

Smarter Irrigation for Profit

Advanced data-driven irrigation

Dr James Hills Tasmanian Institute of Agriculture (TIA) - University of Tasmania

David McLaren (TIA) Dr Joe Foley (NCEA) Dr Alison McCarthy (NCEA)

Roadmap!

- Smarter irrigation project context
- The power of data to inform decisions
- Current practice and the cost of getting it wrong
- Variable rate irrigation
- VARIwise autonomous control platform

Project 2b – Smart Automated irrigation

- Increasing farm profit through efficient use of irrigation input to dairy pastures
 - Five Farmer sites
 - 4 with human interface
 - 1 with Automation (VARIwise)
 - Year 1 collect data only
 - Year 2 provide information
 - Year 3 Interact with the farmers

The power of data (information)

Powerful Impact

- Measured results before and after pump and motor replaced
- 787 kWh/ML vs 266 kWh/ML
- Savings of \$120/ML or more than \$15,000 for the season

Cressy Pivot

Site variability maps

Site	Total stored water to 1.0 m (mm)	Total stored water in 30 cm root zone (mm)	Readily available water in 30 cm root zone (mm)
Cressy A	476	35	19

30 cm

15 cm

25mm

40 cm

- Large highly variable site
- Issues with wet areas and bogging
- System capacity 6.7mm/d
- RAW varies between 9 and 25 mm
- ETo maximum 7mm in January
- Continuous irrigation required during mid summer and variable rate application could be beneficial

Irrigation scheduling and crop growth at Cressy from 2016 to 2018

Pasture growth rates 2016

Pasture growth rates 16/17

Cutting silage

Grazing management

2016/17 Soil moisture

The Green Drought

ETc 4.3mm Rain and irrigation - 198mm required 191mm received

Pasture growth rates 17/18

Chart Title

The opportunity cost in year 1

*Only measured from January 2016

- Opportunity loss of approximately 35kg DM/ha/d
- Opportunity loss of 420t pasture over 3 months for 117 ha pivot
- \$200/t extra feed cost for purchased feed to fill the gap
- Over \$80000 extra cost over 3 months

➤ The power of data – measure to manage

> Beware of the Green Drought

> Keeping the bucket topped up is key!!!

Poor watering costs production and money

Variable rate irrigation

- To manage variability due to
 - Management and infrastructure
 - laneways
 - Locking up paddocks for silage
 - Renovation of specific paddocks
 - Different crops under 1 pivot
 - Climate and temporal change
 - Soils and topography

34% reduction in irrigation 2ML/ha

Cressy

Reuben Wells - AgLogic

Producing a base prescription map

Rob Bradley stated that "We're putting the water where it needs to go, we're using less power to do it, and we're growing more grass".

NCEA and Automation with VARIwise

Developing variable-rate irrigation prescription maps from:

(i) infield weather, soil, and pasture growth sensors
(ii) optimisation algorithms using calibrated crop production models in 'VARIwise' software
(iii) automated prescription map upload

SUEENSLAND Na Eng

National Centre for Engineering in Agriculture

Location of 3 cameras on pivot:

Smartphone pasture sensor:

and location

Cameras on Pivots

Pasture height used for irrigation

Height is measured using quad bike sensor

Smartphone-based cameras on pivot upload image

Automated irrigation for dairy pastures

- Image analysis extracts pasture features in camera image
- Compared with weekly quadbike height data

Automated prescription map comparisons

10-20 % reduction in water use compared with flat rate applications

Acknowledgements

David McLaren, TIA Joe Foley, NCEA Alison McCarthy, NCEA **Farmers** Australian Government Department of Agriculture and Water Resources

