefficient
(MCC), and the area under the curve (AUC). In comparison to other algorithms in the same domain,
DeepPGD demonstrated superior classification and predictive capabilities across various biological
species datasets. This significant advancement in algorithmic prowess not only offers substantial
technical support, but also holds potential for research and practical implementation within the
DNA methylation identification domain. Moreover, the DeepPGD framework shows potential for
application in genomics research, biomedicine, and disease diagnostics, among other fields.

Keywords: RNA methylation; deep learning; gene expression

1. Introduction

In 1942, the concept of epigenetics was introduced for the first time, defined as the
heritable changes in gene expression without altering the DNA nucleotide sequence [1,2].
In the 1950s, MacLintock and Brink experimentally confirmed the validity of epigenetics
and were awarded the Nobel Prize in 1983.

With the advancement of life sciences, various epigenetic mechanisms have gradually
been discovered. Numerous epigenetic processes such as acetylation and the methylation
of proteins have been identified [3]. A systematic study of epigenetic mechanisms holds
crucial significance in deepening the understanding of mysterious biological phenomena
and their underlying mechanisms. Since the 1980s, countries worldwide have established
layouts and plans for epigenetics research. In 2003, the Human Epigenome Project was
launched with the aim of mapping the variable methylation sites of the human genome [4,5].
In 2006, researchers from China, Japan, South Korea, and Singapore convened the first Asian
Epigenome Alliance meeting, which has since become a vital platform for communication
and collaboration in the development of Asian epigenetic research. Hence, as researchers
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in the field of bioinformatics, it is imperative to focus on epigenetics research, explore
advanced technologies, and strive for productive outcomes in the realm of epigenetic
scientific investigation [6].

DNA methylation stands as a significant area of epigenetic study [7]. It has been
discovered that DNA methylation commonly occurs at the fifth carbon atom of cytosine
in the CpG dinucleotides of DNA sequences. The methyl group (-CH3) from S-adenosyl
methionine (SAM) is transferred by DNA methyltransferase (DNMT) to the fifth carbon
atom of cytosine, forming 5-methylcytosine [8]. Simultaneously, SAM becomes S-adenosyl
homocysteine (SAH) after demethylation. According to incomplete statistical data, there are
approximately 28 million CpG sites in the human genome, with the majority of them being
methylated, accounting for about 60–80% of the total count [9]. The remaining sites are
primarily found in the promoter and exon regions of genes, often defined as CpG islands
(CGIs) with GC contents exceeding 50% and lengths ranging from 500 to 1000 bp [10]. Pre-
vious research indicates that the impact of DNA methylation frequently results in adverse
effects on gene expression [11]. The mechanisms encompass the following aspects: 1. the
process of DNA sequence binding with transcription factors is influenced by DNA methy-
lation; 2. methylated CpG sites are likely to bind with CpG-binding proteins, resulting in a
heterochromatin structure under the influence of histone-modifying enzymes; 3. The inter-
action between histone modifiers and DNA methyltransferases promotes the formation of
fixed chromatin structures. DNA methylation demonstrates distinct characteristics in differ-
ent cells, a contrast that becomes pronounced between normal and cancer cells [12]. Studies
demonstrate that DNA methylation is implicated in the development of almost all cancers.
Furthermore, DNA methylation inhibits the deactivation of transposons, which can be
inserted into host DNA and lead to gene inactivation, ensuring the normal function of the
body [13,14]. Currently, the three extensively studied types of DNA methylation include
N6-Methyladenine (6 mA), 5-Hydroxymethylcytosine (5 hmC), and N4-Methylcytosine
(4 mC). Each type has distinct biological functions. N4-Methylcytosine (4 mC) plays diverse
roles in regulating DNA replication, distinguishing itself from DNA, maintaining the cell
cycle, correcting replication errors, and modulating gene expression. Importantly, 4 mC pro-
tects host DNA from degradation by restriction enzymes [15]. 5-Hydroxymethylcytosine
(5 hmC), a product of 5-Methylcytosine (5 mC) demethylation, is implicated in neural de-
velopment and tumorigenesis [16]. N6-Methyladenine (6 mA), a methylated base prevalent
in prokaryotes, is primarily involved in host defense mechanisms [17].

In conclusion, as a prevalent epigenetic phenomenon, DNA methylation plays a vital
role in maintaining the stability of genetic information concerning gene expression reg-
ulation, chromatin structural variations, and transposon inactivation. Consequently, the
establishment of efficient DNA methylation prediction methods not only advances biologi-
cal research, but also holds significant implications for disease diagnosis, classification, and
personalized treatment development [18,19].

Although detecting the DNA methylation status using experimental means can yield
more accurate predictive results, the high economic cost limits the advancement of DNA
methylation research to some extent [20]. The widespread use of computational models
supplements DNA methylation research. Predicting DNA methylation using machine
learning algorithms has become a focal point in the field of bioinformatics, offering a
convenient approach to exploring whole-genome DNA methylation patterns across mul-
ticellular and multitype tissues. Although many traditional machine learning methods
have been employed for DNA methylation prediction [21,22], these methods struggle
to effectively extract feature information, necessitating enhancements in the predictive
accuracy. For example, 4 mCPred [15] uses an SVM to predict 4 mC DNA methylation,
and MM-6 mAPred [17] employs the Markov algorithm to predict 6 mA DNA methyla-
tion. Compared with these traditional algorithms, the algorithm presented in this paper
could extract greater feature information such as multidimensional structural information.
Additionally, DeepPGD could autonomously learn feature representations from the input,
thereby reducing the reliance on manual feature engineering.Deep learning models can



Int. J. Mol. Sci. 2024, 25, 8146 3 of 15

automatically extract complex features from data without the need for manual feature
engineering. Additionally, these models can efficiently and accurately process and analyze
large volumes of data [18–20].

In this paper, the model incorporated a CNN block with an attention mechanism and
a BiLSTM block with an attention mechanism. The CNN block used convolutional kernels
of different sizes to increase the dimensionality of the structural feature extraction. The
BiLSTM block extracted sequential information, enhancing the diversity of the feature
extraction by the network. The DeepPGD model could effectively classify methylated
and nonmethylated DNA. This motivation propelled us to further investigate this topic
using deep learning technology. Residual network deep learning models exhibit robust
feature learning capabilities, effectively extracting highly complex and crucial nonlinear
features, thereby improving the model’s predictive performance for the DNA methylation
status. To enhance the accuracy of DNA methylation prediction, we applied our deep
learning model to a large methylation dataset and compared it with existing deep learning
prediction methods. The results indicated that our approach enhanced the accuracy of
DNA methylation prediction, thus exhibiting significant implications for the advancement
of deep learning technology research in DNA methylation prediction.

Predictive algorithms for DNA methylation may bring about a series of biological
implications. These include:

Understanding epigenetic regulatory mechanisms: DNA methylation is a crucial
epigenetic modification that plays a key role in gene expression and cell differentiation.
Predictive algorithms can help reveal patterns of DNA methylation across different cell
types and physiological states, thereby enhancing our understanding of epigenetic regula-
tory mechanisms.

Discovery of biomarkers: DNA methylation plays an important role in the onset
and progression of diseases such as cancer and neurodegenerative disorders. Predictive
algorithms can assist in the identification of DNA methylation patterns associated with
specific diseases, aiding the discovery of new biomarkers and improving the early diagnosis
and treatment of diseases.

Guidance for genome editing and therapy: DNA methylation plays a significant role
in genome stability and functional gene regulation. Predictive algorithms can help identify
and interpret the location and function of DNA methylation in the genome, providing
guidance and a reference for genome editing and therapy.

2. Results

In order to investigate the practical performance of the model proposed in this study,
publicly available datasets comprising 10 distinct DNA methylation datasets were em-
ployed as experimental materials. The experimental results were comprehensively com-
pared with those of benchmark algorithms, revealing substantial advantages. This chapter
provides a visual demonstration of the comprehensive outstanding performance of the
proposed algorithm, emphasizing its commendable predictive capabilities across multiple
evaluation metrics.

2.1. Experimental Results

Through experimentation, DeepPGD exhibited several advantages across diverse
datasets, particularly in terms of Matthews’ correlation coefficient (MCC) and the area
under the curve (AUC). The advantages of DeepPGD are highlighted below (Tables 1–3).

Higher Matthews’ correlation coefficient (MCC): DeepPGD demonstrated relatively
higher MCC values across most biological species. Through experiments, it was found that
the DeepPGD algorithm outperformed the comparative algorithms in 9 out of 10 datasets,
except for the 5 hmC H. sapiens dataset. Particularly significant advantages were observed
in the experimental results for the 4 mc C. equisetifolia and S. cerevisiae datasets. The iDNA-
ABT [23] algorithm performed best on the 5 hmC H. sapiens dataset. However, the iDNA-
MS [24] algorithm exhibited a relatively mediocre performance across all datasets. The MCC
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metric evaluates the predictive performance of a classification model, being particularly
useful for imbalanced datasets. Elevated MCC values signified that DeepPGD maintained
a well-balanced performance in classifying positive and negative instances, potentially
conferring advantages in reliability and robustness for DNA methylation prediction tasks.

Table 1. ACC comparison of each method.

4 mc 4 mc 4 mc 5 hmC 6 mA 6 mA 6 mA 6 mA 6 mA 6 mA

C.
equisetifolia F. vesca S.

cerevisiae H. sapiens A. thaliana C. elegans D.
melanogaster H. sapiens T.

thermophile
Xoc

BLS256

iDNA-MS 0.7262 0.8217 0.6962 0.9475 0.834 0.8549 0.9027 0.8799 0.8602 0.8449
iDNA-ABT 0.8251 0.842 0.7027 0.9492 0.8538 0.8903 0.9122 0.898 0.874 0.8694
DeepPGD 0.8579 0.8554 0.7179 0.948 0.8636 0.9127 0.9255 0.9045 0.8802 0.8824

The best value in each column is in bold.

Table 2. MCC comparison of each method.

4 mc 4 mc 4 mc 5 hmC 6 mA 6 mA 6 mA 6 mA 6 mA 6 mA

C.
equisetifolia F. vesca S.

cerevisiae H. sapiens A. thaliana C. elegans D.
melanogaster H. sapiens T.

thermophile
Xoc

BLS256

iDNA-MS 0.452 0.6433 0.395 0.8966 0.6697 0.7099 0.805 0.7623 0.7342 0.693
iDNA-ABT 0.6517 0.6842 0.4064 0.9009 0.7088 0.7808 0.8244 0.796 0.754 0.7394
DeepPGD 0.716 0.711 0.436 0.8976 0.7273 0.8121 0.8512 0.8091 0.7688 0.7649

The best value in each column is in bold.

Table 3. AUC comparison of each method.

4 mc 4 mc 4 mc 5 hmC 6 mA 6 mA 6 mA 6 mA 6 mA 6 mA

C.
equisetifolia F. vesca S.

cerevisiae H. sapiens A. thaliana C. elegans D.
melanogaster H. sapiens T.

thermophile
Xoc

BLS256

iDNA-MS 0.79 0.8991 0.7612 0.962 0.9093 0.9311 0.962 0.9507 0.926 0.9251
iDNA-ABT 0.8555 0.907 0.7537 0.9553 0.9184 0.9433 0.9544 0.951 0.931 0.9261
DeepPGD 0.9181 0.9285 0.7763 0.9655 0.9354 0.9662 0.9709 0.9664 0.943 0.9497

The best value in each column is in bold.

Higher area under the curve (AUC): DeepPGD presented higher AUC values across
most biological species. The AUC measures the overall performance of a classification
model across different thresholds and is often employed to assess the classifier’s dis-
criminative ability. Increased AUC values suggested that DeepPGD possessed a strong
discrimination ability between positive and negative instances, potentially enhancing its
capacity to identify DNA methylation sites.

Comprehensive performance superiority: DeepPGD demonstrated superiority across
various metrics using multiple biological species, indicating a favorable performance across
multiple aspects. Its comprehensive performance superiority implied that DeepPGD could
offer stable and proficient performance across diverse data contexts.

Adaptability to biological species: DeepPGD excelled across different biological
species, implying a certain degree of adaptability to various organisms. The ability to
adapt to different biological species is crucial when analyzing diverse types of DNA methy-
lation datasets, and DeepPGD’s performance in this aspect enhanced its appeal.

Overall, based on these datasets, the DeepPGD algorithm consistently exhibited
superior performance, particularly in terms of Matthews’ correlation coefficient and the area
under the curve. The iDNA-ABT algorithm also demonstrated competitive performance
across most biological species, while iDNA-MS appeared to exhibit a comparatively lower
performance in most performance metrics.

2.2. Box-Plot Analysis

Based on the box plots derived from the experimental data, the following analytical
conclusions were drawn. In terms of accuracy (ACC), the box plots demonstrated that the
DeepPGD algorithm exhibited higher accuracy across various biological species datasets,
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markedly surpassing the iDNA-ABT and iDNA-MS algorithms. Although iDNA-ABT
and iDNA-MS displayed certain fluctuations in accuracy, their overall levels remained
comparatively lower. Concerning Matthews’ correlation coefficient (MCC), the DeepPGD
algorithm significantly outperformed the other two algorithms in terms of MCC values
for most datasets, indicating its superior predictive performance in classification tasks.
Meanwhile, the distribution ranges of the MCC values for iDNA-ABT and iDNA-MS were
wider, suggesting potential instability. In the context of the area under the curve (AUC),
the DeepPGD algorithm demonstrated elevated AUC values for most datasets, indicating
larger areas under the ROC curves and stronger classification capabilities. In contrast, the
AUC values for iDNA-ABT and iDNA-MS were generally relatively lower.

In consideration of these metrics, the following conclusions could be drawn. The
DeepPGD algorithm possessed a distinct advantage in DNA methylation recognition tasks,
excelling in accurate classification and prediction. It consistently exhibited outstanding
performance across the accuracy, MCC, and AUC evaluation metrics (Figures 1–3).
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2.3. Ablation Experiments

To gain a deeper understanding of the algorithm’s performance, we conducted ab-
lation experiments on one representative dataset from each of the 4 mC, 5 hmC, and
6 mA categories. Based on the ablation experiment results, several analyses were derived
(Figure 4).
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the original model with the LSTM module removed. The middle part of the figure shows the original
model. The right part of the figure shows the original model with the TCN module removed.

Impact on accuracy (ACC): The ablation experiment results revealed that the DeepPGD
model consistently achieved higher accuracy for all three biological species datasets when
both BiLSTM and a TCN were used. This underscored the crucial role of BiLSTM and the
TCN in enhancing accuracy within the DeepPGD model. Conversely, removing either the
BiLSTM or TCN component from the model, as indicated by the experimental results, led
to decreased accuracy for these datasets (Figure 5).
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Impact on Matthews’ correlation coefficient (MCC): Similarly, the experimental results
demonstrated that DeepPGD achieved the highest MCC values for all three biological
species datasets. The ablation experiments highlighted that the removal of BiLSTM or the
TCN led to reduced MCC values. This indicated the pivotal role of BiLSTM and the TCN in
enhancing the robustness and predictive performance of the classification model (Figure 6).
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Figure 6. Comparison of MCC performance in ablation experiments.

Impact on area under the curve (AUC): The AUC is a crucial metric for assessing
the predictive performance of classification models. The experimental results indicated
that DeepPGD attained the highest AUC values for two of the three biological species
datasets when both BiLSTM and TCN were used. However, for one dataset, omitting the
TCN resulted in higher AUC values, which consequently improved the performance of the
classification model for that specific dataset (Figure 7).
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Overall, the ablation experiment results underscored the significant roles of BiLSTM
and a TCN within the DeepPGD model in improving key metrics such as accuracy, MCC,
and the AUC. This further validated the superior performance of the DeepPGD algorithm in
DNA methylation recognition tasks and highlighted the interdependence and importance
of different components within deep learning models. Consequently, the integration of
BiLSTM and a TCN into the deep learning framework enhanced the accurate identification
capability for DNA methylation.
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2.4. Cross-Species Prediction of DNA Methylation Correlation

In order to understand the correlation between DNA methylation among different
species, this study conducted cross-testing using DNA methylation datasets from various
species. The experiments revealed that DNA methylation among different species may
be correlated and could be predicted using DNA methylation data from other species,
although the effectiveness was limited. Among all test results, training and testing using
data from the same species yielded the best predictive performance. However, in cross-
prediction scenarios, the results were not always positive. For instance, the 6 mA_A.
thaliana training set could predict the 6 mA_D. melanogaster test set relatively well, but
the 6 mA_T. thermophile training set performed poorly when predicting the 6 mA_Xoc
BLS256 test set. Considering these experimental results, predicting the DNA methylation
of unknown species using existing species’ DNA methylation data may require complex
decision-making (Figure 8).
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3. Discussion

Deep learning has rapidly advanced and made significant strides across various fields,
such as natural language processing and computer vision [25–27]. The exploration of
machine learning and deep learning methods for DNA methylation classification has
been a prominent avenue of research, demonstrating their effectiveness over standard
biological and statistical approaches. A predominant focus of these studies has been on
binary classification, determining whether specific sequences belong to DNA methylation
sites [23,24,28,29].

Deep-4mCGP [30], a model approached from a 4 mC classification perspective, em-
ploys gradient-boosting decision tree for the feature selection. Subsequently, it feeds the
combination of sequences and features into a convolutional neural network (CNN) for 4 mC
classification. Mouse4mC-BGRU [31] employs adaptive embedding to extract features from
sequences and utilizes bidirectional gated recurrent units (BiLSTMs) for the encoding, ad-
hering to a conventional neural 4 mC classification network. DNC4mC-Deep [32] attempts
embedding using a cross-species dataset and applies various encoding methods, including
the dinucleotide composition (DNC) and the trinucleotide combination (TNC) position.
Finally, it uses a modified neural network for 4 mC classification. Prior to applying a CNN
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model, Deep-4 mCW2V encodes DNA sequences using word embeddings to learn and
accurately identify 4 mC sites. Concerning 5 hmC, iRNA5hmC [33] employs position nu-
cleotide binary carriers as features, utilizes a two-stage optimization method for the feature
selection, and then employs support vector machines (SVMs) for the classification. Regard-
ing typical RNA methylation, a well-described study [34] summarizes several classification
methods, including binary encoding (e.g., specific-position k-mers) and combination encod-
ing (e.g., k-spacing nucleotide pair frequency (KSNPF)). Researchers have employed SVMs,
random forests (RFs), CNNs, and other machine learning models for classification. In 6 mA
prediction research, Le and Ho [28] designed a complex predictor structure comprising
pretrained transformers and CNNs. i6mA-Vote [35] employs one-hot encoding and five
selected basic machine learning models for voting. MGF6mARice [36] transforms original
sequences into a simplified SMILES format and employs graph convolutional networks
(GCNs) for the encoding and classification.

However, whether traditional machine learning methods or deep learning methods,
most still heavily rely on manual approaches to train classifiers for model inputs, neces-
sitating researchers to possess prior knowledge. Furthermore, these methods struggle to
be universally applicable across all species. Additionally, the aforementioned methods
are only designed for a specific methylation type, or some methods are only tailored to a
particular species. Therefore, there is an urgent need for a universal method to identify
cross-species DNA methylation sites. iDNA-MS [24] initially configured samples through
three sequences to encode features and then employed a RF to identify DNA methyla-
tion sites for 5 hmC, 6 mA, and 4 mC. However, the experimental results showed that its
algorithm performance was suboptimal, leaving room for improvement.

Given the aforementioned backdrop, this paper introduces an innovative deep learning
framework named DeepPGD, aiming to address the issue of DNA methylation identifi-
cation. To overcome the complexity of DNA sequences and the importance of sequence
features, this framework adopted a dual residual structure that combined convolutional
networks (CNNs) and bidirectional long short-term memory (BiLSTM) networks, thus
wielding formidable feature extraction capabilities. The introduction of a dual residual
structure further enhanced the model’s depth, aiding the model to learn more abstract
and higher-level features from raw DNA sequences. This structure gradually constructed
multilayered feature representations, allowing the model to better comprehend the hierar-
chical structure of the data. A CNN itself excels at capturing features of different scales,
while a BiLSTM can capture long-term dependencies within sequences. By combining
them, DeepPGD proved capable of multiscale feature learning, thereby providing a more
comprehensive understanding of DNA sequence characteristics.

4. Materials and Methods
4.1. Dataset

The datasets utilized in this study were the same as those in iDNA-MS [24]. This study
employed a total of 10 datasets, representing the following three types of DNA methylation
site: 4 mC, 5 hmC, and 6 mA. The 4 mC category consisted of the following three datasets:
4 mC_C. equisetifolia, 4 mC_F. vesca, and S. cerevisiae. The 5 hmC category included the
dataset 5 hmC_H. sapiens. The 6 mA category comprised the following six datasets: 6 mA_A.
thaliana, 6 mA_C. elegans, 6 mA_D. melanogaster, 6 mA_H. sapiens, 6 mA_Tolypocladium,
6 mA_T. thermophile, and 6 mA_Xoc, BLS256. All datasets shared a common DNA sequence
length of 41 nt.

4.2. Evaluation Criteria

In this research, the investigators utilized the AUC (area under the curve), ACC (accu-
racy), and MCC (Matthews’ correlation coefficient) as the primary evaluation criteria to
assess the performance of predictive models based on DNA methylation data. DNA methy-
lation prediction is a significant binary classification problem that involves predicting the
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presence or absence of methylation sites within DNA molecules. The following elaboration
and explanation provide further insights into these evaluation criteria.

AUC (area under the curve): In DNA methylation prediction, the AUC is used to
measure the balance between the true-positive rate and false-positive rate of a model
at various classification thresholds. A high AUC value indicates that the model can
accurately distinguish between positive and negative samples, thereby demonstrating a
good predictive performance.

ACC (accuracy): ACC in DNA methylation prediction measures the overall classifica-
tion accuracy of a model. The accurate classification of positive and negative samples is
crucial for the task of DNA methylation prediction as the predictive outcomes can have
significant implications in biological research and medical diagnosis.

ACC = (TP + TN)/(TP + TN + FP + FN) (1)

MCC (Matthews’ correlation coefficient): MCC is a comprehensive metric that takes
into account true positives, true negatives, false positives, and false negatives. In DNA
methylation prediction, MCC offers a more holistic performance evaluation. In particular,
when dealing with imbalanced datasets, MCC better reflects the model’s performance,
aiding researchers to accurately assess the model’s performance across different classifica-
tion scenarios.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

The combined application of these evaluation criteria helps researchers to gain a
comprehensive understanding of the performance of DNA methylation prediction models,
enabling more accurate model selections and optimization decisions. In the field of bioinfor-
matics, these evaluation metrics hold significant significance in verifying model reliability,
applicability, and their role in uncovering gene regulation and disease mechanisms.

4.3. RNA Representation Method

This study encompassed a total of ten datasets, each containing DNA sequences of
a fixed length. During the data preprocessing phase, the 3-mer technique was employed
to process the original DNA sequences, resulting in a reduction in the sequence length.
Subsequently, to achieve a uniform sequence length, a zero-padding strategy was applied
at the end of the DNA sequences, extending the length to 48 base pairs.

In the subsequent stages of processing, the word embedding technique was employed
to convert DNA sequences into corresponding matrix representations. In this process,
each DNA motif was mapped to a sixteen-dimensional embedding space, facilitating the
conversion from sequence data to continuous vector representations. The resultant matrix
possessed dimensions of 1 × 48 × 16, providing a rich informational foundation for the
subsequent in-depth analysis and model construction (Figure 9).

4.4. Residual MLP Block in DeepPGD

In the DeepPGD model, the multilayer perceptron (MLP) layer could be viewed as an
operation for feature compression and mapping. The role of the MLP layer lay in abstraction
and encoding. Through the introduction of nonlinear activation functions, the MLP could
map original features to a higher-level abstract representation space, aiding the model to
comprehend and distinguish patterns and relationships within the data. Furthermore, in
this context, an attention mechanism was introduced, enabling the model to learn feature
disparities between the MLP layer and the original DNA sequences (Figure 10).
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4.5. TCN Block in DeepPGD

A temporal convolutional network (TCN) is a neural network architecture designed
specifically for sequence data, adept at capturing relationships and patterns within DNA
sequences. This is crucial for methylation detection tasks, as the methylation state in DNA
sequences is often influenced by adjacent base pairs. A TCN utilizes causal convolutions
to ensure that predictions at any given point in the sequence depend only on current and
past information, preserving the sequence order and avoiding information leakage from
future points.

In this study, a TCN model employing causal convolutions was used to extract se-
quence features from DNA sequences. Note that while TCN typically involves various
components such as dilated convolutions, this study specifically utilizes causal convolu-
tions. Causal convolutions ensure that each convolution operation only depends on current
and past information, which is crucial for maintaining the sequence order of the data. The
model incorporated multiple causal convolutional kernels of varying sizes within each
block to capture structural information across different spans of the sequence. This design
enables the TCN to effectively handle long-range dependencies by preserving the sequence
while considering distant base pairs (Figures 11 and 12).
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MHA (multihead attention) is an important mechanism used to calculate the weighted
sum of the key vector according to the query vector where the weight is determined by the
similarity between the query vector and the key vector. The formulas are as follows:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i , i = 1, . . . , h (3)

headi = Attention(Qi, Ki, Vi), i = 1, . . . , h (4)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O (5)

where Q, K, V represent the query matrix, key matrix, and value matrix, respectively;
WQ

i , WK
i , and WV

i represent the weight matrices of the query matrix, key matrix, and
value matrix, respectively; WO represents the output weight matrix; h represents the
number of heads; headi represents the output of the i-th head; and Concat represents the
concatenation operation.

4.6. BiLSTM Block in DeepPGD

Bidirectional long short-term memory (BiLSTM) represents a variant of a recurrent
neural network (RNN) that exhibits bidirectional properties, enabling the simultaneous
consideration of forward and backward contextual information. In the context of methyla-
tion detection tasks, each DNA base pair is regarded as a point in the sequence, allowing
BiLSTM to effectively capture sequence dependencies. The BiLSTM model performs com-
putations in both the forward and backward directions. In the forward computation, the
model starts with the first base pair in the sequence and sequentially calculates the hidden
state for each subsequent base pair. In the backward computation, the model starts from
the last base pair and calculates the hidden states in reverse order. The hidden states from
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both directions are combined through concatenation or addition, yielding comprehensive
contextual information. These hidden states can be interpreted as feature representations
of each base pair in the sequence, capturing patterns and relationships. These feature
representations serve as the foundation for the methylation state prediction in subsequent
layers (Figure 13).
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In this study, a BiLSTM residual model augmented with a multihead cross-attention
mechanism was employed to extract sequence features. Specifically, three BiLSTM units
were employed to extract sequence features from DNA sequences, enabling the extraction
of complex hierarchical features. The formulas for the LSTM calculation are as follows:

ft = σ(Wf · [ht−1, xt] + bf) (6)

it = σ(Wi · [ht−1, xt] + bi) (7)
∼
Ct = tanh(WC · [ht−1, xt] + bC) (8)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (9)

ot = σ(Wo · [ht−1, xt] + bo) (10)

ht = ot ∗ tanh(Ct) (11)

5. Conclusions

In this paper, we introduced DeepPGD, an innovative deep learning model designed
to address the challenge of DNA methylation recognition. By integrating the attention
mechanism of a transformer with MLP layers and by incorporating the feature extraction of
a TCN and BiLSTM, DeepPGD demonstrated remarkable performance using DNA methy-
lation datasets from multiple biological species. Through its adept ability to efficiently
capture both structural and sequence features of DNA sequences, DeepPGD surpassed con-
ventional methods in metrics such as accuracy, MCC, and AUC. Based on the experimental
findings of this study, diversity in feature extraction using models may contribute to an
improvement in model performance. Therefore, we believe that further exploration into
the diversity of effective feature extraction using models could be a future direction in this
field of research. This accomplishment provides a robust tool to advance DNA methylation
research. Despite certain challenges that remain, this study provides a new direction for
the application of deep learning within the field of bioinformatics.
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